JP2018103232A - Laser device - Google Patents

Laser device Download PDF

Info

Publication number
JP2018103232A
JP2018103232A JP2016253186A JP2016253186A JP2018103232A JP 2018103232 A JP2018103232 A JP 2018103232A JP 2016253186 A JP2016253186 A JP 2016253186A JP 2016253186 A JP2016253186 A JP 2016253186A JP 2018103232 A JP2018103232 A JP 2018103232A
Authority
JP
Japan
Prior art keywords
laser beam
wavelength
laser
optical fiber
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016253186A
Other languages
Japanese (ja)
Other versions
JP6901261B2 (en
Inventor
圭司 能丸
Keiji Nomaru
圭司 能丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2016253186A priority Critical patent/JP6901261B2/en
Priority to TW106138569A priority patent/TWI746692B/en
Priority to KR1020170159299A priority patent/KR20180076293A/en
Priority to CN201711336717.3A priority patent/CN108262565A/en
Publication of JP2018103232A publication Critical patent/JP2018103232A/en
Application granted granted Critical
Publication of JP6901261B2 publication Critical patent/JP6901261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Abstract

PROBLEM TO BE SOLVED: To provide a laser device that enables an intensity distribution of a laser beam that has passed through wavelength conversion means, to be shaped into an adequate Gaussian distribution (normal distribution).SOLUTION: The laser device implement at least: holding means for holding a workpiece (wafer 10); and laser beam emitting means 24 for projecting a laser beam to the workpiece held by the holding means. The laser beam emitting means 24 includes at least: a laser oscillator 24b; wavelength conversion means 24c for converting a wavelength of the laser beam emitted by the laser oscillator 24b; a light collector 24a for focusing the laser beam on the workpiece held by the holding means, the laser beam having the wavelength converted by the wavelength conversion means; and optical fiber FB disposed between the wavelength conversion means and the light collector. The optical fiber is configured to shape a Gaussian distribution of the laser beam that has disturbed intensity distribution as the laser beam has passed through the wavelength conversion means.SELECTED DRAWING: Figure 2

Description

本発明は、レーザー発振器から発振され波長変換手段を通過した後のレーザー光線の光強度分布を、適正なガウシアン分布とすることができるレーザー装置に関する。   The present invention relates to a laser device capable of making the light intensity distribution of a laser beam after being oscillated from a laser oscillator and passing through a wavelength converting means an appropriate Gaussian distribution.

IC、LSI等の複数のデバイスが分割予定ラインによって区画され表面に形成されたウエーハは、レーザー装置によってレーザー光線が照射され個々のデバイスに分割されて携帯電話、パソコン等の電気機器に利用される。   A wafer formed by dividing a plurality of devices such as IC and LSI on a surface by dividing lines is irradiated with a laser beam by a laser device to be divided into individual devices and used for electric devices such as mobile phones and personal computers.

レーザー装置は、被加工物を保持する保持手段と、該保持手段に保持された被加工物にレーザー光線を照射するレーザー光線照射手段と、から少なくとも構成されている。レーザー光線照射手段は、レーザー光線を発振するレーザー光線発振器と、該レーザー光線発振器が発振したレーザー光線を集光し、保持手段に保持された被加工物にレーザー光線を集光する集光器と、該レーザー光線発振器と該集光器との間に配設され少なくともレーザー光線を所定の光路に導く光学系と、から構成されていて、被加工物に所望の加工を施すことができる(例えば、特許文献1を参照。)。   The laser apparatus includes at least a holding unit that holds a workpiece and a laser beam irradiation unit that irradiates the workpiece held by the holding unit with a laser beam. The laser beam irradiating means includes a laser beam oscillator that oscillates a laser beam, a laser beam that is oscillated by the laser beam oscillator, a condenser that focuses the laser beam on a workpiece held by a holding unit, the laser beam oscillator, and the laser beam oscillator An optical system that is disposed between the condenser and guides at least a laser beam to a predetermined optical path, and can perform desired processing on the workpiece (see, for example, Patent Document 1). .

また、被加工物の加工に適したレーザー光線の波長が355nm、266nm等の紫外光の場合は、光学系の損傷が比較的激しいことから、光学系の損傷を軽減するために、レーザー光線発振器が発振するレーザー光線の波長を光学系に与える負担が少ない1064nmの赤外光とし、集光器の手前に波長変換手段を配設して355nm、266nm等の紫外光に変換するレーザー装置が本出願人によって提案されている(特許文献2を参照。)。なお、波長変換手段としては、波長変換機能を奏する非線形結晶としてCLBO結晶、BBO結晶、LBO結晶、KTP結晶等を採用することができ、得ようとする波長に応じて、該非線形結晶を適宜組み合わせ、種々の波長変換方式(SHG、FHK、THG等)を実現することができる。   In the case of ultraviolet light with a laser beam wavelength of 355 nm, 266 nm, etc. suitable for processing the workpiece, the damage to the optical system is relatively severe, so the laser beam oscillator oscillates to reduce damage to the optical system. A laser apparatus that converts the wavelength of the laser beam to 1064 nm infrared light with a small burden on the optical system and converts it into ultraviolet light of 355 nm, 266 nm, etc. by arranging wavelength converting means in front of the condenser is provided by the present applicant. It has been proposed (see Patent Document 2). As the wavelength conversion means, a CLBO crystal, a BBO crystal, an LBO crystal, a KTP crystal, or the like can be adopted as a nonlinear crystal having a wavelength conversion function, and the nonlinear crystals are appropriately combined depending on the wavelength to be obtained. Various wavelength conversion methods (SHG, FHK, THG, etc.) can be realized.

特開2006−108478号公報JP 2006-108478 A 特許第5964621号公報Japanese Patent No. 5964621

上記したレーザー装置により、所望の波長のレーザー光線を得ることはできるものの、波長変換手段によって変換されたレーザー光線は、設計上想定している理想的なガウシアン分布に対して乱れ、設計上想定するレーザー加工強度が得られず、そのまま被加工物に照射しても安定的な加工を施すことができないという問題がある。   Although the laser beam having a desired wavelength can be obtained by the laser device described above, the laser beam converted by the wavelength converting means is disturbed with respect to the ideal Gaussian distribution assumed in the design, and the laser processing assumed in the design. There is a problem that strength cannot be obtained, and stable processing cannot be performed even if the workpiece is irradiated as it is.

