JP2018105841A - Liquid ring target type impact nuclear fusion reactor - Google Patents

Liquid ring target type impact nuclear fusion reactor Download PDF

Info

Publication number
JP2018105841A
JP2018105841A JP2016257971A JP2016257971A JP2018105841A JP 2018105841 A JP2018105841 A JP 2018105841A JP 2016257971 A JP2016257971 A JP 2016257971A JP 2016257971 A JP2016257971 A JP 2016257971A JP 2018105841 A JP2018105841 A JP 2018105841A
Authority
JP
Japan
Prior art keywords
ring
liquid
heavy hydrogen
deuterium
nuclear fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016257971A
Other languages
Japanese (ja)
Other versions
JP2018105841A5 (en
Inventor
實 藤原
Minoru Fujiwara
實 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016257971A priority Critical patent/JP2018105841A/en
Publication of JP2018105841A publication Critical patent/JP2018105841A/en
Publication of JP2018105841A5 publication Critical patent/JP2018105841A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nuclear fusion reactor for power enabling downsizing.SOLUTION: At a lower center of a cylindrical furnace, a circular ring-shaped nozzle is provided, then with this nozzle, liquid heavy hydrogen is continuously jetted up evenly to a predetermined height, and thereby a ring of the liquid heavy hydrogen is formed. On a ceiling surface and floor surface of the liquid heavy hydrogen ring, a container is provided, the liquid heavy hydrogen is input to a predetermined depth. A heavy hydrogen ion beam, which is accelerated from obliquely above, continuously collides toward the inner surface of the liquid heavy hydrogen ring through an interval between an upper end of the liquid heavy hydrogen ring and the container on the ceiling surface of the ring, thereby generating D+D primary nuclear fusion reaction for power and D+D secondary nuclear fusion reaction.SELECTED DRAWING: Figure 1

Description

本発明は、液リングターゲット式衝突型核融合炉に関する。The present invention relates to a liquid ring target type collision fusion reactor.

特願2016−99965(液リングターゲット式パルス衝突型核融合炉)では、動力用核融合炉をめざしていることはわかる。しかしそのまま当業者が製作するには、まだ曖昧な問題点が多い。It can be seen that Japanese Patent Application No. 2006-99965 (liquid ring target type pulse collision type fusion reactor) aims at a power fusion reactor. However, there are still many vague problems for those skilled in the art to produce as they are.

D+D衝突型核融合実験報告書
Transmutation Effects Observed with Heavy Hydrogen
By M.L.E.Oliphant,Ph.D.(Messel Reserch Fellow of the Royal Sosiety)
P.Harteck,ph.D.,and Lord Rutherford,o.M.,F.R.S.

Figure 2018105841
D + D Collision Type Fusion Experiment Report Transduction Effects Observed with Heavy Hydrogen
By M.D. L. E. Oliphant, Ph. D. (Messel Research Fellows of the Royal Society)
P. Hartek, ph. D. , And Lord Rutherford, o. M.M. , F.A. R. S.
Figure 2018105841

(先の)特願2016−99965に対して本件は先の特願によく似ているが、さらに連続運転用に改良を加えたものである。Although this case is similar to the previous patent application (Japanese Patent Application No. 2006-99965), it is further improved for continuous operation.

「国内優先権主張」についての意見を申し上げる。本件は先の特願を基本的方法とし、部分的に改良を加えている。従って「国内優先権主張」をするのが本筋かも知れない。しかし近頃「日本弁理士会」から文書が出ていて、この優先権主張には制限が多くなってきたようなので、今回は「別件」として出願する。I would like to express my opinion on “Domestic priority claim”. This case uses the previous patent application as the basic method and partially improves it. Therefore, it may be the main source to make “domestic priority claim”. Recently, however, a document has been issued by the "Japan Patent Attorneys Association", and this priority claim seems to have become more restrictive.

念のため先の特願の特許出願人について記入しておく。
識別番号:392028309
住所:千葉県習志野市新栄1−12−1−209
氏名:藤原 實
電話番号:047−478−7133
つまり本件の出願人と同一人物である。先の特願の出願日は平成28年4月28日であり、本件の出願は1年以内である。
As a precaution, enter the patent applicant of the previous patent application.
Identification number: 392028309
Address: 1-1-12-209 Shinei, Narashino City, Chiba Prefecture
Name: Satoshi Fujiwara Phone: 047-478-7133
In other words, it is the same person as the applicant of this case. The filing date of the previous patent application is April 28, 2016, and this application is within one year.

