JP2018101467A - Manufacturing method of all-solid battery and all-solid battery - Google Patents

Manufacturing method of all-solid battery and all-solid battery Download PDF

Info

Publication number
JP2018101467A
JP2018101467A JP2016245143A JP2016245143A JP2018101467A JP 2018101467 A JP2018101467 A JP 2018101467A JP 2016245143 A JP2016245143 A JP 2016245143A JP 2016245143 A JP2016245143 A JP 2016245143A JP 2018101467 A JP2018101467 A JP 2018101467A
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
powder
sheet
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016245143A
Other languages
Japanese (ja)
Other versions
JP6955862B2 (en
Inventor
小林 正一
Shoichi Kobayashi
正一 小林
藤井 信三
Shinzo Fujii
信三 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2016245143A priority Critical patent/JP6955862B2/en
Publication of JP2018101467A publication Critical patent/JP2018101467A/en
Application granted granted Critical
Publication of JP6955862B2 publication Critical patent/JP6955862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of all-solid battery capable of improving ion conductivity of a solid electrolyte layer.SOLUTION: A manufacturing method of all-solid battery including a lamination electrode body of integral sintered compact laminating a positive electrode layer, a solid electrolyte layer 1, and a negative electrode layer, includes a solid electrolyte layer sheet manufacturing step of manufacturing a sheet-like solid electrolyte material containing solid electrolyte powder, and a step of manufacturing the lamination electrode body by sintering a lamination clamping the sheet-like solid electrolyte material between a sheet-like negative electrode layer material containing powder of negative electrode active material and powder of solid electrolyte, and a laminar positive electrode layer material containing powder of positive electrode active material and powder of solid electrolyte. In the solid electrolyte layer sheet manufacturing step, powder of first solid electrolyte 10a having particle size of 2.1-2.5 μm, and powder of second solid electrolyte 10b having particle size of 0.18-0.25 μm are used as the powder of solid electrolyte.SELECTED DRAWING: Figure 1

Description

本発明は全固体電池の製造方法および全固体電池に関する。   The present invention relates to an all-solid battery manufacturing method and an all-solid battery.

リチウム二次電池は、各種二次電池の中でもエネルギー密度が高いことで知られている。しかし一般に普及しているリチウム二次電池は、電解質に可燃性の有機電解液を用いているため、リチウム二次電池では、液漏れ、短絡、過充電などに対する安全対策が他の電池よりも厳しく求められている。そこで近年、電解質に酸化物系や硫化物系の固体電解質を用いた全固体電池に関する研究開発が盛んに行われている。固体電解質は、固体中でイオン伝導が可能なイオン伝導体を主体として構成される材料であり、従来のリチウム二次電池のように可燃性の有機電解液に起因する各種問題が原理的に発生しない。そして全固体電池は層状の正極(正極層)と層状の負極(負極層)との間に層状の固体電解質(固体電解質層)が狭持されてなる一体的な焼結体(以下、積層電極体とも言う)に集電体を形成した構造を有している。   Lithium secondary batteries are known for their high energy density among various secondary batteries. However, since lithium secondary batteries that are widely used use flammable organic electrolytes as electrolytes, lithium secondary batteries have stricter safety measures against liquid leakage, short-circuiting, overcharging, etc. than other batteries. It has been demanded. In recent years, therefore, research and development have been actively conducted on all-solid-state batteries using oxide-based or sulfide-based solid electrolytes as electrolytes. Solid electrolytes are mainly composed of ionic conductors that can conduct ions in solids, and in principle, various problems caused by flammable organic electrolytes occur like conventional lithium secondary batteries. do not do. An all-solid battery is an integrated sintered body (hereinafter referred to as a laminated electrode) in which a layered solid electrolyte (solid electrolyte layer) is sandwiched between a layered positive electrode (positive electrode layer) and a layered negative electrode (negative electrode layer). A current collector).

積層電極体の製造方法としては金型を用いて原料粉体を加圧して得た成形体を焼成する方法(以下、圧縮成形法とも言う)や周知のグリーンシートを用いた方法(以下、グリーンシート法)などがある。圧縮成形法では、金型内に正極層、固体電解質層、および負極層の各層の原料粉体を順次層状(シート状)に充填して一軸方向に加圧することによって成形された積層体を焼成して積層電極体を得る。   As a manufacturing method of the laminated electrode body, a method of firing a molded body obtained by pressurizing raw material powder using a mold (hereinafter also referred to as compression molding method) or a method using a known green sheet (hereinafter referred to as green) Sheet method). In the compression molding method, the layered product is fired by filling the raw material powder of each layer of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer into a layer (sheet shape) in a mold and pressing in a uniaxial direction. Thus, a laminated electrode body is obtained.

グリーンシート法は、正極活物質と固体電解質を含むスラリー状の正極層材料、負極活物質と固体電解質を含むスラリー状の負極層材料、および固体電解質を含むスラリー状の固体電解質層材料をそれぞれシート状のグリーンシートに成形するとともに、固体電解質層材料のグリーンシートを正極層材料と負極層材料のグリーンシートで挟持した積層体を焼成して焼結体にすることで作製される。なお正極層および負極層(以下、総称して電極層とも言う)に含まれている固体電解質は、粉体状の正極活物質および負極活物質の表面に被膜されつつ、電極活物質の粒子間に介在することで電極層でのイオン伝導性を発現させる機能を担っている。   In the green sheet method, a slurry-like positive electrode layer material containing a positive electrode active material and a solid electrolyte, a slurry-like negative electrode layer material containing a negative electrode active material and a solid electrolyte, and a slurry-like solid electrolyte layer material containing a solid electrolyte are each sheeted. And forming a sintered body by firing a laminate in which a solid electrolyte layer material green sheet is sandwiched between a positive electrode layer material and a negative electrode layer material green sheet. The solid electrolyte contained in the positive electrode layer and the negative electrode layer (hereinafter collectively referred to as the electrode layer) is coated between the particles of the electrode active material while being coated on the surfaces of the powdered positive electrode active material and the negative electrode active material. It has a function of expressing ionic conductivity in the electrode layer by intervening in the electrode layer.

正極活物質や負極活物質(以下、総称して電極活物質とも言う)としては従来のリチウム二次電池に使用されていた材料を使用することができる。また全固体電池では可燃性の電解液を用いないことから、より高い電位差が得られる電極活物質についても研究されている。固体電解質としては、一般式Liで表されるNASICON型酸化物系の固体電解質があり、当該NASICON型酸化物系の固体電解質としては、以下の特許文献1に記載されている、Li1.5Al0.5Ge1.5(PO(以下、LAGPとも言う)がよく知られている。なお以下の非特許文献1には全固体電池の概要が記載されている。 As the positive electrode active material and the negative electrode active material (hereinafter also collectively referred to as an electrode active material), materials used in conventional lithium secondary batteries can be used. In addition, since an all-solid-state battery does not use a flammable electrolyte, an electrode active material capable of obtaining a higher potential difference has been studied. The solid electrolyte has the formula Li a X b Y c P d O NASICON type oxide-based solid electrolyte represented by e, as the solid electrolyte of the NASICON type oxide, Patent Document 1 below The described Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (hereinafter also referred to as LAGP) is well known. Non-Patent Document 1 below outlines all-solid-state batteries.

