JP2018101718A - VAPOR GROWTH METHOD OF CRYSTALLINE GALLIUM NITRIDE (GaN) AND CRYSTALLINE GALLIUM NITRIDE (GaN) - Google Patents

VAPOR GROWTH METHOD OF CRYSTALLINE GALLIUM NITRIDE (GaN) AND CRYSTALLINE GALLIUM NITRIDE (GaN) Download PDF

Info

Publication number
JP2018101718A
JP2018101718A JP2016247692A JP2016247692A JP2018101718A JP 2018101718 A JP2018101718 A JP 2018101718A JP 2016247692 A JP2016247692 A JP 2016247692A JP 2016247692 A JP2016247692 A JP 2016247692A JP 2018101718 A JP2018101718 A JP 2018101718A
Authority
JP
Japan
Prior art keywords
gan
crystalline
crystalline gan
gallium nitride
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016247692A
Other languages
Japanese (ja)
Other versions
JP6855782B2 (en
Inventor
大至 木村
Taishi Kimura
大至 木村
佐藤 俊介
Shunsuke Sato
俊介 佐藤
中村 大輔
Daisuke Nakamura
大輔 中村
森川 健志
Kenji Morikawa
健志 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016247692A priority Critical patent/JP6855782B2/en
Publication of JP2018101718A publication Critical patent/JP2018101718A/en
Application granted granted Critical
Publication of JP6855782B2 publication Critical patent/JP6855782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain GaN having a porous structure by a simple method.SOLUTION: In a vapor growth method of crystalline GaN in which a proportion of gallium nitride (GaN) per unit volume is 90% or more, boron (B), magnesium (Mg), and silicon (Si) are added such that the total added amount exceeds 1×10/cmin a deposition of the crystalline GaN.SELECTED DRAWING: Figure 2

Description

本発明は、結晶性窒化ガリウム(GaN)及び結晶性窒化ガリウム(GaN)の気相成長方法に関する。   The present invention relates to crystalline gallium nitride (GaN) and a method for vapor phase growth of crystalline gallium nitride (GaN).

従来、窒化ガリウム(GaN)を多孔質にする技術として、GaNを電解液に曝して多孔質構造を作成する技術が開示されている(特許文献1)。また、マスクを用いて、GaNに多孔質構造を形成する技術が開示されている(特許文献2)また、光促進電気化学エッチング法を適用して、GaNに多孔質構造を形成する技術が開示されている(非特許文献1)。また、金(Au)のナノ粒子を触媒として用いて、GaNに多孔質構造を形成する技術が開示されている(非特許文献2)。   Conventionally, as a technique for making gallium nitride (GaN) porous, a technique for creating a porous structure by exposing GaN to an electrolytic solution has been disclosed (Patent Document 1). In addition, a technique for forming a porous structure in GaN using a mask is disclosed (Patent Document 2). Also, a technique for forming a porous structure in GaN by applying a photo-accelerated electrochemical etching method is disclosed. (Non-Patent Document 1). Further, a technique for forming a porous structure in GaN using gold (Au) nanoparticles as a catalyst has been disclosed (Non-patent Document 2).

特開2016−181709号公報Japanese Patent Laying-Open No. 2006-181709 特開2012−49501号公報JP 2012-49501 A

Yusuke Kumazaki, et al. "Formation of GaN porous structures with improved structural controllability by photoassisted eletrochemical etching", Japanese journal of Applied Physics, 55, 04EJ12, 2016.Yusuke Kumazaki, et al. "Formation of GaN porous structures with improved structural controllability by photoassisted eletrochemical etching", Japanese journal of Applied Physics, 55, 04EJ12, 2016. Puran Pandey, et al. "Nanoparticles to Nanoholes: Fabrication of Porous GaN with Precisely Controlled Dimenstion via the Enhanced GaN Decomposition by Au Nanoparticles.", Crystal Growth & Design 16, 3334, 2016.Puran Pandey, et al. "Nanoparticles to Nanoholes: Fabrication of Porous GaN with Precisely Controlled Dimenstion via the Enhanced GaN Decomposition by Au Nanoparticles.", Crystal Growth & Design 16, 3334, 2016.

ところで、上記従来技術のように多孔質のGaNについては幾つかの報告があるが、それらは化学エッチング等の複雑な工程を経て得られるものであり、製造コストの増大等の問題がある。また、多孔質構造の孔も特定のサイズに限定される。   By the way, although there are some reports on porous GaN as in the prior art, they are obtained through complicated processes such as chemical etching, and there are problems such as an increase in manufacturing cost. Also, the pores of the porous structure are limited to a specific size.

