JP2018100615A - Control device for urea scr system and control method - Google Patents

Control device for urea scr system and control method Download PDF

Info

Publication number
JP2018100615A
JP2018100615A JP2016246649A JP2016246649A JP2018100615A JP 2018100615 A JP2018100615 A JP 2018100615A JP 2016246649 A JP2016246649 A JP 2016246649A JP 2016246649 A JP2016246649 A JP 2016246649A JP 2018100615 A JP2018100615 A JP 2018100615A
Authority
JP
Japan
Prior art keywords
value
concentration
addition amount
correction value
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016246649A
Other languages
Japanese (ja)
Other versions
JP6769861B2 (en
Inventor
宗近 堤
Munechika Tsutsumi
宗近 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2016246649A priority Critical patent/JP6769861B2/en
Publication of JP2018100615A publication Critical patent/JP2018100615A/en
Application granted granted Critical
Publication of JP6769861B2 publication Critical patent/JP6769861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide an addition control device for urea water capable of performing feedback control on an addition amount of the urea water while using a detection value of a NOx sensor even in a case where a concentration of ammonia interferes the detection value, and a control method.SOLUTION: An ECU 30 acquires a detection concentration of a NOx sensor 23 that is installed at a downstream side of a selective reduction type catalyst 18 and calculates an ammonia concentration at the downstream side of the selective reduction type catalyst 18, a basic addition amount of urea water which makes the detection concentration become a target concentration, and a correction value based on a deviation between the target concentration and the detection concentration. In a case where the ammonia concentration is equal to or lower than a threshold and the detection concentration is higher than the target concentration, the ECU 30 then calculates such a correction value that a correction amount to an increase side for the basic addition amount is made greater as the deviation is greater. In a case where the ammonia concentration is higher than the threshold and the detection concentration is higher than the target concentration, the ECU calculates such a correction value that a correction amount to a decrease side for the basic addition amount is made greater as the deviation is greater.SELECTED DRAWING: Figure 1

Description

本発明は、尿素SCRシステムの制御装置および制御方法に関する。   The present invention relates to a control device and a control method for a urea SCR system.

従来から、排気ガスに含まれる窒素酸化物(以下、NOxという)を浄化する排気浄化システムとして、排気ガスに尿素水を添加する添加弁と該添加弁の下流に位置する選択還元型触媒と用いた尿素SCR(Selective Catalytic Reduction)システムが知られている。尿素SCRシステムでは、排気ガスに添加された尿素水が排気ガスの熱によってアンモニアへと加水分解される。そして、そのアンモニアを含む排気ガスが選択還元型触媒に流入すると、排気ガス中のNOxがアンモニアを還元剤として窒素と水とに還元される。添加弁による尿素水の添加量は、選択還元型触媒の下流に配設されたNOxセンサーの検出値に基づくフィードバック制御によって制御される。   Conventionally, as an exhaust gas purification system for purifying nitrogen oxides (hereinafter referred to as NOx) contained in exhaust gas, an addition valve for adding urea water to exhaust gas and a selective reduction catalyst located downstream of the addition valve are used. Urea SCR (Selective Catalytic Reduction) systems are known. In the urea SCR system, urea water added to the exhaust gas is hydrolyzed into ammonia by the heat of the exhaust gas. When the exhaust gas containing ammonia flows into the selective reduction catalyst, NOx in the exhaust gas is reduced to nitrogen and water using ammonia as a reducing agent. The amount of urea water added by the addition valve is controlled by feedback control based on a detection value of a NOx sensor disposed downstream of the selective catalytic reduction catalyst.

ところで、選択還元型触媒を通過した排気ガスには該選択還元型触媒で消費されなかったアンモニアが含まれている。また、NOxセンサーは、NOxだけでなくアンモニアにも反応する特性を有している。そのため、NOxセンサーの検出値には、NOxに基づく検出値とアンモニアに基づく検出値とが含まれている。こうしたNOxセンサーの特性に関連して、例えば特許文献1には、選択還元型触媒の下流にNOxセンサーとアンモニアセンサーとを設置し、該NOxセンサーの検出値と該アンモニアセンサーの検出値とに基づいて尿素水の添加量を補正する技術が開示されている。   By the way, the exhaust gas that has passed through the selective catalytic reduction catalyst contains ammonia that has not been consumed by the selective catalytic reduction catalyst. Further, the NOx sensor has a characteristic of reacting not only with NOx but also with ammonia. Therefore, the detection value of the NOx sensor includes a detection value based on NOx and a detection value based on ammonia. In relation to such characteristics of the NOx sensor, for example, in Patent Document 1, a NOx sensor and an ammonia sensor are installed downstream of the selective reduction catalyst, and based on the detected value of the NOx sensor and the detected value of the ammonia sensor. A technique for correcting the amount of urea water added is disclosed.

特開2002−266627号公報JP 2002-266627 A

しかしながら、選択還元型触媒の下流にアンモニアセンサーを設置することは、部品点数の増加を招く。そのため、尿素SCRシステムには、NOxセンサーの検出値にアンモニアが干渉するとしても該検出値を用いた尿素水の添加量のフィードバック制御を可能とする方策が求められている。   However, installing an ammonia sensor downstream of the selective catalytic reduction catalyst increases the number of parts. Therefore, there is a demand for a urea SCR system that enables feedback control of the addition amount of urea water using the detected value even if ammonia interferes with the detected value of the NOx sensor.

本発明は、NOxセンサーの検出値にアンモニアが干渉する場合であっても該検出値を用いた尿素水の添加量のフィードバック制御を行うことのできる尿素SCRシステムの制御装置および制御方法を提供することを目的とする。   The present invention provides a control device and a control method for a urea SCR system capable of performing feedback control of the addition amount of urea water using the detected value even when ammonia interferes with the detected value of the NOx sensor. For the purpose.

上記課題を解決する尿素SCRシステムの制御装置は、アンモニアを還元剤としてNOxを還元する選択還元型触媒の下流に設置されたNOxセンサーの検出値である検出濃度を取得する取得部と、前記選択還元型触媒を通過した排気ガスのアンモニア濃度を演算する濃度演算部と、前記検出濃度が目標濃度となる尿素水の基本添加量を演算する基本添加量演算部と、前記検出濃度と前記目標濃度との偏差に基づいて前記基本添加量の補正値を演算する補正値演算部とを備え、前記補正値演算部は、前記検出濃度に対するアンモニアの干渉の有無を判定する閾値を保持し、前記濃度演算部の演算値が前記閾値以下であり、かつ、前記検出濃度が前記目標濃度よりも大きい場合に、前記偏差が大きいほど前記基本添加量に対する増量側への補正量を大きくする前記補正値を演算し、前記演算値が前記閾値よりも大きく、かつ、前記検出濃度が前記目標濃度よりも大きい場合に、前記偏差が大きいほど前記基本添加量に対する減量側への補正量を大きくする前記補正値を演算する。   The control device of the urea SCR system that solves the above problems includes an acquisition unit that acquires a detection concentration that is a detection value of a NOx sensor installed downstream of a selective reduction catalyst that reduces NOx using ammonia as a reducing agent, and the selection A concentration calculation unit that calculates the ammonia concentration of the exhaust gas that has passed through the reduction catalyst, a basic addition amount calculation unit that calculates the basic addition amount of urea water at which the detected concentration becomes the target concentration, the detected concentration and the target concentration A correction value calculation unit that calculates a correction value of the basic addition amount based on a deviation from the difference, and the correction value calculation unit holds a threshold value for determining the presence or absence of ammonia interference with the detected concentration, and the concentration When the calculated value of the calculation unit is equal to or less than the threshold value and the detected concentration is larger than the target concentration, the larger the deviation, the more the correction to the increase side with respect to the basic addition amount When the calculated value is larger than the threshold value and the detected concentration is larger than the target concentration, the larger the deviation, the smaller the correction to the basic addition amount. The correction value for increasing the amount is calculated.

上記課題を解決する尿素SCRシステムの制御方法は、アンモニアを還元剤としてNOxを還元する選択還元型触媒と、前記選択還元型触媒の上流で排気ガスに尿素水を添加する尿素水添加装置と、前記尿素水添加装置による前記尿素水の添加量を制御する制御装置とを備えた尿素SCRシステムの制御方法であって、前記制御装置は、前記選択還元型触媒の下流に設置されたNOxセンサーの検出値である検出濃度を取得する工程と、前記選択還元型触媒を通過した排気ガスのアンモニア濃度を演算する工程と、前記検出濃度が目標濃度となる尿素水の基本添加量を演算する工程と、前記検出濃度と前記目標濃度との偏差に基づいて前記基本添加量の補正値を演算する工程とを備え、前記補正値を演算する工程では、前記アンモニア濃度の演算値が前記検出濃度に対するアンモニアの干渉の有無を判定する閾値以下であり、かつ、前記検出濃度が前記目標濃度よりも大きい場合に、前記偏差が大きいほど前記基本添加量に対する増量側への補正量を大きくする前記補正値が演算され、前記演算値が前記閾値よりも大きく、かつ、前記検出濃度が前記目標濃度よりも大きい場合に、前記偏差が大きいほど前記基本添加量に対する減量側への補正量を大きくする前記補正値が演算される。   A urea SCR system control method that solves the above problems includes a selective reduction catalyst that reduces NOx using ammonia as a reducing agent, a urea water addition device that adds urea water to exhaust gas upstream of the selective reduction catalyst, A urea SCR system control method comprising a control device for controlling the amount of urea water added by the urea water addition device, wherein the control device is a NOx sensor installed downstream of the selective catalytic reduction catalyst. Obtaining a detected concentration that is a detected value; calculating an ammonia concentration of exhaust gas that has passed through the selective reduction catalyst; calculating a basic addition amount of urea water at which the detected concentration becomes a target concentration; A step of calculating a correction value of the basic addition amount based on a deviation between the detected concentration and the target concentration, and in the step of calculating the correction value, When the calculated value is equal to or less than a threshold for determining the presence or absence of ammonia interference with respect to the detected concentration, and the detected concentration is greater than the target concentration, the larger the deviation, the greater the correction to the basic addition amount. When the correction value for increasing the amount is calculated, the calculated value is larger than the threshold value, and the detected concentration is larger than the target concentration, the larger the deviation, the smaller the amount added to the basic addition amount. The correction value for increasing the correction amount is calculated.