特開2013−45738号公報JP 2013-45738 A

大阪府立大学 無機化学研究グループ、”全固体電池の概要”、[online]、[平成28年9月8日検索]、インターネット<URL:http://www.chem.osakafu-u.ac.jp/ohka/ohka2/research/battery_li.pdf>Osaka Prefectural University Inorganic Chemistry Research Group, “Summary of All Solid-State Batteries”, [online], [Search September 8, 2016], Internet <URL: http://www.chem.osakafu-u.ac.jp /ohka/ohka2/research/battery_li.pdf>

全固体電池の基本構成である積層電極体は、固体電解質層を正極層と負極層で挟持した構造の焼結体からなる。全固体電池における特徴的な構成要素である固体電解質は、焼成によって結晶化することでイオン伝導性を発現する。固体電解質は電極層にも含まれており、電極層内における固体電解質は、電極活物質の粒子間に介在してその粒子間の極めて微小な距離でのイオン伝導を補助する役目を担っている。固体電解質のみからなる固体電解質層は、電極層内における電極活物質間の距離と比較して積層方向で大きく離間する正極層と負極層との間に介在し、充放電反応に直接寄与するイオンを正負極間で授受させる機能を担っている。したがって固体電解質層のイオン伝導性の良否が全固体電池の性能を大きく左右する。すなわち全固体電池を実用化させるためには、固体電解質層のイオン伝導性を向上させることが重要である。   A laminated electrode body, which is a basic configuration of an all-solid battery, includes a sintered body having a structure in which a solid electrolyte layer is sandwiched between a positive electrode layer and a negative electrode layer. A solid electrolyte, which is a characteristic component in an all-solid-state battery, exhibits ionic conductivity by being crystallized by firing. The solid electrolyte is also contained in the electrode layer, and the solid electrolyte in the electrode layer is interposed between the particles of the electrode active material and plays a role of assisting ionic conduction at a very small distance between the particles. . The solid electrolyte layer consisting only of the solid electrolyte is an ion that directly intervenes between the positive electrode layer and the negative electrode layer that are largely separated in the stacking direction as compared to the distance between the electrode active materials in the electrode layer, and directly contributes to the charge / discharge reaction. Has the function of transferring between the positive and negative electrodes. Therefore, the quality of the solid electrolyte layer greatly affects the performance of the all-solid battery. That is, in order to put an all-solid battery into practical use, it is important to improve the ionic conductivity of the solid electrolyte layer.

そこで本発明は固体電解質層のイオン伝導性を向上させることができる全固体電池の製造方法とイオン伝導性に優れた固体電解質層を備えた全固体電池を提供することを目的としている。   Therefore, an object of the present invention is to provide a method for producing an all solid state battery capable of improving the ionic conductivity of the solid electrolyte layer and an all solid state battery provided with a solid electrolyte layer excellent in ionic conductivity.

上記目的を達成するための本発明は、一体的な焼結体で、正極用の電極活物質と固体電解質を含む正極層、固体電解質を含む固体電解質層、および負極用の電極活物質と固体電解質を含む負極層がこの順に積層されてなる積層電極体を備えた全固体電池の製造方法であって、
前記固体電解質の粉体を含むシート状の固体電解質材料を作製する固体電解質層シート作製ステップと、
負極活物質の粉体と前記固体電解質の粉体とを含むシート状の負極層材料と、正極活物質の粉体と前記固体電解質の粉体とを含む層状の正極層材料との間に前記シート状の固体電解質材料を狭持して得た積層体を焼結させて前記積層電極体を作製する焼成ステップを含み、
固体電解質層シート作製ステップでは、前記固体電解質の粉体として、2.1μm以上2.5μm以下の粒子径を有する第1の固体電解質の粉体と、0.18μm以上0.25μm以下の粒子径を有する第2の固体電解質の粉体とを用いる、
ことを特徴とする全固体電池の製造方法としている。
The present invention for achieving the above object is an integral sintered body, a positive electrode layer containing a positive electrode active material and a solid electrolyte, a solid electrolyte layer containing a solid electrolyte, and a negative electrode active material and a solid. A method for producing an all-solid battery comprising a laminated electrode body in which a negative electrode layer containing an electrolyte is laminated in this order,
A solid electrolyte layer sheet production step of producing a sheet-like solid electrolyte material containing the solid electrolyte powder;
Between the sheet-like negative electrode layer material including the negative electrode active material powder and the solid electrolyte powder, and the layered positive electrode layer material including the positive electrode active material powder and the solid electrolyte powder. Including a firing step of sintering the laminated body obtained by sandwiching the sheet-like solid electrolyte material to produce the laminated electrode body,
In the solid electrolyte layer sheet preparation step, as the solid electrolyte powder, a first solid electrolyte powder having a particle size of 2.1 μm to 2.5 μm and a particle size of 0.18 μm to 0.25 μm A second solid electrolyte powder having
It is set as the manufacturing method of the all-solid-state battery characterized by the above-mentioned.

固体電解質層シート作製ステップでは、前記固体電解質材料中の前記第1の固体電解質の体積V1と、前記第2の固体電解質の体積V2との体積比V1/V2を590≦V1/V2≦2679とする全固体電池の製造方法としてもよい。   In the solid electrolyte layer sheet manufacturing step, the volume ratio V1 / V2 between the volume V1 of the first solid electrolyte in the solid electrolyte material and the volume V2 of the second solid electrolyte is 590 ≦ V1 / V2 ≦ 2679. It is good also as a manufacturing method of the all-solid-state battery to do.

前記固体電解質は、一般式Li1.5Al0.5Ge1.5(POで表されるLAGPであり、前記焼成ステップでは600℃以上650℃以下の温度で前記積層体を焼結させる全固体電池の製造方法とすることもできる。 The solid electrolyte is LAGP represented by a general formula Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , and the laminate is fired at a temperature of 600 ° C. or higher and 650 ° C. or lower in the firing step. It can also be set as the manufacturing method of the all-solid-state battery combined.

また本発明の範囲には、層状の正極と負極との間に層状の固体電解質が狭持された一体的な焼結体からなる積層電極体を備えた全固体電池であって、前記層状の固体電解質には2.1μm以上2.5μm以下の粒子径を有する第1の固体電解質の粒子と、0.18μm以上0.25μm以下の粒子径を有する第2の固体電解質の粒子とが含まれることを特徴とする全固体電池も含まれている。前記層状の固体電解質中の前記第1の固体電解質の体積V1と、前記第2の固体電解質の体積V2との体積比V1/V2が590≦V1/V2≦2679である全固体電池とすることもできる。   Further, within the scope of the present invention, there is provided an all-solid battery comprising a laminated electrode body made of an integral sintered body in which a layered solid electrolyte is sandwiched between a layered positive electrode and a negative electrode, The solid electrolyte includes a first solid electrolyte particle having a particle size of 2.1 μm or more and 2.5 μm or less, and a second solid electrolyte particle having a particle size of 0.18 μm or more and 0.25 μm or less. An all solid state battery characterized by this is also included. An all-solid battery in which the volume ratio V1 / V2 of the volume V1 of the first solid electrolyte in the layered solid electrolyte and the volume V2 of the second solid electrolyte is 590 ≦ V1 / V2 ≦ 2679 You can also.