本発明の1つの態様は、単位体積当たりの窒化ガリウム(GaN)の割合が90%以上である結晶性GaNであって、ボロン(B)、マグネシウム(Mg)及びシリコン(Si)の添加量の合計が1×1019/cmを超えることを特徴とする結晶性GaNである。 One aspect of the present invention is crystalline GaN in which the ratio of gallium nitride (GaN) per unit volume is 90% or more, and the amount of boron (B), magnesium (Mg), and silicon (Si) added. The crystalline GaN is characterized in that the total exceeds 1 × 10 19 / cm 3 .

ここで、表面電子顕微鏡観察における表面に存在する空洞の割合が5%以上であることが好適である。また、フラクタル構造を有することが好適である。また、単結晶であることが好適である。   Here, it is preferable that the ratio of the cavities existing on the surface in the surface electron microscope observation is 5% or more. Moreover, it is suitable to have a fractal structure. Moreover, it is preferable that it is a single crystal.

また、本発明の別の態様は、単位体積当たりの窒化ガリウム(GaN)の割合が90%以上である結晶性GaNの気相成長方法であって、前記結晶性GaNの成膜中にボロン(B)、マグネシウム(Mg)及びシリコン(Si)を添加量の合計が1×1019/cmを超えるだけ添加することを特徴とする結晶性GaNの気相成長方法である。 Another aspect of the present invention is a method for vapor phase growth of crystalline GaN in which the ratio of gallium nitride (GaN) per unit volume is 90% or more, wherein boron ( B) A method for vapor phase growth of crystalline GaN, characterized in that magnesium (Mg) and silicon (Si) are added in a total amount exceeding 1 × 10 19 / cm 3 .

本発明によれば、簡易な方法によって多孔質構造を有するGaNを得ることができる。   According to the present invention, GaN having a porous structure can be obtained by a simple method.

本発明の実施の形態における結晶性GaNのX線回折の測定結果を示す図である。It is a figure which shows the measurement result of the X-ray diffraction of crystalline GaN in embodiment of this invention. 本発明の実施の形態における結晶性GaNの走査電子顕微鏡での表面観察像を示す図である。It is a figure which shows the surface observation image in the scanning electron microscope of crystalline GaN in embodiment of this invention. 本発明の実施の形態における結晶性GaNの走査電子顕微鏡での表面観察像を示す図である。It is a figure which shows the surface observation image in the scanning electron microscope of crystalline GaN in embodiment of this invention. 本発明の実施の形態における結晶性GaNのSIMSの測定結果を示す図である。It is a figure which shows the measurement result of SIMS of crystalline GaN in embodiment of this invention. 本発明の実施の形態における結晶性GaNの成膜時の構造を説明するための模式図である。It is a schematic diagram for demonstrating the structure at the time of film-forming of crystalline GaN in embodiment of this invention. 本発明の実施の形態における結晶性GaNの透過型電子顕微鏡での断面観察像を示す図である。It is a figure which shows the cross-sectional observation image in the transmission electron microscope of crystalline GaN in embodiment of this invention. 光学特性の測定方法を説明する図である。It is a figure explaining the measuring method of an optical characteristic. 比較例における光応答性の測定結果を示す図である。It is a figure which shows the measurement result of the photoresponsiveness in a comparative example. 実施例における光応答性の測定結果を示す図である。It is a figure which shows the measurement result of the photoresponsiveness in an Example. 実施例における光応答性の時間依存性を示す図である。It is a figure which shows the time dependence of the optical response in an Example. 実施例における酸素生成特性を示す図である。It is a figure which shows the oxygen production | generation characteristic in an Example.

[本発明の実施の形態における結晶性窒化ガリウム(GaN)]
本発明の実施の形態における窒化ガリウム(GaN)は、単位体積当たりのGaNの割合が90%以上である結晶性GaNである。特に、添加された不純物の量が1×1019/cmを超えている結晶性GaNである。不純物は、例えば、ボロン(B)とすることができる。
[Crystalline Gallium Nitride (GaN) in Embodiment of the Present Invention]
Gallium nitride (GaN) in the embodiment of the present invention is crystalline GaN in which the ratio of GaN per unit volume is 90% or more. In particular, it is crystalline GaN in which the amount of added impurities exceeds 1 × 10 19 / cm 3 . The impurity can be, for example, boron (B).

