JP2018104723A - Plasma nitriding apparatus - Google Patents

Plasma nitriding apparatus Download PDF

Info

Publication number
JP2018104723A
JP2018104723A JP2016248699A JP2016248699A JP2018104723A JP 2018104723 A JP2018104723 A JP 2018104723A JP 2016248699 A JP2016248699 A JP 2016248699A JP 2016248699 A JP2016248699 A JP 2016248699A JP 2018104723 A JP2018104723 A JP 2018104723A
Authority
JP
Japan
Prior art keywords
jig
plasma nitriding
furnace
auxiliary heating
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016248699A
Other languages
Japanese (ja)
Inventor
巧智 日高
Kochi Hidaka
巧智 日高
隆紀 柘植
Takaki Tsuge
隆紀 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2016248699A priority Critical patent/JP2018104723A/en
Publication of JP2018104723A publication Critical patent/JP2018104723A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress a scattering of nitride layer thickness of work-pieces using a plasma nitriding apparatus of a simple structure, because there is a difference of nitride layer thickness between work-pieces located in the central part of a furnace and work-pieces located in the upper part and the lower part of the furnace in a conventional plasma nitriding apparatus.SOLUTION: A plasma nitriding apparatus 1 for nitriding work-pieces W having a furnace body 1a serving as an anode and the work-pieces W serving as a cathode includes a jig 2 which is electrically connected to a power source 8 so as to serve as the cathode and on which the work-pieces W are mounted, and an auxiliary heating member 9 with electric conductivity that is arranged between the jig 2 and the ceiling part 1b of the furnace body 1a and electrically connected to the power source 8 so as to serve as the cathode.SELECTED DRAWING: Figure 1

Description

本発明は、自動車部品や他の機械部品等(以下、“ワーク”)のプラズマ窒化処理を行うプラズマ窒化装置に関する。   The present invention relates to a plasma nitriding apparatus for performing a plasma nitriding process on automobile parts, other machine parts, etc. (hereinafter “work”).

従来、ワークの硬度を高める硬質処理方法として窒化処理を行うことが知られている。ワークの窒化処理方法にはガス窒化やプラズマ窒化といった処理方法があるが、プラズマ窒化処理を行う場合には特許文献1や特許文献2のようなプラズマ窒化装置が用いられる。プラズマ窒化装置を用いた窒化処理は、炉内に収容されたワークを所定の温度まで加熱した後、窒化処理用の処理ガスをプラズマ化することで行われる。通常、プラズマ窒化装置内のワークは、グロー放電によるワークの自己加熱や、自己加熱に加えて更にヒーターを用いた加熱により目的の窒化処理温度まで昇温させられる。   Conventionally, it is known to perform nitriding as a hard processing method for increasing the hardness of a workpiece. Although there are processing methods such as gas nitriding and plasma nitriding as work nitriding methods, plasma nitriding apparatuses such as Patent Document 1 and Patent Document 2 are used when performing plasma nitriding. Nitriding using a plasma nitriding apparatus is performed by heating a work housed in a furnace to a predetermined temperature and then converting the processing gas for nitriding to plasma. Usually, the workpiece in the plasma nitriding apparatus is heated to the target nitriding temperature by self-heating of the workpiece by glow discharge or by heating using a heater in addition to self-heating.

特開平9−3646号公報Japanese Patent Laid-Open No. 9-3646 特開2005−2444号公報JP 2005-2444 A

プラズマ窒化装置の炉内を高さ方向に三分割し、それらを炉内上部、炉内中央部および炉内下部と称した際に、従来のプラズマ窒化装置においては炉内中央部に熱が溜まりやすく、炉内中央部は炉内上部および炉内下部に比べて高温になっていた。これにより、炉内中央部に位置するワークと、炉内上部および炉内下部に位置するワークとの間で窒化層厚さにバラツキが生じていた。   When the inside of the furnace of the plasma nitriding apparatus is divided into three in the height direction and these are called the upper part of the furnace, the central part of the furnace, and the lower part of the furnace, heat is accumulated in the central part of the furnace in the conventional plasma nitriding apparatus. It was easy and the center part in the furnace was hotter than the upper part in the furnace and the lower part in the furnace. As a result, the nitride layer thickness varies between the workpiece located in the center of the furnace and the workpiece located in the upper and lower parts of the furnace.

一方、炉内に設けたヒーターを利用し、炉内中央部に対して相対的に温度が低い炉内上部および炉内下部を加熱することも考えられる。しかしながら、熱溜まりが発生する箇所は炉内に収容するワークの形状や個数、治具上のワークの配置方法によっても変化する。例えば同一のプラズマ窒化装置を使用する場合でも、異なる品種のワークを窒化処理する場合には、ワークの形状の違いや、1ロットあたりに処理するワークの個数の違いにより、ワークに適した治具の形状が変わることもある。このような場合、炉内の温度分布は、前ロットの窒化処理の温度分布と異なるものになる。即ち、炉内における熱溜まりの位置は品種ごとに変わり得るものである。したがって、炉内の温度差を解消するために、温度の低い部分だけをヒーターで加熱しようとしても、処理ロットごとにヒーターの素線配置を最適なものに変更しなければならず、作業負荷が極めて大きくなる。   On the other hand, it is also conceivable to use the heater provided in the furnace to heat the upper part and the lower part of the furnace whose temperature is relatively lower than the central part of the furnace. However, the location where the heat accumulation occurs varies depending on the shape and number of workpieces housed in the furnace and the method of arranging the workpieces on the jig. For example, even when the same plasma nitriding equipment is used, when different types of workpieces are nitrided, the jig suitable for the workpiece depends on the shape of the workpiece and the number of workpieces processed per lot. The shape may change. In such a case, the temperature distribution in the furnace is different from the temperature distribution of the nitriding treatment of the previous lot. That is, the position of the heat reservoir in the furnace can be changed for each type. Therefore, in order to eliminate the temperature difference in the furnace, even if only the low temperature part is heated with the heater, the heater wire arrangement must be changed to the optimum one for each processing lot, and the work load is reduced. Become very large.

