JP2018101964A - Acoustic wave device - Google Patents

Acoustic wave device Download PDF

Info

Publication number
JP2018101964A
JP2018101964A JP2016248509A JP2016248509A JP2018101964A JP 2018101964 A JP2018101964 A JP 2018101964A JP 2016248509 A JP2016248509 A JP 2016248509A JP 2016248509 A JP2016248509 A JP 2016248509A JP 2018101964 A JP2018101964 A JP 2018101964A
Authority
JP
Japan
Prior art keywords
electrode
resonator
film
piezoelectric
resonators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016248509A
Other languages
Japanese (ja)
Inventor
裕臣 金子
Hiroomi Kaneko
裕臣 金子
西澤 年雄
Toshio Nishizawa
年雄 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2016248509A priority Critical patent/JP2018101964A/en
Publication of JP2018101964A publication Critical patent/JP2018101964A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To downsize an acoustic wave device.SOLUTION: An acoustic wave device comprises a piezoelectric thin film resonator 40 which includes a piezoelectric film 14 provided on a substrate 10, and an electrode 12 and an electrode 16, provided that the piezoelectric film 14 is located between the electrodes in direction of a c-axis of the piezoelectric film 14 or a polarization axis, and which has a resonance region 24 consisting of a region overlapping with a gap 22 formed between the substrate 10 and the electrode 12 in plane view in a region where the electrode 12 and the electrode 16 are opposed to each other with the piezoelectric film 14 located therebetween. The acoustic wave device further comprises a piezoelectric thin film resonator 42 which includes the electrode 16, a piezoelectric film 18 provided on the electrode 16 and having a thickness substantially the same as that of the piezoelectric film 14, and a c-axis or polarization axis in the same direction as that of the c-axis of the piezoelectric film 14 or polarization axis, and an electrode 20 provided on the piezoelectric film 18, provided that the electrode is at the same potential as the electrode 12, and which has a resonance region 26 which is a region overlapping with the gap 22 in plane view in a region where the electrode 16 and the electrode 20 are opposed to each other with the piezoelectric film 18 located therebetween and which has an area substantially the same as that of the resonance region 24 and overlapping with the resonance region 24.SELECTED DRAWING: Figure 3

Description

本発明は、弾性波デバイスに関する。   The present invention relates to an acoustic wave device.

携帯電話端末などの無線通信機器のフィルタやデュプレクサに圧電薄膜共振器を用いることが知られている。圧電薄膜共振器は、圧電膜と、圧電膜を挟んで対向する2つの電極と、を備える。圧電膜のc軸又は分極軸の方向と2つの電極の間に印加される電界の方向とが同じ方向を向いている場合、圧電薄膜共振器は収縮し、逆の方向を向いている場合、圧電薄膜共振器は拡張する。このため、圧電薄膜共振器では、圧電膜のc軸又は分極軸の方向に依存した非線形性が原因となって、2次歪特性が劣化することが生じている。そこで、非線形性を低減して、2次歪特性の劣化を抑制する方法が知られている(例えば、特許文献1)。また、複数の圧電薄膜共振器を積層して配置することが知られている(例えば、特許文献2、3)。   It is known to use a piezoelectric thin film resonator for a filter or duplexer of a wireless communication device such as a mobile phone terminal. The piezoelectric thin film resonator includes a piezoelectric film and two electrodes facing each other with the piezoelectric film interposed therebetween. When the direction of the c-axis or polarization axis of the piezoelectric film and the direction of the electric field applied between the two electrodes are in the same direction, the piezoelectric thin film resonator contracts, and in the opposite direction, Piezoelectric thin film resonators expand. For this reason, in the piezoelectric thin film resonator, the second-order strain characteristic is deteriorated due to nonlinearity depending on the direction of the c-axis or the polarization axis of the piezoelectric film. Therefore, a method is known that reduces nonlinearity and suppresses the degradation of secondary distortion characteristics (for example, Patent Document 1). In addition, it is known that a plurality of piezoelectric thin film resonators are stacked and arranged (for example, Patent Documents 2 and 3).

特開2007−6495号公報JP 2007-6495 A 特表2006−502634号公報JP-T-2006-502634 特開2005−137002号公報JP 2005-137002 A

特許文献1では、2つの圧電薄膜共振器それぞれの圧電膜の分極軸の同じ方向の電極が逆電位となるように、これら2つの圧電薄膜共振器を並列に接続することで、2次歪特性を改善しているが、弾性波デバイスの小型化の点で改善の余地が残されている。   In Patent Document 1, a secondary distortion characteristic is obtained by connecting these two piezoelectric thin film resonators in parallel so that electrodes in the same direction of the polarization axes of the two piezoelectric thin film resonators have opposite potentials. However, there is still room for improvement in terms of downsizing the acoustic wave device.

本発明は、上記課題に鑑みなされたものであり、弾性波デバイスの小型化を目的とする。   The present invention has been made in view of the above problems, and aims to reduce the size of an acoustic wave device.

本発明は、基板上に設けられた第1圧電膜と、前記第1圧電膜のc軸又は分極軸の方向で前記第1圧電膜を挟む第1電極及び第2電極と、を含み、前記第1圧電膜を挟んで前記第1電極と前記第2電極とが対向する領域のうちの平面視で前記基板と前記第1電極の間に形成された空隙又は音響反射膜に重なる領域である第1共振領域を有する第1圧電薄膜共振器と、前記第2電極と、前記第2電極上に設けられ、前記第1圧電膜と略同じ厚さを有し、前記第1圧電膜のc軸又は分極軸と同じ方向にc軸又は分極軸を有する第2圧電膜と、前記第2圧電膜上に設けられ、前記第1電極と同電位の第3電極と、を含み、前記第2圧電膜を挟んで前記第2電極と前記第3電極とが対向する領域のうちの平面視で前記空隙又は音響反射膜に重なる領域であって、前記第1共振領域と略同じ面積を有し且つ前記第1共振領域と重なる第2共振領域を有する第2圧電薄膜共振器と、を備える弾性波デバイスである。   The present invention includes a first piezoelectric film provided on a substrate, and a first electrode and a second electrode sandwiching the first piezoelectric film in the direction of the c-axis or the polarization axis of the first piezoelectric film, A region overlapping the gap or acoustic reflection film formed between the substrate and the first electrode in plan view in a region where the first electrode and the second electrode face each other across the first piezoelectric film. A first piezoelectric thin film resonator having a first resonance region; the second electrode; and the second piezoelectric electrode. The first piezoelectric thin film resonator has substantially the same thickness as the first piezoelectric film. A second piezoelectric film having a c-axis or a polarization axis in the same direction as the axis or the polarization axis, and a third electrode provided on the second piezoelectric film and having the same potential as the first electrode. A region overlapping the gap or the acoustic reflection film in a plan view among regions where the second electrode and the third electrode face each other with the piezoelectric film interposed therebetween There are a acoustic wave device and a second piezoelectric thin-film resonator having a second resonant region overlapping with the first resonance region and substantially have the same area and the first resonance region.

上記構成において、前記第1電極と前記第3電極は、前記第1共振領域及び前記第2共振領域の外側で接続している構成とすることができる。   In the above configuration, the first electrode and the third electrode may be connected to each other outside the first resonance region and the second resonance region.

上記構成において、前記第2電極は、前記第1電極の厚さ及び前記第3電極の厚さの略2倍の厚さを有する構成とすることができる。   In the above configuration, the second electrode may have a thickness that is approximately twice the thickness of the first electrode and the thickness of the third electrode.

上記構成において、前記弾性波デバイスは、1又は複数の直列共振器と1又は複数の並列共振器とを備えるラダー型フィルタであり、前記1又は複数の直列共振器及び前記1又は複数の並列共振器のうちの少なくとも1つの共振器は、2つの共振器に分割されていて、前記2つの共振器は、前記第1圧電薄膜共振器と前記第2圧電薄膜共振器である構成とすることができる。   In the above configuration, the acoustic wave device is a ladder filter including one or more series resonators and one or more parallel resonators, and the one or more series resonators and the one or more parallel resonances. At least one of the resonators is divided into two resonators, and the two resonators are the first piezoelectric thin film resonator and the second piezoelectric thin film resonator. it can.

上記構成において、前記1又は複数の直列共振器及び前記1又は複数の並列共振器のうちの前記少なくとも1つの共振器以外の共振器は、前記基板上に設けられた第3圧電膜と、前記第3圧電膜を挟む下部電極及び上部電極と、を含み、前記下部電極は前記第1電極と略同じ厚さを有し、前記上部電極は前記第2電極の略半分の厚さを有する構成とすることができる。   In the above configuration, a resonator other than the at least one resonator among the one or more series resonators and the one or more parallel resonators includes a third piezoelectric film provided on the substrate, A lower electrode and an upper electrode sandwiching the third piezoelectric film, wherein the lower electrode has substantially the same thickness as the first electrode, and the upper electrode has substantially half the thickness of the second electrode It can be.

上記構成において、前記1又は複数の並列共振器のうちの少なくとも1つの並列共振器は、前記2つの共振器に分割されていて、前記少なくとも1つの並列共振器を構成する前記第1圧電薄膜共振器と前記第2圧電薄膜共振器とが共有する前記第2電極内に第1周波数調整膜を備える構成とすることができる。   In the above configuration, at least one parallel resonator of the one or more parallel resonators is divided into the two resonators, and the first piezoelectric thin film resonance constituting the at least one parallel resonator. The first frequency adjusting film may be provided in the second electrode shared by the resonator and the second piezoelectric thin film resonator.