本発明に係る全固体電池の製造方法によれば、固体電解質層のイオン伝導性を向上させることができる。また本発明に係る全固体電池は、固体電解質層におけるイオン伝導性に優れている。   According to the manufacturing method of the all-solid-state battery which concerns on this invention, the ionic conductivity of a solid electrolyte layer can be improved. Moreover, the all-solid-state battery which concerns on this invention is excellent in the ionic conductivity in a solid electrolyte layer.

上記焼結体に含まれるLAGPを作製するための手順を示す図である。It is a figure which shows the procedure for producing LAGP contained in the said sintered compact. 上記LAGPを用いたサンプルの作製手順を示す図である。It is a figure which shows the preparation procedures of the sample using the said LAGP. 本発明の実施例に係る製造方法に基づいて作製した焼結体の構造を示す概略図である。It is the schematic which shows the structure of the sintered compact produced based on the manufacturing method which concerns on the Example of this invention. 上記実施例に係る製造方法に基づいて作製したサンプルの電子顕微鏡写真である。It is an electron micrograph of the sample produced based on the manufacturing method which concerns on the said Example. 上記実施例に係る製造方法に基づいて作製したその他のサンプルの電子顕微鏡写真である。It is an electron micrograph of the other sample produced based on the manufacturing method which concerns on the said Example. 低い温度で焼成したサンプルの電子顕微鏡写真である。It is an electron micrograph of the sample baked at low temperature. 高い温度で焼成したサンプルの電子顕微鏡写真である。It is an electron micrograph of the sample baked at high temperature.

===本発明の実施例===
本発明の実施形態に係る全固体電池は、積層電極体を構成する固体電解質層に粒子径が異なる2種類の粉体状の固体電解質が含まれている点に特徴を有している。そこで、本発明の実施形態に係る全固体電池の固体電解質層の特性のみを評価するために、積層電極体から電極層を省略した固体電解質層のみからなる焼結体を作製した。以下にその焼結体の作製手順を実施例として挙げる。
=== Embodiment of the Invention ===
The all solid state battery according to the embodiment of the present invention is characterized in that two types of powdered solid electrolytes having different particle diameters are included in the solid electrolyte layer constituting the laminated electrode body. Therefore, in order to evaluate only the characteristics of the solid electrolyte layer of the all-solid-state battery according to the embodiment of the present invention, a sintered body including only the solid electrolyte layer in which the electrode layer is omitted from the laminated electrode body was manufactured. The procedure for producing the sintered body will be described below as an example.

===第1の実施例===
第1の実施例に係る焼結体の作製手順では、固体電解質としてLAGPを用いるとともに、当該焼結体はグリーンシート法を用いて作製している。そして第1の実施例に係る焼結体の作製手順では、LAGPの粒子径が異なる各種焼結体をサンプルとして作製した。そして各サンプルのイオン伝導度を測定した。以下では、まずLAGPの作製手順について説明し、次に、そのLAGPを用いたサンプルの作製手順について説明する。
=== First Embodiment ===
In the manufacturing procedure of the sintered body according to the first example, LAGP is used as the solid electrolyte, and the sintered body is manufactured using the green sheet method. In the procedure for producing the sintered body according to the first example, various sintered bodies having different LAGP particle sizes were produced as samples. And the ionic conductivity of each sample was measured. Below, the preparation procedure of LAGP is demonstrated first, and the preparation procedure of the sample using the LAGP is demonstrated next.

<固体電解質の作製>
図1にサンプルに含ませるLAGPからなるセラミック粉体の作製手順を示した。まずLAGPの原料となるLiCO、Al、GeO、NHPOの粉末を所定の組成比になるように秤量して磁性乳鉢やボールミルで混合し(s1)、その混合物をアルミナルツボなどに入れて300℃〜400℃の温度で3h〜5hの時間を掛けて仮焼成する(s2)。仮焼成によって得られた仮焼き粉体を1200℃〜1400℃の温度で1h〜2h熱処理することで、仮焼き粉体を溶解させる(s3)。そしてその溶解した試料を急冷してガラス化することで、非晶質のLAGPからなる粉体を得る(s4)。次にその非晶質のLAGP粉体を200μm以下の粒子径となるように粗解砕し(s5)、その粗解砕された固体電解質の粉体をボールミルなどの粉砕装置を用いて粉砕することで、目的とする粒子径(メジアン径)のLAGPの粉体(以下、LAGP粉体とも言う)を得る(s6)。
<Preparation of solid electrolyte>
FIG. 1 shows a procedure for producing a ceramic powder made of LAGP included in a sample. First, the powder of Li 2 CO 3 , Al 2 O 3 , GeO 2 , NH 4 H 2 PO 4 which is a raw material of LAGP is weighed to a predetermined composition ratio and mixed with a magnetic mortar or ball mill (s1), The mixture is put in an alumina crucible or the like and pre-baked at a temperature of 300 ° C. to 400 ° C. for 3 hours to 5 hours (s2). The calcined powder obtained by calcining is heat-treated at a temperature of 1200 ° C. to 1400 ° C. for 1 h to 2 h, thereby dissolving the calcined powder (s3). And the powder which consists of amorphous LAGP is obtained by rapidly cooling the melt | dissolved sample and vitrifying (s4). Next, the amorphous LAGP powder is coarsely crushed to a particle size of 200 μm or less (s5), and the coarsely crushed solid electrolyte powder is pulverized using a pulverizer such as a ball mill. Thus, a LAGP powder (hereinafter also referred to as a LAGP powder) having a target particle diameter (median diameter) is obtained (s6).

<焼結体の作製>
図2は、上記手順で作製したLAGP粉体を用いたサンプルをグリーンシート法により作製する手順を示す図である。まずバインダをLAGP粉体に対し20wt%〜30wt%添加するとともに、溶媒としてエタノールなどの無水アルコールをLAGP粉体に対し30wt%〜50wt%添加し、ペースト状の固体電解質層材料の原料を混合する(s11)。また、このときサンプルに応じて粒子径が異なる2種類のLAGP粉体を含ませた。ここでは粒子径が異なる2種類のLAGPの割合を質量比で等量となるようにした。なお以下では2種類のLAGPについて、粒子径の大きなLAGPをLAGP1とし、粒子径が小さい方をLAGP2とする。
<Preparation of sintered body>
FIG. 2 is a diagram showing a procedure for producing a sample using the LAGP powder produced by the above procedure by the green sheet method. First, a binder is added in an amount of 20 wt% to 30 wt% with respect to the LAGP powder, and an anhydrous alcohol such as ethanol is added as a solvent in an amount of 30 wt% to 50 wt% with respect to the LAGP powder, and the raw material of the paste-like solid electrolyte layer material is mixed. (S11). At this time, two types of LAGP powders having different particle sizes depending on the sample were included. Here, the ratio of the two types of LAGP having different particle diameters was made equal in mass ratio. In the following, for two types of LAGP, LAGP having a larger particle diameter is referred to as LAGP1, and the smaller particle diameter is referred to as LAGP2.