本発明は、上記事情に鑑みてなされたものであり、簡易な構成のプラズマ窒化装置でワークの窒化層バラツキを抑制することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress a nitride layer variation of a workpiece with a plasma nitriding apparatus having a simple configuration.

上記課題を解決する本発明は、炉体を陽極とし、ワークを陰極として前記ワークの窒化処理を行うプラズマ窒化装置であって、前記ワークが載せられ、陰極となるように電源に電気的に接続される治具と、前記治具と前記炉体の天井部との間に配置され、陰極となるように前記電源に電気的に接続される、導電性を有する補助加熱部材とを備えていることを特徴としている。   The present invention that solves the above-mentioned problems is a plasma nitriding apparatus that performs nitriding of a workpiece using a furnace body as an anode and a workpiece as a cathode, and is electrically connected to a power source so that the workpiece is placed and becomes a cathode And a conductive auxiliary heating member that is disposed between the jig and the ceiling of the furnace body and is electrically connected to the power source so as to serve as a cathode. It is characterized by that.

なお、本発明における“導電性を有する補助加熱部材”は、グロー放電による自己加熱で熱源として機能できる程度の導電性を有していれば良い。   The “subsidiary heating member having conductivity” in the present invention only needs to have conductivity that can function as a heat source by self-heating by glow discharge.

簡易な構成のプラズマ窒化装置でワークの窒化層バラツキを抑制することができる。   The variation of the nitrided layer of the workpiece can be suppressed with a plasma nitriding apparatus having a simple configuration.

本発明の実施形態に係るプラズマ窒化装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of a plasma nitriding apparatus according to an embodiment of the present invention. 本発明の実施形態に係るプラズマ窒化装置の治具形状を示す図である。It is a figure which shows the jig | tool shape of the plasma nitriding apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る、治具に載せられたワークの配置状態を示す図である。It is a figure which shows the arrangement | positioning state of the workpiece | work mounted on the jig | tool based on embodiment of this invention. 比較例のプラズマ窒化装置の概略構成を示す図である。It is a figure which shows schematic structure of the plasma nitriding apparatus of a comparative example.

以下、本発明の一実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1に示す本実施形態に係るプラズマ窒化装置1は、炉体1aの長さが高さ方向に長い、いわゆる縦型プラズマ窒化装置である。プラズマ窒化装置1は、円筒状の炉体1aを有し、ワークWが載せられる治具2と、治具2が載せられる陰極台3と、治具2および陰極台3を支持する支持部材4を備えている。なお、プラズマ窒化装置1の炉体形状は特に限定されない。   The plasma nitriding apparatus 1 according to this embodiment shown in FIG. 1 is a so-called vertical plasma nitriding apparatus in which the length of the furnace body 1a is long in the height direction. The plasma nitriding apparatus 1 has a cylindrical furnace body 1 a, a jig 2 on which a workpiece W is placed, a cathode base 3 on which the jig 2 is placed, and a support member 4 that supports the jig 2 and the cathode stage 3. It has. The furnace shape of the plasma nitriding apparatus 1 is not particularly limited.

治具2は、階層状にワークWが載せられる多段式の治具であり、治具2の各段は、図2に示すような外周の一部に切欠き5aが設けられた導電性部材(SUS304、SS400等)から成る円板5で構成される。本実施形態においては、治具2の各段を構成する円板5の形状はそれぞれ略同一の形状となっている。円板5の中心部には、炉内に供給された窒化処理用の処理ガスが通る処理ガス通過口5bが形成されている。この処理ガス通過口5bがあることにより各ワークWに処理ガスが行き渡りやすくなり、ワークWの窒化処理品質のバラツキ抑制効果が高まる。   The jig 2 is a multistage jig on which workpieces W are placed in a layered manner, and each stage of the jig 2 is a conductive member in which a notch 5a is provided in a part of the outer periphery as shown in FIG. It is comprised with the disk 5 which consists of (SUS304, SS400 etc.). In the present embodiment, the shapes of the disks 5 constituting each step of the jig 2 are substantially the same. A processing gas passage port 5b through which a processing gas for nitriding supplied in the furnace passes is formed at the center of the disk 5. Due to the presence of the processing gas passage port 5b, the processing gas easily spreads to each workpiece W, and the effect of suppressing variation in the nitriding quality of the workpiece W is enhanced.

また、円板5には同一円周上に形成された3つの開口部5cが設けられている。各開口部5cには、治具下端部の底板6から高さ方向に延びる導電性部材(SUS304、SS400等)から成る円形状の支柱部材7が通され、治具2の各段の円板5は支柱部材7に対して固定されている。このような治具2の各段には、図3のようにワークWが配置されている。また、支柱部材7は底板6を介して陰極台3に電気的に接続される。なお、治具2の形状は、ワークWの形状や個数、治具上のワークWの配置方法等により適宜変更される。また、支持部材4の形状は円形状に限定されない。   Further, the disc 5 is provided with three openings 5c formed on the same circumference. A circular column member 7 made of a conductive member (SUS304, SS400, etc.) extending in the height direction from the bottom plate 6 at the lower end of the jig is passed through each opening 5c. 5 is fixed to the support member 7. Work pieces W are arranged on each stage of the jig 2 as shown in FIG. Further, the column member 7 is electrically connected to the cathode table 3 through the bottom plate 6. Note that the shape of the jig 2 is appropriately changed depending on the shape and number of the workpieces W, the arrangement method of the workpieces W on the jig, and the like. Further, the shape of the support member 4 is not limited to a circular shape.