液柱の両脇の隙間をなくす件:特願2016−99965では、液リングターゲットとして、D粒子ビームの衝突確率は改善された。しかし液リングの各液柱の両脇が空いていて、この問題を解決する具体的な方法が記載されていない。Case of eliminating gaps on both sides of the liquid column: In Japanese Patent Application No. 2006-99965, the collision probability of the D particle beam as a liquid ring target was improved. However, both sides of each liquid column of the liquid ring are vacant, and no specific method for solving this problem is described.

液リングの上下カバーを間欠式から連続式に改造する件: 先の特願では、液リングの中央の空いている上面と下面をカバーするための、液滴ディスクは噴き上げて停止する瞬間を利用する間欠的なものであり、動力用融合炉としての全体的運転効率を阻害するものであった。Remodeling the upper and lower covers of the liquid ring from intermittent to continuous: In the previous patent application, the droplet disk was used to cover the vacant upper and lower surfaces in the center of the liquid ring, and use the moment when the droplet disk squirts and stops It was intermittent, and hindered the overall operating efficiency of the power fusion reactor.

解決の手段Means of solution

(1)各液柱の両脇の隙間の件: 多数の液柱をリング状に並べるのではなく、最初から1ケのリング状のノズルを使用する。(図1参照)
液体重水素をひとつのリングとして連続的に噴き上げて、液ターゲットリングを形成する。
(1) Case of gaps on both sides of each liquid column: Instead of arranging many liquid columns in a ring shape, one ring-shaped nozzle is used from the beginning. (See Figure 1)
Liquid deuterium is continuously spouted as one ring to form a liquid target ring.

上・下カバーが間欠的であった件: 上皿・下皿(蒸発皿形)の定置式に改造する。(図1参照)Cases where the upper and lower covers were intermittent: Remodel the upper and lower plates (evaporation plate type) into a stationary type. (See Figure 1)

円筒形の炉の形状の利点:特願2013−230616では球形炉であったが、特願016−99965以来、円筒形に変更している。実際に炉を設計する立場から言えば、はるかにやり易くなっている。超低温の液ターゲットは円筒形の炉の下部に集中する。炉の排ガスは主として炉の上部から吸出す。炉の最上部からの吸出し量はブランケット内壁の温度降下を避けるためになるべく制限する。Advantage of shape of cylindrical furnace: In Japanese Patent Application No. 2013-230616, it was a spherical furnace, but since Japanese Patent Application No. 016-99965, it has been changed to a cylindrical shape. From the standpoint of actually designing the furnace, it is much easier to do. The ultra-low temperature liquid target is concentrated in the lower part of the cylindrical furnace. The exhaust gas from the furnace is mainly sucked out from the upper part of the furnace. The amount of suction from the top of the furnace is limited as much as possible to avoid temperature drop of the blanket inner wall.

円筒形の炉のブランケット: ブランケット中の軽水の流路が単純になる。ブランケットを構成するブロックの製作が容易になる。また同一形状の積み重ねにより、熱膨張の計算が容易になる。Cylindrical furnace blanket: The light water flow path in the blanket is simplified. Fabrication of the blocks constituting the blanket is facilitated. Moreover, the calculation of thermal expansion is facilitated by stacking the same shape.

ブランケットの材質の問題: 水素脆性の問題を避けるための各種材質(SUS316L改良材等)が提案されている。設計には、熱膨張による引張応力の部分的増加に注意することが必要である。(図3参照)Problems with blanket materials: Various materials (such as SUS316L improvement materials) have been proposed to avoid the problem of hydrogen embrittlement. The design requires attention to a partial increase in tensile stress due to thermal expansion. (See Figure 3)

発明の効果Effect of the invention

円筒形の炉の成長性・将来性: 液ターゲットの形状をリング状にしたので、ターゲットと加速器セットの距離を短縮できる。従って核融合炉の大きさを先ず小型からスタートし、実績を積みながら、改良を重ねながら、大型に進むことができる。
「ゆっくり進むものは遠くまで行く」
Growth potential and future potential of cylindrical furnace: Since the liquid target is shaped like a ring, the distance between the target and the accelerator set can be shortened. Therefore, the size of the nuclear fusion reactor can be started from the small size, and can be advanced to the large size while improving and accumulating results.
"Slowly going things go far away"