以上のようにして得た固体電解質層材料の原料をボールミルで20h混合する(s12)。それによって固体電解質層材料の原料が均一に混合されてなるペースト状の固体電解質層材料が得られる。ペースト状の固体電解質層材料を真空中にて脱泡した後(s13)、その固体電解質層材料をドクターブレード法にてPETフィルム上に塗工し、シート状の固体電解質層材料を得る(s14)。また固体電解質層シートを目的の厚さに調整するために、一回の塗工で得られた1枚のシート状の固体電解質層材料を所定枚積層するとともに、その積層したものをプレス圧着してグリーンシートからなる固体電解質層シートを得る。ここでは4枚のシート状の固体電解質層材料を積層して固体電解質層シートを得た。次に、固体電解質層シートを所定の平面サイズに裁断した(s15)。そして固体電極層のみの特性を評価するために、裁断した固体電解質層シートを650℃の温度で2時間焼成してサンプルを作製した(s16)。なお実際の全固体電池では、正極層と負極層に対応するグリーンシートを作製し、固体電解質層シートをそれらの正極層と負極層のグリーンシートで挟持して圧着した積層体を焼成して積層電極体を作製することになる。   The raw material of the solid electrolyte layer material obtained as described above is mixed for 20 h by a ball mill (s12). Thereby, a paste-like solid electrolyte layer material obtained by uniformly mixing the raw materials of the solid electrolyte layer material is obtained. After defoaming the paste-like solid electrolyte layer material in vacuum (s13), the solid electrolyte layer material is coated on a PET film by the doctor blade method to obtain a sheet-like solid electrolyte layer material (s14). ). In order to adjust the thickness of the solid electrolyte layer sheet to a desired thickness, a single sheet of solid electrolyte layer material obtained by one coating is laminated, and the laminated one is press-bonded. Thus, a solid electrolyte layer sheet made of a green sheet is obtained. Here, four sheet-like solid electrolyte layer materials were laminated to obtain a solid electrolyte layer sheet. Next, the solid electrolyte layer sheet was cut into a predetermined plane size (s15). And in order to evaluate the characteristic of only a solid electrode layer, the cut solid electrolyte layer sheet | seat was baked at the temperature of 650 degreeC for 2 hours, and the sample was produced (s16). In an actual all-solid-state battery, green sheets corresponding to the positive electrode layer and the negative electrode layer are prepared, and a laminate in which the solid electrolyte layer sheet is sandwiched between the positive electrode layer and the green sheet of the negative electrode layer and pressed is fired and stacked. An electrode body is produced.

<サンプルの特性>
上記の手順により、LAGP1とLAGP2の粒子径の組み合わせが異なる種々のサンプルを作製した。サンプルはシート状の焼結体であり、そのシートの表裏両面にスパッタリングによって金(Au)の薄膜からなる集電体層を形成した上で、各サンプルのインピーダンスを測定し、各サンプルのイオン伝導度(S/cm)を求めた。
<Sample characteristics>
By the above procedure, various samples having different combinations of particle sizes of LAGP1 and LAGP2 were prepared. The sample is a sheet-like sintered body, and a current collector layer composed of a thin film of gold (Au) is formed on both the front and back surfaces of the sheet by sputtering. Then, the impedance of each sample is measured, and the ion conduction of each sample The degree (S / cm) was determined.

以下の表1に各サンプルのイオン伝導度を示した。   Table 1 below shows the ionic conductivity of each sample.

表1に示したように、LAGP1の粒子径φ1が2.0μmのサンプル1〜7、およびLAGP1の粒子径φ1が2.6μmのサンプル40〜46ではLAGP2の粒子径φ2によらず、一般的なイオン伝導度の良否判定の基準となる1×10−5(S/cm)を下回った。またφ1が2.1μm〜2.5μmのサンプル8〜39では、φ1とφ2の差に応じて1×10−5(S/cm)以上のイオン伝導度が得られたものがあった。またサンプル8〜39では、総じて、φ1とφ2との差が過大であっても過小であってもイオン伝導度が減少傾向となることが分かった。 As shown in Table 1, samples 1 to 7 having a particle size φ1 of LAGP1 of 2.0 μm and samples 40 to 46 having a particle size φ1 of LAGP1 of 2.6 μm are generally used regardless of the particle size φ2 of LAGP2. It was lower than 1 × 10 −5 (S / cm), which is a criterion for determining the quality of ionic conductivity. In Samples 8 to 39 having φ1 of 2.1 μm to 2.5 μm, an ion conductivity of 1 × 10 −5 (S / cm) or more was obtained depending on the difference between φ1 and φ2. In Samples 8 to 39, as a whole, it was found that the ionic conductivity tends to decrease regardless of whether the difference between φ1 and φ2 is too large or too small.

以上により、まず、電解質層に含ませるLAGPの粒子径を均一にしてしまうと、高いイオン伝導度が得られ難いことがわかった。すなわち粒子径の異なる2種類のLAGP1とLAGP2を混在させることでイオン伝導度を向上させることができる。またLAGP1とLAGP2の粒子径(φ1、φ2)には適切な数値範囲が存在することも分かった。そこで以下の表2に、表1においてイオン伝導度が1×10−5(S/cm)以上となったサンプルを抜粋して示した。 From the above, it has been found that if the particle size of LAGP contained in the electrolyte layer is made uniform, it is difficult to obtain high ionic conductivity. That is, ionic conductivity can be improved by mixing two types of LAGP1 and LAGP2 having different particle diameters. It was also found that there was an appropriate numerical range for the particle sizes (φ1, φ2) of LAGP1 and LAGP2. Therefore, in Table 2 below, samples having an ionic conductivity of 1 × 10 −5 (S / cm) or more in Table 1 are extracted and shown.

表2より、イオン伝導度が1×10−5(S/cm)以上となるLAGP1とLAGP2の粒子径(φ1、φ2)の条件は、LAGP1の粒子径φ1が2.1μm≦φ1≦2.5μmである場合、LAGP2の粒子径φ2が0.18μm≦φ2≦0.25μmであれば、確実にイオン伝導度が1×10−5(S/cm)以上となることが分かった。なお、固体電解質層に異なる粒子径のLAGPを混在させることでイオン伝導度が向上するメカニズムとしては、以下のように考えることができる。 From Table 2, the conditions of the particle diameters (φ1, φ2) of LAGP1 and LAGP2 at which the ion conductivity is 1 × 10 −5 (S / cm) or more are such that the particle diameter φ1 of LAGP1 is 2.1 μm ≦ φ1 ≦ 2. In the case of 5 μm, it was found that if the particle diameter φ2 of LAGP2 is 0.18 μm ≦ φ2 ≦ 0.25 μm, the ion conductivity is surely 1 × 10 −5 (S / cm) or more. In addition, as a mechanism which improves ionic conductivity by mixing LAGP of a different particle diameter in a solid electrolyte layer, it can be considered as follows.