図1は、本実施の形態における結晶性GaNの結晶性をX線回折法により測定した結果を示す。X線回折の測定結果では、GaNの(0002)面及び(0004)面の強いピークが現れており、他に強いピークは見られなかった。すなわち、本実施の形態における結晶性GaNは、いわゆるウルツ鉱型結晶構造を備えており、そのC軸に垂直な(0001)面を表面とする単結晶である。   FIG. 1 shows the result of measuring the crystallinity of crystalline GaN in this embodiment by an X-ray diffraction method. In the measurement result of the X-ray diffraction, strong peaks of (0002) plane and (0004) plane of GaN appeared, and no other strong peak was observed. That is, the crystalline GaN in the present embodiment is a single crystal having a so-called wurtzite crystal structure and having a (0001) plane perpendicular to the C axis as a surface.

図2は、本実施の形態における結晶性GaNの表面を走査電子顕微鏡で観察した像を示す。図2に示すように、本実施の形態における結晶性GaNは、表面にメッシュ状の構造を有している。図2において、白く見えている領域がGaNであり、黒く見えている領域が空洞部分である。   FIG. 2 shows an image obtained by observing the surface of crystalline GaN in the present embodiment with a scanning electron microscope. As shown in FIG. 2, the crystalline GaN in the present embodiment has a mesh-like structure on the surface. In FIG. 2, the region that appears white is GaN, and the region that appears black is a cavity.

ここで、本実施の形態における結晶性GaNでは、表面電子顕微鏡観察における表面に存在する空洞の割合が5%以上であることが好適である。ここで、表面の空洞割合とは、成膜された結晶性GaNの表面から1辺が100nmの立方体を仮定して、当該立方体の全体積に対する空洞の割合をいう。すなわち、空洞割合(%)=(結晶性GaNの表面を1面とする1辺が100nmの立方体内の空洞領域)/立方体の体積(1×10nm)×100とする。なお、図2に示した結晶性GaNの成膜例では、空洞割合は平均29.7%〜39.7%であった。 Here, in the crystalline GaN in the present embodiment, it is preferable that the ratio of cavities existing on the surface in the surface electron microscope observation is 5% or more. Here, the cavity ratio on the surface means a cavity ratio with respect to the total volume of the cube, assuming a cube whose one side is 100 nm from the surface of the formed crystalline GaN. That is, the cavity ratio (%) = (cavity region in a cube whose one side is 100 nm of crystalline GaN surface) / cube volume (1 × 10 6 nm 3 ) × 100. In the crystalline GaN film formation example shown in FIG. 2, the average void ratio was 29.7% to 39.7%.

図3(a)〜図3(d)は、それぞれ倍率を変えて本実施の形態における結晶性GaNの表面を観察した走査電子顕微鏡写真である。図3(a)では、表面全体にメッシュ構造が広がっていることがわかる。図3(b)から図3(d)へと倍率を高めると、メッシュ構造の中にさらに細かいメッシュ構造が形成されていることがわかる。すなわち、本実施の形態における結晶性GaNは、メッシュ構造の中にさらに細かいメッシュ構造が含まれている自己相似構造、すなわちフラクタル構造を有している。   3 (a) to 3 (d) are scanning electron micrographs obtained by observing the surface of crystalline GaN in the present embodiment while changing the magnification, respectively. FIG. 3A shows that the mesh structure spreads over the entire surface. When the magnification is increased from FIG. 3B to FIG. 3D, it can be seen that a finer mesh structure is formed in the mesh structure. That is, the crystalline GaN in the present embodiment has a self-similar structure in which a finer mesh structure is included in the mesh structure, that is, a fractal structure.

図4は、本実施の形態における結晶性GaNに対して二次イオン質量分析(SIMS)を行った結果を示す。図4の横軸は、結晶性GaNの表面からの深さを示し、縦軸は、各元素の濃度(原子/cm)を示す。深さ3.0μm程度までが本実施の形態における結晶性GaNの膜であり、それより深い領域は基板のGaNである。本実施の形態における結晶性GaNでは、ボロン(B)の添加量が1×1019/cmを超えており、図4の例では、3×1019/cmを超えた添加量とされている。なお、ボロン(B)のみならず、マグネシウム(Mg)又はシリコン(Si)の添加量を1×1019/cmを超えるようにしてもよい。さらに、ボロン(B)、マグネシウム(Mg)及びシリコン(Si)の添加量の合計が1×1019/cmを超えるようにしてもよい。 FIG. 4 shows the result of performing secondary ion mass spectrometry (SIMS) on the crystalline GaN in the present embodiment. The horizontal axis of FIG. 4 shows the depth from the surface of crystalline GaN, and the vertical axis | shaft shows the density | concentration (atom / cm < 3 >) of each element. The depth up to about 3.0 μm is the crystalline GaN film in the present embodiment, and the deeper region is the substrate GaN. In crystalline GaN in the present embodiment, the amount of boron (B) added exceeds 1 × 10 19 / cm 3 , and in the example of FIG. 4, the amount added exceeds 3 × 10 19 / cm 3. ing. Note that not only boron (B) but also the addition amount of magnesium (Mg) or silicon (Si) may exceed 1 × 10 19 / cm 3 . Furthermore, the total amount of boron (B), magnesium (Mg), and silicon (Si) added may exceed 1 × 10 19 / cm 3 .