また、上記した波長変換手段を構成する非線形結晶は、同じ箇所にレーザー光線を照射し続けると照射箇所が劣化を起こすことから、長期間使用できるように適宜レーザー光線の照射位置を変更する必要がある。しかし、波長変換を実現する非線形結晶は、レーザー光線が照射される位置によっては、必ずしもその結晶構造が均一ではなく、照射箇所を変更する度に波長変換された後の光強度分布が変化し、その意味でも安定的な加工を阻害するという問題が生じ得る。   In addition, the non-linear crystal constituting the wavelength converting means described above causes deterioration of the irradiated portion if the same portion is continuously irradiated with the laser beam, so that it is necessary to appropriately change the irradiation position of the laser beam so that it can be used for a long time. However, the nonlinear crystal that realizes wavelength conversion does not necessarily have a uniform crystal structure depending on the position irradiated with the laser beam, and the light intensity distribution after wavelength conversion changes every time the irradiation location is changed. In a sense, the problem of inhibiting stable processing may occur.

本発明は、上記事実に鑑みなされたものであり、その主たる技術課題は、波長変換手段を通過した後のレーザー光線のガウシアン分布を理想的なガウシアン分布に近づけるべく整形することができるレーザー装置を提供することにある。   The present invention has been made in view of the above-mentioned facts, and its main technical problem is to provide a laser device capable of shaping the Gaussian distribution of the laser beam after passing through the wavelength converting means so as to approach the ideal Gaussian distribution. There is to do.

上記主たる技術課題を解決するため、本発明によれば、被加工物を保持する保持手段と、該保持手段に保持された被加工物にレーザー光線を照射するレーザー光線照射手段と、から少なくとも達成されたレーザー装置であって、該レーザー光線照射手段は、レーザー発振器と、該レーザー発振器が発振したレーザー光線の波長を変換する波長変換手段と、該波長変換手段によって波長が変換されたレーザー光線を該保持手段に保持された被加工物に集光する集光器と、該波長変換手段と該集光器との間に配設された光ファイバーと、を少なくとも含み構成され、該光ファイバーは、該波長変換手段を通過して乱れたレーザー光線のガウシアン分布を整形するレーザー装置が提供される。   In order to solve the above-mentioned main technical problem, according to the present invention, at least achieved from a holding means for holding a workpiece and a laser beam irradiation means for irradiating a workpiece held on the holding means with a laser beam. A laser device, wherein the laser beam irradiation unit holds a laser oscillator, a wavelength conversion unit that converts the wavelength of the laser beam oscillated by the laser oscillator, and a laser beam whose wavelength is converted by the wavelength conversion unit in the holding unit A condenser for condensing light on the processed workpiece, and an optical fiber disposed between the wavelength converting means and the condenser, and the optical fiber passes through the wavelength converting means. Thus, a laser device for shaping the Gaussian distribution of the disturbed laser beam is provided.

該波長変換手段と該光ファイバーとの間にハーモニックセパレータが配設され、該ハーモニックセパレータ該波長変換手段により所定の波長に波長変換されたレーザー光線から、該所定の波長以外の波長のレーザー光線を排除するようにすることができる。また、該光ファイバーと該集光器との間に配設され、出力測定経路にレーザー光線の一部を導く分光器と、該出力測定経路に配設された出力測定手段と、該分光器と該集光器との間に配設された透過率調整手段と、を備え、該保持手段に保持された被加工物に照射するレーザー光線の出力を該透過率調整手段で調整するようにしてもよい。さらに、該波長変換手段を構成する波長変換結晶を、該レーザー発振器が発振したレーザー光線の光路から適宜ずらし該波長変換結晶の寿命を延ばすようにするようにしてもよい。   A harmonic separator is disposed between the wavelength converting means and the optical fiber, so that laser light having a wavelength other than the predetermined wavelength is excluded from the laser light wavelength-converted to a predetermined wavelength by the harmonic separator. Can be. A spectroscope disposed between the optical fiber and the concentrator and guiding a part of the laser beam to an output measurement path; output measurement means disposed in the output measurement path; the spectroscope; A transmittance adjusting means disposed between the condenser and the output of the laser beam applied to the workpiece held by the holding means may be adjusted by the transmittance adjusting means. . Further, the wavelength conversion crystal constituting the wavelength conversion means may be appropriately shifted from the optical path of the laser beam oscillated by the laser oscillator so as to extend the life of the wavelength conversion crystal.

本発明のレーザー装置におけるレーザー光線照射手段は、レーザー発振器と、該レーザー発振器が発振したレーザー光線の波長を変換する波長変換手段と、該波長変換手段によって波長が変換されたレーザー光線を該保持手段に保持された被加工物に集光する集光器と、該波長変換手段と該集光器との間に配設された光ファイバーと、を少なくとも含み構成され、該光ファイバーは、該波長変換手段を通過して乱れたレーザー光線を整形することから、レーザー光線が波長変換手段等を経る等してガウシアン分布が乱れ、そのままでは安定的な加工が施せない状態となっても、該光ファイバーの作用により集光器に至るレーザー光線が適正なガウシアン分布に近づくように整形され、安定的なレーザー加工を施すことが可能になる。   The laser beam irradiating means in the laser apparatus of the present invention is held by the laser oscillator, the wavelength converting means for converting the wavelength of the laser beam oscillated by the laser oscillator, and the laser beam whose wavelength is converted by the wavelength converting means. A condenser for collecting light on the workpiece, and an optical fiber disposed between the wavelength converting means and the condenser, and the optical fiber passes through the wavelength converting means. Since the laser beam is distorted by the laser beam, the Gaussian distribution is disturbed by the laser beam passing through the wavelength converting means, etc. The resulting laser beam is shaped so as to approach an appropriate Gaussian distribution, and stable laser processing can be performed.

本発明のレーザー装置が適用されたレーザー加工装置の全体斜視図、及び被加工物であるウエーハの斜視図を示す図面である。It is drawing which shows the whole perspective view of the laser processing apparatus to which the laser apparatus of this invention was applied, and the perspective view of the wafer which is a workpiece. 図1のレーザー装置を構成するレーザー光線照射手段の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of the laser beam irradiation means which comprises the laser apparatus of FIG. 本発明のレーザー光線照射手段によって整形される前のレーザー光線の光強度分布、及び整形された後のレーザー光線の光強度分布を説明するための模式図である。It is a schematic diagram for demonstrating the light intensity distribution of the laser beam before shaping | molding by the laser beam irradiation means of this invention, and the light intensity distribution of the laser beam after shaping.