上記構成によれば、検出濃度が目標濃度よりも大きい場合であっても、検出濃度にアンモニアが干渉しない場合は基本添加量に対する増量側への補正量を大きくする補正値が演算され、検出濃度にアンモニアが干渉する場合は基本添加量に対する減量側への補正量を大きくする補正値が演算される。これにより、検出濃度にアンモニアが干渉する場合であっても尿素水の添加量をフィードバック制御することができる。しかも、選択還元型触媒の下流におけるアンモニアの濃度が演算により求められるため、選択還元型触媒の下流にアンモニアセンサーを配設する必要もない。   According to the above configuration, even if the detected concentration is larger than the target concentration, if ammonia does not interfere with the detected concentration, a correction value that increases the correction amount to the increase side with respect to the basic addition amount is calculated, and the detected concentration In the case where ammonia interferes, a correction value for increasing the correction amount to the reduction side with respect to the basic addition amount is calculated. As a result, the amount of urea water added can be feedback controlled even when ammonia interferes with the detected concentration. In addition, since the ammonia concentration downstream of the selective catalytic reduction catalyst is obtained by calculation, there is no need to provide an ammonia sensor downstream of the selective catalytic reduction catalyst.

上記尿素SCRシステムの制御装置において、前記補正値演算部は、前記演算値が前記閾値以下であり、かつ、前記検出濃度が前記目標濃度よりも小さい場合に、前記偏差が小さいほど前記基本添加量に対する減量側への補正量を大きくする前記補正値を演算し、前記演算値が前記閾値よりも大きく、かつ、前記検出濃度が前記目標濃度よりも小さい場合に、前記偏差が小さいほど前記基本添加量に対する増量側への補正量を大きくする前記補正値を演算することが好ましい。   In the control device for the urea SCR system, the correction value calculation unit is configured such that when the calculated value is less than or equal to the threshold value and the detected concentration is smaller than the target concentration, the basic addition amount decreases as the deviation decreases. When the correction value for increasing the correction amount to the decrease side with respect to is calculated and the calculated value is larger than the threshold value and the detected concentration is smaller than the target concentration, the basic addition becomes smaller as the deviation is smaller It is preferable to calculate the correction value that increases the correction amount to the increase side with respect to the amount.

上記構成によれば、検出濃度が目標濃度よりも小さい場合であっても、検出濃度にアンモニアが干渉しない場合は基本添加量に対する減量側の補正量を大きくする補正値が演算され、検出濃度にアンモニアが干渉する場合は基本添加量に対する増量側の補正量を大きくする補正値が演算される。その結果、検出濃度にアンモニアが干渉しているか否かに応じて該検出濃度を用いた尿素水の添加量のフィードバック制御を行うことができる。   According to the above configuration, even when the detected concentration is smaller than the target concentration, if ammonia does not interfere with the detected concentration, a correction value that increases the correction amount on the reduction side with respect to the basic addition amount is calculated, and the detected concentration is calculated. When ammonia interferes, a correction value for increasing the correction amount on the increase side with respect to the basic addition amount is calculated. As a result, feedback control of the urea water addition amount using the detected concentration can be performed according to whether ammonia interferes with the detected concentration.

上記尿素SCRシステムの制御装置において、前記補正値演算部は、前記補正値について、前記基本添加量に対する増量側への補正量が最大となる上限値と前記基本添加量を増量側へ補正する場合のリセット値である第1リセット値とを保持し、前記補正値が前記上限値に到達したことを条件の1つとして前記補正値に前記第1リセット値を設定することが好ましい。   In the control device for the urea SCR system, the correction value calculation unit corrects the upper limit value with which the correction amount to the increase side with respect to the basic addition amount becomes maximum and the basic addition amount to the increase side with respect to the correction value. It is preferable that the first reset value is set to the correction value with one of the conditions that the correction value has reached the upper limit value.

上記尿素SCRシステムの制御装置において、前記補正値演算部は、前記補正値について、前記基本添加量に対する減量側への補正量が最大となる下限値と前記基本添加量を減量側へ補正する場合のリセット値である第2リセット値とを保持し、前記補正値が前記下限値に到達したことを条件の1つとして前記補正値を前記第2リセット値に設定することが好ましい。   In the control device for the urea SCR system, the correction value calculation unit corrects the lower limit value with which the correction amount to the reduction side with respect to the basic addition amount becomes maximum and the basic addition amount to the reduction side with respect to the correction value. It is preferable that the correction value is set to the second reset value on the condition that the correction value reaches the lower limit value, and the second reset value is a reset value.

補正値が上限値あるいは下限値に到達する場合、検出濃度を用いたフィードバック制御が正常に行えていない可能性がある。この点、上記構成によれば、補正値が上限値に到達したことを条件の1つとして補正値に第1リセット値が設定される。また、補正値が下限値に到達したことを条件の1つとして補正値に第2リセット値が設定される。これにより、検出濃度を用いたフィードバック制御を正常な状態に復帰させることができる。   When the correction value reaches the upper limit value or the lower limit value, there is a possibility that feedback control using the detected density is not normally performed. In this regard, according to the above configuration, the first reset value is set as the correction value on the condition that the correction value has reached the upper limit value. Also, the second reset value is set as the correction value on the condition that the correction value has reached the lower limit value. Thereby, the feedback control using the detected concentration can be returned to a normal state.

尿素SCRシステムの制御装置の一実施形態を搭載した尿素SCRシステムの概略構成を示す図。The figure which shows schematic structure of the urea SCR system carrying one Embodiment of the control apparatus of a urea SCR system. ECUが有する各種機能部の一例を示す機能ブロック図。The functional block diagram which shows an example of the various function parts which ECU has. 演算処理の手順の一例を示すフローチャート。The flowchart which shows an example of the procedure of a calculation process. 所定条件における尿素水の添加量と各種濃度との関係の一例を示すグラフ。The graph which shows an example of the relationship between the addition amount of urea water in various conditions, and various density | concentrations. リセット処理の手順の一例を示すフローチャート。The flowchart which shows an example of the procedure of a reset process. 第1リセット値にリセットされるまでの補正値の推移の一例を示す図。The figure which shows an example of transition of the correction value until it resets to a 1st reset value. 第2リセット値にリセットされるまでの補正値の推移の一例を示す図。The figure which shows an example of transition of the correction value until it resets to a 2nd reset value.

図1〜図7を参照して尿素SCRシステムの制御装置および制御方法の一実施形態について説明する。
図1に示すように、尿素SCRシステム10は、尿素水添加装置15と、選択還元型触媒18と、尿素SCRシステムの制御装置であるECU(Electronic Control Unit)30とを備えている。ECU30は、尿素水添加装置15による尿素水の添加量を制御する。
An embodiment of a control device and a control method for a urea SCR system will be described with reference to FIGS.
As shown in FIG. 1, the urea SCR system 10 includes a urea water addition device 15, a selective reduction catalyst 18, and an ECU (Electronic Control Unit) 30 that is a control device for the urea SCR system. The ECU 30 controls the amount of urea water added by the urea water adding device 15.

尿素水添加装置15は、排気ガスが流れる排気通路11に尿素水を添加する。尿素水添加装置15は、尿素水タンクや機械式ポンプ等を備えた尿素水供給部16と、排気通路11に配設された添加弁17とを有している。添加弁17は、尿素水供給部16から供給される所定圧力の尿素水を排気通路11に添加する。   The urea water addition device 15 adds urea water to the exhaust passage 11 through which the exhaust gas flows. The urea water addition device 15 includes a urea water supply unit 16 provided with a urea water tank, a mechanical pump, and the like, and an addition valve 17 disposed in the exhaust passage 11. The addition valve 17 adds urea water having a predetermined pressure supplied from the urea water supply unit 16 to the exhaust passage 11.