上記構成において、前記1又は複数の並列共振器のうちの前記少なくとも1つの並列共振器以外の並列共振器は、前記第1周波数調整膜の略半分の厚さの第2周波数調整膜を有する構成とすることができる。   In the above configuration, a parallel resonator other than the at least one parallel resonator among the one or a plurality of parallel resonators includes a second frequency adjustment film having a thickness approximately half that of the first frequency adjustment film. It can be.

上記構成において、前記弾性波デバイスは、第1ラダー型フィルタと、前記第1ラダー型フィルタよりも通過帯域が低い第2ラダー型フィルタと、を備えるデュアルフィルタであり、前記第1ラダー型フィルタに備わる1又は複数の直列共振器及び1又は複数の並列共振器のうちの少なくとも1つの共振器は2つの共振器に分割されていて、前記2つの共振器は前記第1圧電薄膜共振器と前記第2圧電薄膜共振器であり、前記第2ラダー型フィルタに備わる圧電薄膜共振器からなる直列共振器及び並列共振器と、前記第1ラダー型フィルタに備わる前記少なくとも1つの共振器とは、1つの前記基板上に設けられている構成とすることができる。   In the above configuration, the acoustic wave device is a dual filter including a first ladder filter and a second ladder filter having a lower pass band than the first ladder filter, and the first ladder filter includes At least one of the one or more series resonators and the one or more parallel resonators is divided into two resonators, and the two resonators are the first piezoelectric thin film resonator and the first resonator. A series resonator and a parallel resonator that are piezoelectric thin film resonators provided in the second ladder type filter, and the at least one resonator provided in the first ladder type filter is a second piezoelectric thin film resonator. It can be set as the structure provided on one said board | substrate.

上記構成において、前記弾性波デバイスは、アンテナ端子と送信端子との間に接続された送信フィルタと、前記アンテナ端子と受信端子との間に接続された受信フィルタと、を備えるデュプレクサであり、前記送信フィルタ及び前記受信フィルタの少なくとも一方は、1又は複数の直列共振器と1又は複数の並列共振器を備えるラダー型フィルタであり、前記1又は複数の直列共振器及び前記1又は複数の並列共振器のうちの少なくとも1つの共振器は2つの共振器に分割されていて、前記2つの共振器は前記第1圧電薄膜共振器と前記第2圧電薄膜共振器である構成とすることができる。   In the above configuration, the acoustic wave device is a duplexer including a transmission filter connected between an antenna terminal and a transmission terminal, and a reception filter connected between the antenna terminal and the reception terminal, At least one of the transmission filter and the reception filter is a ladder type filter including one or more series resonators and one or more parallel resonators, and the one or more series resonators and the one or more parallel resonances. At least one of the resonators may be divided into two resonators, and the two resonators may be the first piezoelectric thin film resonator and the second piezoelectric thin film resonator.

本発明によれば、弾性波デバイスを小型化することができる。   According to the present invention, the acoustic wave device can be reduced in size.

図1(a)及び図1(b)は、圧電薄膜共振器の圧電膜に生じる2次歪電圧を説明する図である。FIG. 1A and FIG. 1B are diagrams for explaining a secondary strain voltage generated in the piezoelectric film of the piezoelectric thin film resonator. 図2(a)及び図2(b)は、比較例1に係る弾性波デバイスを説明する図、図2(c)及び図2(d)は、比較例2に係る弾性波デバイスを説明する図である。2A and 2B are diagrams for explaining an elastic wave device according to Comparative Example 1, and FIGS. 2C and 2D are for explaining an elastic wave device according to Comparative Example 2. FIG. FIG. 図3(a)は、実施例1に係る弾性波デバイスを示す平面図、図3(b)は、図3(a)のA−A間の断面図である。FIG. 3A is a plan view illustrating the acoustic wave device according to the first embodiment, and FIG. 3B is a cross-sectional view taken along a line AA in FIG. 図4は、実施例1に係る弾性波デバイスの分解平面図である。FIG. 4 is an exploded plan view of the acoustic wave device according to the first embodiment. 図5(a)及び図5(b)は、実施例1に係る弾性波デバイスの2次歪特性について説明する図である。FIG. 5A and FIG. 5B are diagrams for explaining the secondary strain characteristics of the acoustic wave device according to the first embodiment. 図6は、電極が共振領域の外側で他の配線を介して接続する場合の断面図である。FIG. 6 is a cross-sectional view in the case where the electrodes are connected via other wiring outside the resonance region. 図7(a)から図7(f)は、実施例1の変形例1から変形例6に係る弾性波デバイスの断面図である。FIG. 7A to FIG. 7F are cross-sectional views of acoustic wave devices according to the first to sixth modifications of the first embodiment. 図8は、実施例2に係る弾性波デバイスの断面図である。FIG. 8 is a cross-sectional view of the acoustic wave device according to the second embodiment. 図9は、実施例3に係る弾性波デバイスの断面図である。FIG. 9 is a cross-sectional view of the acoustic wave device according to the third embodiment. 図10は、実施例4に係るラダー型フィルタの回路図である。FIG. 10 is a circuit diagram of a ladder filter according to the fourth embodiment. 図11(a)から図11(d)は、直列共振器及び並列共振器を示す断面図である。FIG. 11A to FIG. 11D are cross-sectional views showing a series resonator and a parallel resonator. 図12は、実施例5に係るデュアルフィルタの回路図である。FIG. 12 is a circuit diagram of a dual filter according to the fifth embodiment. 図13(a)及び図13(b)は、実施例5に係るデュアルフィルタを構成するチップの断面図である。FIG. 13A and FIG. 13B are cross-sectional views of chips that constitute the dual filter according to the fifth embodiment. 図14は、実施例6に係るデュプレクサを示すブロック図である。FIG. 14 is a block diagram illustrating a duplexer according to the sixth embodiment.

以下、図面を参照して、本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、圧電薄膜共振器の圧電膜に生じる2次歪電圧について説明する。図1(a)及び図1(b)は、圧電薄膜共振器の圧電膜に生じる2次歪電圧を説明する図である。図1(a)のように、圧電薄膜共振器1は、圧電膜2を下部電極4及び上部電極6で挟んだ構造をしている。圧電薄膜共振器は、共振周波数の波長(λ)の1/2が圧電材料の厚さに相当する。つまり、圧電薄膜共振器は、1/2λ厚み共振を使用した共振器である。このため、圧電膜2の上下の面がそれぞれ+及び−のいずれかに分極するように励振する。   First, the secondary strain voltage generated in the piezoelectric film of the piezoelectric thin film resonator will be described. FIG. 1A and FIG. 1B are diagrams for explaining a secondary strain voltage generated in the piezoelectric film of the piezoelectric thin film resonator. As shown in FIG. 1A, the piezoelectric thin film resonator 1 has a structure in which a piezoelectric film 2 is sandwiched between a lower electrode 4 and an upper electrode 6. In the piezoelectric thin film resonator, ½ of the wavelength (λ) of the resonance frequency corresponds to the thickness of the piezoelectric material. That is, the piezoelectric thin film resonator is a resonator using 1 / 2λ thickness resonance. For this reason, excitation is performed so that the upper and lower surfaces of the piezoelectric film 2 are polarized to either + or −.

一方、2次歪の周波数の波長は圧電膜の厚さに相当する。このため、圧電膜2の上下の面が共に+又は−に分極するように励振する。圧電膜2に対称性があれば、2次モードは上下電極が同電位となるため、歪成分は生じないはずである。しかしながら、良好な特性を得るために、圧電膜2として窒化アルミニウムや酸化亜鉛などを用い、圧電膜2のc軸の方向で圧電膜2を下部電極4及び上部電極6で挟む。図1(b)では、圧電膜2のc軸配向方向を白矢印で示している。なお、図2以降においても、白矢印でc軸配向方向を示す。この場合に、c軸方向の対称性が崩れて電界の分布に偏りが生じて、圧電膜2の上下に電位差が生じる場合がある。これにより発生する電圧を2次歪電圧と呼び、図1(b)では黒矢印で示している。なお、図2以降においても、黒矢印で2次歪電圧の方向を示す。図1(b)では、c軸配向方向は下部電極4から上部電極6の方向であり、この方向に2次歪電圧が発生している。   On the other hand, the wavelength of the secondary strain frequency corresponds to the thickness of the piezoelectric film. For this reason, excitation is performed so that the upper and lower surfaces of the piezoelectric film 2 are both polarized to + or −. If the piezoelectric film 2 has symmetry, the upper and lower electrodes have the same potential in the secondary mode, so that no distortion component should occur. However, in order to obtain good characteristics, aluminum nitride, zinc oxide or the like is used as the piezoelectric film 2, and the piezoelectric film 2 is sandwiched between the lower electrode 4 and the upper electrode 6 in the c-axis direction of the piezoelectric film 2. In FIG. 1B, the c-axis orientation direction of the piezoelectric film 2 is indicated by a white arrow. In FIG. 2 and subsequent figures, the c-axis orientation direction is indicated by white arrows. In this case, the symmetry in the c-axis direction may be lost, and the electric field distribution may be biased, causing a potential difference between the upper and lower sides of the piezoelectric film 2. The voltage generated thereby is called a secondary distortion voltage, and is indicated by a black arrow in FIG. In FIG. 2 and subsequent figures, the direction of the secondary distortion voltage is indicated by a black arrow. In FIG. 1B, the c-axis orientation direction is the direction from the lower electrode 4 to the upper electrode 6, and a secondary strain voltage is generated in this direction.