以下、本発明によるレーザー装置について添付図面を参照ながら詳細に説明する。図1には、本発明に基づき構成されたレーザー装置20を備えたレーザー加工装置2の全体斜視図が示されている。レーザー装置20は、被加工物を保持する保持手段22と、該保持手段22に保持された被加工物にレーザー光線を照射するレーザー光線照射手段24とを少なくとも含んでいる。保持手段22は、図中左上方に拡大して示す粘着テープTを介して環状のフレームFに保持された被加工物(ウエーハ10)を保持するものであり、レーザー加工装置2は、上述したレーザー装置20に加え、静止基台2a上に配設され該保持手段22を移動させる移動手段23と、該静止基台2a上の移動手段23の側方に立設される垂直壁部51と、垂直壁部51の上端部から水平方向に延びる水平壁部52とからなる枠体50を備えている。枠体50の水平壁部52内部には、本発明のレーザー装置20の主要部を構成するレーザー光線照射手段24の光学系が内蔵されており、その構成についてはおって詳述する。   Hereinafter, a laser apparatus according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is an overall perspective view of a laser processing apparatus 2 including a laser apparatus 20 configured according to the present invention. The laser device 20 includes at least a holding unit 22 that holds a workpiece and a laser beam irradiation unit 24 that irradiates the workpiece held by the holding unit 22 with a laser beam. The holding means 22 holds the workpiece (wafer 10) held on the annular frame F via the adhesive tape T shown in the upper left part of the figure, and the laser processing apparatus 2 is described above. In addition to the laser device 20, a moving means 23 disposed on the stationary base 2 a for moving the holding means 22, and a vertical wall 51 erected on the side of the moving means 23 on the stationary base 2 a A frame body 50 including a horizontal wall portion 52 extending in the horizontal direction from the upper end portion of the vertical wall portion 51 is provided. The optical system of the laser beam irradiation means 24 constituting the main part of the laser device 20 of the present invention is built in the horizontal wall 52 of the frame 50, and the configuration will be described in detail later.

該保持手段22は、図中に矢印Xで示すX方向において移動自在に基台2aに搭載された矩形状のX方向可動板30と、図中に矢印Yで示すY方向において移動自在にX方向可動板30に搭載された矩形状のY方向可動板31と、Y方向可動板31の上面に固定された円筒状の支柱32と、支柱32の上端に固定された矩形状のカバー板33とを含む。カバー板33には該カバー板33上に形成された長穴を通って上方に延びる円形状の被加工物を保持する保持テーブル34が配設され、保持テーブル34の上面には、多孔質材料から形成され実質上水平に延在する円形状の吸着チャック35が配置されている。吸着チャック35は、支柱32を通る流路によって図示しない吸引手段に接続されている。なお、X方向は図1に矢印Xで示す方向であり、Y方向は矢印Yで示す方向であってX方向に直交する方向である。X方向、Y方向で規定される平面は実質上水平である。   The holding means 22 includes a rectangular X-direction movable plate 30 that is mounted on the base 2a so as to be movable in the X direction indicated by an arrow X in the figure, and an X that is movable in the Y direction indicated by an arrow Y in the figure. A rectangular Y-direction movable plate 31 mounted on the directional movable plate 30, a cylindrical column 32 fixed to the upper surface of the Y-direction movable plate 31, and a rectangular cover plate 33 fixed to the upper end of the column 32. Including. The cover plate 33 is provided with a holding table 34 for holding a circular workpiece extending upward through a long hole formed on the cover plate 33, and a porous material is disposed on the upper surface of the holding table 34. A circular suction chuck 35 that is formed from and extends substantially horizontally is disposed. The suction chuck 35 is connected to suction means (not shown) by a flow path passing through the support column 32. Note that the X direction is the direction indicated by the arrow X in FIG. 1, and the Y direction is the direction indicated by the arrow Y and orthogonal to the X direction. The plane defined by the X direction and the Y direction is substantially horizontal.

移動手段23は、X方向移動手段40と、Y方向移動手段42と、を含む。X方向移動手段40は、モータの回転運動を、ボールねじを介して直線運動に変換してX方向可動板30に伝達し、基台2a上の案内レールに沿ってX方向可動板30をX方向において進退させる。Y方向移動手段42は、モータの回転運動を、ボールねじを介して直線運動に変換し、Y方向可動板31に伝達し、X方向可動板30上の案内レールに沿ってY方向可動板31をY方向において進退させる。なお、図示は省略するが、X方向移動手段40、Y方向移動手段42には、それぞれ位置検出手段が配設されており、保持テーブル34のX方向の位置、Y方向の位置、周方向の回転位置が正確に検出され、後述する制御手段から指示される信号に基づいてX方向移動手段40、Y方向移動手段42が駆動され、任意の位置および角度に保持テーブル34を正確に位置付けることが可能になっている。   The moving unit 23 includes an X direction moving unit 40 and a Y direction moving unit 42. The X-direction moving means 40 converts the rotational motion of the motor into a linear motion via a ball screw and transmits it to the X-direction movable plate 30, and moves the X-direction movable plate 30 along the guide rail on the base 2a. Advance and retreat in the direction. The Y-direction moving means 42 converts the rotational motion of the motor into a linear motion via a ball screw, transmits it to the Y-direction movable plate 31, and moves along the guide rail on the X-direction movable plate 30. Are advanced and retracted in the Y direction. Although not shown, the X direction moving means 40 and the Y direction moving means 42 are respectively provided with position detecting means, and the position of the holding table 34 in the X direction, the Y direction, and the circumferential direction are arranged. The rotational position is accurately detected, and the X-direction moving means 40 and the Y-direction moving means 42 are driven based on a signal instructed from the control means described later, so that the holding table 34 can be accurately positioned at an arbitrary position and angle. It is possible.

図1に示すように、ウエーハ10は、複数のデバイス14が分割予定ライン12によって区画され表面に形成されており、粘着テープTを介して環状のフレームFに支持された状態で保持テーブル34に保持される。そして、レーザー光線照射手段24を作動させてレーザー光線LBを照射ながら、上記したX方向移動手段40、Y方向移動手段42を作動させることにより、該分割予定ライン12に対してアブレーション加工を実施し分割起点100を形成する。   As shown in FIG. 1, the wafer 10 has a plurality of devices 14 defined on the surface by dividing lines 12 and is supported on an annular frame F via an adhesive tape T on a holding table 34. Retained. Then, while the laser beam irradiating unit 24 is operated to irradiate the laser beam LB, the X-direction moving unit 40 and the Y-direction moving unit 42 are operated to perform ablation processing on the planned dividing line 12 and to start the division. 100 is formed.