選択還元型触媒18は、排気通路11における添加弁17の下流に配設されており、添加弁17の添加した尿素水が加水分解したアンモニアと排気ガスに含まれるNOxとを反応させてNOxを窒素や水へと還元する。選択還元型触媒18は、例えば耐熱性に優れたセラミックやステンレスを素材としたフロースルー型のモノリス担体に対して、例えば銅系、鉄系、バナジウム系の各種の触媒金属を胆持させたものである。選択還元型触媒18は、例えば150℃〜350℃の温度範囲を活性温度域として有する。   The selective catalytic reduction catalyst 18 is disposed downstream of the addition valve 17 in the exhaust passage 11, and reacts the ammonia hydrolyzed by the urea water added by the addition valve 17 with NOx contained in the exhaust gas to produce NOx. Reduce to nitrogen or water. The selective catalytic reduction catalyst 18 is obtained by holding, for example, various catalytic metals such as copper, iron, and vanadium with respect to a flow-through type monolith support made of ceramic or stainless steel having excellent heat resistance. It is. The selective catalytic reduction catalyst 18 has, for example, a temperature range of 150 ° C. to 350 ° C. as an active temperature range.

尿素SCRシステム10は、各種の状態量を検出するセンサーとして、酸素濃度センサー21、温度センサー22、NOxセンサー23、吸入空気量センサー24、エンジン回転数センサー25などを有している。酸素濃度センサー21は、排気通路11における選択還元型触媒18の上流に配設され、選択還元型触媒18に流入する排気ガスの酸素濃度Coxを検出する。温度センサー22は、排気通路11における選択還元型触媒18の上流に配設され、選択還元型触媒18に流入する排気ガスの温度を触媒温度Tempとして検出する。NOxセンサー23は、排気通路11における選択還元型触媒18の下流に配設され、選択還元型触媒18を通過した排気ガスにおけるNOxの濃度とアンモニアの濃度とを合わせた濃度を検出濃度Cxとして検出する。吸入空気量センサー24は、エンジンの吸気通路に配設され、エンジンが吸入する空気量である吸入空気量Qaを検出する。エンジン回転数センサー25は、エンジンのクランクシャフトの回転数であるエンジン回転数Neを検出する。各センサー21〜25は、検出した検出値を示す検出信号をECU30に出力する。また、ECU30は、エンジンへの燃料噴射量を制御する燃料噴射制御部26から燃料噴射量Qfを示す検出信号が入力される。   The urea SCR system 10 includes an oxygen concentration sensor 21, a temperature sensor 22, a NOx sensor 23, an intake air amount sensor 24, an engine speed sensor 25, and the like as sensors for detecting various state quantities. The oxygen concentration sensor 21 is disposed upstream of the selective reduction catalyst 18 in the exhaust passage 11 and detects the oxygen concentration Cox of the exhaust gas flowing into the selective reduction catalyst 18. The temperature sensor 22 is disposed upstream of the selective reduction catalyst 18 in the exhaust passage 11 and detects the temperature of the exhaust gas flowing into the selective reduction catalyst 18 as the catalyst temperature Temp. The NOx sensor 23 is disposed downstream of the selective reduction catalyst 18 in the exhaust passage 11, and detects the concentration of the NOx concentration and the ammonia concentration in the exhaust gas that has passed through the selective reduction catalyst 18 as the detected concentration Cx. To do. The intake air amount sensor 24 is disposed in the intake passage of the engine and detects an intake air amount Qa that is the amount of air taken in by the engine. The engine speed sensor 25 detects an engine speed Ne that is the speed of the crankshaft of the engine. Each of the sensors 21 to 25 outputs a detection signal indicating the detected detection value to the ECU 30. Further, the ECU 30 receives a detection signal indicating the fuel injection amount Qf from the fuel injection control unit 26 that controls the fuel injection amount to the engine.

ECU30は、プロセッサ31、メモリ32、入力インターフェース33、および、出力インターフェース34等がバス35を介して互いに接続されたマイクロコントローラーを中心に構成される。ECU30は、入力インターフェース33を介して取得する各種情報、および、メモリ32が格納している各種制御プログラムや各種データに基づいて、添加弁17による尿素水の添加量である目標添加量Qutを演算する。そしてECU30は、目標添加量Qutの分の尿素水が排気ガスに添加されるように出力インターフェース34を介して添加弁17に制御信号を出力する。   The ECU 30 is mainly configured of a microcontroller in which a processor 31, a memory 32, an input interface 33, an output interface 34, and the like are connected to each other via a bus 35. The ECU 30 calculates a target addition amount Qut that is an addition amount of urea water by the addition valve 17 based on various information acquired via the input interface 33 and various control programs and various data stored in the memory 32. To do. The ECU 30 then outputs a control signal to the addition valve 17 via the output interface 34 so that urea water corresponding to the target addition amount Qut is added to the exhaust gas.

図2に示すように、ECU30は、各種機能部として、目標濃度演算部41、基本添加量演算部42、検出濃度取得部43、偏差演算部44、濃度演算部45、補正値演算部47、目標添加量演算部48を備えている。なお、ECU30は、吸入空気量Qaを排気流量Qeとして取り扱う。   As shown in FIG. 2, the ECU 30 includes, as various functional units, a target concentration calculation unit 41, a basic addition amount calculation unit 42, a detected concentration acquisition unit 43, a deviation calculation unit 44, a concentration calculation unit 45, a correction value calculation unit 47, A target addition amount calculation unit 48 is provided. The ECU 30 handles the intake air amount Qa as the exhaust flow rate Qe.

目標濃度演算部41は、検出濃度Cxの目標濃度Cxtを演算する。目標濃度演算部41は、例えば、各種のセンサーからの検出信号に基づくエンジンの運転状態に適した濃度を目標濃度Cxtとして演算する。なお、目標濃度演算部41は、エンジンの運転状態に基づいて目標濃度Cxtを演算する構成に限らず、一定値を目標濃度Cxtとして演算する構成であってもよい。   The target density calculation unit 41 calculates the target density Cxt of the detected density Cx. The target concentration calculation unit 41 calculates, for example, a concentration suitable for the engine operating state based on detection signals from various sensors as the target concentration Cxt. In addition, the target density | concentration calculating part 41 is not restricted to the structure which calculates target density | concentration Cxt based on the driving | running state of an engine, The structure which calculates a fixed value as target density | concentration Cxt may be sufficient.

基本添加量演算部42は、検出濃度Cxが目標濃度Cxtとなる尿素水の基本添加量Qubを演算する。基本添加量演算部42は、例えばエンジン回転数Neや吸入空気量Qa、燃料噴射量Qf等に基づいてエンジンが排出する排気ガスのNOx量を演算し、そのNOx量のNOxが還元される分の尿素水の量を基本添加量Qubとして演算する。   The basic addition amount calculation unit 42 calculates a basic addition amount Qub of urea water at which the detected concentration Cx becomes the target concentration Cxt. The basic addition amount calculation unit 42 calculates the NOx amount of the exhaust gas discharged from the engine based on, for example, the engine speed Ne, the intake air amount Qa, the fuel injection amount Qf, and the like, and the NOx amount of the NOx amount is reduced. Is calculated as the basic addition amount Qub.

検出濃度取得部43は、入力インターフェース33を介してNOxセンサー23からの検出信号に基づく検出濃度Cxを取得する。
偏差演算部44は、検出濃度取得部43の取得した検出濃度Cxと目標濃度演算部41の演算した目標濃度Cxtとの偏差ΔCx(=Cx−Cxt)を演算する。
The detected concentration acquisition unit 43 acquires the detected concentration Cx based on the detection signal from the NOx sensor 23 via the input interface 33.
The deviation calculating unit 44 calculates a deviation ΔCx (= Cx−Cxt) between the detected concentration Cx acquired by the detected concentration acquiring unit 43 and the target concentration Cxt calculated by the target concentration calculating unit 41.

濃度演算部45は、選択還元型触媒18を通過した排気ガスのアンモニアの濃度を演算するモデル46を有している。モデル46は、予め行った実験やシミュレーションの結果から導出されたモデルであって、排気流量Qe、酸素濃度Cox、触媒温度Temp、目標添加量Qut等をパラメーターに含んでいる。モデル46は、排気流量Qe、酸素濃度Cox、目標添加量Qutに相当するアンモニアを含んでいる排気ガスが触媒温度Tempにある選択還元型触媒18を通過したときに選択還元型触媒18の下流で検出されるアンモニアの濃度を演算可能に構成されたモデルである。濃度演算部45は、モデル46を用いて演算した演算値をアンモニア濃度Camとして補正値演算部47に出力する。   The concentration calculation unit 45 has a model 46 that calculates the concentration of ammonia in the exhaust gas that has passed through the selective catalytic reduction catalyst 18. The model 46 is a model derived from the results of experiments and simulations performed in advance, and includes exhaust flow rate Qe, oxygen concentration Cox, catalyst temperature Temp, target addition amount Qut, and the like as parameters. In the model 46, the exhaust gas containing ammonia corresponding to the exhaust gas flow rate Qe, the oxygen concentration Cox, and the target addition amount Qut passes downstream of the selective catalytic reduction catalyst 18 when it passes through the selective catalytic reduction catalyst 18 at the catalyst temperature Temp. It is the model comprised so that calculation of the density | concentration of the detected ammonia was possible. The concentration calculation unit 45 outputs the calculated value calculated using the model 46 to the correction value calculation unit 47 as the ammonia concentration Cam.