限られた空間内に小さな粒子を充填させると空隙率が減少して密度は増加するものの、焼結前の形状を維持する成形性に劣る。すなわち成形不良が発生する。成形不良を防止するためにバインダなどのイオン伝導性に寄与しない物質を多量に使えば、当然のことながらイオン伝導度が低下する。一方、固体電解質層に大きな粒子を用いると、粒子間の空隙が大きくなり焼結性が低下し、やはりイオン伝導性が低下する。すなわちLAGPの粒子径を一定にすると、焼結性と成形性を両立させることが難しい。   When small particles are filled in a limited space, the porosity decreases and the density increases, but the formability for maintaining the shape before sintering is poor. That is, molding defects occur. If a large amount of a substance that does not contribute to ionic conductivity such as a binder is used in order to prevent molding defects, the ionic conductivity naturally decreases. On the other hand, when large particles are used for the solid electrolyte layer, voids between the particles become large, the sinterability is lowered, and the ionic conductivity is also lowered. That is, if the particle size of LAGP is constant, it is difficult to achieve both sinterability and formability.

それに対し、粒子径が異なる2種類のLAGPを固体電解質層中に混在させると、図3に示したように、成形性を高める大きな固体電解質の粒子10a間に小さな固体電解質の粒子10bが介在するため、固体電解質層1中の空隙率も減少して焼結性が向上する。すなわち小さな粒子10bが大きな粒子10a同士の結着性を高めるように機能する。そして実用的なイオン伝導度を得るためには、大きな粒子10aと小さな粒子10bのそれぞれの粒子径(φ1、φ2)を適正な数値範囲に設定することが必要となり、その数値範囲が上述した2.1μm≦φ1≦2.5μm、かつ0.18μm≦φ2≦0.25μmとなる。図4は、表1と表2においてイオン伝導度が1.89×10−5(S/cm)となったサンプル27の焼結状態を示す電子顕微鏡写真である。図中に点線の楕円で示した領域などを見れば明らかなように、大きな粒子間に小さな粒子が介在していることがわかる。 On the other hand, when two types of LAGP having different particle diameters are mixed in the solid electrolyte layer, as shown in FIG. 3, small solid electrolyte particles 10b are interposed between large solid electrolyte particles 10a that improve moldability. Therefore, the porosity in the solid electrolyte layer 1 is also reduced and the sinterability is improved. That is, the small particles 10b function to enhance the binding property between the large particles 10a. In order to obtain practical ion conductivity, it is necessary to set the respective particle diameters (φ1, φ2) of the large particles 10a and the small particles 10b within appropriate numerical ranges, and the numerical ranges are those described above. 0.1 μm ≦ φ1 ≦ 2.5 μm and 0.18 μm ≦ φ2 ≦ 0.25 μm. FIG. 4 is an electron micrograph showing the sintered state of Sample 27 whose ion conductivity is 1.89 × 10 −5 (S / cm) in Tables 1 and 2. As is apparent from the area indicated by the dotted ellipse in the figure, it can be seen that small particles are interposed between large particles.

<体積比について>
上述したサンプルの作製手順では、固体電解質中にLAGP1とLAGP2を50:50の質量比で含ませていた。そして図3に示したようなメカニズムでイオン伝導度が増加していることを考慮すると、固体電解質層中におけるLAGP1の占有体積V1とLAGP2の占有体積V2との比率がイオン伝導度を低下させる条件となる。そこでLAGP2の体積V2に対するLAGP1の体積V1の比V1/V2(=φ1/φ2)を計算してみた。
<About volume ratio>
In the sample preparation procedure described above, LAGP1 and LAGP2 were included in the solid electrolyte at a mass ratio of 50:50. Considering that the ionic conductivity is increased by the mechanism as shown in FIG. 3, the ratio of the occupied volume V1 of LAGP1 and the occupied volume V2 of LAGP2 in the solid electrolyte layer reduces the ionic conductivity. It becomes. Therefore, the ratio V1 / V2 (= φ1 3 / φ2 3 ) of the volume V1 of LAGP1 to the volume V2 of LAGP2 was calculated.

以下の表3に、表2に示した各サンプルの体積比V1/V2をイオン伝導度とともに示した。   Table 3 below shows the volume ratio V1 / V2 of each sample shown in Table 2 together with the ionic conductivity.

表3に示したように、LAGP1とLAGP2の粒子径が適正数値範囲内にあるサンプル10〜13、18〜21、26〜29、および34〜37における体積比LAGP1/LAGP2は593vol%〜2679vol%である。そして粒子径が適正数値範囲外にあっても、イオン伝導度が1×10−5(S/cm)以上となるサンプル14、15、24、25、32、33が存在する。そして粒子径が適正数値範囲内にあるサンプルのうち、サンプル13の体積比V1/V2が最も小さく593vol%である。そしてLAGP1とLAGP2の粒子径が適正数値範囲外にあるサンプルの内、このサンプル13の粒子径に最も近いサンプル14もイオン伝導度伝導度が1×10−5(S/cm)以上であり、当該サンプル14の体積比V1/V2は527vol%である。したがって、LAGP1とLAGP2の粒子径が上記適正数値範囲内にあれば、イオン伝導度伝導度が1×10−5(S/cm)以上となるための体積比V1/V2の下限は、少なくとも527vol%〜593vol%の範囲内にあることから、当該体積比V1/V2の下限を590vol%に設定すれば確実にイオン伝導度伝導度が1×10−5(S/cm)以上となる。 As shown in Table 3, the volume ratio LAGP1 / LAGP2 in the samples 10 to 13, 18 to 21, 26 to 29, and 34 to 37 in which the particle sizes of LAGP1 and LAGP2 are within the appropriate numerical range is 593 vol% to 2679 vol%. It is. And even if a particle diameter is outside an appropriate numerical range, samples 14, 15, 24, 25, 32, and 33 having an ionic conductivity of 1 × 10 −5 (S / cm) or more exist. And among the samples whose particle diameter is in the proper numerical range, the volume ratio V1 / V2 of sample 13 is the smallest and is 593 vol%. Of the samples in which the particle sizes of LAGP1 and LAGP2 are outside the proper numerical range, the sample 14 closest to the particle size of this sample 13 also has an ionic conductivity of 1 × 10 −5 (S / cm) or more, The volume ratio V1 / V2 of the sample 14 is 527 vol%. Therefore, if the particle diameters of LAGP1 and LAGP2 are within the above-mentioned appropriate numerical range, the lower limit of the volume ratio V1 / V2 for the ionic conductivity conductivity to be 1 × 10 −5 (S / cm) or more is at least 527 vol. Since the lower limit of the volume ratio V1 / V2 is set to 590 vol%, the ionic conductivity conductivity is surely 1 × 10 −5 (S / cm) or more.