治具2が載せられている陰極台3は、通電時に陰極となるように炉外に設けられたグロー放電用電源8に接続されている。治具下端部の底板6はその陰極台3に接触しており、これにより治具2は陰極台3を介してグロー放電用電源8に電気的に接続される。一方、治具上端部においては、ワークWの加熱を補助する補助加熱部材9が取り付けられている。補助加熱部材9は、例えば、金属部材の一例であるSUS304、SS400等から成る円形状の1枚の鉄系部材である。補助加熱部材9は、図3のように平面視において治具2に載せられた各ワークWが隠れる程度の径を有している。なお、図3においては補助加熱部材9の外形線のみを二点鎖線で示しており、具体的な形状の図示は省略している。このような形状の補助加熱部材9は図1のように3本の支柱部材7の先端部で固定されている。前述の通り、支柱部材7は陰極台3に電気的に接続されるため、支柱部材7の先端部に取り付けられている補助加熱部材9も陰極台3を介してグロー放電用電源8に電気的に接続される状態にある。即ち、補助加熱部材9も通電時には陰極となる。なお、炉体1aは通電時に陽極となるようにグロー放電用電源8に接続されている。   The cathode stage 3 on which the jig 2 is mounted is connected to a glow discharge power source 8 provided outside the furnace so as to become a cathode when energized. The bottom plate 6 at the lower end of the jig is in contact with the cathode base 3, whereby the jig 2 is electrically connected to the glow discharge power source 8 via the cathode base 3. On the other hand, an auxiliary heating member 9 that assists heating of the workpiece W is attached to the upper end portion of the jig. The auxiliary heating member 9 is, for example, one circular iron-based member made of SUS304, SS400 or the like which is an example of a metal member. The auxiliary heating member 9 has such a diameter that each workpiece W placed on the jig 2 is hidden in a plan view as shown in FIG. In FIG. 3, only the outline of the auxiliary heating member 9 is indicated by a two-dot chain line, and the specific shape is not shown. The auxiliary heating member 9 having such a shape is fixed at the tip portions of the three support members 7 as shown in FIG. As described above, since the column member 7 is electrically connected to the cathode base 3, the auxiliary heating member 9 attached to the tip of the column member 7 is also electrically connected to the glow discharge power source 8 via the cathode table 3. Is in a state of being connected to. That is, the auxiliary heating member 9 also becomes a cathode when energized. The furnace body 1a is connected to a glow discharge power source 8 so as to become an anode when energized.

治具上端部の補助加熱部材9、治具下端部の底板6および治具各段の円板5が支柱部材7を介して連結されていることにより、治具2の各部材は一体となって移動する。このような治具2を炉内に搬入する際には、ワークWが載せられた状態の治具2の補助加熱部材部分をクレーン等により吊上げ、炉体1aの側方に設けられた搬入口(不図示)から炉内に治具2を搬入し、陰極台3の上に載せる。   The auxiliary heating member 9 at the upper end of the jig, the bottom plate 6 at the lower end of the jig, and the disk 5 at each stage of the jig are connected via the column member 7 so that the members of the jig 2 are integrated. Move. When carrying in such a jig | tool 2 in a furnace, the auxiliary | assistant heating member part of the jig | tool 2 in the state in which the workpiece | work W was mounted is lifted with a crane etc., and the inlet provided in the side of the furnace body 1a is provided. The jig 2 is carried into the furnace from (not shown) and placed on the cathode table 3.

なお、補助加熱部材9と治具最上段との距離は、補助加熱部材9の発熱量に応じて適宜変更されるが、治具2の各段の間隔と同一の間隔とすることが望ましい。これにより、各段に配置されるワークWのプラズマ条件が一定となり、ワークWの窒化処理品質のバラツキが抑制される。なお、上記の“同一の間隔”の“同一”とは、厳密な同一であることを意味せず、略同一の概念を含むものである。例えばプラズマ窒化装置1を製造する際に生じる数ミリ程度の違いは“同一の間隔”として許容される。また、本実施形態では補助加熱部材9を円板状に形成しているが、補助加熱部材9の形状は、ワークWの形状や個数、治具上のワークWの配置方法等により適宜変更される。また、補助加熱部材9の枚数も特に限定されず、例えば同一平面上に複数の補助加熱部材9が設けられていても良い。ただし、治具2を高さ方向に三分割し、それらを治具上段部、治具中段部および治具下段部と称した際に、より効果的に治具上段部の補助加熱を行うためには、補助加熱部材9は平面視において治具2に載せられた各ワークWが露出しないように治具2を覆うように形成されていることが好ましい。   The distance between the auxiliary heating member 9 and the uppermost stage of the jig is appropriately changed according to the amount of heat generated by the auxiliary heating member 9, but it is desirable that the distance be the same as the interval between the stages of the jig 2. Thereby, the plasma conditions of the workpieces W arranged in each stage are constant, and variations in the nitriding quality of the workpieces W are suppressed. Note that “same” in the above “same interval” does not mean strictly the same, but includes substantially the same concept. For example, a difference of about several millimeters that occurs when manufacturing the plasma nitriding apparatus 1 is allowed as “the same interval”. In the present embodiment, the auxiliary heating member 9 is formed in a disc shape, but the shape of the auxiliary heating member 9 is appropriately changed depending on the shape and number of the workpieces W, the arrangement method of the workpieces W on the jig, and the like. The Further, the number of auxiliary heating members 9 is not particularly limited, and for example, a plurality of auxiliary heating members 9 may be provided on the same plane. However, when the jig 2 is divided into three parts in the height direction, and these are referred to as a jig upper step, a jig middle step, and a jig lower step, the auxiliary heating of the jig upper step is more effectively performed. The auxiliary heating member 9 is preferably formed so as to cover the jig 2 so that the workpieces W placed on the jig 2 are not exposed in plan view.