以下、本実施の形態における結晶性GaNの製造方法について説明する。結晶性GaNの製造方法は、特に限定されるものではなく、分子線エピタキシー法(MBE)、有機金属気相成長法(MOCVD)、ハイドライド気相成長法(HVPE)、スパッタ法、ハロゲンフリー気相成長法(HFVPE)等の一般的なGaN成長に用いられる方法を適用することができる。基板(種結晶)は、特に限定されるものではないが、例えばウルツ鉱型結晶構造のC面を成長面とするGaN基板を用いることが好適である。   Hereinafter, a method for producing crystalline GaN in the present embodiment will be described. The method for producing crystalline GaN is not particularly limited, but is molecular beam epitaxy (MBE), metal organic vapor phase epitaxy (MOCVD), hydride vapor phase epitaxy (HVPE), sputtering, halogen-free gas phase. A method used for general GaN growth, such as a growth method (HFVPE), can be applied. The substrate (seed crystal) is not particularly limited. For example, it is preferable to use a GaN substrate having a C-plane of a wurtzite crystal structure as a growth surface.

そして、これらの成長方法を適用する際に、その添加量が1×1019/cmを超えるように不純物を供給する。例えば、不純物をボロン(B)とする場合、結晶性GaNの成膜中にボロン(B)を1×1019/cmを超えるだけ添加する。具体的には、トリエチルボラン等のBを含有するガスを成長と同時に供給する、pBN材料等の固体のBソースからBを成長と同時に供給する等の方法によって成膜中においてBが1×1019/cmを超えるだけ含有されるように供給する。なお、ボロン(B)の代わりに、マグネシウム(Mg)又はシリコン(Si)の添加量を1×1019/cmを超えるようにしてもよい。さらに、ボロン(B)、マグネシウム(Mg)及びシリコン(Si)の添加量の合計が1×1019/cmを超えるようにしてもよい。 And when applying these growth methods, an impurity is supplied so that the addition amount may exceed 1 * 10 < 19 > / cm < 3 >. For example, when the impurity is boron (B), boron (B) is added in an amount exceeding 1 × 10 19 / cm 3 during the formation of crystalline GaN. Specifically, B is 1 × 10 during film formation by a method such as supplying a gas containing B such as triethylborane at the same time as growth, or supplying B from a solid B source such as a pBN material at the same time as growth. It supplies so that it may contain only exceeding 19 / cm < 3 >. Note that, instead of boron (B), the amount of magnesium (Mg) or silicon (Si) added may exceed 1 × 10 19 / cm 3 . Furthermore, the total amount of boron (B), magnesium (Mg), and silicon (Si) added may exceed 1 × 10 19 / cm 3 .

例えば、金属源から発生させた金属含有ガスと、これと反応して無機化合物を生成する反応ガスを種結晶に向かって供給することによって結晶性GaNを成膜する方法が適用できる。サセプタにより種結晶を保持し、種結晶を加熱しながら結晶性GaNの成膜を行う。一方、黒鉛等で形成されたルツボに金属Gaを充填し、ルツボを加熱することによって種結晶に対してGaを供給する。加熱は、これに限定されるものではないが、1200℃以上1350℃以下とすることが好適である。このとき、ルツボの開口部に多孔バッフル板を設けることが好適である。多孔バッフル板は、複数の小径の貫通孔が形成された板状部材をいう。また、反応ガスとしてアンモニアガス(NH)を種結晶に供給する。このとき、金属Ga及び反応ガスの輸送のためのキャリアガスや希釈ガスとしてH、N、Arを用いてもよい。種結晶を加熱しつつ、金属Ga及び反応ガスを種結晶の表面に供給することにより結晶性GaNが成膜される。種結晶は、これに限定されるものではないが、1000℃以上1200℃以下に加熱することが好適である。 For example, a method of forming a crystalline GaN film by supplying a metal-containing gas generated from a metal source and a reaction gas that reacts with the gas to generate an inorganic compound toward the seed crystal can be applied. The seed crystal is held by the susceptor, and the crystalline GaN film is formed while heating the seed crystal. On the other hand, metal Ga is filled in a crucible formed of graphite or the like, and Ga is supplied to the seed crystal by heating the crucible. Although heating is not limited to this, it is preferable to set it as 1200 to 1350 degreeC. At this time, it is preferable to provide a porous baffle plate at the opening of the crucible. The perforated baffle plate is a plate-like member in which a plurality of small-diameter through holes are formed. In addition, ammonia gas (NH 3 ) is supplied as a reaction gas to the seed crystal. At this time, H 2 , N 2 , and Ar may be used as a carrier gas or diluent gas for transporting the metal Ga and the reaction gas. Crystalline GaN is formed by supplying metal Ga and a reactive gas to the surface of the seed crystal while heating the seed crystal. The seed crystal is not limited to this, but is preferably heated to 1000 ° C. or more and 1200 ° C. or less.