図2に、本発明のレーザー装置20を構成するレーザー光線照射手段24の一例を示す。該レーザー光線照射手段24は、上記した集光器24aから所望のレーザー光線LB(例えば、波長355nm)を照射するものであり、基本波として1064nmの波長を有するレーザー光線LB1を発振するレーザー発振器24bと、該レーザー光線LB1を、波長が355nmのレーザー光線LB2に変換する波長変換手段24cと、該波長変換手段24cから出力されるレーザー光線LB2から不要な波長成分を排除したレーザー光線LB3を出力するハーモニックセパレータ24dと、該ハーモニックセパレータ24dから出力されるレーザー光線LB3を集光する集光レンズ24eと、該集光レンズ24eにより集光されたレーザー光線LB4が入射される光ファイバーFBにより構成される光強度分布整形手段24fと、該光強度分布整形手段24fの光ファイバーFBによりガウシアン分布が整形されたレーザー光線LB4´を平行光に整形するコリメートレンズ24gと、該平行光にされたレーザー光線LB5の一部、例えば、加工に影響のない程度の極めて小さい割合(1%)のレーザー光線LB6´を出力測定経路側に反射し、残りのレーザー光線LB6を集光器24a側に透過させる分光器24hと、該分光器24hにより反射され、出力測定経路に導かれた出力測定用のレーザー光線LB6´の光量値を測定する受光素子からなる出力測定手段24iと、該分光器24hを透過したレーザー光線LB6の透過率を制御することで所望の出力に調整し、該集光器24aに所望の出力のレーザー光線LB7を出射する透過率調整手段(アッテネータ)24jと、を備えており、レーザー光線LB7は、該集光器24aを構成する集光レンズ(図示せず)によって集光され所望のレーザー光線LBとされて保持テーブル34に保持されたウエーハ10に照射される。   In FIG. 2, an example of the laser beam irradiation means 24 which comprises the laser apparatus 20 of this invention is shown. The laser beam irradiation means 24 irradiates a desired laser beam LB (for example, wavelength 355 nm) from the above-described condenser 24a, and a laser oscillator 24b that oscillates a laser beam LB1 having a wavelength of 1064 nm as a fundamental wave; A wavelength converter 24c for converting the laser beam LB1 into a laser beam LB2 having a wavelength of 355 nm, a harmonic separator 24d for outputting a laser beam LB3 from which an unnecessary wavelength component is removed from the laser beam LB2 output from the wavelength converter 24c, and the harmonic A light intensity distribution shaping unit 24f configured by a condensing lens 24e that condenses the laser beam LB3 output from the separator 24d, and an optical fiber FB into which the laser beam LB4 collected by the condensing lens 24e is incident; The collimating lens 24g for shaping the laser beam LB4 'shaped with the Gaussian distribution by the optical fiber FB of the degree distribution shaping means 24f into parallel light, and a part of the laser beam LB5 made into the parallel light, for example, so as not to affect the processing. A spectroscope 24h that reflects an extremely small proportion (1%) of the laser beam LB6 ′ to the output measurement path side and transmits the remaining laser beam LB6 to the collector 24a side, is reflected by the spectroscope 24h, and enters the output measurement path. By adjusting the transmittance of the laser beam LB6 transmitted through the spectroscope 24h by adjusting the output measurement means 24i composed of a light receiving element that measures the light amount value of the guided laser beam LB6 ′ for output measurement, A transmittance adjusting means (attenuator) 24j for emitting a laser beam LB7 having a desired output to the condenser 24a; With which, laser LB7 is irradiated to the wafer 10 held on the holding table 34 is the desired laser LB is condensed by the condenser lens (not shown) constituting the light-concentrating device 24a.

分光器24hによって反射されるレーザー光線LB6´は、レーザー光線LB5の一部ではあるが、分光器24hにおいて反射される割合が一定であるため、該出力測定手段24iの光量値を測定することで、分光器24hを透過するレーザー光線LB6の出力を実質的に測定するものである。なお、レーザー装置20を構成する上記各手段は図示しない制御手段によって制御されるものであり、例えば、出力測定手段24iにより測定される測定情報が該制御手段に送られ、該制御手段において実行される制御プログラムによって演算された値に基づいて透過率調整手段24jが制御され、被加工物に照射されるレーザー光線LBが所望の出力に調整される。   Although the laser beam LB6 ′ reflected by the spectroscope 24h is a part of the laser beam LB5, the ratio of the light reflected by the spectroscope 24h is constant. The output of the laser beam LB6 transmitted through the device 24h is substantially measured. Note that each of the above-described units constituting the laser device 20 is controlled by a control unit (not shown). For example, measurement information measured by the output measurement unit 24i is sent to the control unit and executed by the control unit. Based on the value calculated by the control program, the transmittance adjusting means 24j is controlled, and the laser beam LB irradiated to the workpiece is adjusted to a desired output.

上記レーザー光線照射手段24の波長変換手段24cについて、さらに詳細に説明する。一般的なレーザー光線の波長を変換する手段としては、LBO結晶、CLBO結晶、KTP結晶等の非線形結晶を用いた変換方法が知られており、該変換方法は、基本波となるレーザー光線の波長、変換によって得ようとするレーザー光線の波長、最終的に加工に用いる際のレーザー光線の出力等を考慮して選択される。   The wavelength conversion unit 24c of the laser beam irradiation unit 24 will be described in more detail. As a means for converting the wavelength of a general laser beam, a conversion method using a non-linear crystal such as an LBO crystal, a CLBO crystal, or a KTP crystal is known. Is selected in consideration of the wavelength of the laser beam to be obtained, the output of the laser beam when finally used for processing, and the like.

図2に示すように、本実施形態における波長変換手段24cは、第1のLBO結晶24c1、第2のLBO結晶24c2から構成される。基本波としてレーザー発振器24bにより波長1064nmのパルスレーザー光線LB1が発振され、波長変換手段24cに入射される。該レーザー光線LB1は、波長変換手段24cを構成する第1のLBO結晶24c1の所定の端面に入射され、波長1064nmのレーザー光線が、波長532nmのレーザー光線に変換されて他端面から出射される。そして、該第1のLBO結晶24c1の他端面から出射された該レーザー光線は、さらに第2のLBO結晶24c2の所定の端面に入射されて波長355nmのレーザー光線LB2に変換されて、第2のLBO結晶24c2の他端面から、すなわち、波長変換手段24cから出射される。   As shown in FIG. 2, the wavelength conversion means 24c in the present embodiment includes a first LBO crystal 24c1 and a second LBO crystal 24c2. A pulsed laser beam LB1 having a wavelength of 1064 nm is oscillated as a fundamental wave by the laser oscillator 24b and is incident on the wavelength converting means 24c. The laser beam LB1 is incident on a predetermined end surface of the first LBO crystal 24c1 constituting the wavelength converting means 24c, and the laser beam having a wavelength of 1064 nm is converted into a laser beam having a wavelength of 532 nm and emitted from the other end surface. The laser beam emitted from the other end surface of the first LBO crystal 24c1 is further incident on a predetermined end surface of the second LBO crystal 24c2, and converted into a laser beam LB2 having a wavelength of 355 nm, so that the second LBO crystal. The light is emitted from the other end face of 24c2, that is, from the wavelength converting means 24c.