中性管の省略の件: 加速器セットとターッゲトの距離を短縮できるので、D粒子ビームの飛行中の「クーロン斥力」によるビームの広がりを気にする必要がなくなるので、ばらつき防止用の「中性管」を除外することができるようになり、加速ビームの強度に対する制限を解除できる。またDイオンビームを、永久磁石により任意の角度に屈折できるようになるので配置の自由度が増加する。Omission of neutral tube: Since the distance between the accelerator set and the target can be shortened, there is no need to worry about the beam spread due to “Coulomb repulsion” during the flight of the D particle beam. The “tube” can be excluded, and the restriction on the intensity of the acceleration beam can be lifted. Further, since the D ion beam can be refracted at an arbitrary angle by the permanent magnet, the degree of freedom in arrangement increases.

最初の実験: まず小皿に入れた液体の重水素に斜め上方から加速したDイオンビーム(100KeV)を衝突させる方法(東北大式)からスタートする。この実験により、「D+D衝突型核融合反応」の概要を掌握できる。この反応によって発生する「トリチウム」並びに「He」の飛散方向やその空間密度等の貴重なデータが得られる。
「雨だれターゲット式D+D衝突型核融合実験報告書」があれば、更に心強い。
First experiment: First, the method starts with a method (Tohoku Univ.) In which a D ion beam (100 KeV) accelerated obliquely from above is struck against liquid deuterium in a small dish. By this experiment, the outline of “D + D collision type fusion reaction” can be grasped. Valuable data such as the scattering direction and spatial density of “tritium” and “He” generated by this reaction can be obtained.
It would be even more encouraging if there was a “raindrop target type D + D collision-type fusion experiment report”.

副産物Heの回収方法: ブランケット内軽水中のHeガスとトリチウムガスはメンブレン式ガス分離器により回収する。炉排ガス中のDガスとHeガスは「分別蒸留装置」により分別する。(図2参照)Recovery method of by-product He: He gas and tritium gas in the light water in the blanket are recovered by a membrane gas separator. D gas and He gas in the furnace exhaust gas are separated by a “fractional distillation device”. (See Figure 2)

2011年3月に発生した東日本大震災により、福島第一原発はメルトダウンした。この事故により脱原発の機運はさらに増大した。The Fukushima Daiichi nuclear power plant melted down due to the Great East Japan Earthquake that occurred in March 2011. This accident further increased the momentum of the nuclear power plant.

また地球温暖化(異常気象)は年々その勢いを増しつつある。政府は2050年にはCO2の排出量を80%削減すると世界に約束した。「クリーンな動力用融合炉」の実現が熱望されている。Global warming (abnormal weather) is gaining momentum year by year. The government promised the world to reduce CO2 emissions by 80% in 2050. Realization of a "clean power fusion reactor" is eagerly desired.

実験報告書について: 古典的なものでは、オリファント、ハーテック、ラザフォードの3人が書いた論文「Transmutation Effects Observed with Heavy Hydrogen 」(前出)がある。時代的な制限があり、純粋な重水素ではなく、重水素の化合物の液体をターゲットとしているが、基本的には本件と同じである。About the experimental report: In the classic, there is a paper "Translation Effects Observed with Heavy Hydrology" (supra), written by three people, Olifant, Hartec, and Rutherford. Due to the limitations of the times, we are targeting deuterium compound liquids rather than pure deuterium, but this is basically the same as this case.

現在進行形の実験について:雨だれターゲット式あるいは小皿上の液体Dターゲット式の実験は、現在どこかの研究所で現在進行中と推定する。この実験結果は「文殊」・「六ヶ所村」等に大きな影響を与えると思われる。また「STAP細胞」の日本における「再現実験」で問題が発生しているので、いずれ頃合いを見計らって公表されるものと期待している。About the current type of experiment: It is estimated that the experiment with the raindrop target type or the liquid D target type on the small plate is currently in progress at some laboratory. The result of this experiment seems to have a great influence on "Munbun" and "Rokkasho Village". In addition, since there is a problem in the “reproduction experiment” of “STAP cells” in Japan, it is expected that it will be announced at an appropriate time.