例えば、種結晶の温度(成膜温度)を1080℃、ルツボ(金属Ga)の温度を1250℃、成膜圧力を4kPa、キャリアガス(N)流量を0.1slm、キャリアガス(H)流量を0.5slm、反応ガス(NH)流量を2slm、希釈ガス(N)流量を4.5slm、希釈ガス(H)流量を1.5slm、バッフル−種結晶間距離を4cm、成膜速度を40μm/h以下とすればよい。 For example, the temperature of the seed crystal (film formation temperature) is 1080 ° C., the temperature of the crucible (metal Ga) is 1250 ° C., the film formation pressure is 4 kPa, the carrier gas (N 2 ) flow rate is 0.1 slm, and the carrier gas (H 2 ). The flow rate is 0.5 slm, the reaction gas (NH 3 ) flow rate is 2 slm, the dilution gas (N 2 ) flow rate is 4.5 slm, the dilution gas (H 2 ) flow rate is 1.5 slm, and the baffle-seed crystal distance is 4 cm. The film speed may be 40 μm / h or less.

このとき、金属Ga及び反応ガスに加えて、不純物を含有するガスを供給することにより、不純物が添加された結晶性GaNを成膜することができる。不純物を含有するガスは、例えば、トリエチルボランとすることが好適である。種結晶の温度、金属Gaの温度、反応ガスの供給量等を成膜パラメータとして、これらの成膜パラメータに応じて不純物を含有するガスの供給量を調整することによって結晶GaN内の不純物の添加量が1×1019/cmを超えるようにすることができる。 At this time, by supplying a gas containing an impurity in addition to the metal Ga and the reaction gas, the crystalline GaN to which the impurity is added can be formed. The gas containing impurities is preferably triethylborane, for example. Addition of impurities in crystal GaN by adjusting the supply amount of gas containing impurities according to these film formation parameters, using the temperature of the seed crystal, the temperature of metal Ga, the supply amount of the reaction gas, etc. as the film formation parameters The amount can exceed 1 × 10 19 / cm 3 .

このような成膜方法を適用することによって、本実施の形態における結晶性GaNを得ることができる。   By applying such a film formation method, the crystalline GaN in this embodiment can be obtained.

成長過程は以下の通りであると推定される。ボロン(B)等の不純物が成膜中に供給されない場合、図5(a)の模式図に示すように、成膜される結晶性GaN膜10は基板12の結晶GaNの結晶性を継承して成長し、結晶性GaN膜10内にボイドは形成されない。ボロン(B)等の不純物が成膜中に供給されると、図5(b)の模式図に示すように、成膜中において結晶性GaNの{10−10}面が安定化され、成膜される結晶性GaN膜内において{10−10}面方向への成長が抑制されて膜内にボイドが形成される。ボロン(B)等の不純物が1×1019/cmを超えると、図5(c)の模式図に示すように、ボイド同士が結合するようになり、メッシュ構造の中にさらに細かいメッシュ構造が含まれているフラクタル構造を備えた結晶性GaN膜が成膜される。 The growth process is estimated as follows. When impurities such as boron (B) are not supplied during film formation, the formed crystalline GaN film 10 inherits the crystallinity of the crystalline GaN of the substrate 12 as shown in the schematic diagram of FIG. Thus, no void is formed in the crystalline GaN film 10. When an impurity such as boron (B) is supplied during film formation, the {10-10} plane of crystalline GaN is stabilized during film formation as shown in the schematic diagram of FIG. Growth in the {10-10} plane direction is suppressed in the crystalline GaN film to be formed, and voids are formed in the film. When impurities such as boron (B) exceed 1 × 10 19 / cm 3 , as shown in the schematic diagram of FIG. 5 (c), the voids are bonded to each other, and a finer mesh structure is included in the mesh structure. A crystalline GaN film having a fractal structure containing is formed.