陰極台3に載せられた治具2の側方には、ワークWの昇温を促進するためのヒーター10が炉体1aの内壁に沿って円筒状に配置されている。ヒーター10は治具2の全高に合わせた高さを有している。ヒーター10の上部近傍、中央部近傍および下部近傍には、それぞれ上部熱電対11、中央部熱電対12および下部熱電対13が設けられ、各熱電対11、12、13は熱電対保持用支柱14に固定されている。上部熱電対11は治具上段部、中央部熱電対12は治具中段部、下部熱電対13は治具下段部の大まかな温度を制御するように構成されている。なお、これらの熱電対11、12、13が設けられていたとしても、各処理ロットにおけるヒーター10の素線配置は同一の配置であることから、治具2の形状等の違いに起因する熱溜まり箇所の変化に応じて温度の低い部分を集中的に加熱することは容易ではない。   A heater 10 for accelerating the temperature rise of the workpiece W is arranged in a cylindrical shape along the inner wall of the furnace body 1a on the side of the jig 2 placed on the cathode table 3. The heater 10 has a height that matches the overall height of the jig 2. An upper thermocouple 11, a center thermocouple 12, and a lower thermocouple 13 are provided in the vicinity of the upper portion, the center portion, and the lower portion of the heater 10, respectively. The thermocouples 11, 12, and 13 are provided with thermocouple holding columns 14. It is fixed to. The upper thermocouple 11 is configured to control the approximate temperature of the upper stage of the jig, the central thermocouple 12 is configured to control the approximate temperature of the middle stage of the jig, and the lower thermocouple 13 is controlled to the approximate lower temperature of the lower stage of the jig. Even if these thermocouples 11, 12, 13 are provided, the wire arrangement of the heaters 10 in each processing lot is the same arrangement, so the heat caused by the difference in the shape of the jig 2 etc. It is not easy to intensively heat a portion having a low temperature in accordance with the change in the accumulation location.

本実施形態に係るプラズマ窒化装置1は以上のように構成されている。なお、説明は省略しているが、プラズマ窒化装置1は、窒化処理用の処理ガスの供給管や排気管等のプラズマ窒化装置としての必要な構成を有している。   The plasma nitriding apparatus 1 according to the present embodiment is configured as described above. Although explanation is omitted, the plasma nitriding apparatus 1 has a necessary configuration as a plasma nitriding apparatus such as a supply pipe and an exhaust pipe of a processing gas for nitriding treatment.

このプラズマ窒化装置1でプラズマ窒化処理を実施すると、治具中段部において熱が溜まる傾向にはあるが、本実施形態のプラズマ窒化装置1においては、補助加熱部材9、支柱部材7および底板6が陰極台3を介してグロー放電用電源8に電気的に接続された状態にあるため、補助加熱部材9に電気が流れ、グロー放電により自己加熱する。これにより、治具2の上端に熱源が発生することになり、治具中段部に比べて相対的に温度が低い治具上段部が加熱される。そして、治具上段部の温度上昇に伴い、治具上段部および治具中段部と、治具下段部との温度差が大きくなり、治具下段部に熱が移動しやすくなる。これにより、治具下段部の温度も従前より高くなる。   When plasma nitriding is performed with this plasma nitriding apparatus 1, heat tends to be accumulated in the middle part of the jig, but in the plasma nitriding apparatus 1 of the present embodiment, the auxiliary heating member 9, the column member 7 and the bottom plate 6 are Since it is in a state of being electrically connected to the glow discharge power source 8 via the cathode base 3, electricity flows through the auxiliary heating member 9 and self-heats by glow discharge. As a result, a heat source is generated at the upper end of the jig 2, and the upper part of the jig whose temperature is relatively lower than that of the middle part of the jig is heated. As the temperature of the upper stage part of the jig increases, the temperature difference between the upper stage part of the jig and the middle stage part of the jig and the lower stage part of the jig increases, and heat easily moves to the lower stage part of the jig. As a result, the temperature of the lower part of the jig also becomes higher than before.

このような状態でプラズマ窒化処理を行うことで、治具上段部、治具中段部および治具下段部に配置された各ワークWの窒化層厚さのバラツキを抑制することができる。即ち、同一ロット内の窒化処理品質のバラツキを抑制することが可能となる。   By performing the plasma nitriding process in such a state, it is possible to suppress variations in the nitride layer thickness of the workpieces W arranged on the jig upper stage, the jig middle stage, and the jig lower stage. In other words, it is possible to suppress variations in nitriding quality within the same lot.

また、本実施形態のプラズマ窒化装置1では、治具上段部を加熱する際に補助加熱部材9がグロー放電による自己加熱により熱源として機能するため、治具上段部を加熱するための専用の加熱機構を設ける必要がない。即ち、本実施形態のプラズマ窒化装置1によれば、装置構造を複雑化させることなく、各段に配置されたワークWの窒化層厚さのバラツキを抑制することができる。   Further, in the plasma nitriding apparatus 1 of the present embodiment, the auxiliary heating member 9 functions as a heat source by self-heating by glow discharge when heating the upper jig part, so that dedicated heating for heating the upper jig part is performed. There is no need to provide a mechanism. That is, according to the plasma nitriding apparatus 1 of the present embodiment, it is possible to suppress variations in the nitride layer thickness of the workpieces W arranged in each stage without complicating the apparatus structure.