該波長変換手段24cを構成する第1のLBO結晶24c1と第2のLBO結晶24c2は、図示しない入射位置変更手段が備えられている。波長変換機能を奏する非線形結晶は、長時間同じ位置にレーザー光線が照射されることにより劣化を起こすことが知られており、所定時間、或いは所定の入射回数毎に、基本波のレーザー光線LB1の光路に対して入射位置が変更されるように構成されている。これにより、波長変換手段24cを構成する非線形結晶の長寿命化が図られる。なお、入射可能な全ての位置にレーザー光線の入射がなされた場合、該第1のLBO結晶24c1、第2のLBO結晶24c2は交換される。本発明のレーザー装置は、概ね上記したとおりの構成を備えており、その作用について、さらに説明する。   The first LBO crystal 24c1 and the second LBO crystal 24c2 constituting the wavelength converting means 24c are provided with incident position changing means (not shown). It is known that a nonlinear crystal having a wavelength conversion function is deteriorated by irradiating a laser beam at the same position for a long time, and enters the optical path of the fundamental laser beam LB1 for a predetermined time or every predetermined number of times of incidence. On the other hand, the incident position is changed. Thereby, the lifetime of the nonlinear crystal constituting the wavelength converting means 24c is extended. When the laser beam is incident on all the incident positions, the first LBO crystal 24c1 and the second LBO crystal 24c2 are exchanged. The laser device of the present invention has a configuration generally as described above, and the operation thereof will be further described.

なお、上記したレーザー装置は、以下のような構成を備えることができる。
レーザー発振器 :1064nm(Nd:YAGレーザー)
平均出力 :1〜10W
繰り返し周波数 :1kHz〜1MHz
パルス幅 :100fs〜100ns
Note that the above-described laser device can have the following configuration.
Laser oscillator: 1064 nm (Nd: YAG laser)
Average output: 1-10W
Repeat frequency: 1 kHz to 1 MHz
Pulse width: 100 fs to 100 ns

本発明のレーザー加工装置に対してオペレータからレーザー光線の照射を開始する指示がなされると、レーザー発振器24bから波長が1064nmのレーザー光線LB1が発振され、波長変換手段24cに入射される。波長変換手段24cを構成する第1のLBO結晶24c1と第2のLBO結晶24c2は、上述したように波長を変換するものであるが、第1のLBO結晶24c1に入射されたレーザー光線LB1は、完全に532nmの波長に変換されるわけではなく、所定の割合で1064nmの波長のレーザー光線が残存した状態で出射される。よって、第2のLBO結晶24c2には、波長が532nmのレーザー光線と波長が1064nmのレーザー光線が入射されることになり、第2のLBO結晶24c2から出射されるレーザー光線、即ち波長変換手段24cから出射されるレーザー光線LB2にも、変換された波長355nmのレーザー光線に加え、変換されずに残存する波長1064nm及び波長532nmのレーザー光線が含まれている。そこで、本実施形態のレーザー光線照射手段24においては、レーザー光線LB2が通過する光軸上に、上述したハーモニックセパレータ24dを配設し、不要な波長成分が排除されて、主に355nmの波長で構成されるレーザー光線LB3が出射される。   When the operator instructs the laser processing apparatus of the present invention to start laser beam irradiation, a laser beam LB1 having a wavelength of 1064 nm is oscillated from the laser oscillator 24b and is incident on the wavelength converting means 24c. The first LBO crystal 24c1 and the second LBO crystal 24c2 constituting the wavelength conversion means 24c convert the wavelength as described above, but the laser beam LB1 incident on the first LBO crystal 24c1 is completely However, it is not converted into a wavelength of 532 nm, but is emitted with a laser beam having a wavelength of 1064 nm remaining at a predetermined rate. Therefore, a laser beam having a wavelength of 532 nm and a laser beam having a wavelength of 1064 nm are incident on the second LBO crystal 24c2, and the laser beam emitted from the second LBO crystal 24c2, that is, emitted from the wavelength conversion means 24c. In addition to the converted laser beam with a wavelength of 355 nm, the laser beam LB2 includes a laser beam with a wavelength of 1064 nm and a wavelength of 532 nm that remains without being converted. Therefore, in the laser beam irradiation means 24 of the present embodiment, the above-described harmonic separator 24d is disposed on the optical axis through which the laser beam LB2 passes, and unnecessary wavelength components are eliminated, and the laser beam irradiation unit 24 is mainly configured with a wavelength of 355 nm. A laser beam LB3 is emitted.