図6(a)は、ボロン(B)等の不純物を添加していない結晶性GaNの断面を暗視野走査透過型電子顕微鏡で観察した結果を示す。断面観察から、結晶性GaN膜内にボイドは形成されていないことがわかる。図6(b)は、ボロン(B)等の不純物を添加して成膜した結晶性GaNの断面を暗視野走査透過型電子顕微鏡で観察した結果を示す。断面観察から、結晶性GaN膜内にボイドが形成されていることがわかる。なお、図6(b)の結晶性GaN膜は、MOCVDで成膜された結晶性GaN上にAlGaNキャップ層を形成した表面上に成膜したものである。   FIG. 6A shows a result of observing a cross section of crystalline GaN to which an impurity such as boron (B) is not added with a dark field scanning transmission electron microscope. From the cross-sectional observation, it can be seen that no void is formed in the crystalline GaN film. FIG. 6B shows a result of observing a cross section of crystalline GaN formed by adding impurities such as boron (B) with a dark field scanning transmission electron microscope. From the cross-sectional observation, it can be seen that voids are formed in the crystalline GaN film. Note that the crystalline GaN film in FIG. 6B is formed on the surface of the AlGaN cap layer formed on the crystalline GaN formed by MOCVD.

[光学特性]
以下、本実施の形態における結晶性GaNの光学特性について検証した結果を説明する。光学特性は、図7に示すように、光電流測定は酸化反応用電極、還元反応用電極に加えて参照電極を有する三電極方式にて測定した。濃度0.2Mの硫酸カリウム(KSO)の水溶液20中に、GaNを用いた作用極(還元反応用電極)22、対電極(酸化反応用電極)24となるPt電極及び参照電極26となるAg/AgCl電極を浸漬し、これらをポテンショスタット28に接続して行った。作用極22と参照電極26との間にはバイアス電圧Vを印加した。また、光源にはキセノンランプを用いて、波長が350nm以上の光又は420nm以上の光のいずれかを70SUN(太陽光の70倍の強度)で照射した。
[optical properties]
Hereinafter, the result of verifying the optical characteristics of crystalline GaN in the present embodiment will be described. As shown in FIG. 7, the optical characteristics were measured by a three-electrode method having a reference electrode in addition to an oxidation reaction electrode and a reduction reaction electrode. A Pt electrode and a reference electrode 26 that serve as a working electrode (reduction reaction electrode) 22 and a counter electrode (oxidation reaction electrode) 24 using GaN in an aqueous solution 20 of potassium sulfate (K 2 SO 4 ) having a concentration of 0.2 M. An Ag / AgCl electrode to be obtained was immersed and connected to a potentiostat 28. A bias voltage V was applied between the working electrode 22 and the reference electrode 26. In addition, a xenon lamp was used as a light source, and either a light having a wavelength of 350 nm or more or a light having a wavelength of 420 nm or more was irradiated with 70 SUN (70 times the intensity of sunlight).

比較例として、ボロン(B)等の不純物を添加せずに成膜した結晶性GaN膜を作用極22とした構成で測定を行った。また、実施例として、ボロン(B)の不純物として1×1019/cmを超える濃度で添加して成膜した結晶性GaN膜を作用極22とした構成で測定を行った。 As a comparative example, the measurement was performed using a crystalline GaN film formed without adding an impurity such as boron (B) as the working electrode 22. In addition, as an example, the measurement was performed using a crystalline GaN film formed by adding a boron (B) impurity at a concentration exceeding 1 × 10 19 / cm 3 as a working electrode 22.

図8は、比較例におけるバイアス電圧Vと光励起電流Iとの関係を示すグラフである。図8に示すように、比較例では、350nm以上の光を照射した場合には電流が流れたが、420nm以上のみの光を照射した場合には電流は流れなかった。   FIG. 8 is a graph showing the relationship between the bias voltage V and the photoexcitation current I in the comparative example. As shown in FIG. 8, in the comparative example, a current flowed when irradiated with light of 350 nm or more, but no current flowed when irradiated with light of 420 nm or more.

図9は、実施例におけるバイアス電圧Vと光励起電流Iとの関係を示すグラフである。図9に示すように、実施例では、350nm以上の光を照射した場合のみならず、420nm以上のみの光を照射した場合にも電流が流れた。すなわち、本実施の形態における結晶性GaNは、可視光応答性があることが判明した。また、350nm以上の光を照射した場合でも、比較例に比べて10倍程度の光応答性があることが判明した。   FIG. 9 is a graph showing the relationship between the bias voltage V and the photoexcitation current I in the example. As shown in FIG. 9, in the example, current flowed not only when irradiated with light of 350 nm or more, but also when irradiated with light of 420 nm or more. That is, it has been found that the crystalline GaN in this embodiment has a visible light response. Moreover, even when irradiated with light of 350 nm or more, it was found that there was about 10 times as much photoresponsiveness as compared with the comparative example.