また、通常、治具2の上方を覆うことは原料ガスの流れが均一にならない可能性があるため、ガス流れの阻害が懸念されるような部材を治具2の上方に設けることはしない。仮に治具2の上方を覆うような部材を設けるとしても、異なる処理ロットで共通の目的で使用される部材は、部品点数削減のために治具ごとに取り付けるのではなく、炉の構成部品として炉殻に取り付けることが一般的である。しかしながら、そのような部材が炉殻に固定支持されると、その部材が陽極として作用することになり、陽極と陰極(例えば治具最上段)が近い位置にあるとアーク放電を起こしてしまう。このように、通常は治具2の上方を覆うような部材を設けないといった技術常識があるところ、本実施形態においては治具2の上方を覆う補助加熱部材9を設け、更に補助加熱部材9が陰極となるようにプラズマ窒化装置1を構成している。これにより、通電時において治具2の最上段を構成する円板5と補助加熱部材9とが共に陰極となり、アーク放電が起きにくい状態で治具上段部を加熱することができる。   Further, normally, since covering the upper portion of the jig 2 may cause the flow of the raw material gas to be not uniform, a member that is likely to interfere with the gas flow is not provided above the jig 2. Even if a member that covers the upper side of the jig 2 is provided, a member used for a common purpose in different processing lots is not attached to each jig to reduce the number of parts, but as a component of the furnace. It is common to attach to the furnace shell. However, when such a member is fixedly supported on the furnace shell, the member acts as an anode, and arc discharge occurs when the anode and the cathode (for example, the uppermost stage of the jig) are close to each other. As described above, there is common technical knowledge that a member that normally covers the upper side of the jig 2 is not provided. However, in the present embodiment, the auxiliary heating member 9 that covers the upper side of the jig 2 is provided. The plasma nitriding apparatus 1 is configured so that becomes a cathode. Thereby, the disk 5 and the auxiliary heating member 9 constituting the uppermost stage of the jig 2 become the cathode when energized, and the upper stage of the jig can be heated in a state where arc discharge hardly occurs.

なお、本実施形態では、補助加熱部材9として鉄系部材を用いたが、導電性を有する部材であれば他の部材であっても良い。ただし、例えば銅板のような部材を用いた場合、プラズマ処理中の銅板の銅成分がワークWに混入し、窒化処理部材としての品質を低下させるおそれがあることから、補助加熱部材9としては鉄系部材を用いることが好ましい。また、補助加熱部材9は板状の部材に限定されない。また、ヒーター10を設けることは必須ではないが、ワークWの昇温を促進し、処理時間を短縮するためにはヒーター10を設けることが好ましい。   In this embodiment, an iron-based member is used as the auxiliary heating member 9, but other members may be used as long as they are conductive members. However, for example, when a member such as a copper plate is used, the copper component of the copper plate during the plasma treatment may be mixed into the workpiece W, and the quality as the nitriding member may be deteriorated. It is preferable to use a system member. The auxiliary heating member 9 is not limited to a plate-like member. In addition, although it is not essential to provide the heater 10, it is preferable to provide the heater 10 in order to promote the temperature rise of the workpiece W and shorten the processing time.

また、本実施形態では縦型のプラズマ窒化装置1を例に挙げて補助加熱部材について説明したが、炉体1aの長さが横方向に長い横型のプラズマ窒化装置1であっても、補助加熱部材9を設けることができる。また、本実施形態では、ワークWを階層状に載せることができる多段式の治具2を用いたが、治具2は多段式でなくても良い。例えばワークを治具2に載せた状態において、1つのワークが炉内下部から炉内上部にまで到達するような高さを有する場合、従来のプラズマ窒化装置においては、炉内の中央部の温度が炉内上部および炉内下部の温度に対して高いために、ワーク中央部と、ワーク上部およびワーク下部との間で窒化層厚さのバラツキが大きくなる。これに対し、本実施形態のようなプラズマ窒化装置1によれば、そのようなワークを窒化処理する際にも、治具上端部に設けられた補助加熱部材が熱源として機能するため、ワーク上部の温度を上昇させることができる。その結果として、ワーク中央部と、ワーク上部およびワーク下部との間の窒化層バラツキを小さくすることができる。   Further, in the present embodiment, the auxiliary heating member has been described by taking the vertical plasma nitriding apparatus 1 as an example. However, even in the case of the horizontal plasma nitriding apparatus 1 in which the length of the furnace body 1a is long in the horizontal direction, auxiliary heating is performed. A member 9 can be provided. Further, in the present embodiment, the multi-stage jig 2 capable of placing the workpieces W in a hierarchical manner is used, but the jig 2 may not be multi-stage. For example, in the state where a workpiece is placed on the jig 2, when one workpiece has a height that reaches from the lower part in the furnace to the upper part in the furnace, in the conventional plasma nitriding apparatus, the temperature of the central part in the furnace Is higher than the temperature in the furnace upper part and the furnace lower part, the variation of the nitride layer thickness increases between the work center part and the work upper part and work lower part. On the other hand, according to the plasma nitriding apparatus 1 as in the present embodiment, the auxiliary heating member provided at the upper end of the jig functions as a heat source even when nitriding such a workpiece. The temperature can be increased. As a result, it is possible to reduce the nitride layer variation between the work center and the work upper part and work lower part.

即ち、ワークWが載せられる治具2が陰極となるように電源に電気的に接続され、治具2と炉体1aの天井部1bとの間に導電性を有する補助加熱部材9が配置され、補助加熱部材9が陰極となるように電源に電気的に接続されるようプラズマ窒化装置1が構成されていれば、炉内上部に位置するワークWの温度を上昇させることができ、炉内上部、炉内中央部および炉内下部に位置するワークWの窒化層厚さのバラツキを抑えることが可能となる。   That is, the jig 2 on which the workpiece W is placed is electrically connected to a power source so as to be a cathode, and the auxiliary heating member 9 having conductivity is disposed between the jig 2 and the ceiling portion 1b of the furnace body 1a. If the plasma nitriding apparatus 1 is configured to be electrically connected to a power source so that the auxiliary heating member 9 becomes a cathode, the temperature of the work W located in the upper part of the furnace can be raised, It becomes possible to suppress variations in the nitrided layer thickness of the workpiece W located at the upper part, the central part in the furnace, and the lower part in the furnace.