一方体積比V1/V2の上限については、粒子径が適正数値範囲内にあるサンプルのうち、サンプル34の体積比V1/V2が最も大きく2679vol%である。そしてLAGP1とLAGP2の粒子径が適正数値範囲外にあるサンプルの内、このサンプル24の粒子径に最も近いサンプル33もイオン伝導度伝導度が1×10−5(S/cm)以上であり、当該サンプル33の体積比V1/V2は3180vol%である。したがって、LAGP1とLAGP2の粒子径が上記適正数値範囲内にあれば、体積比V1/V2の上限は、少なくとも2679vol%〜3180vol%の範囲内にあることから、イオン伝導度伝導度が1×10−5(S/cm)以上となるための当該体積比V1/V2の上限を2679vol%に設定すれば確実にイオン伝導度伝導度が1×10−5(S/cm)以上となる。 On the other hand, regarding the upper limit of the volume ratio V1 / V2, the sample 34 has the largest volume ratio V1 / V2 of 2679 vol% among the samples whose particle diameters are within the appropriate numerical range. And among the samples in which the particle sizes of LAGP1 and LAGP2 are outside the proper numerical range, the sample 33 closest to the particle size of this sample 24 also has an ionic conductivity of 1 × 10 −5 (S / cm) or more, The volume ratio V1 / V2 of the sample 33 is 3180 vol%. Therefore, if the particle diameters of LAGP1 and LAGP2 are within the above-mentioned appropriate numerical range, the upper limit of the volume ratio V1 / V2 is at least in the range of 2679 vol% to 3180 vol%, and therefore the ionic conductivity conductivity is 1 × 10. If the upper limit of the volume ratio V1 / V2 to be −5 (S / cm) or more is set to 2679 vol%, the ionic conductivity conductivity is surely 1 × 10 −5 (S / cm) or more.

===第2の実施例===
第2の実施例に係る焼結体の作製手順では、焼成温度を600℃とした以外は第1の実施例と同様にして焼結体を作製している。そして、LAGPの粒子径が異なる各種焼結体をサンプルとして作製した。表4に第2の実施例の手順で作製したサンプルにおけるLAGP1とLAGP2の粒子径、イオン伝導度、およびLAGP1とLAGP2との体積比V1/V2を示した。
=== Second Embodiment ===
In the production procedure of the sintered body according to the second example, the sintered body is produced in the same manner as in the first example except that the firing temperature is 600 ° C. Various sintered bodies having different LAGP particle diameters were prepared as samples. Table 4 shows the particle sizes of LAGP1 and LAGP2, the ionic conductivity, and the volume ratio V1 / V2 of LAGP1 and LAGP2 in the sample prepared by the procedure of the second example.

表4に示したように、LAGP1の粒子径φ1が2.0μmのサンプル47〜53、およびLAGP1の粒子径φ1が2.6μmのサンプル86〜92ではLAGP2の粒子径φ2によらず、一般的なイオン伝導度の良否判定の基準となる1×10−5(S/cm)を下回った。φ1が2.1μm〜2.5μmのサンプル54〜85では、φ1とφ2の差に応じて1×10−5(S/cm)以上のイオン伝導度が得られたものがあった。そして第1の実施例において規定したφ1とφ2の適正数値範囲、2.1μm≦φ1≦2.5μm、0.18μm≦φ2≦0.25μmに該当するサンプル56〜59、64〜67、72〜75、80〜83のイオン伝導度は全て1×10−5(S/cm)以上であった。表5に、これらのサンプルのイオン伝導度を抜粋して示した。 As shown in Table 4, the samples 47 to 53 in which the particle diameter φ1 of LAGP1 is 2.0 μm and the samples 86 to 92 in which the particle diameter φ1 of LAGP1 is 2.6 μm are generally used regardless of the particle diameter φ2 of LAGP2. It was lower than 1 × 10 −5 (S / cm), which is a criterion for determining the quality of ionic conductivity. Samples 54 to 85 having φ1 of 2.1 μm to 2.5 μm had an ion conductivity of 1 × 10 −5 (S / cm) or more depending on the difference between φ1 and φ2. Samples 56 to 59, 64 to 67, 72 to which correspond to the appropriate numerical ranges of φ1 and φ2 defined in the first embodiment, 2.1 μm ≦ φ1 ≦ 2.5 μm, 0.18 μm ≦ φ2 ≦ 0.25 μm The ionic conductivities of 75 and 80 to 83 were all 1 × 10 −5 (S / cm) or more. Table 5 shows the ionic conductivity of these samples.

表5に示したように、固体電解質層は、低温で焼成しても、適正な粒子径を有する2種類の固体電解質を含んだ状態で焼結さえすれば、実用的なイオン伝導度が得られることがわかった。図5は、表5においてイオン伝導度が1.29×10−5(S/cm)となったサンプル73の焼結状態を示す電子顕微鏡写真である。先に図4に示した電子顕微鏡写真と同様に、大きな粒子間に小さな粒子が介在していることがわかる。 As shown in Table 5, even if the solid electrolyte layer is fired at a low temperature, practical ion conductivity can be obtained as long as it is sintered in a state containing two kinds of solid electrolytes having appropriate particle sizes. I found out that FIG. 5 is an electron micrograph showing the sintered state of Sample 73 having an ionic conductivity of 1.29 × 10 −5 (S / cm) in Table 5. As in the electron micrograph shown in FIG. 4, it can be seen that small particles are interposed between large particles.

なおLAGPは結晶化することで、イオン伝導性を得ることができるが、焼成温度が低すぎて結晶化が不足する場合は、実用的なイオン伝導度が得られない可能性がある。図6に600℃未満の低い温度で焼成した固体電解質層の電子顕微鏡写真を示した。先に図4や図5に示した結晶化されたLAGPと比較して明らかに組織の状態が異なっており、粒子の外形が明瞭であり、非晶質のLAGPが残存して結晶化が不足していることがわかる。また焼成温度が高すぎると固体電解質が発泡して固体電解質層中に空洞が発生する可能性がある。図7に660℃で焼成した固体電解質層の電子顕微鏡写真を示した。発泡によって生じた空洞20が確認できる。したがって、固体電解質としてLAGPを用いた全固体電池では、焼成温度を600℃以上650℃以下とすることが望ましい。   Note that LAGP can obtain ionic conductivity by crystallization, but if the calcination temperature is too low and crystallization is insufficient, there is a possibility that practical ionic conductivity may not be obtained. FIG. 6 shows an electron micrograph of the solid electrolyte layer fired at a low temperature of less than 600 ° C. Compared with the crystallized LAGP previously shown in FIGS. 4 and 5, the structure is clearly different, the outer shape of the particles is clear, and amorphous LAGP remains, resulting in insufficient crystallization. You can see that If the firing temperature is too high, the solid electrolyte may foam and voids may be generated in the solid electrolyte layer. FIG. 7 shows an electron micrograph of the solid electrolyte layer fired at 660 ° C. The cavity 20 produced by foaming can be confirmed. Therefore, in an all-solid battery using LAGP as the solid electrolyte, it is desirable that the firing temperature be 600 ° C. or higher and 650 ° C. or lower.