ここで、レーザー光線LB3について説明する。図3(a)(b)には、横軸でレーザー光線の光軸の中心位置を「0」とする断面位置(mm)を表し、縦軸で該光軸の断面位置における光強度を表すことにより、レーザー光線の光軸の断面位置に応じた光強度分布を模式的に表している。なお、本実施形態では、レーザー発振器24bから発振されるレーザー光線の光軸の半径をNmmとしている。波長変換手段24cを通過したレーザー光線LB2は、図3(a)に示すように、光強度分布が光軸の中心をピークとする理想的なガウシアン分布にはならず、乱れた形状となっている。この乱れは、波長変換手段24cを構成する非線形結晶を構成する結晶構造が必ずしも一定ではないことに起因すると推測され、また、所定位置に長時間レーザー光線が照射されることによって該非線形結晶の内部に劣化が生じた際にも起こりうる現象である。このように光強度分布に乱れが生じた場合、所定の位置にレーザー光線を集光して照射しても、所望のピークエネルギーが得られず、レーザー加工条件によって想定される所望の加工がなされない問題が生じ得る。そこで、本発明では、該波長変換手段24cによって波長が変換されたレーザー光線を、該波長変換手段24cと該集光器24aとの間のいずれかに配設された光ファイバーFBに入射させる。図2に基づきより具体的に説明すると、本実施形態では、該ハーモニックセパレータ24dから出射されたレーザー光線LB3を、光強度分布整形手段24fを構成する光ファイバーFBの一端面FBaに入射させるべく、集光レンズ24eに入射して集光する。集光レンズ24eによって集光されたレーザー光線LB4の焦点は、該光ファイバーFBの一端面FBaの位置になるように調整され、該レーザー光線LB4が、光ファイバーFBに入射される。なお、光ファイバーFBは、例えば直径が1.0mm程度であり、その長さは1m程度に設定される。   Here, the laser beam LB3 will be described. 3A and 3B, the horizontal axis represents the cross-sectional position (mm) where the center position of the optical axis of the laser beam is “0”, and the vertical axis represents the light intensity at the cross-sectional position of the optical axis. Thus, the light intensity distribution according to the cross-sectional position of the optical axis of the laser beam is schematically represented. In the present embodiment, the radius of the optical axis of the laser beam oscillated from the laser oscillator 24b is Nmm. As shown in FIG. 3A, the laser beam LB2 that has passed through the wavelength conversion unit 24c does not have an ideal Gaussian distribution having a peak at the center of the optical axis, but has a distorted shape. . This disturbance is presumed to be caused by the fact that the crystal structure constituting the nonlinear crystal constituting the wavelength converting means 24c is not always constant, and the laser beam is irradiated to a predetermined position for a long time to enter the nonlinear crystal. This is a phenomenon that can occur even when deterioration occurs. When the light intensity distribution is disturbed in this way, even if the laser beam is condensed and irradiated at a predetermined position, the desired peak energy cannot be obtained, and the desired processing assumed by the laser processing conditions is not performed. Problems can arise. Therefore, in the present invention, the laser beam whose wavelength is converted by the wavelength converting unit 24c is incident on the optical fiber FB disposed between the wavelength converting unit 24c and the condenser 24a. More specifically, based on FIG. 2, in this embodiment, the laser beam LB3 emitted from the harmonic separator 24d is condensed so as to be incident on one end face FBa of the optical fiber FB constituting the light intensity distribution shaping means 24f. The light enters the lens 24e and is condensed. The focal point of the laser beam LB4 collected by the condensing lens 24e is adjusted to be at the position of the one end face FBa of the optical fiber FB, and the laser beam LB4 is incident on the optical fiber FB. The optical fiber FB has, for example, a diameter of about 1.0 mm and a length of about 1 m.

ここで、光ファイバーFBに入射されたレーザー光線LB4は、光ファイバーFB内の側壁面において反射を繰り返して進行し、その他端部FBbから出射される。光ファイバーFBの他端部FBbから出射されたレーザー光線LB4´は、そのままでは拡散するため、コリメートレンズ24gによって平行光に変換されレーザー光線LB5とされる。   Here, the laser beam LB4 incident on the optical fiber FB travels repeatedly on the side wall surface in the optical fiber FB, and is emitted from the other end FBb. Since the laser beam LB4 ′ emitted from the other end portion FBb of the optical fiber FB is diffused as it is, it is converted into parallel light by the collimator lens 24g to be a laser beam LB5.

上記光ファイバーFBから出射され平行光とされたレーザー光線LB5は、上記した光ファイバーFBを通過していることにより、図3(b)に示すような、光軸の中心に光強度のピークが出現し、外側に行くに従い滑らかに低下する理想的なガウシアン分布に近づくように整形されている。よって、波長変換手段24cを通過することにより、図3(a)に示したように乱れたガウシアン分布が、図3(b)に記載したような理想的なガウシアン分布に整形され、所望の加工を実行することが容易になる。   When the laser beam LB5 emitted from the optical fiber FB and converted into parallel light passes through the optical fiber FB, a peak of light intensity appears at the center of the optical axis as shown in FIG. It is shaped to approach an ideal Gaussian distribution that falls smoothly as it goes outward. Therefore, by passing through the wavelength converting means 24c, the distorted Gaussian distribution as shown in FIG. 3A is shaped into an ideal Gaussian distribution as shown in FIG. Makes it easier to perform.

そして、光強度分布が図3(b)に示した形状に整形されているレーザー光線LB5は、分光器24h、出力測定手段24iに基づいて出力が測定され、分光器24hからレーザー光線LB6が出射されるとともに、当該出力測定手段24iの出力情報に基づき透過率調整手段24jが制御され、レーザー光線LB7となって集光器24aに入射される。これにより、理想的なガウシアン分布になるように整形された上で集光されたレーザー光線LBが、保持テーブル34上のウエーハ10に照射される。   The output of the laser beam LB5 whose light intensity distribution is shaped into the shape shown in FIG. 3B is measured based on the spectroscope 24h and the output measuring means 24i, and the laser beam LB6 is emitted from the spectroscope 24h. At the same time, the transmittance adjusting unit 24j is controlled based on the output information of the output measuring unit 24i, and is incident on the condenser 24a as a laser beam LB7. As a result, the laser beam LB that has been shaped so as to have an ideal Gaussian distribution and then condensed is applied to the wafer 10 on the holding table 34.

本発明は、上述した実施形態に限定されず、種々の変形例を想定することができる。例えば、上述した実施形態では、レーザー発振器から発振される基本波のレーザー光線の波長を1064nmとして、該基本波を2つのLBO結晶を用いて355nmの波長に変換する波長変換手段24cを用いる場合に適用した例を示したが、本発明はこれに限定されず、例えば、波長が1064nmであるレーザー光線を、KTP結晶、及びCLBO結晶を用いて波長が266nmであるレーザー光線に変換する場合、或いは波長が1064nmのレーザー光線を1つのKTP結晶を用いて532nmの波長に変換して使用するレーザー装置に適用することができる。また、基本波として1064nmの波長のレーザー光線を発振するレーザー発振器24bを用いる場合に限定されず、例えば、YVO4レーザー(波長1054nm)、LDレーザー(波長650〜905nm)等、その他の波長のレーザー光線を基本波として発振するレーザー発振器を用いるレーザー装置に適用することも可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be assumed. For example, the above-described embodiment is applied to the case where the wavelength of the fundamental laser beam oscillated from the laser oscillator is 1064 nm and the wavelength conversion unit 24 c that converts the fundamental wave into a wavelength of 355 nm using two LBO crystals is used. However, the present invention is not limited to this example. For example, a laser beam having a wavelength of 1064 nm is converted into a laser beam having a wavelength of 266 nm using a KTP crystal and a CLBO crystal, or the wavelength is 1064 nm. This laser beam can be applied to a laser device that is used by converting it to a wavelength of 532 nm using one KTP crystal. Further, the present invention is not limited to the case where the laser oscillator 24b that oscillates a laser beam having a wavelength of 1064 nm is used as the fundamental wave. For example, a laser beam having another wavelength such as a YVO4 laser (wavelength 1054 nm) or an LD laser (wavelength 650 to 905 nm) is basically used. It is also possible to apply to a laser apparatus using a laser oscillator that oscillates as a wave.