安全衛生対策の強化Strengthen safety and health measures

東京電力福島第一原発のメルトダウン事故以来、「核」という字の付くものは、ことごとく忌み嫌われている。本件(液リングターゲット式D+D衝突型核融合炉)は、
実験計画の段階から、「安全衛生対策」を充分に組み込んでおく必要がある。
Since the meltdown accident at TEPCO's Fukushima Daiichi nuclear power plant, everything with the word “nuclear” has been disliked. This case (liquid ring target type D + D collision type fusion reactor)
It is necessary to fully incorporate “safety and health measures” from the experimental design stage.

重水素ガス爆発の問題: 反応炉内はルーツブロワーで低真空にしておくので、どこからでも空気が漏えいしてくる危険性がある。この空気によって発生する混合ガス中の酸素濃度を「オンライン・リアルタイム」に計測して、規定値を超えたら、即時にイオン源並びに電界加速器の電源を遮断する。Problem of deuterium gas explosion: Since the reactor is kept in a low vacuum with a roots blower, there is a risk of air leaking from anywhere. The oxygen concentration in the mixed gas generated by the air is measured in “online / real time”, and when the specified value is exceeded, the power source of the ion source and the electric field accelerator is immediately shut off.

放射能汚染の問題: D+D核融合反応によって発生する運動エネルギーを有する粒子(He・T・α・H・P)が、炉外にもれないように、ブランケットの設計時に、「吸収用水壁」の有効長さが充分に確保できるように、考慮すること。またイオン源並びに電界加速器内に、逆に突入してくるトリチウムを阻止するために「Dイオンビーム」は永久磁石を用いてあらかじめ流路を屈折させておくこと。The problem of radioactive contamination: “Water wall for absorption” when designing the blanket so that particles with kinetic energy (He, T, α, H, P) generated by the D + D fusion reaction do not get out of the furnace Consideration should be made so that the effective length can be secured sufficiently. In order to prevent tritium from entering the ion source and the electric field accelerator, the “D ion beam” should be refracted in advance using a permanent magnet.

トリチウムの回収・活用方法: D+D衝突型核融合反応によって発生するトリチウム(T)(1.01MeV)の一部は、液体Dと衝突融合せずに、ブランケットに突入して来るものがある。軽水の溶存酸素と化合すると、後の処理が複雑になる。このため、「真空脱酸素法」その他により、軽水の溶存酸素をあらかじめできるだけ除外しておく。この方法により、トリチウムガスをそのままの形で、メンブレン式分離器により、回収できるようになる。
その後は、「分留装置」により、Heガスと分離して貯蔵する。将来、液ターゲット式「D+T」衝突型核融合炉の主要燃料として活用する事も考えられる。
Tritium Recovery and Utilization Method: Some of the tritium (T) (1.01 MeV) generated by the D + D collision type fusion reaction does not collide with the liquid D and enters the blanket. Combining with dissolved oxygen in light water complicates subsequent processing. For this reason, the dissolved oxygen of light water is excluded as much as possible by the “vacuum deoxygenation method” or the like. By this method, tritium gas can be recovered as it is by a membrane separator.
Thereafter, it is separated from the He gas and stored by the “fractionation device”. In the future, it may be used as the main fuel for the liquid target type “D + T” collision type fusion reactor.

ブランケット内の過圧逃がし弁: 一般のボイラーと同様に、シンプルな破裂板(ラプチャープレート)をとりつけておく。原発の原子炉とは異なり、水蒸気をそのまま放出しても、「残留高放射能汚染」は発生しない。Overpressure relief valve in the blanket: As with a normal boiler, a simple rupture plate is installed. Unlike nuclear reactors, even if steam is released as it is, "residual high radioactive contamination" does not occur.