===その他の実施例===
上記実施例では、固体電解質としてLAGPを用いていたが、もちろんLAGP以外の固体電解質であってもよい。そして固体電解質中に粒子径が異なる2種類の固体電解質を含ませ、2種類の固体電解質のそれぞれの粒子径φ1、φ2、あるいはφ1とφ2に加え上述した体積比V1/V2を上記の数値範囲に設定すればよい。また焼成温度については、十分に結晶化し、かつ発泡が生じない適正な温度で焼結すればよい。
=== Other Embodiments ===
In the above embodiment, LAGP is used as the solid electrolyte, but a solid electrolyte other than LAGP may be used. Then, two types of solid electrolytes having different particle diameters are included in the solid electrolyte, and the volume ratio V1 / V2 described above is added to the above-mentioned volume ratio in addition to the particle sizes φ1, φ2 or φ1 and φ2 of the two types of solid electrolytes. Should be set. Further, the firing temperature may be sintered at an appropriate temperature that is sufficiently crystallized and does not cause foaming.

上記実施例は、グリーンシート法を用いた全固体電池の製造方法に適用することを想定したものである。もちろん、固体電解質層に含ませる固体電解質の粉体の粒子径を上述した適正数値範囲に設定するのであれば、圧縮成形法によって全固体電池を製造してもよい。   The said Example assumes applying to the manufacturing method of the all-solid-state battery using the green sheet method. Of course, as long as the particle diameter of the solid electrolyte powder contained in the solid electrolyte layer is set within the above-described appropriate numerical range, an all-solid battery may be manufactured by a compression molding method.

なお上記実施形態および実施例は、例として提示したものであり、発明の範囲を限定するものではない。上記の構成は、適宜組み合わせて実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, the said embodiment and Example are shown as an example and do not limit the scope of the invention. The above configurations can be implemented in appropriate combination, and various omissions, replacements, and changes can be made without departing from the scope of the invention. The above-described embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof in the same manner as included in the scope and spirit of the invention.

1 固体電解質層、10a LAGP1の粒子、10b LAGP2の粒子、
s11 固体電解質混合工程、s14 塗工工程、s16 焼成工程
1 solid electrolyte layer, 10a LAGP1 particles, 10b LAGP2 particles,
s11 solid electrolyte mixing step, s14 coating step, s16 firing step

Claims (5)

一体的な焼結体で、正極用の電極活物質と固体電解質を含む正極層、固体電解質を含む固体電解質層、および負極用の電極活物質と固体電解質を含む負極層がこの順に積層されてなる積層電極体を備えた全固体電池の製造方法であって、
前記固体電解質の粉体を含むシート状の固体電解質材料を作製する固体電解質層シート作製ステップと、
負極活物質の粉体と前記固体電解質の粉体とを含むシート状の負極層材料と、正極活物質の粉体と前記固体電解質の粉体とを含む層状の正極層材料との間に前記シート状の固体電解質材料を狭持して得た積層体を焼結させて前記積層電極体を作製する焼成ステップを含み、
固体電解質層シート作製ステップでは、前記固体電解質の粉体として、2.1μm以上2.5μm以下の粒子径を有する第1の固体電解質の粉体と、0.18μm以上0.25μm以下の粒子径を有する第2の固体電解質の粉体とを用いる、
ことを特徴とする全固体電池の製造方法。
An integral sintered body in which a positive electrode layer containing a positive electrode active material and a solid electrolyte, a solid electrolyte layer containing a solid electrolyte, and a negative electrode layer containing a negative electrode active material and a solid electrolyte are laminated in this order. A method for producing an all-solid battery comprising a laminated electrode body comprising:
A solid electrolyte layer sheet production step of producing a sheet-like solid electrolyte material containing the solid electrolyte powder;
Between the sheet-like negative electrode layer material including the negative electrode active material powder and the solid electrolyte powder, and the layered positive electrode layer material including the positive electrode active material powder and the solid electrolyte powder. Including a firing step of sintering the laminated body obtained by sandwiching the sheet-like solid electrolyte material to produce the laminated electrode body,
In the solid electrolyte layer sheet preparation step, as the solid electrolyte powder, a first solid electrolyte powder having a particle size of 2.1 μm to 2.5 μm and a particle size of 0.18 μm to 0.25 μm A second solid electrolyte powder having
A method for producing an all-solid battery.
請求項1において、固体電解質層シート作製ステップでは、前記固体電解質材料中の前記第1の固体電解質の体積V1と、前記第2の固体電解質の体積V2との体積比V1/V2を590≦V1/V2≦2679とすることを特徴とする全固体電池の製造方法。   2. The volume ratio V1 / V2 between the volume V1 of the first solid electrolyte and the volume V2 of the second solid electrolyte in the solid electrolyte material is 590 ≦ V1 in the solid electrolyte layer sheet manufacturing step according to claim 1. / V2 ≦ 2679, The manufacturing method of the all-solid-state battery characterized by the above-mentioned. 請求項1または2において、前記固体電解質は、一般式Li1.5Al0.5Ge1.5(POで表されるLAGPであり、前記焼成ステップでは600℃以上650℃以下の温度で前記積層体を焼結させることを特徴とする全固体電池の製造方法。 3. The solid electrolyte according to claim 1, wherein the solid electrolyte is LAGP represented by a general formula of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , and is 600 ° C. or higher and 650 ° C. or lower in the firing step. A method for producing an all-solid battery, wherein the laminate is sintered at a temperature. 層状の正極と負極との間に層状の固体電解質が狭持された一体的な焼結体からなる積層電極体を備えた全固体電池であって、前記層状の固体電解質には2.1μm以上2.5μm以下の粒子径を有する第1の固体電解質の粒子と、0.18μm以上0.25μm以下の粒子径を有する第2の固体電解質の粒子とが含まれることを特徴とする全固体電池。   An all-solid battery comprising a laminated electrode body made of an integral sintered body in which a layered solid electrolyte is sandwiched between a layered positive electrode and a negative electrode, wherein the layered solid electrolyte has a thickness of 2.1 μm or more An all-solid battery comprising: a first solid electrolyte particle having a particle size of 2.5 μm or less; and a second solid electrolyte particle having a particle size of 0.18 μm or more and 0.25 μm or less. . 請求項4において、前記層状の固体電解質中の前記第1の固体電解質の体積V1と、前記第2の固体電解質の体積V2との体積比V1/V2が590≦V1/V2≦2679であることを特徴とする全固体電池。   5. The volume ratio V1 / V2 between the volume V1 of the first solid electrolyte in the layered solid electrolyte and the volume V2 of the second solid electrolyte in the layered solid electrolyte is 590 ≦ V1 / V2 ≦ 2679. All-solid battery characterized by.
JP2016245143A 2016-12-19 2016-12-19 Manufacturing method of all-solid-state battery and all-solid-state battery Active JP6955862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016245143A JP6955862B2 (en) 2016-12-19 2016-12-19 Manufacturing method of all-solid-state battery and all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016245143A JP6955862B2 (en) 2016-12-19 2016-12-19 Manufacturing method of all-solid-state battery and all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2018101467A true JP2018101467A (en) 2018-06-28
JP6955862B2 JP6955862B2 (en) 2021-10-27