以上、本発明の実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

本発明に係るプラズマ窒化装置を用いて複数の自動車用歯車のプラズマ窒化処理を実施した。本発明に係るプラズマ窒化装置は前述の図1のような構成の炉である。具体的に説明すると、治具2は階層状にワークWが載せられる多段式の治具であり、治具2の各段を構成する円板5はSS400で形成されている。各円板5は治具下端部の底板6から高さ方向に延びる支柱部材7に固定されている。支柱部材7はSS400で形成されており、支柱部材7は底板6を介して陰極台3に電気的に接続されることになる。治具2が載せられている陰極台3は、通電時に陰極となるように炉外に設けられたグロー放電用電源8に接続されている。治具下端部の底板6はその陰極台3に接触しており、これにより治具2は陰極台3を介してグロー放電用電源8に電気的に接続される。陰極台3に載せられた治具2の側方には、炉体1aの内壁に沿ってヒーター10が配置されている。   Plasma nitriding of a plurality of automobile gears was performed using the plasma nitriding apparatus according to the present invention. The plasma nitriding apparatus according to the present invention is a furnace configured as shown in FIG. More specifically, the jig 2 is a multi-stage jig on which the workpieces W are placed in a hierarchy, and the disks 5 constituting each stage of the jig 2 are formed of SS400. Each disk 5 is fixed to a column member 7 extending in the height direction from the bottom plate 6 at the lower end of the jig. The support member 7 is formed of SS400, and the support member 7 is electrically connected to the cathode base 3 through the bottom plate 6. The cathode stage 3 on which the jig 2 is mounted is connected to a glow discharge power source 8 provided outside the furnace so as to become a cathode when energized. The bottom plate 6 at the lower end of the jig is in contact with the cathode base 3, whereby the jig 2 is electrically connected to the glow discharge power source 8 via the cathode base 3. A heater 10 is disposed along the inner wall of the furnace body 1a on the side of the jig 2 placed on the cathode base 3.

支柱部材7の上端部にはSS400からなる補助加熱部材9が取り付けられている。即ち、治具最上段と炉体1aの天井部1bとの間に補助加熱部材9が配置されている。補助加熱部材9は、円形状の1枚の鉄系部材であり、平面視において治具2に載せられた各ワークWが露出しないように治具2を覆うような形状を有している。また、補助加熱部材9と治具最上段との距離は、治具2の各段の間隔と同一の間隔となっている。   An auxiliary heating member 9 made of SS400 is attached to the upper end portion of the column member 7. That is, the auxiliary heating member 9 is disposed between the uppermost stage of the jig and the ceiling portion 1b of the furnace body 1a. The auxiliary heating member 9 is a single iron-based member having a circular shape, and has a shape that covers the jig 2 so that the workpieces W placed on the jig 2 are not exposed in plan view. Further, the distance between the auxiliary heating member 9 and the uppermost stage of the jig is the same as the distance between the stages of the jig 2.

このような構成のプラズマ窒化装置1は、導電性を有する補助加熱部材9が、導電性を有する支柱部材7および陰極台3を介してグロー放電用電源8に電気的に接続されるため、通電時には陰極となる。なお、炉体1aは通電時に陽極となるようにグロー放電用電源8に接続されている。   In the plasma nitriding apparatus 1 having such a configuration, since the conductive auxiliary heating member 9 is electrically connected to the glow discharge power source 8 via the conductive support member 7 and the cathode base 3, Sometimes it becomes the cathode. The furnace body 1a is connected to a glow discharge power source 8 so as to become an anode when energized.

実施例としての本発明に係るプラズマ窒化装置は以上のように構成されている。このプラズマ窒化装置を用いたプラズマ処理条件は従来と同様であり、排気工程および復圧工程を経た後、昇温工程および窒化工程において炉内圧力を180〜600Pa、グロー電流密度を1.0〜2.6A/m2の範囲で調節した。また、炉内の雰囲気ガスとしては、窒素および水素ガスを供給し、それらのガスの流量比が窒素:水素=2:1となるように設定した。さらに、治具上段部、治具中段部および治具下段部に対応するように設けられたヒーターの制御温度を520℃とし、上段熱電対、中段熱電対および下段熱電対から得られた温度をもとに温度制御を実施した。   The plasma nitriding apparatus according to the present invention as an embodiment is configured as described above. The plasma processing conditions using this plasma nitriding apparatus are the same as in the prior art, and after passing through the exhaust process and the decompression process, the furnace pressure is 180-600 Pa and the glow current density is 1.0-1.0 in the temperature raising process and the nitriding process. Adjustment was made within the range of 2.6 A / m2. Moreover, as atmosphere gas in a furnace, nitrogen and hydrogen gas were supplied, and the flow rate ratio of these gases was set to be nitrogen: hydrogen = 2: 1. Furthermore, the control temperature of the heater provided so as to correspond to the upper part of the jig, the middle part of the jig, and the lower part of the jig is set to 520 ° C., and the temperatures obtained from the upper stage thermocouple, middle stage thermocouple, and lower stage thermocouple are set. Based on the temperature control.