液リングターゲット式核融合炉の炉芯部の説明図Explanatory drawing of the core of the liquid ring target fusion reactor 炉排ガス・回収D液・ブランケット内軽水中のHeガス(Tガス)回収He gas (T gas) recovery in furnace exhaust gas, recovery D liquid, and light water in blanket 熱エネルギー流れ図Thermal energy flow diagram D+D1次・連鎖2次核融合反応の理想的利得Ideal gain of D + D primary / chain secondary fusion reaction 液リングターゲット式衝突型核融合炉基礎実験計画(A案)Liquid Ring Target Collision Fusion Reactor Basic Experiment Plan (Draft A)

以下、本発明の実施の形態を図1〜図5に基づいて説明する。Hereinafter, embodiments of the present invention will be described with reference to FIGS.

(図1): 液体重水素をリング状にして、これをターゲットとして、加速Dビームを衝突させて、1次核融合反応を発生させる方法とその結果生ずる「トリチウム」・「He」を液体重水素のリングと液カバーに衝突させて連鎖2次核融合反応を発生させる方法の説明図。(Fig. 1): Liquid deuterium is made into a ring shape, and this is used as a target to collide an accelerated D beam to generate a primary fusion reaction and the resulting “tritium” and “He” are Explanatory drawing of the method of making a hydrogen ring and a liquid cover collide and generating a chain | strand secondary fusion reaction.

(図2): (1)「炉の排ガス」の流れ図:炉の排ガスはルーツブロワーで吸引し、ひと通りの処理をしたのち、液化し、分留装置により、D液とHeガスに分けて回収する。
(2)回収D液の流れ図: 液ターゲットとして、使用後の回収したD液はひと通りの処理をしてから、D液タンクへ戻す。
(3)ブランケット内「軽水」からHeガス・Tガスを回収し、「メンブレン式分離器」により、Heガス・Tガスを回収・冷却し、「分留」後、Heガスは各所の冷媒として活用し、Tガスは貯蔵して別途活用する。「液リング用」の液面高さ調整用、並びに「上皿のD液高さ」調整用の圧力・流量の調整用弁を設置する。
(Figure 2): (1) Flow chart of “furnace exhaust gas”: Furnace exhaust gas is sucked with a Roots blower, processed through a process, liquefied, and separated into D liquid and He gas by a fractionation device. to recover.
(2) Flow chart of recovered D liquid: As a liquid target, the recovered D liquid after use is processed once and then returned to the D liquid tank.
(3) He gas / T gas is recovered from “light water” in the blanket, and helium / T gas is recovered and cooled by a “membrane separator”. After “fractional distillation”, the He gas is used as a refrigerant in various places. Use T gas and store it separately. A pressure / flow rate adjusting valve for adjusting the liquid level for “Liquid ring” and for adjusting “D liquid height of upper plate” is installed.

(図3)熱エネルギーの流れ図: 核融合反応によって発生する運動エネルギーを持った粒子群をキャッチして熱エネルギーに変換する役目は円筒形ブランケット内の軽水が担当する。以降は加圧水型原子力発電所と同様にして、タービン発電機を回転させてのち、復水器から循環ポンプを経てブランケットに戻る。(Fig. 3) Thermal energy flow diagram: Light water in the cylindrical blanket is responsible for catching the particles with kinetic energy generated by the fusion reaction and converting them into thermal energy. Thereafter, in the same manner as the pressurized water nuclear power plant, the turbine generator is rotated and then returned from the condenser to the blanket through the circulation pump.

(図4)D+D核融合反応方程式と理論的利得(gain): 「J.D.Lowson」の「ローソン条件」は超高温・超高圧の状態にするためのエネルギーを省略して熱効率を計算している。
これに対して本件では、衝突する単体のD粒子の有する運動エネルギーと核融合によって発生する各種粒子の運動エネルギーの合計を比較し、純粋な利得(gain)を取り扱っている。
(Figure 4) D + D fusion reaction equation and theoretical gain (gain): The “Lawson condition” of “JD Lowson” calculates the thermal efficiency by omitting the energy to make the state of ultra high temperature and ultra high pressure. ing.
On the other hand, in this case, the total kinetic energy of colliding single D particles and the kinetic energy of various particles generated by nuclear fusion are compared, and a pure gain is handled.

(図5)基礎実験計画(A案): シンプルな実験により、連鎖2次核融合反応の発生を確認することを目的とする。(Fig. 5) Basic experiment plan (Draft A): The purpose of this experiment is to confirm the occurrence of a secondary secondary fusion reaction by a simple experiment.