図2(a)及び図2(b)は、比較例1に係る弾性波デバイスを説明する図、図2(c)及び図2(d)は、比較例2に係る弾性波デバイスを説明する図である。図2(a)及び図2(b)のように、比較例1の弾性波デバイス1000は、端子T1と端子T2の間に圧電薄膜共振器1aと圧電薄膜共振器1bが並列に接続されている。圧電薄膜共振器1aと圧電薄膜共振器1bは、基板8上に設けられている。圧電薄膜共振器1aと圧電薄膜共振器1bは、c軸の同じ方向の電極が同電位となるように接続されている。つまり、圧電薄膜共振器1a及び圧電薄膜共振器1bのc軸配向方向の上部電極6同士が同電位となるように接続され、c軸配向方向に逆方向の下部電極4同士が同電位となるように接続されている。これにより、圧電薄膜共振器1a及び圧電薄膜共振器1bは共に、c軸配向方向と2次歪電圧の方向とが反対方向になっている。このため、圧電薄膜共振器1aと圧電薄膜共振器1bの非線形性が強め合って2次歪特性が劣化する。   2A and 2B are diagrams for explaining an elastic wave device according to Comparative Example 1, and FIGS. 2C and 2D are for explaining an elastic wave device according to Comparative Example 2. FIG. FIG. As shown in FIGS. 2A and 2B, the acoustic wave device 1000 of Comparative Example 1 includes the piezoelectric thin film resonator 1a and the piezoelectric thin film resonator 1b connected in parallel between the terminal T1 and the terminal T2. Yes. The piezoelectric thin film resonator 1 a and the piezoelectric thin film resonator 1 b are provided on the substrate 8. The piezoelectric thin film resonator 1a and the piezoelectric thin film resonator 1b are connected so that electrodes in the same direction of the c-axis have the same potential. That is, the upper electrodes 6 in the c-axis orientation direction of the piezoelectric thin film resonator 1a and the piezoelectric thin film resonator 1b are connected so as to have the same potential, and the lower electrodes 4 opposite in the c-axis orientation direction have the same potential. So connected. Thus, in both the piezoelectric thin film resonator 1a and the piezoelectric thin film resonator 1b, the c-axis orientation direction and the direction of the secondary strain voltage are opposite to each other. For this reason, the non-linearity of the piezoelectric thin film resonator 1a and the piezoelectric thin film resonator 1b reinforces, and the secondary distortion characteristics deteriorate.

図2(c)及び図2(d)のように、比較例2の弾性波デバイス1100では、圧電薄膜共振器1aと圧電薄膜共振器1bが並列に接続され、且つ、圧電薄膜共振器1aと圧電薄膜共振器1bは、c軸の同じ方向の電極が逆電位となるように接続されている。つまり、圧電薄膜共振器1aの上部電極6と圧電薄膜共振器1bの下部電極4が接続され、圧電薄膜共振器1aの下部電極4と圧電薄膜共振器1bの上部電極6が接続されている。これにより、圧電薄膜共振器1aではc軸配向方向と2次歪電圧の方向とが同じ方向になり、圧電薄膜共振器1bではc軸配向方向と2次歪電圧の方向とが反対方向になっている。このため、圧電薄膜共振器1aと圧電薄膜共振器1bの非線形性が相殺又は低減され、2次歪特性の劣化を抑制できる。   2C and 2D, in the acoustic wave device 1100 of the comparative example 2, the piezoelectric thin film resonator 1a and the piezoelectric thin film resonator 1b are connected in parallel, and the piezoelectric thin film resonator 1a The piezoelectric thin film resonator 1b is connected so that the electrodes in the same direction of the c-axis have a reverse potential. That is, the upper electrode 6 of the piezoelectric thin film resonator 1a and the lower electrode 4 of the piezoelectric thin film resonator 1b are connected, and the lower electrode 4 of the piezoelectric thin film resonator 1a and the upper electrode 6 of the piezoelectric thin film resonator 1b are connected. Thereby, in the piezoelectric thin film resonator 1a, the c-axis orientation direction and the direction of the secondary strain voltage are the same, and in the piezoelectric thin film resonator 1b, the c-axis orientation direction and the direction of the secondary strain voltage are opposite. ing. For this reason, the nonlinearity of the piezoelectric thin film resonator 1a and the piezoelectric thin film resonator 1b is canceled or reduced, and deterioration of the secondary distortion characteristics can be suppressed.

しかしながら、比較例2の弾性波デバイス1100では、圧電薄膜共振器1aと圧電薄膜共振器1bが基板8上で横に並んで設けられているため、小型化が難しい。   However, in the acoustic wave device 1100 of Comparative Example 2, since the piezoelectric thin film resonator 1a and the piezoelectric thin film resonator 1b are provided side by side on the substrate 8, it is difficult to reduce the size.

図3(a)は、実施例1に係る弾性波デバイスを示す平面図、図3(b)は、図3(a)のA−A間の断面図である。図4は、実施例1に係る弾性波デバイスの分解平面図である。図3(a)から図4のように、実施例1の弾性波デバイス100は、基板10上に圧電薄膜共振器40と圧電薄膜共振器42が積層されて設けられている。基板10は、例えばシリコン基板である。   FIG. 3A is a plan view illustrating the acoustic wave device according to the first embodiment, and FIG. 3B is a cross-sectional view taken along a line AA in FIG. FIG. 4 is an exploded plan view of the acoustic wave device according to the first embodiment. As shown in FIGS. 3A to 4, the acoustic wave device 100 according to the first embodiment is provided by stacking a piezoelectric thin film resonator 40 and a piezoelectric thin film resonator 42 on a substrate 10. The substrate 10 is, for example, a silicon substrate.

圧電薄膜共振器40は、基板10上に設けられた電極12と、電極12上に設けられた圧電膜14と、圧電膜14上に電極12と対向する領域を有して設けられた電極16と、を含む。圧電薄膜共振器40において、電極12は下部電極として機能し、電極16は上部電極として機能する。電極12及び電極16は、例えばルテニウム膜である。圧電膜14は、例えばc軸を主軸としたc軸配向性を有する窒化アルミニウム膜である。   The piezoelectric thin film resonator 40 includes an electrode 12 provided on the substrate 10, a piezoelectric film 14 provided on the electrode 12, and an electrode 16 provided on the piezoelectric film 14 with a region facing the electrode 12. And including. In the piezoelectric thin film resonator 40, the electrode 12 functions as a lower electrode, and the electrode 16 functions as an upper electrode. The electrodes 12 and 16 are, for example, ruthenium films. The piezoelectric film 14 is an aluminum nitride film having c-axis orientation with the c-axis as a main axis, for example.

圧電薄膜共振器42は、電極16と、電極16上に設けられた圧電膜18と、圧電膜18上に電極16と対向する領域を有して設けられた電極20と、を含む。圧電薄膜共振器42において、電極16は下部電極として機能し、電極20は上部電極として機能する。電極20は、例えばルテニウム膜である。圧電膜18は、例えばc軸を主軸としたc軸配向性を有する窒化アルミニウム膜である。   The piezoelectric thin film resonator 42 includes an electrode 16, a piezoelectric film 18 provided on the electrode 16, and an electrode 20 provided on the piezoelectric film 18 with a region facing the electrode 16. In the piezoelectric thin film resonator 42, the electrode 16 functions as a lower electrode, and the electrode 20 functions as an upper electrode. The electrode 20 is a ruthenium film, for example. The piezoelectric film 18 is an aluminum nitride film having c-axis orientation with the c-axis as a main axis, for example.

圧電膜14のc軸配向方向と圧電膜18のc軸配向方向とは同じ方向を向いている。圧電膜14と圧電膜18は略同じ厚さを有し、例えば1200nmである。なお、略同じ厚さとは、製造上の誤差程度の違いは同じ厚さと見なすものである。   The c-axis orientation direction of the piezoelectric film 14 and the c-axis orientation direction of the piezoelectric film 18 face the same direction. The piezoelectric film 14 and the piezoelectric film 18 have substantially the same thickness, for example, 1200 nm. It should be noted that the substantially same thickness means that the difference in manufacturing error is regarded as the same thickness.

電極12と電極16は、圧電膜14のc軸配向方向で圧電膜14を挟んでいる。電極16と電極20は、圧電膜18のc軸配向方向で圧電膜18を挟んでいる。電極12と電極20は略同じ厚さを有し、例えば200nmである。電極16は電極12及び電極20の略2倍の厚さを有し、例えば400nmである。なお、略同じ厚さ及び略2倍の厚さとは、製造上の誤差程度の違いは同じ厚さ及び2倍の厚さと見なすものである。   The electrode 12 and the electrode 16 sandwich the piezoelectric film 14 in the c-axis orientation direction of the piezoelectric film 14. The electrode 16 and the electrode 20 sandwich the piezoelectric film 18 in the c-axis orientation direction of the piezoelectric film 18. The electrode 12 and the electrode 20 have substantially the same thickness, for example, 200 nm. The electrode 16 has a thickness approximately twice that of the electrode 12 and the electrode 20 and is, for example, 400 nm. It should be noted that the substantially same thickness and approximately twice the thickness are regarded as the same thickness and twice the difference in manufacturing error.