また上述した実施形態では、分光器24hと、出力測定手段24iの配設位置を、光強度分布整形手段24fの下流側に配設するようにしたがこれに限定されず、ハーモニックセパレータ24dの直後に配設するようにしてもよい。さらに、上述した光ファイバーFBの直径、長さは、単なる一例にすぎず、適用するレーザー光線照射手段24の基本波の波長や加工時に必要となるレーザー光線の出力、或いは波長変換手段24cによるガウシアン分布の乱れ具合に応じて適宜調整される。   In the above-described embodiment, the disposition position of the spectroscope 24h and the output measurement unit 24i is disposed on the downstream side of the light intensity distribution shaping unit 24f. However, the present invention is not limited to this, and immediately after the harmonic separator 24d. You may make it arrange | position to. Furthermore, the diameter and length of the optical fiber FB described above are merely examples, and the wavelength of the fundamental wave of the laser beam irradiation unit 24 to be applied, the output of the laser beam necessary for processing, or the disturbance of the Gaussian distribution by the wavelength conversion unit 24c. It is adjusted appropriately according to the condition.

上述した実施形態では、本発明のレーザー装置を、ウエーハを加工するためのレーザー加工装置に適用した例を示したが、本発明はこれに限定されず、例えば、レーザー光線を使用する形状測定装置等にも適用することができる。本発明は、レーザー光線のガウシアン分布を整形することが有効な、レーザーを利用したあらゆる装置に適用することを除外しない。   In the embodiment described above, an example in which the laser device of the present invention is applied to a laser processing device for processing a wafer has been shown, but the present invention is not limited to this, for example, a shape measuring device using a laser beam, etc. It can also be applied to. The present invention does not exclude application to any apparatus using a laser that is effective in shaping the Gaussian distribution of a laser beam.

2:レーザー加工装置
10:ウエーハ
20:レーザー装置
22:保持手段
23:移動手段
24:レーザー光線照射手段
24a:集光器
24b:レーザー発振器
24c:波長変換手段
24d:ハーモニックセパレータ
24e:集光レンズ
24f:光強度分布整形手段
24g:コリメートレンズ
24h:分光器
24i:出力測定手段
24j:透過率調整手段
34:保持テーブル
40:X方向移動手段
42:Y方向移動手段
FB:光ファイバー
2: Laser processing apparatus 10: Wafer 20: Laser apparatus 22: Holding means 23: Moving means 24: Laser beam irradiation means 24a: Condenser 24b: Laser oscillator 24c: Wavelength converting means 24d: Harmonic separator 24e: Condensing lens 24f: Light intensity distribution shaping means 24g: collimating lens 24h: spectrometer 24i: output measuring means 24j: transmittance adjusting means 34: holding table 40: X-direction moving means 42: Y-direction moving means FB: optical fiber

Claims (4)

被加工物を保持する保持手段と、該保持手段に保持された被加工物にレーザー光線を照射するレーザー光線照射手段と、から少なくとも達成されたレーザー装置であって、
該レーザー光線照射手段は、レーザー発振器と、該レーザー発振器が発振したレーザー光線の波長を変換する波長変換手段と、該波長変換手段によって波長が変換されたレーザー光線を該保持手段に保持された被加工物に集光する集光器と、該波長変換手段と該集光器との間に配設された光ファイバーと、を少なくとも含み構成され、
該光ファイバーは、該波長変換手段を通過して乱れたレーザー光線のガウシアン分布を整形するレーザー装置。
A laser device achieved at least from a holding means for holding a workpiece, and a laser beam irradiation means for irradiating a workpiece with a laser beam to the workpiece held by the holding means,
The laser beam irradiating means includes a laser oscillator, a wavelength converting means for converting the wavelength of the laser beam oscillated by the laser oscillator, and a laser beam whose wavelength is converted by the wavelength converting means on a workpiece held by the holding means. A condenser for condensing, and an optical fiber disposed between the wavelength converting means and the condenser,
The optical fiber is a laser device that shapes a Gaussian distribution of a laser beam disturbed by passing through the wavelength converting means.
該波長変換手段と該光ファイバーとの間にハーモニックセパレータが配設され、該ハーモニックセパレータは、該波長変換手段により所定の波長に波長変換されたレーザー光線から、該所定の波長以外の波長のレーザー光線を排除する請求項1に記載のレーザー装置。   A harmonic separator is disposed between the wavelength converting means and the optical fiber, and the harmonic separator excludes laser light having a wavelength other than the predetermined wavelength from the laser light wavelength-converted to a predetermined wavelength by the wavelength converting means. The laser device according to claim 1. 該光ファイバーと該集光器との間に配設され、出力測定経路にレーザー光線の一部を導く分光器と、該出力測定経路に配設された出力測定手段と、
該分光器と該集光器との間に配設された透過率調整手段と、
を備え、
該保持手段に保持された被加工物に照射するレーザー光線の出力を該透過率調整手段で調整する請求項1に記載のレーザー装置。
A spectroscope disposed between the optical fiber and the concentrator and guiding a part of the laser beam to the output measurement path; and output measurement means disposed in the output measurement path;
A transmittance adjusting means disposed between the spectroscope and the condenser;
With
The laser apparatus according to claim 1, wherein the output of the laser beam applied to the workpiece held by the holding unit is adjusted by the transmittance adjusting unit.
該波長変換手段を構成する波長変換結晶を、該レーザー発振器が発振したレーザー光線の光路から適宜ずらし該波長変換結晶の寿命を延ばす構成を備えた請求項1に記載のレーザー装置。   2. The laser device according to claim 1, wherein the wavelength conversion crystal constituting the wavelength conversion means is appropriately shifted from the optical path of the laser beam oscillated by the laser oscillator to extend the life of the wavelength conversion crystal.
JP2016253186A 2016-12-27 2016-12-27 Laser device Active JP6901261B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016253186A JP6901261B2 (en) 2016-12-27 2016-12-27 Laser device
TW106138569A TWI746692B (en) 2016-12-27 2017-11-08 Laser device
KR1020170159299A KR20180076293A (en) 2016-12-27 2017-11-27 Laser apparatus
CN201711336717.3A CN108262565A (en) 2016-12-27 2017-12-14 Laser aid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016253186A JP6901261B2 (en) 2016-12-27 2016-12-27 Laser device

Publications (2)

Publication Number Publication Date
JP2018103232A true JP2018103232A (en) 2018-07-05
JP6901261B2 JP6901261B2 (en) 2021-07-14

Family

ID=62771952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016253186A Active JP6901261B2 (en) 2016-12-27 2016-12-27 Laser device

Country Status (4)