また、本発明に係るプラズマ窒化装置との比較のために、図4のような補助加熱部材が設けられていないプラズマ窒化装置50を用い、同一のプラズマ処理条件にて歯車のプラズマ窒化処理を実施した。なお、従来のプラズマ窒化装置50は、補助加熱部材が設けられていないこと以外は本発明に係るプラズマ窒化装置と同様の構成である。また、治具の各段に載せられた歯車の配置も同様の配置である。   Further, for comparison with the plasma nitriding apparatus according to the present invention, the plasma nitriding process of the gear is performed under the same plasma processing conditions using the plasma nitriding apparatus 50 provided with no auxiliary heating member as shown in FIG. did. The conventional plasma nitriding apparatus 50 has the same configuration as that of the plasma nitriding apparatus according to the present invention except that no auxiliary heating member is provided. The arrangement of the gears mounted on each stage of the jig is the same arrangement.

歯車のプラズマ窒化処理を実施した後、治具上段部、治具中段部および治具下段部から1つずつ歯車を抜き取った。各段から抜き取られる歯車は平面視において同じ位置に配置されていた歯車である。その後、抜き取った各歯車の歯を歯面に対して垂直に切断し、切断された歯の切断面を鏡面研磨して光学顕微鏡で400倍の倍率で切断面を観察した。これにより得られた画像情報に基づき、歯車の歯面部における窒化層厚さを測定した。窒化層厚さの測定結果は下記表1および表2の通りである。   After carrying out the plasma nitriding treatment of the gears, the gears were extracted one by one from the upper part of the jig, the middle part of the jig, and the lower part of the jig. The gears extracted from each stage are gears that are arranged at the same position in plan view. Thereafter, the tooth of each extracted gear was cut perpendicularly to the tooth surface, the cut surface of the cut tooth was mirror-polished, and the cut surface was observed with an optical microscope at a magnification of 400 times. Based on the image information thus obtained, the nitrided layer thickness at the tooth surface portion of the gear was measured. The measurement results of the nitride layer thickness are as shown in Tables 1 and 2 below.

Figure 2018104723
Figure 2018104723
Figure 2018104723
Figure 2018104723

従来のプラズマ窒化装置では、窒化層厚さが最も厚い治具中段部の歯車と、窒化層厚さが最も薄い治具上段部の歯車との間で窒化層厚さに1.5μmもの差が生じた。一方、本発明に係るプラズマ窒化装置においては、治具上段部の歯車と治具中段部の歯車との間で0.9μmしか差がなかった。即ち、治具の上端部に補助加熱部材を設けることで、窒化処理品の窒化層厚さのバラツキを小さくすることができた。   In the conventional plasma nitriding apparatus, there is a difference of 1.5 μm in the nitride layer thickness between the gear in the middle part of the jig with the thickest nitride layer thickness and the gear in the upper part of the jig with the smallest nitride layer thickness. occured. On the other hand, in the plasma nitriding apparatus according to the present invention, there was only a difference of 0.9 μm between the gear at the upper part of the jig and the gear at the middle part of the jig. That is, by providing the auxiliary heating member at the upper end of the jig, the variation in the nitrided layer thickness of the nitrided product could be reduced.

本発明は、ワークのプラズマ窒化処理に適用することができる。   The present invention can be applied to plasma nitriding treatment of a workpiece.

1 プラズマ窒化装置
1a 炉体
1b 炉体の天井部
2 治具
3 陰極台
4 支持部材
5 円板
5a 切欠き
5b 処理ガス通過口
5c 開口部
6 底板
7 支柱部材
8 グロー放電用電源
9 補助加熱部材
10 ヒーター
11 上部熱電対
12 中央部熱電対
13 下部熱電対
14 熱電対保持用支柱
50 従来のプラズマ窒化装置
W ワーク
DESCRIPTION OF SYMBOLS 1 Plasma nitriding apparatus 1a Furnace body 1b Top part 2 of furnace body 3 Jig 3 Cathode stand 4 Support member 5 Disc 5a Notch 5b Process gas passage port 5c Opening 6 Bottom plate 7 Strut member 8 Glow discharge power source 9 Auxiliary heating member DESCRIPTION OF SYMBOLS 10 Heater 11 Upper thermocouple 12 Center thermocouple 13 Lower thermocouple 14 Thermocouple holding column 50 Conventional plasma nitriding apparatus W Workpiece

Claims (5)

炉体を陽極とし、ワークを陰極として前記ワークの窒化処理を行うプラズマ窒化装置であって、
前記ワークが載せられ、陰極となるように電源に電気的に接続される治具と、
前記治具と前記炉体の天井部との間に配置され、陰極となるように前記電源に電気的に接続される、導電性を有する補助加熱部材とを備えた、プラズマ窒化装置。
A plasma nitriding apparatus for performing nitriding treatment of the workpiece using a furnace body as an anode and a workpiece as a cathode,
A jig on which the workpiece is placed and electrically connected to a power source to become a cathode;
A plasma nitriding apparatus comprising: a conductive auxiliary heating member that is disposed between the jig and the ceiling of the furnace body and is electrically connected to the power source so as to serve as a cathode.
前記治具は、階層状に前記ワークが載せられる多段式の治具であり、当該治具の下端部から高さ方向に延びる支柱部材を有し、
前記補助加熱部材は、前記支柱部材の上端部に取り付けられている、請求項1に記載のプラズマ窒化装置。
The jig is a multi-stage jig on which the workpiece is placed in a hierarchy, and has a support member extending in the height direction from the lower end of the jig,
The plasma nitriding apparatus according to claim 1, wherein the auxiliary heating member is attached to an upper end portion of the support member.
前記補助加熱部材と前記治具の最上段との距離は、前記治具の各段の間隔と同一の間隔である、請求項2に記載のプラズマ窒化装置。   The plasma nitriding apparatus according to claim 2, wherein a distance between the auxiliary heating member and the uppermost stage of the jig is the same as an interval between the stages of the jig. 前記補助加熱部材は、平面視において前記治具に載せられた前記ワークが露出しないように、前記治具を覆うように形成されている、請求項1〜3のいずれか一項に記載のプラズマ窒化装置。   The plasma according to any one of claims 1 to 3, wherein the auxiliary heating member is formed so as to cover the jig so that the workpiece placed on the jig is not exposed in a plan view. Nitriding equipment. 前記補助加熱部材は鉄系部材である、請求項1〜4のいずれか一項に記載のプラズマ窒化装置。   The plasma nitriding apparatus according to any one of claims 1 to 4, wherein the auxiliary heating member is an iron-based member.
JP2016248699A 2016-12-22 2016-12-22 Plasma nitriding apparatus Pending JP2018104723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016248699A JP2018104723A (en) 2016-12-22 2016-12-22 Plasma nitriding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016248699A JP2018104723A (en) 2016-12-22 2016-12-22 Plasma nitriding apparatus