平坦形状をした電極12の下側における基板10に空隙22が設けられている。空隙22は、例えば基板10を貫通しているが、基板10の上面に設けられた窪みであってもよい。圧電薄膜共振器40は、圧電膜14を挟んで電極12と電極16とが対向する領域のうちの空隙22に重なる領域である共振領域24を有する。圧電薄膜共振器42は、圧電膜18を挟んで電極16と電極20とが対向する領域のうちの空隙22に重なる領域である共振領域26を有する。共振領域24、26は、略同じ面積を有し且つ重なっていて、例えば楕円形状をしている。共振領域24、26は、少なくとも一部が重なっていればよい。なお、略同じ面積とは、製造上の誤差程度の違いは同じ面積と見なすものである。   An air gap 22 is provided in the substrate 10 below the flat electrode 12. The gap 22 penetrates the substrate 10, for example, but may be a recess provided on the upper surface of the substrate 10. The piezoelectric thin film resonator 40 has a resonance region 24 that is a region overlapping the gap 22 in a region where the electrode 12 and the electrode 16 face each other with the piezoelectric film 14 interposed therebetween. The piezoelectric thin film resonator 42 has a resonance region 26 that is a region overlapping the gap 22 in a region where the electrode 16 and the electrode 20 face each other with the piezoelectric film 18 interposed therebetween. The resonance regions 24 and 26 have substantially the same area and overlap, for example, have an elliptical shape. The resonance regions 24 and 26 only have to overlap at least partially. Note that “substantially the same area” means that differences in manufacturing errors are regarded as the same area.

共振領域24では、電極12と電極16との間に高周波の電気信号が印加されることで圧電膜14内に厚み縦振動モードの弾性波が励振する。共振領域26では、電極16と電極20との間に高周波の電気信号が印加されることで圧電膜18内に厚み縦振動モードの弾性波が励振する。共振領域24、26は、楕円形状をしている場合に限られず、例えば矩形状などの他の形状をしていてもよい。   In the resonance region 24, an elastic wave in a thickness longitudinal vibration mode is excited in the piezoelectric film 14 by applying a high-frequency electric signal between the electrode 12 and the electrode 16. In the resonance region 26, an elastic wave in a thickness longitudinal vibration mode is excited in the piezoelectric film 18 by applying a high-frequency electric signal between the electrode 16 and the electrode 20. The resonance regions 24 and 26 are not limited to an elliptical shape, and may have other shapes such as a rectangular shape.

電極12と電極20とは、電気的に接続されている。例えば、電極20が圧電膜14、18の端面を延在して平坦形状をした電極12の上面に共振領域24、26の外側で直接接することで、電極12と電極20とは電気的に接続されている。これにより、電極12と電極20は同電位となっている。電極16は、電極12及び電極20と異なる電位となっている。   The electrode 12 and the electrode 20 are electrically connected. For example, the electrode 12 and the electrode 20 are electrically connected by directly contacting the upper surface of the electrode 12 having a flat shape extending from the end faces of the piezoelectric films 14 and 18 outside the resonance regions 24 and 26. Has been. As a result, the electrode 12 and the electrode 20 are at the same potential. The electrode 16 has a potential different from that of the electrode 12 and the electrode 20.

基板10として、シリコン基板以外に、サファイア基板、石英基板、ガラス基板、セラミック基板、又はガリウム砒素基板などを用いてもよい。電極12、電極16、及び電極20として、アルミニウム、銅、クロム、モリブデン、タングステン、タンタル、白金、ルテニウム、ロジウム、又はイリジウムの金属単層膜、若しくは、これらの積層膜を用いてもよい。   As the substrate 10, in addition to the silicon substrate, a sapphire substrate, a quartz substrate, a glass substrate, a ceramic substrate, a gallium arsenide substrate, or the like may be used. As the electrode 12, the electrode 16, and the electrode 20, a single-layer metal film of aluminum, copper, chromium, molybdenum, tungsten, tantalum, platinum, ruthenium, rhodium, or iridium, or a stacked film thereof may be used.

圧電膜14、18は、窒化アルミニウム膜以外にも、酸化亜鉛膜、チタン酸ジルコン酸鉛膜、又はチタン酸鉛膜などを用いてもよい。また、圧電膜14、18は、窒化アルミニウムを主成分とし、共振特性の向上又は圧電性の向上のために他の元素を含んだ膜でもよい。例えば、添加元素にスカンジウムを用いることで圧電性を向上でき、電気機械結合係数を向上できる。   As the piezoelectric films 14 and 18, a zinc oxide film, a lead zirconate titanate film, a lead titanate film, or the like may be used in addition to the aluminum nitride film. The piezoelectric films 14 and 18 may be films containing aluminum nitride as a main component and containing other elements for improving the resonance characteristics or the piezoelectricity. For example, by using scandium as the additive element, the piezoelectricity can be improved and the electromechanical coupling coefficient can be improved.

図5(a)及び図5(b)は、実施例1に係る弾性波デバイスの2次歪特性について説明する図である。図5(a)及び図5(b)のように、インピーダンス特性が略一致している圧電薄膜共振器40と圧電薄膜共振器42とが、端子T1と端子T2の間に並列に接続され、且つ、c軸の同じ方向の電極が逆電位となるように接続されている。つまり、圧電薄膜共振器40の電極12と圧電薄膜共振器42の電極20が接続され、且つ、圧電薄膜共振器40と圧電薄膜共振器42とで電極16を共有している。これにより、圧電薄膜共振器40ではc軸配向方向と2次歪電圧の方向とが同じ方向になり、圧電薄膜共振器42ではc軸配向方向と2次歪電圧の方向とが反対方向になっている。このため、圧電薄膜共振器40と圧電薄膜共振器42の非線形性が相殺又は低減され、2次歪特性の劣化を抑制できる。   FIG. 5A and FIG. 5B are diagrams for explaining the secondary strain characteristics of the acoustic wave device according to the first embodiment. As shown in FIG. 5A and FIG. 5B, the piezoelectric thin film resonator 40 and the piezoelectric thin film resonator 42 having substantially the same impedance characteristics are connected in parallel between the terminal T1 and the terminal T2. In addition, the electrodes in the same direction of the c-axis are connected so as to have a reverse potential. That is, the electrode 12 of the piezoelectric thin film resonator 40 and the electrode 20 of the piezoelectric thin film resonator 42 are connected, and the piezoelectric thin film resonator 40 and the piezoelectric thin film resonator 42 share the electrode 16. Thereby, in the piezoelectric thin film resonator 40, the c-axis orientation direction and the direction of the secondary strain voltage are the same direction, and in the piezoelectric thin film resonator 42, the c-axis orientation direction and the direction of the secondary strain voltage are opposite directions. ing. For this reason, the nonlinearity of the piezoelectric thin film resonator 40 and the piezoelectric thin film resonator 42 is canceled or reduced, and deterioration of the secondary strain characteristics can be suppressed.

実施例1によれば、基板10上に圧電薄膜共振器40と圧電薄膜共振器42が設けられている。圧電薄膜共振器40は、基板10上に設けられた圧電膜14と、圧電膜14のc軸方向で圧電膜14を挟む電極12及び電極16と、を含む。圧電薄膜共振器42は、電極16と、電極16上に設けられ、圧電膜14と略同じ厚さを有し、圧電膜14と同じ方向にc軸方向を有する圧電膜18と、圧電膜18上に設けられ、電極12と同電位の電極20と、を含む。圧電薄膜共振器40の共振領域24と圧電薄膜共振器42の共振領域26とは、略同じ面積を有し且つ重なっている。これにより、図5(a)及び図5(b)で説明したように、2次歪特性の劣化を抑制できる。また、圧電薄膜共振器40と圧電薄膜共振器42は、基板10上に積層されているため、弾性波デバイスの小型化が図れる。   According to the first embodiment, the piezoelectric thin film resonator 40 and the piezoelectric thin film resonator 42 are provided on the substrate 10. The piezoelectric thin film resonator 40 includes a piezoelectric film 14 provided on the substrate 10, and an electrode 12 and an electrode 16 that sandwich the piezoelectric film 14 in the c-axis direction of the piezoelectric film 14. The piezoelectric thin film resonator 42 is provided on the electrode 16, the piezoelectric film 18 having substantially the same thickness as the piezoelectric film 14, and having the c-axis direction in the same direction as the piezoelectric film 14, and the piezoelectric film 18. And an electrode 20 having the same potential as that of the electrode 12. The resonance region 24 of the piezoelectric thin film resonator 40 and the resonance region 26 of the piezoelectric thin film resonator 42 have substantially the same area and overlap each other. As a result, as described with reference to FIGS. 5A and 5B, it is possible to suppress the deterioration of the secondary distortion characteristics. In addition, since the piezoelectric thin film resonator 40 and the piezoelectric thin film resonator 42 are stacked on the substrate 10, the acoustic wave device can be miniaturized.

また、実施例1によれば、図3(b)のように、電極12と電極20は、共振領域24、26の外側で接続している。これにより、電極12と電極20を同電位にすることができる。なお、電極12と電極20は、共振領域24、26の外側で直接接している場合に限られず、他の配線を介して接続していてもよい。図6は、電極が共振領域の外側で他の配線を介して接続する場合の断面図である。図6のように、圧電膜14に形成された凹部で露出した電極12の上面に接し、圧電膜14の上面に延在する配線28が設けられている。電極20は圧電膜18の端面を延在して配線28の上面に接している。これにより、電極12と電極20は、共振領域24、26の外側で接続している。   Further, according to the first embodiment, as illustrated in FIG. 3B, the electrode 12 and the electrode 20 are connected outside the resonance regions 24 and 26. Thereby, the electrode 12 and the electrode 20 can be made into the same electric potential. The electrode 12 and the electrode 20 are not limited to the case where they are in direct contact outside the resonance regions 24 and 26, and may be connected via other wiring. FIG. 6 is a cross-sectional view in the case where the electrodes are connected via other wiring outside the resonance region. As shown in FIG. 6, a wiring 28 is provided in contact with the upper surface of the electrode 12 exposed in the recess formed in the piezoelectric film 14 and extending on the upper surface of the piezoelectric film 14. The electrode 20 extends from the end surface of the piezoelectric film 18 and is in contact with the upper surface of the wiring 28. Thereby, the electrode 12 and the electrode 20 are connected outside the resonance regions 24 and 26.