Country Link
JP (1) JP6901261B2 (en)
KR (1) KR20180076293A (en)
CN (1) CN108262565A (en)
TW (1) TWI746692B (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288755A (en) * 1999-04-01 2000-10-17 Matsushita Electric Ind Co Ltd Laser beam joining method its device
JP2002277914A (en) * 2001-12-21 2002-09-25 Nikon Corp Device for generating higher harmonic of laser beam, exposure device using the same, method for generating higher harmonic of laser beam, exposing method using the same, and device manufacturing method using the same
JP2005116729A (en) * 2003-10-07 2005-04-28 Sharp Corp Laser processing apparatus and method therefor
US20050226287A1 (en) * 2004-03-31 2005-10-13 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
JP2006317724A (en) * 2005-05-13 2006-11-24 Nikon Corp Wavelength conversion optical system and laser device
JP2008060274A (en) * 2006-08-30 2008-03-13 Sumitomo Heavy Ind Ltd Laser beam machining apparatus
JP2011189389A (en) * 2010-03-15 2011-09-29 Omron Corp Laser beam machining apparatus
WO2012117493A1 (en) * 2011-02-28 2012-09-07 東芝三菱電機産業システム株式会社 Apparatus for measuring characteristics of metal material
JP2013193090A (en) * 2012-03-16 2013-09-30 Disco Corp Laser processing apparatus
JP2015028501A (en) * 2011-11-24 2015-02-12 住友電気工業株式会社 Wavelength converter and laser device
JP2016036841A (en) * 2014-08-08 2016-03-22 株式会社キーエンス Laser processing device and method for measurement of working distance

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348199B2 (en) * 2004-01-16 2009-10-21 日立ビアメカニクス株式会社 Laser processing method and laser processing apparatus
JP4567984B2 (en) * 2004-01-30 2010-10-27 株式会社 日立ディスプレイズ Flat panel display manufacturing equipment
US20110012986A1 (en) * 2008-03-27 2011-01-20 Shinichi Shikll Printing apparatus and printing method using the same
JP4647696B2 (en) * 2009-07-07 2011-03-09 株式会社フジクラ Fiber laser equipment
WO2012161092A1 (en) * 2011-05-24 2012-11-29 住友電気工業株式会社 Light source control method
JP5595573B1 (en) * 2013-09-30 2014-09-24 三菱重工業株式会社 Laser processing apparatus and laser processing method
CN104795511A (en) * 2014-01-20 2015-07-22 上海微电子装备有限公司 Laser packaging device and laser packaging method
JP6833692B2 (en) * 2014-09-16 2021-02-24 アイピージー フォトニクス コーポレーション Broadband red light generator for RGB displays
JP6140750B2 (en) * 2015-03-24 2017-05-31 株式会社フジクラ Fiber laser equipment
JP6651768B2 (en) * 2015-09-28 2020-02-19 株式会社ニコン Pattern drawing equipment
CN105598582B (en) * 2016-02-04 2017-07-21 广东正业科技股份有限公司 A kind of laser energy adjusting deice and laser micro-processing equipment
CN105772937B (en) * 2016-05-26 2017-09-12 中国科学院上海光学精密机械研究所 The laser pre-treated apparatus and method of transparent optical element placed side by side
CN105953739B (en) * 2016-06-29 2020-07-14 武汉纺织大学 Transverse deformation measurement system and method based on laser irradiation intensity change

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288755A (en) * 1999-04-01 2000-10-17 Matsushita Electric Ind Co Ltd Laser beam joining method its device
JP2002277914A (en) * 2001-12-21 2002-09-25 Nikon Corp Device for generating higher harmonic of laser beam, exposure device using the same, method for generating higher harmonic of laser beam, exposing method using the same, and device manufacturing method using the same
JP2005116729A (en) * 2003-10-07 2005-04-28 Sharp Corp Laser processing apparatus and method therefor
US20050226287A1 (en) * 2004-03-31 2005-10-13 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
JP2006317724A (en) * 2005-05-13 2006-11-24 Nikon Corp Wavelength conversion optical system and laser device
JP2008060274A (en) * 2006-08-30 2008-03-13 Sumitomo Heavy Ind Ltd Laser beam machining apparatus
JP2011189389A (en) * 2010-03-15 2011-09-29 Omron Corp Laser beam machining apparatus
WO2012117493A1 (en) * 2011-02-28 2012-09-07 東芝三菱電機産業システム株式会社 Apparatus for measuring characteristics of metal material
JP2015028501A (en) * 2011-11-24 2015-02-12 住友電気工業株式会社 Wavelength converter and laser device
JP2013193090A (en) * 2012-03-16 2013-09-30 Disco Corp Laser processing apparatus
JP2016036841A (en) * 2014-08-08 2016-03-22 株式会社キーエンス Laser processing device and method for measurement of working distance

Also Published As

Publication number Publication date
TW201822928A (en) 2018-07-01
TWI746692B (en) 2021-11-21
KR20180076293A (en) 2018-07-05
JP6901261B2 (en) 2021-07-14
CN108262565A (en) 2018-07-10

Similar Documents

Publication Publication Date Title
TWI473153B (en) Semiconductor wafer laser processing method (a)
JP6953242B2 (en) Height detector and laser machining equipment
CN103506758B (en) Laser processing device
US11482826B2 (en) Optical processing apparatus, optical processing method, and optically-processed product production method
KR102213577B1 (en) Wavelength conversion apparatus
JP2017202488A (en) Laser processing device
JP2018069310A (en) Laser processing apparatus
US20130115756A1 (en) Processing method for semiconductor wafer having passivation film on the front side thereof
CN109202277B (en) Laser processing device
JP6901261B2 (en) Laser device
US8724111B2 (en) Flash photolysis system
JP2016103506A (en) Method for detecting permeated laser beam
KR102403533B1 (en) Laser machining method and laser machining apparatus
JP2012006040A (en) Pulse laser machining method
KR20170060471A (en) Laser focusing device and method the same
JP2018114529A (en) Laser cut processing device
KR102391850B1 (en) Laser machining apparatus
JP2013089930A (en) Laser annealing method and laser annealing apparatus
JP2006320938A (en) Apparatus and method for laser beam machining
JP2016096241A (en) Laser oscillation mechanism
JP2015039715A (en) Laser processing device
JP2003285187A (en) Optical transmission device and laser beam machining device
JP6781650B2 (en) Laser processing equipment
JP6625852B2 (en) Laser processing equipment
KR102035020B1 (en) Micro Pattern Processing Apparatus Using Laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210617

R150 Certificate of patent or registration of utility model

Ref document number: 6901261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150