補正値演算部47は、偏差演算部44が演算した偏差ΔCxに基づいて尿素水の添加量をフィードバック制御するための補正値Gを演算する。補正値演算部47は、偏差ΔCx、目標濃度Cxt、検出濃度Cx、および、アンモニア濃度Cam等に基づいて、補正値Gを演算する演算処理と補正値Gによるフィードバック制御が正常に行われていないと判断される場合に補正値Gをリセットするリセット処理とを繰り返し行う。補正値Gは、例えば、偏差ΔCxに基づく比例制御を行うための比例項、偏差ΔCxに基づく積分制御を行うための積分項、および、偏差ΔCxに基づく微分制御を行うための微分項等を含んでいる。補正値演算部47は、演算した補正値Gを目標添加量演算部48に出力する。   The correction value calculation unit 47 calculates a correction value G for feedback control of the addition amount of urea water based on the deviation ΔCx calculated by the deviation calculation unit 44. The correction value calculation unit 47 does not normally perform calculation processing for calculating the correction value G based on the deviation ΔCx, the target concentration Cxt, the detected concentration Cx, the ammonia concentration Cam, and the like, and feedback control using the correction value G. If it is determined, the reset process for resetting the correction value G is repeated. The correction value G includes, for example, a proportional term for performing proportional control based on the deviation ΔCx, an integral term for performing integral control based on the deviation ΔCx, a differential term for performing differential control based on the deviation ΔCx, and the like. It is out. The correction value calculation unit 47 outputs the calculated correction value G to the target addition amount calculation unit 48.

なお、補正値演算部47は、補正値Gについて、基本添加量Qubに対する増量側への補正量が最大となる上限値Gmaxと、基本添加量Qubに対する減量側への補正量が最大となる下限値Gminとをメモリ32の所定領域に保持している。また、補正値演算部47は、補正値Gが下限値Gminあるいは上限値Gmaxである状態が継続している期間である継続期間Tcを計時する。また、補正値演算部47は、後述する第1リセット値G1と第2リセット値G2とをメモリ32の所定領域に保持している。   The correction value calculation unit 47 sets an upper limit Gmax that maximizes the correction amount toward the increase side with respect to the basic addition amount Qub and a lower limit that maximizes the correction amount toward the decrease side with respect to the basic addition amount Qu. The value Gmin is held in a predetermined area of the memory 32. Further, the correction value calculation unit 47 counts a continuation period Tc, which is a period in which the state where the correction value G is the lower limit value Gmin or the upper limit value Gmax continues. In addition, the correction value calculation unit 47 holds a first reset value G1 and a second reset value G2, which will be described later, in a predetermined area of the memory 32.

目標添加量演算部48は、基本添加量演算部42の演算した基本添加量Qubを補正値演算部47の演算した補正値Gで補正した値を目標添加量Qutとして演算する。目標添加量演算部48の一例では、基本添加量Qubに対して補正値Gを乗算することにより目標添加量Qutが演算される。なお、基本添加量Qubに対する補正量は、基本添加量Qubに対する目標添加量Qutの比を示すものであり、基本添加量Qubに補正値Gが乗算される構成では補正値Gの値そのものである。   The target addition amount calculation unit 48 calculates a value obtained by correcting the basic addition amount Qub calculated by the basic addition amount calculation unit 42 with the correction value G calculated by the correction value calculation unit 47 as the target addition amount Qut. In an example of the target addition amount calculation unit 48, the target addition amount Qut is calculated by multiplying the basic addition amount Qub by the correction value G. The correction amount with respect to the basic addition amount Qub indicates the ratio of the target addition amount Qut to the basic addition amount Qub, and in the configuration in which the basic addition amount Qub is multiplied by the correction value G, it is the correction value G itself. .

図3および図4を参照して補正値演算部47が実行する演算処理の手順を説明する。
図3に示すように、演算処理において、補正値演算部47は、まず、濃度演算部45がモデル46を用いて演算したアンモニア濃度Camが閾値Camj以下であるか否かを判断する(ステップS101)。
With reference to FIG. 3 and FIG. 4, the procedure of the calculation process performed by the correction value calculation unit 47 will be described.
As shown in FIG. 3, in the calculation process, the correction value calculation unit 47 first determines whether or not the ammonia concentration Cam calculated by the concentration calculation unit 45 using the model 46 is equal to or less than a threshold value Camj (step S101). ).

ここで、図4を参照して閾値Camjについて説明する。図4は、所定の条件下における尿素水の添加量Quと、検出濃度Cx、NOxの濃度Cxn、および、アンモニアの濃度Cxaの各種の濃度Cとの関係の一例を示すグラフである。   Here, the threshold value Camj will be described with reference to FIG. FIG. 4 is a graph showing an example of the relationship between the added amount Qu of urea water under a predetermined condition, various concentrations C of the detected concentration Cx, the NOx concentration Cxn, and the ammonia concentration Cxa.

図4に示すように、尿素水の添加量Quが多くなるほど、NOxの濃度Cxnが低下する一方でアンモニアの濃度Cxaが増加する。そのため、尿素水の添加量Quが少ない領域では、尿素水の添加量Quを多くしたときに添加量Quの増加分のアンモニアがNOxの還元に消費されるため、アンモニアの濃度Cxaの増加率よりもNOxの濃度Cxnの低下率が大きくなり、検出濃度Cxが徐々に低下していく。一方、尿素水の添加量Quが多い領域では、尿素水の添加量Quを多くしたときに添加量Quの増加分ほどのアンモニアがNOxの還元には消費されないため、NOxの濃度Cxnの低下率よりもアンモニアの濃度Cxaの増加率が大きくなり、検出濃度Cxが徐々に増加していく。   As shown in FIG. 4, as the urea water addition amount Qu increases, the NOx concentration Cxn decreases while the ammonia concentration Cxa increases. Therefore, in the region where the addition amount Qu of the urea water is small, when the addition amount Qu of the urea water is increased, ammonia corresponding to the increase in the addition amount Qu is consumed for the reduction of NOx. Therefore, the increase rate of the ammonia concentration Cxa However, the decreasing rate of the NOx concentration Cxn increases, and the detected concentration Cx gradually decreases. On the other hand, in the region where the urea water addition amount Qu is large, when the urea water addition amount Qu is increased, ammonia corresponding to the increase in the addition amount Qu is not consumed for the reduction of NOx, so the rate of decrease in the NOx concentration Cxn. The increase rate of the ammonia concentration Cxa becomes larger than that, and the detected concentration Cx gradually increases.

すなわち、同じ検出濃度Cxであっても、極小値Cxminを境界とする非干渉領域A1に属する値である場合と干渉領域A2に属する値である場合とがある。非干渉領域A1は、尿素水の添加量Quの増加とともに検出濃度Cxが低下する領域であって、検出濃度Cxにアンモニアが干渉しないと判断可能な領域である。干渉領域A2は、尿素水の添加量Quの増加とともに検出濃度Cxが増加する領域であって、検出濃度Cxにアンモニアが干渉すると判断可能な領域である。   That is, even if the detected density Cx is the same, there are cases where the value belongs to the non-interference area A1 having the minimum value Cxmin as a boundary and the value belongs to the interference area A2. The non-interference region A1 is a region where the detected concentration Cx decreases as the urea solution addition amount Qu increases, and is a region where it can be determined that ammonia does not interfere with the detected concentration Cx. The interference area A2 is an area where the detected concentration Cx increases as the amount of added aqueous solution Qu increases, and is an area where it can be determined that ammonia interferes with the detected concentration Cx.

そのため、検出濃度Cxが目標濃度Cxtよりも大きい検出濃度Cx1であるとき、検出濃度Cxが非干渉領域A1に属する場合(ポイントP1)は尿素水の添加量Quを多くすることにより検出濃度Cxが目標濃度Cxtに近づくことになる。一方、検出濃度Cxが干渉領域A2に属する場合(ポイントP2)は尿素水の添加量Quを少なくすることにより検出濃度Cxが目標濃度Cxtに近づくことになる。また、検出濃度Cxが目標濃度Cxtよりも小さい検出濃度Cx2であるとき、検出濃度Cxが非干渉領域A1に属する場合(ポイントP3)は尿素水の添加量Quを少なくすることにより検出濃度Cxが目標濃度Cxtに近づくことになる。一方、検出濃度Cxが干渉領域A2に属する場合(ポイントP4)は尿素水の添加量Quを多くすることにより検出濃度Cxが目標濃度Cxtに近づくことになる。閾値Camjは、検出濃度Cxが非干渉領域A1に属する値であるか干渉領域A2に属する値であるかをアンモニアの濃度Cxaで判定するための値であり、例えば10ppmに設定される。なお、閾値Camjは、非干渉領域A1と干渉領域A2との境界を示す検出濃度Cxが目標濃度Cxtよりも低くなる値であればよく、検出濃度Cxが極小値Cxminとなる値に限られない。   Therefore, when the detected concentration Cx is a detected concentration Cx1 larger than the target concentration Cxt, when the detected concentration Cx belongs to the non-interference area A1 (point P1), the detected concentration Cx is increased by increasing the addition amount Qu of the urea water. It approaches the target density Cxt. On the other hand, when the detected concentration Cx belongs to the interference region A2 (point P2), the detected concentration Cx approaches the target concentration Cxt by reducing the addition amount Qu of the urea water. Further, when the detected concentration Cx is a detected concentration Cx2 smaller than the target concentration Cxt and the detected concentration Cx belongs to the non-interference area A1 (point P3), the detected concentration Cx is reduced by decreasing the addition amount Qu of the urea water. It approaches the target density Cxt. On the other hand, when the detected concentration Cx belongs to the interference region A2 (point P4), the detected concentration Cx approaches the target concentration Cxt by increasing the addition amount Qu of the urea water. The threshold value Camj is a value for determining whether the detected concentration Cx is a value belonging to the non-interference area A1 or a value belonging to the interference area A2, based on the ammonia concentration Cxa, and is set to 10 ppm, for example. The threshold value Camj only needs to be a value at which the detected density Cx indicating the boundary between the non-interference area A1 and the interference area A2 is lower than the target density Cxt, and is not limited to a value at which the detected density Cx becomes the minimum value Cxmin. .