また、実施例1によれば、電極16は、電極12の厚さ及び電極20の厚さの略2倍の厚さを有する。電極16は、圧電薄膜共振器40及び圧電薄膜共振器42の下部電極又は上部電極として共有されることから、電極12及び電極20の略2倍の厚さを有することで、良好な特性を得ることができる。   Further, according to the first embodiment, the electrode 16 has a thickness that is approximately twice the thickness of the electrode 12 and the thickness of the electrode 20. Since the electrode 16 is shared as the lower electrode or the upper electrode of the piezoelectric thin film resonator 40 and the piezoelectric thin film resonator 42, the electrode 16 has a thickness approximately twice that of the electrode 12 and the electrode 20, thereby obtaining good characteristics. be able to.

図7(a)から図7(f)は、実施例1の変形例1から変形例6に係る弾性波デバイスの断面図である。図7(a)のように、電極16内に空隙50が設けられていてもよい。図7(b)のように、共振領域24、26内の外周領域の圧電膜14、18内に、例えば酸化シリコン膜などの絶縁膜からなる挿入膜52が設けられていてもよい。これにより、共振器のQ値を改善することができる。また、挿入膜52の代わりに空隙が設けられていてもよい。挿入膜52は、図7(c)のように、電極16に接して設けられてもよいし、図7(d)のように、電極12及び電極20に接して設けられてもよい。挿入膜52は、圧電膜14、18の両方に設けられていることが好ましいが、いずれか一方にのみ設けられている場合でもよい。   FIG. 7A to FIG. 7F are cross-sectional views of acoustic wave devices according to the first to sixth modifications of the first embodiment. As shown in FIG. 7A, the gap 50 may be provided in the electrode 16. As shown in FIG. 7B, an insertion film 52 made of an insulating film such as a silicon oxide film may be provided in the piezoelectric films 14 and 18 in the outer peripheral area in the resonance areas 24 and 26. Thereby, the Q value of the resonator can be improved. Further, a gap may be provided instead of the insertion film 52. The insertion film 52 may be provided in contact with the electrode 16 as shown in FIG. 7C, or may be provided in contact with the electrode 12 and the electrode 20 as shown in FIG. 7D. The insertion film 52 is preferably provided on both the piezoelectric films 14 and 18, but may be provided on only one of them.

図7(e)のように、圧電膜14、18内に温度補償膜54が設けられていてもよい。温度補償膜54は、圧電膜14、18とは逆符号の温度係数の弾性定数を有する膜であり、例えば酸化シリコン膜やフッ素などの添加物が添加された酸化シリコン膜である。温度補償膜54は、圧電膜14、18の両方に設けられていることが好ましいが、いずれか一方にのみ設けられていてもよい。図7(f)のように、温度補償膜54は、電極12、電極16、及び電極20内に設けられていてもよい。   A temperature compensation film 54 may be provided in the piezoelectric films 14 and 18 as shown in FIG. The temperature compensation film 54 is a film having an elastic constant with a temperature coefficient opposite to that of the piezoelectric films 14 and 18, and is, for example, a silicon oxide film or a silicon oxide film to which an additive such as fluorine is added. The temperature compensation film 54 is preferably provided on both the piezoelectric films 14 and 18, but may be provided on only one of them. As shown in FIG. 7F, the temperature compensation film 54 may be provided in the electrode 12, the electrode 16, and the electrode 20.

図8は、実施例2に係る弾性波デバイスの断面図である。図8のように、実施例2の弾性波デバイス200では、基板10に貫通孔及び窪みが形成されてなく、基板10の平坦上面と電極12との間に、電極12側にドーム形状の膨らみを有する空隙22aが設けられている。ドーム形状の膨らみとは、例えば空隙22aの周辺では空隙22aの高さが低く、空隙22aの内部ほど空隙22aの高さが高くなるような形状の膨らみである。その他の構成は、実施例1の弾性波デバイス100と同じであるため説明を省略する。   FIG. 8 is a cross-sectional view of the acoustic wave device according to the second embodiment. As shown in FIG. 8, in the acoustic wave device 200 according to the second embodiment, no through-holes and depressions are formed in the substrate 10, and a dome-shaped bulge is formed on the electrode 12 side between the flat upper surface of the substrate 10 and the electrode 12. A gap 22a having the following is provided. The dome-shaped bulge is, for example, a bulge having a shape in which the height of the gap 22a is low around the gap 22a and the height of the gap 22a is increased toward the inside of the gap 22a. Since other configurations are the same as those of the acoustic wave device 100 of the first embodiment, description thereof is omitted.

図9は、実施例3に係る弾性波デバイスの断面図である。図9のように、実施例3の弾性波デバイス300では、電極12の下側に空隙の代わりに音響反射膜30が設けられている。音響反射膜30は、弾性波を反射する膜であり、音響インピーダンスの低い膜32と高い膜34とを交互に有する。その他の構成は、実施例1の弾性波デバイス100と同じであるため説明を省略する。   FIG. 9 is a cross-sectional view of the acoustic wave device according to the third embodiment. As shown in FIG. 9, in the acoustic wave device 300 according to the third embodiment, the acoustic reflection film 30 is provided on the lower side of the electrode 12 instead of the gap. The acoustic reflection film 30 is a film that reflects elastic waves, and alternately includes films 32 having a low acoustic impedance and films 34 having a high acoustic impedance. Since other configurations are the same as those of the acoustic wave device 100 of the first embodiment, description thereof is omitted.

このように、圧電薄膜共振器40、42は、FBAR(Film Bulk Acoustic Resonator)の場合でもよいし、SMR(Solidly Mounted Resonator)の場合でもよい。   As described above, the piezoelectric thin film resonators 40 and 42 may be FBARs (Film Bulk Acoustic Resonators) or SMRs (Solidly Mounted Resonators).

実施例1から実施例3では、圧電膜14、18として窒化アルミニウム膜を用いる場合を例に示したが、その他の圧電材料であってもよく、c軸の方向の代わりに分極軸の方向としてもよい。この場合でも、2次歪特性の劣化を抑制できる。   In the first to third embodiments, the case where the aluminum nitride film is used as the piezoelectric films 14 and 18 is shown as an example. However, other piezoelectric materials may be used as the direction of the polarization axis instead of the direction of the c axis. Also good. Even in this case, it is possible to suppress the deterioration of the secondary distortion characteristics.

図10は、実施例4に係るラダー型フィルタの回路図である。図10のように、実施例4のラダー型フィルタ400は、入力端子INと出力端子OUTとの間に、1又は複数の直列共振器S1〜S4が直列に接続され、1又は複数の並列共振器P1〜P3が並列に接続されている。直列共振器S4は共振器S4aと共振器S4bに分割され、共振器S4aと共振器S4bは並列に接続されている。並列共振器P3は共振器P3aと共振器P3bに分割され、共振器P3aと共振器P3bは並列に接続されている。共振器S4a及び共振器S4bの静電容量は直列共振器S4の静電容量の半分であり、共振周波数は直列共振器S4と同じである。同様に、共振器P3a及び共振器P3bの静電容量は並列共振器P3の静電容量の半分であり、共振周波数は並列共振器P3と同じである。   FIG. 10 is a circuit diagram of a ladder filter according to the fourth embodiment. As illustrated in FIG. 10, the ladder filter 400 according to the fourth embodiment includes one or more series resonators S <b> 1 to S <b> 4 connected in series between the input terminal IN and the output terminal OUT, and one or more parallel resonances. Devices P1 to P3 are connected in parallel. The series resonator S4 is divided into a resonator S4a and a resonator S4b, and the resonator S4a and the resonator S4b are connected in parallel. The parallel resonator P3 is divided into a resonator P3a and a resonator P3b, and the resonator P3a and the resonator P3b are connected in parallel. The capacitances of the resonators S4a and S4b are half of the capacitance of the series resonator S4, and the resonance frequency is the same as that of the series resonator S4. Similarly, the capacitances of the resonator P3a and the resonator P3b are half of the capacitance of the parallel resonator P3, and the resonance frequency is the same as that of the parallel resonator P3.

図11(a)から図11(d)は、直列共振器及び並列共振器を示す断面図である。図11(a)及び図11(b)のように、直列共振器S4を構成する共振器S4aは、基板10上に設けられた圧電膜14と、圧電膜14を挟む電極12及び電極16と、を含む。共振器S4bは、電極16と、電極16上に設けられた圧電膜18と、圧電膜18上に設けられた電極20と、を含む。   FIG. 11A to FIG. 11D are cross-sectional views showing a series resonator and a parallel resonator. As shown in FIGS. 11A and 11B, the resonator S4a constituting the series resonator S4 includes the piezoelectric film 14 provided on the substrate 10, the electrodes 12 and 16 sandwiching the piezoelectric film 14, and ,including. The resonator S4b includes an electrode 16, a piezoelectric film 18 provided on the electrode 16, and an electrode 20 provided on the piezoelectric film 18.

図11(c)及び図11(d)のように、並列共振器P3を構成する共振器P3aは、基板10上に設けられた圧電膜14と、圧電膜14を挟む電極12及び電極16と、を含む。共振器P3bは、電極16と、電極16上に設けられた圧電膜18と、圧電膜18上に設けられた電極20と、を含む。電極16内に周波数調整膜66が設けられている。   As shown in FIG. 11C and FIG. 11D, the resonator P3a constituting the parallel resonator P3 includes a piezoelectric film 14 provided on the substrate 10, and electrodes 12 and 16 sandwiching the piezoelectric film 14. ,including. The resonator P3b includes an electrode 16, a piezoelectric film 18 provided on the electrode 16, and an electrode 20 provided on the piezoelectric film 18. A frequency adjusting film 66 is provided in the electrode 16.