LDTR: 液体重水素 ターゲットリング
RNZ: リング状ノズル
LDTG: 液体重水素上部ガード
LDUG: 同上 下部ガード
DACB: 重水素加速ビーム
ISACS: イオン源+重水素イオン加速システム
PDDF: D+D1次衝突型核融合発生場所を1ビーム・Iケ所だけ取り上げて概念 的に示している。
EQPT: 液体重水素均圧タンク
SPP: 液体重水素供給パイプ
EXP: 液体重水素 排出パイプ
HDS: 「上側」液体重水素 受皿
LDS: 「下側」液体重水素 受皿
HOP: 上皿オーバーフローパイプ
LOP: 下皿オーバーフローパイプ
HDSP: 液体重水素供給パイプ
HSGH: 上皿底面の溝・穴加工の概要
LDTR: Liquid deuterium target ring RNZ: Ring nozzle LDTG: Liquid deuterium upper guard LDUG: Same as above Lower guard DACB: Deuterium acceleration beam ISACS: Ion source + deuterium ion acceleration system PDDF: D + D primary collision type nuclear fusion generation site Is conceptually illustrated by taking up only one beam and I place.
EQPT: Liquid deuterium pressure equalization tank SPP: Liquid deuterium supply pipe EXP: Liquid deuterium discharge pipe HDS: “Upper” liquid deuterium receiving pan LDS: “Lower” liquid deuterium receiving pan HOP: Upper pan overflow pipe LOP: Lower Dish overflow pipe HDSP: Liquid deuterium supply pipe HSGH: Outline of groove and hole machining on the bottom of the upper dish

トリチウムの回収・活用方法:D+D衝突型核融合反応によって発生するトリチウム(T)(1.01MeV)のうちごく一部は、液体Dと衝突・核融合せずに、ブランンケットに突入して来るものがあると想定される。軽水中の溶存酸素と化合すると、トリチウム水(HTO)になり、あとの処理が複雑になる。このため、「真空脱酸素法」その他により、軽水中の溶存酸素を、あらかじめできるだけ除去して置く。その他突入するT粒子の軽水との衝突により生成するトリチウム水(HTO)を極力抑制するために「ナノバブル方式」等により溶存水素をできるだけ多く混入させておく。これらの方法により、トリチウムをそのままの形で、メンブレン式分離器により、回収する。そのあとは「分留装置」により、Heガスと分離して貯蔵する。このトリチウムガス(T)が規定量貯まったら、この核融合炉の特定のイオン加速器セットに供給して、「D+T」反応を発生させる。つまり、「D+D+(T)」型核融合炉として、トリチウムの回収・活用問題を解決する。Tritium recovery / utilization method: A small part of tritium (T) (1.01 MeV) generated by the D + D collision-type fusion reaction enters the blanket without colliding with or fusion with liquid D. It is assumed that there is. When combined with dissolved oxygen in light water, it becomes tritium water (HTO), which complicates subsequent processing. For this reason, dissolved oxygen in light water is removed in advance as much as possible by the “vacuum deoxygenation method” or the like. In addition, in order to suppress as much as possible tritium water (HTO) generated by collision of the entering T particles with light water, as much dissolved hydrogen as possible is mixed by the “nano bubble method” or the like. By these methods, tritium is recovered as it is with a membrane separator. Thereafter, it is separated from the He gas and stored by a “fractionation device”. When a predetermined amount of this tritium gas (T) is stored, it is supplied to a specific ion accelerator set of this fusion reactor to generate a “D + T” reaction. In other words, as a “D + D + (T)” type nuclear fusion reactor, the tritium recovery and utilization problem is solved.