図3に戻って、アンモニア濃度Camが閾値Camj以下である場合(ステップS101:YES)、補正値演算部47は、検出濃度Cxに対するアンモニアの干渉の有無を示すフラグFの値に1(干渉なし)を設定する(ステップS102)。そして補正値演算部47は、偏差ΔCxが0より大きいか否かを判断する(ステップS103)。   Returning to FIG. 3, when the ammonia concentration Cam is equal to or less than the threshold value Camj (step S101: YES), the correction value calculation unit 47 sets the value of the flag F indicating the presence or absence of ammonia interference to the detected concentration Cx to 1 (no interference). ) Is set (step S102). Then, the correction value calculation unit 47 determines whether or not the deviation ΔCx is greater than 0 (step S103).

偏差ΔCxが0より大きい(Cx>Cxt)場合(ステップS103:YES)、補正値演算部47は、偏差ΔCxが大きいほど基本添加量Qubに対する増量側への補正量を大きくする補正値Gを上限値Gmaxを上限として演算し(ステップS104)、一連の処理を一旦終了する。上限値Gmaxは、基本添加量Qubよりもかなり高い値が目標添加量Qutに設定される値であって、基本添加量Qubに対して補正値Gを乗算することにより目標添加量Qutが演算される構成においては、例えば1.5である。   When the deviation ΔCx is larger than 0 (Cx> Cxt) (step S103: YES), the correction value calculator 47 increases the upper limit of the correction value G that increases the correction amount to the increase side with respect to the basic addition amount Qub as the deviation ΔCx increases. The calculation is performed with the value Gmax as the upper limit (step S104), and the series of processes is temporarily terminated. The upper limit Gmax is a value that is set to the target addition amount Qut that is considerably higher than the basic addition amount Qub, and the target addition amount Qut is calculated by multiplying the basic addition amount Qub by the correction value G. In the configuration, for example, 1.5.

一方、偏差ΔCxが0以下(Cx≦Cxt)である場合(ステップS103:NO)、補正値演算部47は、偏差ΔCxが小さいほど基本添加量Qubに対する減量側への補正量を大きくする補正値Gを下限値Gminを下限として演算し(ステップS105)、一連の処理を一旦終了する。下限値Gminは、基本添加量Qubよりもかなり低い値が目標添加量Qutに設定される値であって、基本添加量Qubに対して補正値Gを乗算することにより目標添加量Qutが演算される構成においては、例えば0.5である。   On the other hand, when the deviation ΔCx is equal to or smaller than 0 (Cx ≦ Cxt) (step S103: NO), the correction value calculating unit 47 increases the correction amount to the decrease side with respect to the basic addition amount Qub as the deviation ΔCx is smaller. G is calculated with the lower limit value Gmin as the lower limit (step S105), and the series of processes is temporarily terminated. The lower limit Gmin is a value that is set to the target addition amount Qut that is considerably lower than the basic addition amount Qub, and the target addition amount Qut is calculated by multiplying the basic addition amount Qub by the correction value G. In the configuration, for example, 0.5.

また、アンモニア濃度Camが閾値Camjよりも大きい場合(ステップS101:NO)、補正値演算部47は、フラグFの値に0(干渉あり)を設定し(ステップS106)、続いて偏差ΔCxが0より大きいか否かを判断する(ステップS107)。   On the other hand, when the ammonia concentration Cam is larger than the threshold value Camj (step S101: NO), the correction value calculation unit 47 sets the value of the flag F to 0 (with interference) (step S106), and subsequently the deviation ΔCx is 0. It is determined whether it is larger (step S107).

偏差ΔCxが0よりも大きい(Cx>Cxt)場合(ステップS107:YES)、補正値演算部47は、偏差ΔCxが大きいほど基本添加量Qubに対する減量側への補正量を大きくする補正値Gを下限値Gminを下限として演算し(ステップS108)、一連の処理を一旦終了する。一方、偏差ΔCxが0以下である(Cx≦Cxt)場合(ステップS107:NO)、補正値演算部47は、偏差ΔCxが小さいほど基本添加量Qubに対する増量側への補正量を大きくする補正値Gを上限値Gmaxを上限として演算し(ステップS109)、一連の処理を一旦終了する。   When the deviation ΔCx is larger than 0 (Cx> Cxt) (step S107: YES), the correction value calculation unit 47 sets a correction value G that increases the correction amount to the decrease side with respect to the basic addition amount Qub as the deviation ΔCx increases. The lower limit value Gmin is calculated as the lower limit (step S108), and the series of processes is temporarily terminated. On the other hand, when the deviation ΔCx is 0 or less (Cx ≦ Cxt) (step S107: NO), the correction value calculation unit 47 increases the correction amount to the increase side with respect to the basic addition amount Qub as the deviation ΔCx is smaller. G is calculated with the upper limit value Gmax as the upper limit (step S109), and the series of processes is temporarily terminated.

こうした構成によれば、検出濃度Cxが非干渉領域A1に属する値であるか干渉領域A2に属する値であるか、すなわち検出濃度Cxに対するアンモニアの干渉の有無が判定される。そして、その判定結果に応じて目標濃度Cxtと検出濃度Cxとの偏差ΔCxに基づく補正値Gを演算することができる。その結果、NOxセンサーの検出値に基づいて尿素水の添加量についてのフィードバック制御を行うことができる。   According to such a configuration, it is determined whether the detected concentration Cx is a value belonging to the non-interference area A1 or a value belonging to the interference area A2, that is, whether ammonia has interfered with the detected concentration Cx. Then, the correction value G based on the deviation ΔCx between the target density Cxt and the detected density Cx can be calculated according to the determination result. As a result, feedback control for the amount of urea water added can be performed based on the detected value of the NOx sensor.

図5〜図7を参照して、補正値演算部47が実行するリセット処理の手順を説明する。
図5に示すように、リセット処理において、補正値演算部47は、まず、フラグFの値が1であるか否かを判断する(ステップS201)。フラグFの値が1である場合(ステップS201:YES)、すなわち検出濃度Cxに対するアンモニアの干渉がない場合、補正値演算部47は、補正値Gが上限値Gmaxであるか否かを判断する(ステップS202)。補正値Gが上限値Gmaxである場合(ステップS202:YES)、補正値演算部47は、継続期間Tcが判定期間Tcjに到達しているか否かを判断する(ステップS203)。継続期間Tcが判定期間Tcjに到達している場合(ステップS203:YES)、補正値演算部47は、検出濃度Cxを用いた目標添加量Qutのフィードバック制御が正常に機能していないものとして補正値Gを第1リセット値G1にリセットし(ステップS204)、一連の処理を一旦終了する。
With reference to FIGS. 5-7, the procedure of the reset process which the correction value calculating part 47 performs is demonstrated.
As shown in FIG. 5, in the reset process, the correction value calculator 47 first determines whether or not the value of the flag F is 1 (step S201). When the value of the flag F is 1 (step S201: YES), that is, when there is no ammonia interference with respect to the detected concentration Cx, the correction value calculation unit 47 determines whether or not the correction value G is the upper limit value Gmax. (Step S202). When the correction value G is the upper limit value Gmax (step S202: YES), the correction value calculation unit 47 determines whether or not the continuation period Tc has reached the determination period Tcj (step S203). When the continuation period Tc has reached the determination period Tcj (step S203: YES), the correction value calculation unit 47 corrects that the feedback control of the target addition amount Qut using the detected concentration Cx does not function normally. The value G is reset to the first reset value G1 (step S204), and a series of processes is once ended.

第1リセット値G1は、基本添加量Qubよりも少々高い値が目標添加量Qutに設定される値であって、基本添加量Qubを増量側に補正する場合のリセット値である。第1リセット値G1は、基本添加量Qubに補正値Gを乗算することで目標添加量Qutが演算される構成では、例えば1.05である。また、補正値Gがリセットされる際には、補正値Gに積分項が含まれる場合には該積分項もリセットされる。   The first reset value G1 is a value at which a value slightly higher than the basic addition amount Qub is set as the target addition amount Qut, and is a reset value when the basic addition amount Qub is corrected to the increase side. The first reset value G1 is, for example, 1.05 in the configuration in which the target addition amount Qut is calculated by multiplying the basic addition amount Qub by the correction value G. Further, when the correction value G is reset, if the correction value G includes an integral term, the integral term is also reset.

一方、補正値Gが上限値Gmaxに到達していない場合(ステップS202:NO)、継続期間Tcが判定期間Tcjに到達していない場合(ステップS203:NO)、補正値演算部47は、そのまま一連の処理を一旦終了する。   On the other hand, when the correction value G has not reached the upper limit value Gmax (step S202: NO), or when the continuation period Tc has not reached the determination period Tcj (step S203: NO), the correction value calculation unit 47 remains unchanged. A series of processing is once ended.