このように、直列共振器S4を分割した共振器S4aと共振器S4b、及び、並列共振器P3を分割した共振器P3aと共振器P3bは、実施例1の圧電薄膜共振器40と圧電薄膜共振器42である。   As described above, the resonators S4a and S4b obtained by dividing the series resonator S4, and the resonators P3a and P3b obtained by dividing the parallel resonator P3 are the piezoelectric thin film resonator 40 and the piezoelectric thin film resonance of the first embodiment. Device 42.

図11(a)及び図11(c)のように、直列共振器S1〜S3は、基板10上に設けられた下部電極60と、下部電極60上に設けられた圧電膜62と、圧電膜62上に下部電極60と対向する領域を有して設けられた上部電極64と、を含む。図11(b)及び図11(d)のように、並列共振器P1及びP2は、下部電極60、圧電膜62、及び上部電極64に加えて周波数調整膜68を含む。周波数調整膜68は、べた膜であってもよいし、孔などのパターンが形成されていてもよい。   As shown in FIGS. 11A and 11C, the series resonators S1 to S3 include a lower electrode 60 provided on the substrate 10, a piezoelectric film 62 provided on the lower electrode 60, and a piezoelectric film. And an upper electrode 64 provided with a region facing the lower electrode 60 on 62. 11B and 11D, the parallel resonators P1 and P2 include a frequency adjustment film 68 in addition to the lower electrode 60, the piezoelectric film 62, and the upper electrode 64. The frequency adjustment film 68 may be a solid film or may be formed with a pattern such as a hole.

下部電極60は、例えば電極12と同じ材料で形成され、略同じ厚さを有する。圧電膜62は、例えば圧電膜14と同じ材料で形成され、略同じ厚さを有する。上部電極64は、例えば電極16と同じ材料で形成され、略半分の厚さを有する。周波数調整膜68は、例えば周波数調整膜66と同じ材料で形成され、略半分の厚さを有する。   The lower electrode 60 is made of, for example, the same material as the electrode 12 and has substantially the same thickness. The piezoelectric film 62 is formed of, for example, the same material as the piezoelectric film 14 and has substantially the same thickness. The upper electrode 64 is formed of, for example, the same material as that of the electrode 16 and has a thickness that is substantially half. The frequency adjustment film 68 is formed of the same material as the frequency adjustment film 66, for example, and has a thickness that is substantially half.

実施例4のように、直列共振器S4を分割した共振器S4a及び共振器S4bを実施例1の圧電薄膜共振器40及び圧電薄膜共振器42としてもよい。並列共振器P3を分割した共振器P3a及び共振器P3bを実施例1の圧電薄膜共振器40及び圧電薄膜共振器42としてもよい。すなわち、ラダー型フィルタ400を構成する1又は複数の直列共振器S1〜S4及び1又は複数の並列共振器P1〜P3の少なくとも1つの共振器が2つの共振器に分割され、分割された2つの共振器を実施例1から実施例3の圧電薄膜共振器40及び圧電薄膜共振器42としてもよい。   As in the fourth embodiment, the resonator S4a and the resonator S4b obtained by dividing the series resonator S4 may be used as the piezoelectric thin film resonator 40 and the piezoelectric thin film resonator 42 in the first embodiment. The resonator P3a and the resonator P3b obtained by dividing the parallel resonator P3 may be used as the piezoelectric thin film resonator 40 and the piezoelectric thin film resonator 42 according to the first embodiment. That is, at least one of the one or more series resonators S1 to S4 and the one or more parallel resonators P1 to P3 constituting the ladder filter 400 is divided into two resonators, and the two divided The resonator may be the piezoelectric thin film resonator 40 and the piezoelectric thin film resonator 42 according to the first to third embodiments.

なお、出力端子OUTから放射される高調波は、出力端子OUTに近い直列共振器S4及び並列共振器P3から放射される高調波が大半を占める。したがって、直列共振器S4及び並列共振器P3の少なくとも一方が2つの共振器に分割されて実施例1から実施例3の圧電薄膜共振器40及び圧電薄膜共振器42であることが好ましい。   Note that most of the harmonics radiated from the output terminal OUT are harmonics radiated from the series resonator S4 and the parallel resonator P3 close to the output terminal OUT. Therefore, it is preferable that at least one of the series resonator S4 and the parallel resonator P3 is divided into two resonators to be the piezoelectric thin film resonator 40 and the piezoelectric thin film resonator 42 of the first to third embodiments.

また、実施例4によれば、並列共振器P3を分割した共振器P3aと共振器P3bが共有する電極16内に周波数調整膜66が設けられている。直列共振器と並列共振器とで共振周波数を異ならせるために並列共振器に周波数調整膜を設けることが行われるが、電極16内に周波数調整膜66を設けることで共振器P3aと共振器P3bとで1つの周波数調整膜66を共有させることができる。なお、電極16内に周波数調整膜66を設ける代わりに、電極12の下面及び電極20の上面に周波数調整膜を設けてもよい。この場合、電極12の下面及び電極20の上面に設ける周波数調整膜は、電極16内に設けた周波数調整膜66の略半分の厚さであることが好ましい。   According to the fourth embodiment, the frequency adjustment film 66 is provided in the electrode 16 shared by the resonator P3a and the resonator P3b obtained by dividing the parallel resonator P3. In order to make the resonance frequency different between the series resonator and the parallel resonator, a frequency adjustment film is provided in the parallel resonator. By providing the frequency adjustment film 66 in the electrode 16, the resonator P3a and the resonator P3b are provided. Thus, one frequency adjustment film 66 can be shared. Instead of providing the frequency adjustment film 66 in the electrode 16, a frequency adjustment film may be provided on the lower surface of the electrode 12 and the upper surface of the electrode 20. In this case, the frequency adjustment film provided on the lower surface of the electrode 12 and the upper surface of the electrode 20 is preferably approximately half the thickness of the frequency adjustment film 66 provided in the electrode 16.

また、実施例4によれば、並列共振器P1、P2に含まれる周波数調整膜68は、電極16内に設けられた周波数調整膜66の略半分の厚さを有する。上述したように、電極16内に設けられた周波数調整膜66は共振器P3aと共振器P3bとで共有されることから、周波数調整膜66は周波数調整膜68の略2倍の厚さ(すなわち、周波数調整膜68は周波数調整膜66の略半分の厚さ)であることが好ましい。   Further, according to the fourth embodiment, the frequency adjustment film 68 included in the parallel resonators P <b> 1 and P <b> 2 has approximately half the thickness of the frequency adjustment film 66 provided in the electrode 16. As described above, since the frequency adjustment film 66 provided in the electrode 16 is shared by the resonator P3a and the resonator P3b, the frequency adjustment film 66 is approximately twice as thick as the frequency adjustment film 68 (that is, the frequency adjustment film 68). The frequency adjustment film 68 is preferably approximately half the thickness of the frequency adjustment film 66.

図12は、実施例5に係るデュアルフィルタの回路図である。図12のように、実施例5のデュアルフィルタ500は、ラダー型フィルタ400と、ラダー型フィルタ410と、を含む。ラダー型フィルタ410の通過帯域は、ラダー型フィルタ400の通過帯域よりも低く、例えば半分程度である。例えば、ラダー型フィルタ400の通過帯域は3.5GHzであり、ラダー型フィルタ410の通過帯域は2GHzである。   FIG. 12 is a circuit diagram of a dual filter according to the fifth embodiment. As illustrated in FIG. 12, the dual filter 500 according to the fifth embodiment includes a ladder filter 400 and a ladder filter 410. The pass band of the ladder filter 410 is lower than the pass band of the ladder filter 400, for example, about half. For example, the pass band of the ladder filter 400 is 3.5 GHz, and the pass band of the ladder filter 410 is 2 GHz.

ラダー型フィルタ400は、実施例4で説明しているため、ここでは説明を省略する。ラダー型フィルタ410は、入力端子INと出力端子OUTとの間に、1又は複数の直列共振器S11〜S14が直列に接続され、1又は複数の並列共振器P11〜P13が並列に接続されている。直列共振器S11〜S14及び並列共振器P11〜P13は分割されていない。   Since the ladder filter 400 has been described in the fourth embodiment, the description thereof is omitted here. The ladder filter 410 has one or more series resonators S11 to S14 connected in series between an input terminal IN and an output terminal OUT, and one or more parallel resonators P11 to P13 connected in parallel. Yes. The series resonators S11 to S14 and the parallel resonators P11 to P13 are not divided.

図13(a)及び図13(b)は、実施例5に係るデュアルフィルタを構成するチップの断面図である。図13(a)のように、1つの基板10上に、直列共振器S11〜S14、並列共振器P11〜P13、直列共振器S4、及び並列共振器P3が設けられている。すなわち、1つのチップに、ラダー型フィルタ410に含まれる直列共振器S11〜S14及び並列共振器P11〜P13に加えて、ラダー型フィルタ400に含まれる直列共振器S4及び並列共振器P3が設けられている。   FIG. 13A and FIG. 13B are cross-sectional views of chips that constitute the dual filter according to the fifth embodiment. As shown in FIG. 13A, on one substrate 10, series resonators S11 to S14, parallel resonators P11 to P13, series resonator S4, and parallel resonator P3 are provided. That is, in addition to the series resonators S11 to S14 and the parallel resonators P11 to P13 included in the ladder type filter 410, the series resonator S4 and the parallel resonator P3 included in the ladder type filter 400 are provided on one chip. ing.