図10は、実施例において、光照射を断続的に行った場合の照射時間と光励起電流との関係を示す。なお、図10の測定では、水溶液20を濃度0.1Mのリン酸水素カリウム(KHPO)+硫酸二水素カリウム(KHPO)とし、350nm以上の波長の光を70SUNの強度で照射した。また、バイアス電圧Vは+0.8V(参照電極)とした。また、作用極22は、本実施の形態における結晶性GaNのみを用いた材料と、結晶性GaNに助触媒IrOxを担持させた材料とについて測定を行った。 FIG. 10 shows the relationship between the irradiation time and the photoexcitation current when light irradiation is intermittently performed in the example. In the measurement of FIG. 10, the aqueous solution 20 is 0.1 M potassium hydrogen phosphate (K 2 HPO 4 ) + potassium dihydrogen sulfate (KH 2 PO 4 ), and light having a wavelength of 350 nm or more is emitted with an intensity of 70 SUN. Irradiated. The bias voltage V was +0.8 V (reference electrode). In addition, the working electrode 22 was measured for a material using only crystalline GaN in the present embodiment and a material in which the co-catalyst IrOx is supported on the crystalline GaN.

図10に示すように、結晶性GaNのみを用いた材料で作用極22を構成した場合、結晶性GaNに助触媒IrOxを担持させた材料で作用極22を構成した場合のいずれにおいても安定して光励起電流が流れることが確認できた。また、結晶性GaNに助触媒IrOxを担持させることによって光応答性が向上することが判明した。   As shown in FIG. 10, when the working electrode 22 is made of a material using only crystalline GaN, the working electrode 22 is stable in any case where the working electrode 22 is made of a material in which the cocatalyst IrOx is supported on crystalline GaN. It was confirmed that photoexcitation current flows. It was also found that photoresponsiveness is improved by supporting the promoter IrOx on crystalline GaN.

図11は、実施例において、酸素の生成について確認した結果を示す。酸素の測定は、図10の測定と同様の構成にて行った。図11に示すように、結晶性GaNのみを用いた材料で作用極22を構成した場合、結晶性GaNに助触媒IrOxを担持させた材料で作用極22を構成した場合のいずれにおいても酸素の生成を確認できた。ただし、結晶性GaNのみを用いた材料で作用極22を構成した場合、酸素の生成が時間と共に低下した。   FIG. 11 shows the results confirmed for the generation of oxygen in the examples. The measurement of oxygen was performed with the same configuration as the measurement of FIG. As shown in FIG. 11, in the case where the working electrode 22 is made of a material using only crystalline GaN, and in the case where the working electrode 22 is made of a material in which the cocatalyst IrOx is supported on crystalline GaN, The generation was confirmed. However, when the working electrode 22 was made of a material using only crystalline GaN, the generation of oxygen decreased with time.

10 結晶性GaN膜、12 基板、20 水溶液、22 作用極、26 参照電極、28 ポテンショスタット。   10 crystalline GaN film, 12 substrate, 20 aqueous solution, 22 working electrode, 26 reference electrode, 28 potentiostat.

Claims (5)