すなわち、図6に示すように、例えば、検出濃度Cxに対するアンモニアの干渉がないときに検出濃度Cxと目標濃度Cxtとの偏差ΔCx(>0)が徐々に大きくなる場合、補正値Gは、徐々に大きくなり、やがて上限値Gmaxに到達する。そして、補正値Gが上限値Gmaxである状態が判定期間Tcjだけ継続すると、補正値演算部47は、補正値Gを第1リセット値G1にリセットする。   That is, as shown in FIG. 6, for example, when the deviation ΔCx (> 0) between the detected concentration Cx and the target concentration Cxt gradually increases when there is no ammonia interference with the detected concentration Cx, the correction value G gradually increases. And eventually reaches the upper limit Gmax. Then, when the state in which the correction value G is the upper limit value Gmax continues for the determination period Tcj, the correction value calculation unit 47 resets the correction value G to the first reset value G1.

また、フラグFの値が0である場合(ステップS201:NO)、すなわち検出濃度Cxに対するアンモニアの干渉がある場合、補正値演算部47は、補正値Gが下限値Gminであるか否かを判断する(ステップS205)。補正値Gが下限値Gminである場合(ステップS205:YES)、補正値演算部47は、継続期間Tcが判定期間Tcjに到達しているか否かを判断する(ステップS206)。継続期間Tcが判定期間Tcjに到達している場合(ステップS206:YES)、補正値演算部47は、補正値Gによる目標添加量Qutのフィードバック制御が正常に機能していないものとして補正値Gを第2リセット値G2にリセットし(ステップS207)、一連の処理を一旦終了する。第2リセット値G2は、第1リセット値G1よりも小さい値である。第2リセット値G2は、基本添加量Qubよりも少々低い値が目標添加量Qutに設定される値であって、基本添加量Qubに対して補正値Gを乗算することにより目標添加量Qutが演算される構成においては、例えば0.95である。また、補正値Gがリセットされる際には、補正値Gに積分項が含まれる場合には該積分項もリセットされる。   When the value of the flag F is 0 (step S201: NO), that is, when there is ammonia interference with the detected concentration Cx, the correction value calculation unit 47 determines whether or not the correction value G is the lower limit value Gmin. Judgment is made (step S205). When the correction value G is the lower limit value Gmin (step S205: YES), the correction value calculation unit 47 determines whether or not the continuation period Tc has reached the determination period Tcj (step S206). When the continuation period Tc has reached the determination period Tcj (step S206: YES), the correction value calculation unit 47 assumes that the feedback control of the target addition amount Qut by the correction value G is not functioning normally, and the correction value G Is reset to the second reset value G2 (step S207), and a series of processing is once ended. The second reset value G2 is a value smaller than the first reset value G1. The second reset value G2 is a value that is set to the target addition amount Qut that is slightly lower than the basic addition amount Qub, and the target addition amount Qut is obtained by multiplying the basic addition amount Qub by the correction value G. In the calculated configuration, for example, 0.95. Further, when the correction value G is reset, if the correction value G includes an integral term, the integral term is also reset.

一方、補正値Gが下限値Gminでない場合(ステップS205:NO)、継続期間Tcが判定期間Tcjに到達していない場合(ステップS206:NO)、補正値演算部47は、そのまま一連の処理を一旦終了する。   On the other hand, when the correction value G is not the lower limit value Gmin (step S205: NO), and when the continuation period Tc has not reached the determination period Tcj (step S206: NO), the correction value calculation unit 47 performs a series of processing as it is. Exit once.

すなわち、図7に示すように、例えば、検出濃度Cxに対するアンモニアの干渉があるときに検出濃度Cxと目標濃度Cxtとの偏差ΔCx(>0)が徐々に大きく場合、補正値Gは、徐々に小さくなり、やがて下限値Gminに到達する。そして、補正値Gが下限値Gminである状態が判定期間Tcjだけ継続すると、補正値演算部47は、補正値Gを第2リセット値G2にリセットする。   That is, as shown in FIG. 7, for example, when the deviation ΔCx (> 0) between the detected concentration Cx and the target concentration Cxt gradually increases when there is ammonia interference with the detected concentration Cx, the correction value G gradually increases. It becomes smaller and eventually reaches the lower limit Gmin. Then, when the state where the correction value G is the lower limit value Gmin continues for the determination period Tcj, the correction value calculation unit 47 resets the correction value G to the second reset value G2.

上記実施形態の尿素SCRシステムの制御装置および制御方法によれば、以下に列挙する作用効果が得られる。
(1)ECU30は、検出濃度Cxにアンモニアの干渉がなく、かつ、検出濃度Cxが目標濃度Cxtよりも大きい場合、偏差ΔCx(>0)が大きいほど基本添加量Qubに対する増量側の補正量を大きくする補正値Gを演算する。また、ECU30は、検出濃度Cxにアンモニアの干渉があり、かつ、検出濃度Cxが目標濃度Cxtよりも大きい場合、偏差ΔCx(>0)が大きいほど基本添加量Qubに対する減量側の補正量を大きくなる補正値Gを演算する。このように、検出濃度Cxに対するアンモニアの干渉の有無に応じて補正値Gが演算されることにより、尿素水の添加量について検出濃度Cxを用いたフィードバック制御を行うことができる。しかも、アンモニア濃度Camが演算により求められるため、選択還元型触媒18の下流にアンモニアセンサーを配設する必要もない。
According to the control device and the control method of the urea SCR system of the above embodiment, the following effects can be obtained.
(1) When there is no interference of ammonia in the detected concentration Cx and the detected concentration Cx is larger than the target concentration Cxt, the ECU 30 increases the correction amount on the increase side with respect to the basic addition amount Qub as the deviation ΔCx (> 0) increases. A correction value G to be increased is calculated. In addition, when there is ammonia interference in the detected concentration Cx and the detected concentration Cx is larger than the target concentration Cxt, the ECU 30 increases the correction amount on the decrease side with respect to the basic addition amount Qub as the deviation ΔCx (> 0) increases. A correction value G is calculated. Thus, by calculating the correction value G according to the presence or absence of ammonia interference with the detected concentration Cx, feedback control using the detected concentration Cx can be performed for the amount of urea water added. Moreover, since the ammonia concentration Cam is obtained by calculation, it is not necessary to provide an ammonia sensor downstream of the selective catalytic reduction catalyst 18.

(2)また、検出濃度Cxが干渉領域A2に属する場合にも尿素水の添加量の制御が可能であることから、尿素水の添加量の自由度が大幅に向上する。これにより、NOxの還元量に関する自由度も大幅に向上することから、例えば、検出濃度Cxを干渉領域A2に属する値としたうえで検出濃度Cxを目標濃度Cxtに制御することもできる。その結果、NOxの排出量をさらに低減することができる。   (2) Since the addition amount of urea water can be controlled even when the detected concentration Cx belongs to the interference region A2, the degree of freedom of the addition amount of urea water is greatly improved. As a result, the degree of freedom regarding the reduction amount of NOx is also greatly improved. For example, the detected concentration Cx can be controlled to the target concentration Cxt after setting the detected concentration Cx to a value belonging to the interference region A2. As a result, the amount of NOx emission can be further reduced.

(3)ECU30は、検出濃度Cxにアンモニアの干渉がなく、かつ、検出濃度Cxが目標濃度Cxtよりも小さい場合、偏差ΔCx(<0)が小さいほど基本添加量Qubに対する減量側の補正量を大きくする補正値Gを演算する。また、ECU30は、検出濃度Cxにアンモニアの干渉があり、かつ、検出濃度Cxが目標濃度Cxtよりも小さい場合、偏差ΔCx(<0)が小さいほど基本添加量Qubに対する増量側の補正量を大きくする補正値Gを演算する。これにより、検出濃度Cxが目標濃度Cxtよりも小さい場合であっても、検出濃度Cxに対するアンモニアの干渉の有無に応じて検出濃度Cxを用いたフィードバック制御を行うことができる。   (3) When there is no interference of ammonia in the detected concentration Cx and the detected concentration Cx is smaller than the target concentration Cxt, the ECU 30 decreases the correction amount on the decrease side with respect to the basic addition amount Qub as the deviation ΔCx (<0) is smaller. A correction value G to be increased is calculated. Further, when there is ammonia interference in the detected concentration Cx and the detected concentration Cx is smaller than the target concentration Cxt, the ECU 30 increases the correction amount on the increase side with respect to the basic addition amount Qub as the deviation ΔCx (<0) is smaller. The correction value G to be calculated is calculated. Thereby, even when the detected concentration Cx is smaller than the target concentration Cxt, feedback control using the detected concentration Cx can be performed according to the presence or absence of ammonia interference with the detected concentration Cx.

(4)ECU30は、補正値Gが上限値Gmaxに到達していることを条件に補正値Gを第1リセット値G1にリセットする。すなわち、ECU30は、補正値Gが上限値Gmaxに維持され、検出濃度Cxを用いたフィードバック制御が正常に機能していないと判断されるときに補正値Gをリセットする。これにより、ECU30は、検出濃度Cxを用いたフィードバック制御を正常な状態に復帰させることができる。   (4) The ECU 30 resets the correction value G to the first reset value G1 on condition that the correction value G has reached the upper limit value Gmax. That is, the ECU 30 resets the correction value G when it is determined that the correction value G is maintained at the upper limit value Gmax and feedback control using the detected concentration Cx is not functioning normally. Thereby, the ECU 30 can return the feedback control using the detected concentration Cx to a normal state.