直列共振器S11〜S14及び並列共振器P11〜P13は、基板10上に設けられた圧電膜72a及び圧電膜72bからなる圧電膜72と、圧電膜72を挟んで対向する下部電極70及び上部電極74と、を含む。圧電膜72aと圧電膜72bの間に温度補償膜76が設けられているが、温度補償膜76が設けられていない場合でもよい。なお、並列共振器P11〜P13に設けられる周波数調整膜は図示を省略している。   The series resonators S11 to S14 and the parallel resonators P11 to P13 include a piezoelectric film 72 including a piezoelectric film 72a and a piezoelectric film 72b provided on the substrate 10, and a lower electrode 70 and an upper electrode facing each other with the piezoelectric film 72 interposed therebetween. 74. Although the temperature compensation film 76 is provided between the piezoelectric film 72a and the piezoelectric film 72b, the temperature compensation film 76 may not be provided. The frequency adjustment films provided in the parallel resonators P11 to P13 are not shown.

実施例4で説明したように、直列共振器S4を分割した共振器S4a及び共振器S4b、並びに、並列共振器P3を分割した共振器P3a及び共振器P3bは、実施例1の圧電薄膜共振器40及び圧電薄膜共振器42である。   As described in the fourth embodiment, the resonator S4a and the resonator S4b obtained by dividing the series resonator S4 and the resonator P3a and the resonator P3b obtained by dividing the parallel resonator P3 are the piezoelectric thin film resonators of the first embodiment. 40 and a piezoelectric thin film resonator 42.

下部電極70と電極12は、例えば同じ材料で形成され、略同じ膜厚を有する。圧電膜72aと圧電膜14は、例えば同じ材料で形成され、略同じ膜厚を有する。温度補償膜76と電極16は、例えば略同じ膜厚を有する。圧電膜72bと圧電膜18は、例えば同じ材料で形成され、略同じ膜厚を有する。上部電極74と電極20は、例えば同じ材料で形成され、略同じ膜厚を有する。   The lower electrode 70 and the electrode 12 are made of, for example, the same material and have substantially the same film thickness. The piezoelectric film 72a and the piezoelectric film 14 are formed of the same material, for example, and have substantially the same film thickness. The temperature compensation film 76 and the electrode 16 have, for example, substantially the same film thickness. The piezoelectric film 72b and the piezoelectric film 18 are formed of the same material, for example, and have substantially the same film thickness. The upper electrode 74 and the electrode 20 are made of, for example, the same material and have substantially the same film thickness.

図13(b)のように、他の基板10上に、直列共振器S1〜S3及び並列共振器P1、P2が設けられている。すなわち、他のチップに、ラダー型フィルタ400に含まれる直列共振器S1〜S3及び並列共振器P1、P2が設けられている。直列共振器S1〜S3及び並列共振器P1、P2は、基板10上に設けられた圧電膜82と、圧電膜82を挟んで対向する下部電極80及び上部電極84と、を含む。なお、並列共振器P1、P2に設けられる周波数調整膜は図示を省略している。   As shown in FIG. 13B, series resonators S1 to S3 and parallel resonators P1 and P2 are provided on another substrate 10. That is, the series resonators S1 to S3 and the parallel resonators P1 and P2 included in the ladder filter 400 are provided on the other chip. The series resonators S1 to S3 and the parallel resonators P1 and P2 include a piezoelectric film 82 provided on the substrate 10, and a lower electrode 80 and an upper electrode 84 that face each other with the piezoelectric film 82 interposed therebetween. The frequency adjustment films provided in the parallel resonators P1 and P2 are not shown.

実施例5によれば、デュアルフィルタ500を構成する一方のラダー型フィルタ410は、他方のラダー型フィルタ400よりも通過帯域が低い(例えば半分程度である)。したがって、ラダー型フィルタ410に含まれる直列共振器S11〜S14及び並列共振器P11〜P13の共振領域における積層膜の厚さは、ラダー型フィルタ400に含まれる直列共振器S1〜S4及び並列共振器P1〜P3の共振領域における積層膜よりも厚くなる(例えば2倍程度厚くなる)。このため、図13(a)のように、ラダー型フィルタ410に含まれる直列共振器S11〜S14及び並列共振器P11〜P13と、ラダー型フィルタ400に含まれ、2つの共振器に分割された直列共振器S4及び並列共振器P3とを、1つの基板10上に設けることが好ましい。   According to the fifth embodiment, one ladder filter 410 constituting the dual filter 500 has a lower pass band (for example, about half) than the other ladder filter 400. Therefore, the thickness of the laminated film in the resonance region of the series resonators S11 to S14 and the parallel resonators P11 to P13 included in the ladder filter 410 is the same as that of the series resonators S1 to S4 and the parallel resonator included in the ladder filter 400. It becomes thicker (for example, about twice as thick) as the laminated film in the resonance region of P1 to P3. For this reason, as shown in FIG. 13A, the series resonators S11 to S14 and the parallel resonators P11 to P13 included in the ladder filter 410 and the ladder filter 400 are divided into two resonators. It is preferable to provide the series resonator S4 and the parallel resonator P3 on one substrate 10.

図14は、実施例6に係るデュプレクサを示すブロック図である。図14のように、実施例6のデュプレクサ600は、送信フィルタ90と受信フィルタ92とを備える。送信フィルタ90は、アンテナ端子Antと送信端子Txとの間に接続されている。受信フィルタ92は、送信フィルタ90と共通のアンテナ端子Antと受信端子Rxとの間に接続されている。   FIG. 14 is a block diagram illustrating a duplexer according to the sixth embodiment. As illustrated in FIG. 14, the duplexer 600 according to the sixth embodiment includes a transmission filter 90 and a reception filter 92. The transmission filter 90 is connected between the antenna terminal Ant and the transmission terminal Tx. The reception filter 92 is connected between the antenna terminal Ant common to the transmission filter 90 and the reception terminal Rx.

送信フィルタ90は、送信端子Txから入力された信号のうち送信帯域の信号を送信信号としてアンテナ端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ92は、アンテナ端子Antから入力された信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信帯域と受信帯域は周波数が異なっている。なお、送信フィルタ90を通過した送信信号が受信フィルタ92に漏れずにアンテナ端子Antから出力されるようにインピーダンスを整合させる整合回路を備えていてもよい。   The transmission filter 90 passes signals in the transmission band among the signals input from the transmission terminal Tx as transmission signals to the antenna terminal Ant, and suppresses signals of other frequencies. The reception filter 92 passes a signal in the reception band among the signals input from the antenna terminal Ant to the reception terminal Rx as a reception signal, and suppresses signals of other frequencies. The transmission band and the reception band have different frequencies. Note that a matching circuit that matches impedance so that a transmission signal that has passed through the transmission filter 90 is output from the antenna terminal Ant without leaking to the reception filter 92 may be provided.

送信フィルタ90及び受信フィルタ92の少なくとも一方を、実施例4のラダー型フィルタ400とすることができる。   At least one of the transmission filter 90 and the reception filter 92 can be the ladder filter 400 of the fourth embodiment.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10 基板
12 電極
14 圧電膜
16 電極
18 圧電膜
20 電極
22、22a 空隙
24 共振領域
26 共振領域
28 配線
30 音響反射膜
32 音響インピーダンスの低い膜
34 音響インピーダンスの高い膜
40 圧電薄膜共振器
42 圧電薄膜共振器
50 空隙
52 挿入膜
54 温度補償膜
60 下部電極
62 圧電膜
64 上部電極
66、68 周波数調整膜
70 下部電極
72、72a、72b 圧電膜
74 上部電極
76 温度補償膜
80 下部電極
82 圧電膜
84 上部電極
90 送信フィルタ
92 受信フィルタ
100〜300 弾性波デバイス
400、410 ラダー型フィルタ
500 デュアルフィルタ
600 デュプレクサ
S1〜S4、S11〜S14 直列共振器
P1〜P3、P11〜P13 並列共振器
S4a、S4b 共振器
P3a、P3b 共振器
DESCRIPTION OF SYMBOLS 10 Substrate 12 Electrode 14 Piezoelectric film 16 Electrode 18 Piezoelectric film 20 Electrode 22, 22a Air gap 24 Resonance area 26 Resonance area 28 Wiring 30 Acoustic reflection film 32 Low acoustic impedance film 34 High acoustic impedance film 40 Piezoelectric thin film resonator 42 Piezoelectric thin film Resonator 50 Gap 52 Insertion film 54 Temperature compensation film 60 Lower electrode 62 Piezoelectric film 64 Upper electrode 66, 68 Frequency adjustment film 70 Lower electrode 72, 72a, 72b Piezoelectric film 74 Upper electrode 76 Temperature compensation film 80 Lower electrode 82 Piezoelectric film 84 Upper electrode 90 Transmission filter 92 Reception filter 100-300 Elastic wave device 400, 410 Ladder type filter 500 Dual filter 600 Duplexer S1-S4, S11-S14 Series resonator P1-P3, P11-P13 Parallel resonator S4a, S4b Resonance P3a, P3b resonator

Claims (8)