Publications (1)

Publication Number Publication Date
JP2018104723A true JP2018104723A (en) 2018-07-05

Family

ID=62785440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248699A Pending JP2018104723A (en) 2016-12-22 2016-12-22 Plasma nitriding apparatus

Country Status (1)

Country Link
JP (1) JP2018104723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208596A (en) * 2018-05-31 2019-12-12 サミー株式会社 Pachinko game machine
CN114990472A (en) * 2022-06-28 2022-09-02 科品(苏州)特殊钢有限公司 Gas inlet and outlet equipment of gas nitriding furnace
CN117144286A (en) * 2023-06-01 2023-12-01 南京华尔泰传动科技有限公司 Gear tooth surface nitriding treatment equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105473A (en) * 1980-01-23 1981-08-21 Hitachi Ltd Surface treatment method of fabricated metal product
JPH09125225A (en) * 1995-09-01 1997-05-13 Ckd Corp Corrosion resisting nitride film
JPH11310866A (en) * 1998-04-27 1999-11-09 Pascal Kk Method for suppressing arc discharge for glow discharge treatment and glow discharge treating device
JPH11315364A (en) * 1998-05-06 1999-11-16 Pascal Kk Method for suppressing arc discharge for glow discharge treatment and glow discharge treating device
JP2008150698A (en) * 2006-12-20 2008-07-03 Mitsubishi Heavy Ind Ltd Corrosion resistant coated member and rotary machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105473A (en) * 1980-01-23 1981-08-21 Hitachi Ltd Surface treatment method of fabricated metal product
JPH09125225A (en) * 1995-09-01 1997-05-13 Ckd Corp Corrosion resisting nitride film
JPH11310866A (en) * 1998-04-27 1999-11-09 Pascal Kk Method for suppressing arc discharge for glow discharge treatment and glow discharge treating device
JPH11315364A (en) * 1998-05-06 1999-11-16 Pascal Kk Method for suppressing arc discharge for glow discharge treatment and glow discharge treating device
JP2008150698A (en) * 2006-12-20 2008-07-03 Mitsubishi Heavy Ind Ltd Corrosion resistant coated member and rotary machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208596A (en) * 2018-05-31 2019-12-12 サミー株式会社 Pachinko game machine
CN114990472A (en) * 2022-06-28 2022-09-02 科品(苏州)特殊钢有限公司 Gas inlet and outlet equipment of gas nitriding furnace
CN114990472B (en) * 2022-06-28 2024-01-30 科品(苏州)特殊钢有限公司 Gas inlet and outlet equipment of gas nitriding furnace
CN117144286A (en) * 2023-06-01 2023-12-01 南京华尔泰传动科技有限公司 Gear tooth surface nitriding treatment equipment
CN117144286B (en) * 2023-06-01 2024-03-26 南京华尔泰传动科技有限公司 Gear tooth surface nitriding treatment equipment

Similar Documents

Publication Publication Date Title
US10553473B2 (en) Edge ring for a substrate processing chamber
JP2018104723A (en) Plasma nitriding apparatus
KR101374442B1 (en) Placing table apparatus, processing apparatus, temperature control method and storage medium storing program
KR101274864B1 (en) Placement table structure and heat treatment device
WO2010143640A1 (en) Furnace for heat treatment of metal
JP2008172168A5 (en)
JP6560767B2 (en) Substrate processing apparatus, substrate holder, and semiconductor device manufacturing method
JP2009141205A (en) Treatment device and treatment method
KR101444039B1 (en) Substrate processing apparatus and heating equipment
KR20050109465A (en) Method of heat treatment and heat treatment apparatus
KR100365805B1 (en) Method and device for high-temperature, high-pressure treatment of semiconductor wafer
JP2009242854A (en) Workpiece support tool for induction heating type carburizing treatment apparatus
JPWO2007010607A1 (en) Carburizing method and carburizing furnace
JP2017041465A (en) Induction heating device
JP5877920B1 (en) Rapid heating / cooling heat treatment furnace
US20140299195A1 (en) Sintering device
JPWO2014199538A1 (en) Vacuum processing equipment
JP2007332411A (en) Method for manufacturing bearing ring of rolling bearing
JP2015117405A (en) Plasma nitriding device
JP4158905B2 (en) Gas carburizing equipment
US20230010049A1 (en) Semiconductor processing chucks featuring recessed regions near outer perimeter of wafer for mitigation of edge/center nonuniformity
JP2009094232A (en) Susceptor and vapor deposition device
JP5280196B2 (en) Apparatus for supporting a substrate and method of manufacturing such an apparatus
KR20210066917A (en) Ceramic heater and its manufacturing method
JP2022016045A (en) Mounting stand apparatus and substrate processing apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302