(5)ECU30は、補正値Gが下限値Gminに到達していることを条件に補正値Gを第2リセット値G2にリセットする。すなわち、ECU30は、補正値Gが下限値Gminに維持され、検出濃度Cxを用いたフィードバック制御が正常に機能していないと判断されるときに補正値Gをリセットする。これにより、ECU30は、検出濃度Cxを用いたフィードバック制御を正常な状態に復帰させることができる。   (5) The ECU 30 resets the correction value G to the second reset value G2 on condition that the correction value G has reached the lower limit value Gmin. That is, the ECU 30 resets the correction value G when it is determined that the correction value G is maintained at the lower limit value Gmin and feedback control using the detected concentration Cx is not functioning normally. Thereby, the ECU 30 can return the feedback control using the detected concentration Cx to a normal state.

(6)アンモニア濃度Camが閾値Camj以下のとき(F=1)に第1リセット値G1へのリセットが行われ、アンモニア濃度Camが閾値Camjよりも大きいとき(F=0)に第2リセット値G2へのリセットを行われる。すなわち、補正値Gのリセットは、検出濃度Cxに対してNOxの濃度あるいはアンモニアの濃度のいずれかが占める割合が著しく高いときに行われる。これにより、検出濃度Cxを用いたフィードバック制御が正常に行われていない確度を高めたうえで補正値Gのリセットを行うことができる。   (6) The reset to the first reset value G1 is performed when the ammonia concentration Cam is equal to or less than the threshold value Camj (F = 1), and the second reset value when the ammonia concentration Cam is greater than the threshold value Camj (F = 0). A reset to G2 is performed. That is, the correction value G is reset when the ratio of the NOx concentration or the ammonia concentration to the detected concentration Cx is extremely high. As a result, the correction value G can be reset after increasing the probability that the feedback control using the detected concentration Cx is not normally performed.

(7)しかも、継続期間Tcが判定期間Tcjに到達してから補正値Gのリセットが行われる。そのため、検出濃度Cxを用いたフィードバック制御が正常に行われていない確度をさらに高めたうえで補正値Gがリセットされることから、不要な補正値Gのリセットを回避することができる。   (7) Moreover, the correction value G is reset after the continuation period Tc reaches the determination period Tcj. For this reason, since the correction value G is reset after further increasing the probability that the feedback control using the detected density Cx is not normally performed, unnecessary resetting of the correction value G can be avoided.

なお、上記実施形態は、以下のように適宜変更して実施することもできる。
・ECU30は、補正値Gの第1リセット値G1へのリセット、および、補正値Gの第2リセット値G2へのリセットの少なくとも一方を行わない構成であってもよい。また、ECU30は、フラグFの値にかかわらず、補正値Gの第1リセット値G1へのリセット、および、補正値Gの第2リセット値G2へのリセットを行ってもよい。また、ECU30は、補正値Gが上限値Gmaxあるいは下限値Gminに到達したことを条件として補正値Gのリセットを行ってもよい。
In addition, the said embodiment can also be suitably changed and implemented as follows.
The ECU 30 may be configured not to perform at least one of resetting the correction value G to the first reset value G1 and resetting the correction value G to the second reset value G2. Further, regardless of the value of the flag F, the ECU 30 may reset the correction value G to the first reset value G1 and reset the correction value G to the second reset value G2. Further, the ECU 30 may reset the correction value G on condition that the correction value G has reached the upper limit value Gmax or the lower limit value Gmin.

・ECU30は、基本添加量Qubを増量側へ補正する際に上限値Gmaxよりも大きい値を補正値Gとして演算する構成であってもよい。また、ECU30は、基本添加量Qubを減量側へ補正する際に下限値Gminよりも小さい値を補正値Gとして演算する構成であってもよい。   The ECU 30 may be configured to calculate a value larger than the upper limit value Gmax as the correction value G when correcting the basic addition amount Qub to the increase side. Further, the ECU 30 may be configured to calculate a correction value G that is smaller than the lower limit value Gmin when correcting the basic addition amount Qub to the decrease side.

・ECU30は、アンモニア濃度Camが閾値Camj以下であり、かつ、検出濃度Cxが目標濃度Cxtよりも小さい場合に、基本添加量Qubに対する増量側への補正量を大きくする補正値Gを演算してもよい。すなわち、検出濃度Cxが非干渉領域A1に属する値から干渉領域A2に属する値へと変化する補正値Gを演算してもよい。   The ECU 30 calculates a correction value G that increases the correction amount to the increase side with respect to the basic addition amount Qub when the ammonia concentration Cam is equal to or less than the threshold value Camj and the detected concentration Cx is smaller than the target concentration Cxt. Also good. That is, a correction value G that changes the detected density Cx from a value belonging to the non-interference area A1 to a value belonging to the interference area A2 may be calculated.

・ECU30は、アンモニア濃度Camが閾値Camjよりも大きく、かつ、検出濃度Cxが目標濃度Cxtよりも小さい場合に、基本添加量Qubに対する減量側への補正量を大きくする補正値Gを演算してもよい。すなわち、検出濃度Cxが干渉領域A2に属する値から非干渉領域A1に属する値へと変化する補正値Gを演算してもよい。   The ECU 30 calculates a correction value G that increases the correction amount to the decrease side with respect to the basic addition amount Qub when the ammonia concentration Cam is larger than the threshold value Camj and the detected concentration Cx is smaller than the target concentration Cxt. Also good. That is, a correction value G that changes the detected density Cx from a value belonging to the interference area A2 to a value belonging to the non-interference area A1 may be calculated.

・尿素SCRシステム10は、尿素水添加装置15、選択還元型触媒18、および、ECU30の他、例えば、選択還元型触媒18の下流にアンモニアを酸化する酸化触媒を有する構成であってもよい。なお、この酸化触媒の下流にNOxセンサー23が配設される場合、モデル46は、選択還元型触媒18および酸化触媒でのアンモニアの消費が考慮されたモデルとなる。   The urea SCR system 10 may have a configuration including, for example, an oxidation catalyst that oxidizes ammonia downstream of the selective reduction catalyst 18 in addition to the urea water addition device 15, the selective reduction catalyst 18, and the ECU 30. When the NOx sensor 23 is disposed downstream of the oxidation catalyst, the model 46 is a model that takes into account the consumption of ammonia in the selective reduction catalyst 18 and the oxidation catalyst.

10…尿素SCRシステム、11…排気通路、15…尿素水添加装置、16…尿素水供給部、17…添加弁、18…選択還元型触媒、21…酸素濃度センサー、22…温度センサー、23…NOxセンサー、24…吸入空気量センサー、25…エンジン回転数センサー、26…燃料噴射制御部、30…ECU、31…プロセッサ、32…メモリ、33…入力インターフェース、34…出力インターフェース、35…バス、41…目標濃度演算部、42…基本添加量演算部、43…検出濃度取得部、44…偏差演算部、45…濃度演算部、46…モデル、47…補正値演算部、48…目標添加量演算部。   DESCRIPTION OF SYMBOLS 10 ... Urea SCR system, 11 ... Exhaust passage, 15 ... Urea water addition apparatus, 16 ... Urea water supply part, 17 ... Addition valve, 18 ... Selective reduction type catalyst, 21 ... Oxygen concentration sensor, 22 ... Temperature sensor, 23 ... NOx sensor, 24 ... intake air amount sensor, 25 ... engine speed sensor, 26 ... fuel injection control unit, 30 ... ECU, 31 ... processor, 32 ... memory, 33 ... input interface, 34 ... output interface, 35 ... bus, DESCRIPTION OF SYMBOLS 41 ... Target density | concentration calculation part, 42 ... Basic addition amount calculation part, 43 ... Detection density acquisition part, 44 ... Deviation calculation part, 45 ... Concentration calculation part, 46 ... Model, 47 ... Correction value calculation part, 48 ... Target addition amount Arithmetic unit.