基板上に設けられた第1圧電膜と、前記第1圧電膜のc軸又は分極軸の方向で前記第1圧電膜を挟む第1電極及び第2電極と、を含み、前記第1圧電膜を挟んで前記第1電極と前記第2電極とが対向する領域のうちの平面視で前記基板と前記第1電極の間に形成された空隙又は音響反射膜に重なる領域である第1共振領域を有する第1圧電薄膜共振器と、
前記第2電極と、前記第2電極上に設けられ、前記第1圧電膜と略同じ厚さを有し、前記第1圧電膜のc軸又は分極軸と同じ方向にc軸又は分極軸を有する第2圧電膜と、前記第2圧電膜上に設けられ、前記第1電極と同電位の第3電極と、を含み、前記第2圧電膜を挟んで前記第2電極と前記第3電極とが対向する領域のうちの平面視で前記空隙又は音響反射膜に重なる領域であって、前記第1共振領域と略同じ面積を有し且つ前記第1共振領域と重なる第2共振領域を有する第2圧電薄膜共振器と、を備える弾性波デバイス。
A first piezoelectric film provided on a substrate; and a first electrode and a second electrode sandwiching the first piezoelectric film in a direction of a c-axis or a polarization axis of the first piezoelectric film, and the first piezoelectric film A first resonance region that is a region overlapping a gap or an acoustic reflection film formed between the substrate and the first electrode in plan view in a region where the first electrode and the second electrode are opposed to each other A first piezoelectric thin film resonator having:
The second electrode is provided on the second electrode, has the same thickness as the first piezoelectric film, and has a c-axis or polarization axis in the same direction as the c-axis or polarization axis of the first piezoelectric film. A second piezoelectric film provided on the second piezoelectric film, and a third electrode having the same potential as the first electrode, the second electrode and the third electrode sandwiching the second piezoelectric film Is a region that overlaps the air gap or the acoustic reflection film in a plan view among regions facing each other, and has a second resonance region that has substantially the same area as the first resonance region and overlaps the first resonance region. An elastic wave device comprising: a second piezoelectric thin film resonator.
前記第1電極と前記第3電極は、前記第1共振領域及び前記第2共振領域の外側で接続している、請求項1記載の弾性波デバイス。   The acoustic wave device according to claim 1, wherein the first electrode and the third electrode are connected to each other outside the first resonance region and the second resonance region. 前記第2電極は、前記第1電極の厚さ及び前記第3電極の厚さの略2倍の厚さを有する、請求項1または2記載の弾性波デバイス。   3. The acoustic wave device according to claim 1, wherein the second electrode has a thickness approximately twice as large as a thickness of the first electrode and a thickness of the third electrode. 前記弾性波デバイスは、1又は複数の直列共振器と1又は複数の並列共振器とを備えるラダー型フィルタであり、
前記1又は複数の直列共振器及び前記1又は複数の並列共振器のうちの少なくとも1つの共振器は、2つの共振器に分割されていて、
前記2つの共振器は、前記第1圧電薄膜共振器と前記第2圧電薄膜共振器である、請求項1から3のいずれか一項記載の弾性波デバイス。
The acoustic wave device is a ladder type filter including one or more series resonators and one or more parallel resonators,
At least one of the one or more series resonators and the one or more parallel resonators is divided into two resonators,
4. The acoustic wave device according to claim 1, wherein the two resonators are the first piezoelectric thin film resonator and the second piezoelectric thin film resonator. 5.
前記1又は複数の並列共振器のうちの少なくとも1つの並列共振器は、前記2つの共振器に分割されていて、
前記少なくとも1つの並列共振器を構成する前記第1圧電薄膜共振器と前記第2圧電薄膜共振器とが共有する前記第2電極内に第1周波数調整膜を備える、請求項4記載の弾性波デバイス。
At least one of the one or more parallel resonators is divided into the two resonators;
5. The acoustic wave according to claim 4, further comprising a first frequency adjustment film in the second electrode shared by the first piezoelectric thin film resonator and the second piezoelectric thin film resonator constituting the at least one parallel resonator. device.
前記1又は複数の並列共振器のうちの前記少なくとも1つの並列共振器以外の並列共振器は、前記第1周波数調整膜の略半分の厚さの第2周波数調整膜を有する、請求項5記載の弾性波デバイス。   6. The parallel resonator other than the at least one parallel resonator among the one or more parallel resonators includes a second frequency adjustment film having a thickness approximately half that of the first frequency adjustment film. Acoustic wave device. 前記弾性波デバイスは、第1ラダー型フィルタと、前記第1ラダー型フィルタよりも通過帯域が低い第2ラダー型フィルタと、を備えるデュアルフィルタであり、
前記第1ラダー型フィルタに備わる1又は複数の直列共振器及び1又は複数の並列共振器のうちの少なくとも1つの共振器は2つの共振器に分割されていて、前記2つの共振器は前記第1圧電薄膜共振器と前記第2圧電薄膜共振器であり、
前記第2ラダー型フィルタに備わる圧電薄膜共振器からなる直列共振器及び並列共振器と、前記第1ラダー型フィルタに備わる前記少なくとも1つの共振器とは、1つの前記基板上に設けられている、請求項1から3のいずれか一項記載の弾性波デバイス。
The acoustic wave device is a dual filter comprising a first ladder filter and a second ladder filter having a pass band lower than that of the first ladder filter,
At least one of the one or more series resonators and the one or more parallel resonators included in the first ladder filter is divided into two resonators, and the two resonators are the first resonator. 1 piezoelectric thin film resonator and the second piezoelectric thin film resonator,
A series resonator and a parallel resonator composed of piezoelectric thin film resonators provided in the second ladder type filter, and the at least one resonator provided in the first ladder type filter are provided on one substrate. The elastic wave device according to any one of claims 1 to 3.
前記弾性波デバイスは、アンテナ端子と送信端子との間に接続された送信フィルタと、前記アンテナ端子と受信端子との間に接続された受信フィルタと、を備えるデュプレクサであり、
前記送信フィルタ及び前記受信フィルタの少なくとも一方は、1又は複数の直列共振器と1又は複数の並列共振器を備えるラダー型フィルタであり、
前記1又は複数の直列共振器及び前記1又は複数の並列共振器のうちの少なくとも1つの共振器は2つの共振器に分割されていて、前記2つの共振器は前記第1圧電薄膜共振器と前記第2圧電薄膜共振器である、請求項1から3のいずれか一項記載の弾性波デバイス。
The acoustic wave device is a duplexer comprising a transmission filter connected between an antenna terminal and a transmission terminal, and a reception filter connected between the antenna terminal and a reception terminal,
At least one of the transmission filter and the reception filter is a ladder type filter including one or more series resonators and one or more parallel resonators,
At least one of the one or more series resonators and the one or more parallel resonators is divided into two resonators, and the two resonators are the first piezoelectric thin film resonator and the first resonator. The acoustic wave device according to claim 1, wherein the acoustic wave device is the second piezoelectric thin film resonator.
JP2016248509A 2016-12-21 2016-12-21 Acoustic wave device Pending JP2018101964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016248509A JP2018101964A (en) 2016-12-21 2016-12-21 Acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016248509A JP2018101964A (en) 2016-12-21 2016-12-21 Acoustic wave device

Publications (1)

Publication Number Publication Date
JP2018101964A true JP2018101964A (en) 2018-06-28

Family

ID=62715692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248509A Pending JP2018101964A (en) 2016-12-21 2016-12-21 Acoustic wave device

Country Status (1)

Country Link
JP (1) JP2018101964A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020014096A (en) * 2018-07-17 2020-01-23 太陽誘電株式会社 Acoustic wave device and multiplexer
JP2022068857A (en) * 2020-10-22 2022-05-10 タイワン・カーボン・ナノ・テクノロジー・コーポレーション Method for manufacturing film bulk acoustic resonance device having specific resonance frequency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020014096A (en) * 2018-07-17 2020-01-23 太陽誘電株式会社 Acoustic wave device and multiplexer
JP7042178B2 (en) 2018-07-17 2022-03-25 太陽誘電株式会社 Elastic wave devices and multiplexers
JP2022068857A (en) * 2020-10-22 2022-05-10 タイワン・カーボン・ナノ・テクノロジー・コーポレーション Method for manufacturing film bulk acoustic resonance device having specific resonance frequency

Similar Documents

Publication Publication Date Title
JP6661521B2 (en) Filters and multiplexers
JP6415419B2 (en) Elastic wave filter, duplexer, and module
US8841819B2 (en) Acoustic wave device
US8084919B2 (en) Piezoelectric thin-film resonator, filter using the same, and duplexer using the same
JP7037336B2 (en) Elastic wave devices and their manufacturing methods, filters and multiplexers
US9197189B2 (en) Acoustic wave device
US20130271238A1 (en) Filter device, manufacturing method for filter device, and duplexer
US10666220B2 (en) Acoustic wave device
JP6515042B2 (en) Elastic wave device
JP6420732B2 (en) Elastic wave filter, duplexer, and module
JP2013038658A (en) Elastic wave device
US20070252662A1 (en) Filter and duplexer
US20160294358A1 (en) Acoustic wave filter, duplexer, and module
US20180278238A1 (en) Multiplexer
US6737940B2 (en) Piezoelectric resonator, manufacturing method for the same, piezoelectric filter, manufacturing method for the same, duplexer, and electronic communication device
JP2018101964A (en) Acoustic wave device
JP2013168748A (en) Acoustic wave device
JP2020141337A (en) Piezoelectric thin film resonator, filter, and multiplexer
JP7344011B2 (en) Piezoelectric thin film resonators, filters and multiplexers
US10554196B2 (en) Acoustic wave device
JP2019212982A (en) Piezoelectric thin film resonator, filter, and multiplexer
JP2019121874A (en) Filter and multiplexer
JP7438674B2 (en) Piezoelectric thin film resonators, filters and multiplexers
US20240056052A1 (en) Acoustic wave device, filter and multiplexer
JP2022140991A (en) Acoustic wave devices, filter and multiplexer