均圧タンク(EQPT)の下部中央に旋回タンク(SPRT)を設けて接線方向に液体重水素(D液)を供給する。D液は旋回しながら上昇して、均圧タンクに入り、旋回しながらリングノズル(RNZ)から噴き出して、ターゲットとなる液リング(LDTR)を形成する。所定の高さまで上がったD液のうちリングの内側に落ちたものは、下皿(LDS)の中央のオーバーフローパイプ(LOP)から均圧タンク・旋回タンクの中央を貫通して、下部のボックス(JOIB)に落ちて、排出される。液リングの外側に落ちたD液はリングノズルの外側のU字溝のような排出ルートを通って下部のボックスに合流する。尚液リングの外側には高断熱性発泡珪素のリングカバー(RNGC)を設けて、ブランケットからの放射熱を遮断する。液リングの上方には飛散するトリチウム(T)粒子をキャッチするためのD液入りの上皿(HDS)(下部にはD液がしたたり落ちるようNC加工をしておく)を設ける。この上皿には別のパイプ(HDSP)により、D液を供給する。イオン源・加速器セット(ISACS)から液リングのほぼ中央の高さに、所定の速度のDイオンビーム(DACB)を衝突させると、その位置(PDDF)にて、1次核融合反応が発生し、さらに連鎖2次核融合反応が発生する。(図4)A swirl tank (SPRT) is provided at the lower center of the pressure equalizing tank (EQPT) to supply liquid deuterium (D liquid) in the tangential direction. The liquid D rises while swirling, enters the pressure equalizing tank, and spouts from the ring nozzle (RNZ) while swirling to form a liquid ring (LDTR) that becomes a target. Of the liquid D that has risen to a predetermined height, the liquid that falls to the inside of the ring passes through the center of the pressure equalizing tank / swirl tank from the center overflow pipe (LOP) of the lower plate (LDS) and passes through the lower box ( JOIB) and discharged. The D liquid falling outside the liquid ring joins the lower box through a discharge route such as a U-shaped groove on the outside of the ring nozzle. A ring cover (RNGC) made of highly heat insulating silicon foam is provided outside the liquid ring to block radiant heat from the blanket. Above the liquid ring, an upper dish (HDS) containing D liquid for catching scattered tritium (T) particles (NC processing is performed so that the D liquid is dripped or dropped) is provided at the lower part. D liquid is supplied to this upper plate by another pipe (HDSP). When a D ion beam (DACB) with a predetermined velocity is collided from the ion source / accelerator set (ISACS) to the height of the center of the liquid ring, a primary fusion reaction occurs at that position (PDDF). Furthermore, a linked secondary fusion reaction occurs. (Fig. 4)

EQPT :均圧タンク
SPRT :旋回タンク
RNZ :リングノズル
LDTR :液体重水素のターゲットリング
LOP :下皿オーバーフローパイプ
JOIB :下部の排出用集合ボックス
RNGC :液リング用断熱カバー
HDS :上皿
LDS :下皿
HDSP :上皿用D液供給パイプ
ISACS :イオン源・加速器セット
PDDF :Dイオンビーム衝突・核融合反応位置
HDSC :上皿用断熱カバー
HOP :上皿用オーバーフローパイプ
SPP :D液供給パイプ
EXP :D液排出パイプ
DACB :D粒子加速イオンビーム
HSGH :上皿底面の溝・穴加工の概要
EQPT: Pressure equalizing tank SPRT: Swivel tank RNZ: Ring nozzle LDTR: Liquid deuterium target ring LOP: Lower tray overflow pipe JOIB: Lower discharge collecting box RNGC: Liquid ring insulation cover HDS: Upper plate LDS: Lower plate HDSP: D liquid supply pipe for upper plate ISACS: Ion source / accelerator set PDDF: D ion beam collision / fusion reaction position HDSC: Thermal insulation cover for upper plate HOP: Overflow pipe for upper plate SPP: D liquid supply pipe EXP: D Liquid discharge pipe DACB: D particle acceleration ion beam HSGH: Outline of groove and hole machining on bottom of bottom plate

Claims (1)

円筒形の炉の下部中央に、円形リングのノズルを設けて、そこから液体重水素を連続的に所定の高さに均一に噴き上げて、液体重水素のリングを形成する。この液体重水素のリングのあいている天井面と床面にそれぞれの容器を設けて、所定の深さまで液体重水素を入れて置く。この液体重水素のリングの内面に向かって、液体重水素リング上端とリング天井面容器の隙間を通して、斜め上方から加速した重水素イオンのビームを連続的に衝突させて、動力用のD+D1次核融合反応、並びにD+D2次核融合反応を発生させる方法。A circular ring nozzle is provided at the center of the lower portion of the cylindrical furnace, and liquid deuterium is continuously spouted uniformly from the nozzle to a predetermined height to form a liquid deuterium ring. Each container is provided on the ceiling surface and floor surface where the ring of liquid deuterium is present, and liquid deuterium is placed in a predetermined depth. To the inner surface of the liquid deuterium ring, a beam of deuterium ions accelerated obliquely from above is continuously collided through the gap between the upper end of the liquid deuterium ring and the ring ceiling surface container, and the D + D primary nucleus for power A method for generating a fusion reaction as well as a D + D secondary fusion reaction.
JP2016257971A 2016-12-22 2016-12-22 Liquid ring target type impact nuclear fusion reactor Pending JP2018105841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016257971A JP2018105841A (en) 2016-12-22 2016-12-22 Liquid ring target type impact nuclear fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016257971A JP2018105841A (en) 2016-12-22 2016-12-22 Liquid ring target type impact nuclear fusion reactor