単位体積当たりの窒化ガリウム(GaN)の割合が90%以上である結晶性GaNであって、ボロン(B)、マグネシウム(Mg)及びシリコン(Si)の添加量の合計が1×1019/cmを超えることを特徴とする結晶性GaN。 Crystalline GaN in which the ratio of gallium nitride (GaN) per unit volume is 90% or more, and the total amount of boron (B), magnesium (Mg), and silicon (Si) added is 1 × 10 19 / cm Crystalline GaN characterized by exceeding three . 請求項1に記載の結晶性GaNであって、
表面電子顕微鏡観察における表面に存在する空洞の割合が5%以上であることを特徴とする結晶性GaN。
The crystalline GaN according to claim 1,
Crystalline GaN characterized in that the ratio of cavities existing on the surface in a surface electron microscope observation is 5% or more.
請求項1又は2に記載の結晶性GaNであって、
フラクタル構造を有することを特徴とする結晶性GaN。
The crystalline GaN according to claim 1 or 2,
Crystalline GaN characterized by having a fractal structure.
請求項1〜3のいずれか1項に記載の結晶性GaNであって、
単結晶であることを特徴とする結晶性GaN。
The crystalline GaN according to any one of claims 1 to 3,
Crystalline GaN characterized by being a single crystal.
単位体積当たりの窒化ガリウム(GaN)の割合が90%以上である結晶性GaNの気相成長方法であって、
前記結晶性GaNの成膜中にボロン(B)、マグネシウム(Mg)及びシリコン(Si)を添加量の合計が1×1019/cmを超えるだけ添加することを特徴とする結晶性GaNの気相成長方法。
A method for vapor phase growth of crystalline GaN in which the ratio of gallium nitride (GaN) per unit volume is 90% or more,
The crystalline GaN is formed by adding boron (B), magnesium (Mg), and silicon (Si) during the formation of the crystalline GaN so that the total addition amount exceeds 1 × 10 19 / cm 3 . Vapor growth method.
JP2016247692A 2016-12-21 2016-12-21 Chemical vapor deposition method for crystalline gallium nitride (GaN) and crystalline gallium nitride (GaN) Active JP6855782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016247692A JP6855782B2 (en) 2016-12-21 2016-12-21 Chemical vapor deposition method for crystalline gallium nitride (GaN) and crystalline gallium nitride (GaN)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016247692A JP6855782B2 (en) 2016-12-21 2016-12-21 Chemical vapor deposition method for crystalline gallium nitride (GaN) and crystalline gallium nitride (GaN)

Publications (2)

Publication Number Publication Date
JP2018101718A true JP2018101718A (en) 2018-06-28
JP6855782B2 JP6855782B2 (en) 2021-04-07

Family

ID=62714480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016247692A Active JP6855782B2 (en) 2016-12-21 2016-12-21 Chemical vapor deposition method for crystalline gallium nitride (GaN) and crystalline gallium nitride (GaN)

Country Status (1)

Country Link
JP (1) JP6855782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3575026A1 (en) 2018-05-28 2019-12-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Welding state determination device, welding state determination method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3575026A1 (en) 2018-05-28 2019-12-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Welding state determination device, welding state determination method, and program

Also Published As

Publication number Publication date
JP6855782B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
US20170217785A1 (en) Inorganic halide perovskite nanowires and methods of fabrication thereof
Fernández-Garrido et al. Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy
US6762134B2 (en) Metal-assisted chemical etch to produce porous group III-V materials
Al-Salman et al. Electrodeposition of Ge, Si and Si x Ge 1− x from an air-and water-stable ionic liquid
US9627199B2 (en) Methods of fabricating micro- and nanostructure arrays and structures formed therefrom
Huang et al. Atomically thin cesium lead bromide perovskite quantum wires with high luminescence
CN103814160B (en) The manufacturing method and function element for the functional layer that composite substrate, its manufacturing method, 13 race&#39;s element nitrides are constituted
Geng et al. Monodisperse GaN nanowires prepared by metal-assisted chemical etching with in situ catalyst deposition
Vambol et al. Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide
Tyagi et al. Direct growth of self-aligned single-crystalline GaN nanorod array on flexible Ta foil for photocatalytic solar water-splitting
Luo et al. Spontaneous CVD growth of InxGa1-xN/GaN core/shell nanowires for photocatalytic hydrogen generation
JP2020068371A (en) Method and device for manufacturing structure
Tessarek et al. Self-Catalyzed Growth of Vertically Aligned InN Nanorods by Metal–Organic Vapor Phase Epitaxy
JP6855782B2 (en) Chemical vapor deposition method for crystalline gallium nitride (GaN) and crystalline gallium nitride (GaN)
Sankaranarayanan et al. Catalytic growth of gallium nitride nanowires on wet chemically etched substrates by chemical vapor deposition
US11380765B2 (en) Structure and intermediate structure
Ma et al. Direct electrochemical deposition of crystalline silicon nanowires at T≥ 60° C
JP2016100427A (en) Quantum dot nanowire and manufacturing method of the same, and light emitting element
KR100803053B1 (en) Method for fabricating periodic zinc oxide nanorod arrays
JP4569304B2 (en) A method for producing a periodic table group 13 metal nitride crystal and a method for producing a semiconductor device using the same.
Park et al. The growth behavior of GaN NWs on Si (1 1 1) by the dispersion of Au colloid catalyst using pulsed MOCVD
Marín Ramírez et al. ZnO Nanostructures Synthesized by Vapor Transport and Liquid Phase Synthesis Techniques: Growth and Properties
US9755023B2 (en) Photoelectrochemical cell including Ga(Sbx)N1-x semiconductor electrode
Ravi et al. Epitaxial growth of AlN microwalls on wet etched GaN template by MOCVD
JP2006240895A (en) Method for producing aluminum-based nitride crystal and laminated substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6855782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150