Family

ID=62714405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245143A Active JP6955862B2 (en) 2016-12-19 2016-12-19 Manufacturing method of all-solid-state battery and all-solid-state battery

Country Status (1)

Country Link
JP (1) JP6955862B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463479A (en) * 2020-04-10 2020-07-28 上海电气集团股份有限公司 Solid electrolyte, composite solid electrolyte, lithium ion battery and preparation method and application thereof
CN113745649A (en) * 2020-05-29 2021-12-03 太阳诱电株式会社 Solid electrolyte and method for producing same, and all-solid-state battery and method for producing same
KR20220024859A (en) 2019-12-20 2022-03-03 도와 일렉트로닉스 가부시키가이샤 Amorphous lithium ion conductive oxide powder and manufacturing method thereof, and manufacturing method of lithium ion conductive oxide powder having NASICON type crystal structure
KR20220117533A (en) * 2021-02-17 2022-08-24 한국세라믹기술원 Solid electrolyte complex for lithium secondary battery
WO2023053929A1 (en) * 2021-09-30 2023-04-06 Agc株式会社 Solid electrolyte powder, solid electrolyte layer, and lithium-ion all-solid-state battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209256A (en) * 2011-03-15 2012-10-25 Ohara Inc All-solid secondary battery
JP2013157084A (en) * 2012-01-26 2013-08-15 Toyota Motor Corp All solid battery
WO2013136488A1 (en) * 2012-03-15 2013-09-19 株式会社 東芝 Electrodes for solid electrolyte rechargeable battery, solid electrolyte rechargeable battery, and battery pack
JP2015069842A (en) * 2013-09-30 2015-04-13 Fdk株式会社 Method for manufacturing all-solid battery
JP2015173100A (en) * 2014-02-24 2015-10-01 富士フイルム株式会社 Solid electrolyte composition, method of manufacturing the same, electrode sheet for battery using the same, and solid secondary battery
JP2016502746A (en) * 2013-11-26 2016-01-28 エルジー・ケム・リミテッド Secondary battery including solid electrolyte layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209256A (en) * 2011-03-15 2012-10-25 Ohara Inc All-solid secondary battery
JP2013157084A (en) * 2012-01-26 2013-08-15 Toyota Motor Corp All solid battery
WO2013136488A1 (en) * 2012-03-15 2013-09-19 株式会社 東芝 Electrodes for solid electrolyte rechargeable battery, solid electrolyte rechargeable battery, and battery pack
JP2015069842A (en) * 2013-09-30 2015-04-13 Fdk株式会社 Method for manufacturing all-solid battery
JP2016502746A (en) * 2013-11-26 2016-01-28 エルジー・ケム・リミテッド Secondary battery including solid electrolyte layer
JP2015173100A (en) * 2014-02-24 2015-10-01 富士フイルム株式会社 Solid electrolyte composition, method of manufacturing the same, electrode sheet for battery using the same, and solid secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220024859A (en) 2019-12-20 2022-03-03 도와 일렉트로닉스 가부시키가이샤 Amorphous lithium ion conductive oxide powder and manufacturing method thereof, and manufacturing method of lithium ion conductive oxide powder having NASICON type crystal structure
CN111463479A (en) * 2020-04-10 2020-07-28 上海电气集团股份有限公司 Solid electrolyte, composite solid electrolyte, lithium ion battery and preparation method and application thereof
CN111463479B (en) * 2020-04-10 2022-11-22 上海电气集团股份有限公司 Solid electrolyte, composite solid electrolyte, lithium ion battery, and preparation method and application thereof
CN113745649A (en) * 2020-05-29 2021-12-03 太阳诱电株式会社 Solid electrolyte and method for producing same, and all-solid-state battery and method for producing same
CN113745649B (en) * 2020-05-29 2024-05-10 太阳诱电株式会社 Solid electrolyte and method for producing same, and all-solid battery and method for producing same
KR20220117533A (en) * 2021-02-17 2022-08-24 한국세라믹기술원 Solid electrolyte complex for lithium secondary battery
KR102485463B1 (en) 2021-02-17 2023-01-05 한국세라믹기술원 Solid electrolyte complex for lithium secondary battery
WO2023053929A1 (en) * 2021-09-30 2023-04-06 Agc株式会社 Solid electrolyte powder, solid electrolyte layer, and lithium-ion all-solid-state battery

Also Published As

Publication number Publication date
JP6955862B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP6955862B2 (en) Manufacturing method of all-solid-state battery and all-solid-state battery
JP4940080B2 (en) Lithium ion conductive solid electrolyte and method for producing the same
JP5910737B2 (en) All solid battery
JP5742940B2 (en) All-solid battery and method for manufacturing the same
JP6955881B2 (en) All-solid-state battery and manufacturing method of all-solid-state battery
JP6455807B2 (en) Lithium ion secondary battery
WO2013008676A1 (en) All-solid-state battery and manufacturing method thereof
JP2010140725A (en) Lithium-ion secondary battery and its manufacturing method
JP6491810B2 (en) All-solid battery and method for producing all-solid battery
JP6757573B2 (en) Manufacturing method of all-solid-state battery and all-solid-state battery
JP2016001598A (en) Lithium ion secondary battery
JP2019145486A (en) All-solid battery
JP2009181872A (en) Lithium ion secondary battery, and manufacturing method thereof
JP6209413B2 (en) Manufacturing method of all solid state battery
JP6801778B2 (en) All solid state battery
WO2013035525A1 (en) Laminated molded body for all-solid-state battery, all-solid-state battery, and production method therefor
JP6931529B2 (en) Manufacturing method of all-solid-state battery
JP7002199B2 (en) Manufacturing method of all-solid-state battery
JP6228767B2 (en) Solid electrolyte materials, solid electrolytes, and all-solid batteries
JP6622974B2 (en) Manufacturing method of all solid state battery
JP6491915B2 (en) Method for producing solid electrolyte
JP6432969B2 (en) Raw material powder for solid electrolyte
WO2019163448A1 (en) All-solid battery
JP7070833B2 (en) Solid electrolyte sheet and its manufacturing method, and all-solid-state secondary battery
JP5207448B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R150 Certificate of patent or registration of utility model

Ref document number: 6955862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250