Publications (2)

Publication Number Publication Date
JP2018105841A true JP2018105841A (en) 2018-07-05
JP2018105841A5 JP2018105841A5 (en) 2019-06-20

Family

ID=62787813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016257971A Pending JP2018105841A (en) 2016-12-22 2016-12-22 Liquid ring target type impact nuclear fusion reactor

Country Status (1)

Country Link
JP (1) JP2018105841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230558A1 (en) 2018-06-01 2019-12-05 国立大学法人 岡山大学 Novel monoclonal antibody having anti-inflammatory action
KR20220128952A (en) * 2021-03-15 2022-09-22 전북대학교산학협력단 Providing Method for Fusion reactor design and electronic device supporting the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230558A1 (en) 2018-06-01 2019-12-05 国立大学法人 岡山大学 Novel monoclonal antibody having anti-inflammatory action
KR20220128952A (en) * 2021-03-15 2022-09-22 전북대학교산학협력단 Providing Method for Fusion reactor design and electronic device supporting the same
KR102609504B1 (en) 2021-03-15 2023-12-04 전북대학교산학협력단 Providing Method for Fusion reactor design and electronic device supporting the same

Similar Documents

Publication Publication Date Title
Boccaccini et al. Status of maturation of critical technologies and systems design: Breeding blanket
Moir et al. HYLIFE-II: A molten-salt inertial fusion energy power plant design
Blink et al. High-yield lithium-injection fusion-energy (HYLIFE) reactor
KR20130042570A (en) Nuclear transformation method and nuclear transformation device
JP2018105841A (en) Liquid ring target type impact nuclear fusion reactor
Paladino et al. OECD/NEA HYMERES project: for the analysis and mitigation of a severe accident leading to hydrogen release into a nuclear plant containment
Filburn et al. Three Mile Island, Chernobyl and Fukushima
Zverev et al. Nuclear power plants for the icebreaker fleet and power generation in the arctic region: development experience and future prospects
Buongiorno Conceptual design of a lead-bismuth cooled fast reactor with in-vessel direct-contact steam generation
JP7142134B2 (en) Core meltdown retention structure and reactor containment vessel
Monsler et al. Electric power from laser fusion: the HYLIFE concept
US20200176133A1 (en) Nuclear fusion reactor, thermal device, external combustion engine, power generating apparatus, and moving object
KR101546317B1 (en) Water ball to make the molten core porous
Marguet A Brief History of Nuclear Reactor Accidents: From Leipzig to Fukushima
JP2017198643A (en) Target system pulse collision type nuclear fusion reactor
Zrodnikov et al. Use of Russian Technology of ship reactors with lead-bismuth coolant in nuclear power
KR101404646B1 (en) Inherent safety water cooled reactor system for thermal desalination
Marguet History of the pressurized water reactor
US20070172015A1 (en) Nuclear fusion containment complex and systems network for the thermal durational enhancement of contained heat processes
Yamamoto et al. Design of tritium collecting system from LiPb and LiPb dropping experiment
Yousaf et al. CFD analysis of mixing and buoyancy effects of a diffuser jet in stratified region of a solar pond
CN103021480A (en) Integrated atmospheric heat sink system for nuclear plant
Fischer et al. Activation characteristics of the fusion power plant coolants He, water, Pb-Li and aspects of tritium extraction techniques
Go et al. Preliminary Analysis of Hydrogen Behavior Using GASFLOW-MPI in the OPR1000 Containment Under a Severe Accident Condition
Pacheco et al. Technological Perspectives for Propulsion on Nuclear Attack Submarines

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001