Claims (5)

アンモニアを還元剤としてNOxを還元する選択還元型触媒の下流に設置されたNOxセンサーの検出値である検出濃度を取得する取得部と、
前記選択還元型触媒を通過した排気ガスのアンモニア濃度を演算する濃度演算部と、
前記検出濃度が目標濃度となる尿素水の基本添加量を演算する基本添加量演算部と、
前記検出濃度と前記目標濃度との偏差に基づいて前記基本添加量の補正値を演算する補正値演算部とを備え、
前記補正値演算部は、
前記検出濃度に対するアンモニアの干渉の有無を判定する閾値を保持し、
前記濃度演算部の演算値が前記閾値以下であり、かつ、前記検出濃度が前記目標濃度よりも大きい場合に、前記偏差が大きいほど前記基本添加量に対する増量側への補正量を大きくする前記補正値を演算し、
前記演算値が前記閾値よりも大きく、かつ、前記検出濃度が前記目標濃度よりも大きい場合に、前記偏差が大きいほど前記基本添加量に対する減量側への補正量を大きくする前記補正値を演算する
尿素SCRシステムの制御装置。
An acquisition unit that acquires a detection concentration that is a detection value of a NOx sensor installed downstream of a selective reduction catalyst that reduces NOx using ammonia as a reducing agent;
A concentration calculator that calculates the ammonia concentration of the exhaust gas that has passed through the selective catalytic reduction catalyst;
A basic addition amount calculation unit for calculating a basic addition amount of urea water at which the detected concentration becomes a target concentration;
A correction value calculation unit that calculates a correction value of the basic addition amount based on a deviation between the detected concentration and the target concentration;
The correction value calculator is
Holding a threshold for determining the presence or absence of ammonia interference with the detected concentration;
When the calculated value of the concentration calculation unit is equal to or less than the threshold value and the detected concentration is greater than the target concentration, the correction increases the correction amount to the increase side with respect to the basic addition amount as the deviation increases. Calculate the value
When the calculated value is larger than the threshold value and the detected concentration is larger than the target concentration, the correction value for increasing the correction amount to the decrease side with respect to the basic addition amount is calculated as the deviation is larger. Urea SCR system controller.
前記補正値演算部は、
前記演算値が前記閾値以下であり、かつ、前記検出濃度が前記目標濃度よりも小さい場合に、前記偏差が小さいほど前記基本添加量に対する減量側への補正量を大きくする前記補正値を演算し、
前記演算値が前記閾値よりも大きく、かつ、前記検出濃度が前記目標濃度よりも小さい場合に、前記偏差が小さいほど前記基本添加量に対する増量側への補正量を大きくする前記補正値を演算する
請求項1に記載の尿素SCRシステムの制御装置。
The correction value calculator is
When the calculated value is less than or equal to the threshold value and the detected concentration is smaller than the target concentration, the correction value is calculated to increase the correction amount to the decrease side with respect to the basic addition amount as the deviation is smaller. ,
When the calculated value is larger than the threshold value and the detected concentration is smaller than the target concentration, the correction value that increases the correction amount to the increase side with respect to the basic addition amount is calculated as the deviation is smaller. The urea SCR system control device according to claim 1.
前記補正値演算部は、
前記補正値について、前記基本添加量に対する増量側への補正量が最大となる上限値と前記基本添加量を増量側へ補正する場合のリセット値である第1リセット値とを保持し、
前記補正値が前記上限値に到達したことを条件の1つとして前記補正値に前記第1リセット値を設定する
請求項1または2に記載の尿素SCRシステムの制御装置。
The correction value calculator is
About the correction value, an upper limit value at which the correction amount to the increase side with respect to the basic addition amount is maximized and a first reset value that is a reset value when correcting the basic addition amount to the increase side are held,
3. The urea SCR system control device according to claim 1, wherein the first reset value is set to the correction value on the condition that the correction value has reached the upper limit value. 4.
前記補正値演算部は、
前記補正値について、前記基本添加量に対する減量側への補正量が最大となる下限値と前記基本添加量を減量側へ補正する場合のリセット値である第2リセット値とを保持し、
前記補正値が前記下限値に到達したことを条件の1つとして前記補正値を前記第2リセット値に設定する
請求項1〜3のいずれか一項に記載の尿素SCRシステムの制御装置。
The correction value calculator is
About the correction value, a lower limit value at which the correction amount to the reduction side with respect to the basic addition amount is maximized and a second reset value that is a reset value when correcting the basic addition amount to the reduction side are held,
The urea SCR system control device according to any one of claims 1 to 3, wherein the correction value is set as the second reset value on the condition that the correction value has reached the lower limit value.
アンモニアを還元剤としてNOxを還元する選択還元型触媒と、前記選択還元型触媒の上流で排気ガスに尿素水を添加する尿素水添加装置と、前記尿素水添加装置による前記尿素水の添加量を制御する制御装置とを備えた尿素SCRシステムの制御方法であって、
前記制御装置は、
前記選択還元型触媒の下流に設置されたNOxセンサーの検出値である検出濃度を取得する工程と、
前記選択還元型触媒を通過した排気ガスのアンモニア濃度を演算する工程と、
前記検出濃度が目標濃度となる尿素水の基本添加量を演算する工程と、
前記検出濃度と前記目標濃度との偏差に基づいて前記基本添加量の補正値を演算する工程とを備え、
前記補正値を演算する工程では、前記アンモニア濃度の演算値が前記検出濃度に対するアンモニアの干渉の有無を判定する閾値以下であり、かつ、前記検出濃度が前記目標濃度よりも大きい場合に、前記偏差が大きいほど前記基本添加量に対する増量側への補正量を大きくする前記補正値が演算され、前記演算値が前記閾値よりも大きく、かつ、前記検出濃度が前記目標濃度よりも大きい場合に、前記偏差が大きいほど前記基本添加量に対する減量側への補正量を大きくする前記補正値が演算される
尿素SCRシステムの制御方法。
A selective reduction catalyst that reduces NOx using ammonia as a reducing agent; a urea water addition device that adds urea water to exhaust gas upstream of the selective reduction catalyst; and an addition amount of the urea water by the urea water addition device. A control method for a urea SCR system comprising a control device for controlling,
The controller is
Obtaining a detection concentration which is a detection value of a NOx sensor installed downstream of the selective catalytic reduction catalyst;
Calculating the ammonia concentration of the exhaust gas that has passed through the selective catalytic reduction catalyst;
Calculating a basic addition amount of urea water at which the detected concentration becomes a target concentration;
A step of calculating a correction value of the basic addition amount based on a deviation between the detected concentration and the target concentration,
In the step of calculating the correction value, the deviation is calculated when the calculated value of the ammonia concentration is equal to or less than a threshold value for determining the presence or absence of ammonia interference with the detected concentration, and the detected concentration is larger than the target concentration. When the correction value for increasing the correction amount to the increase side with respect to the basic addition amount is calculated as the value is larger, the calculated value is greater than the threshold value, and the detected concentration is greater than the target concentration, The urea SCR system control method in which the correction value is calculated such that the larger the deviation is, the larger the correction amount to the reduction side with respect to the basic addition amount is.
JP2016246649A 2016-12-20 2016-12-20 Control device and control method for urea SCR system Active JP6769861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016246649A JP6769861B2 (en) 2016-12-20 2016-12-20 Control device and control method for urea SCR system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246649A JP6769861B2 (en) 2016-12-20 2016-12-20 Control device and control method for urea SCR system

Publications (2)

Publication Number Publication Date
JP2018100615A true JP2018100615A (en) 2018-06-28
JP6769861B2 JP6769861B2 (en) 2020-10-14

Family

ID=62715201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246649A Active JP6769861B2 (en) 2016-12-20 2016-12-20 Control device and control method for urea SCR system

Country Status (1)

Country Link
JP (1) JP6769861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572876A1 (en) 2018-05-25 2019-11-27 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, negative resist composition, photomask blank, and resist pattern forming process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157136A (en) * 2006-12-25 2008-07-10 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2009156229A (en) * 2007-12-27 2009-07-16 Hino Motors Ltd Exhaust treatment device
JP2010133354A (en) * 2008-12-05 2010-06-17 Bosch Corp Reducing agent injection control device, control method of reducing agent injection device and exhaust emission control device of internal combustion engine
US20100223907A1 (en) * 2009-03-06 2010-09-09 Man Nutzfahrzeuge Ag Method For Adjusting the Metered Quantity of Reducing Agent For Selective Catalytic Reduction
JP2012026417A (en) * 2010-07-28 2012-02-09 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2013515897A (en) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト Method and apparatus for controlling a SCR catalytic converter of a vehicle
JP2014080881A (en) * 2012-10-15 2014-05-08 Honda Motor Co Ltd Exhaust emission control system for internal combustion engine
JP2016037893A (en) * 2014-08-07 2016-03-22 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157136A (en) * 2006-12-25 2008-07-10 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2009156229A (en) * 2007-12-27 2009-07-16 Hino Motors Ltd Exhaust treatment device
JP2010133354A (en) * 2008-12-05 2010-06-17 Bosch Corp Reducing agent injection control device, control method of reducing agent injection device and exhaust emission control device of internal combustion engine
US20100223907A1 (en) * 2009-03-06 2010-09-09 Man Nutzfahrzeuge Ag Method For Adjusting the Metered Quantity of Reducing Agent For Selective Catalytic Reduction
JP2013515897A (en) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト Method and apparatus for controlling a SCR catalytic converter of a vehicle
JP2012026417A (en) * 2010-07-28 2012-02-09 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2014080881A (en) * 2012-10-15 2014-05-08 Honda Motor Co Ltd Exhaust emission control system for internal combustion engine
JP2016037893A (en) * 2014-08-07 2016-03-22 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572876A1 (en) 2018-05-25 2019-11-27 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, negative resist composition, photomask blank, and resist pattern forming process

Also Published As

Publication number Publication date
JP6769861B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP4985849B2 (en) Catalyst deterioration determination device and catalyst deterioration determination method
EP2851530B1 (en) Exhaust gas control apparatus and control method for exhaust gas control apparatus
JP4692911B2 (en) NOx sensor output calibration apparatus and output calibration method
US8881508B2 (en) SCR control system utilizing a differential NH3 and NOx measurement using an exhaust gas sensor coupled with a micro SCR catalyst
JP4290109B2 (en) Exhaust purification equipment
US10502114B2 (en) Concentration calculation apparatus, concentration calculation system, and concentration calculation method
JP2008196340A (en) Exhaust emission control device and exhaust emission control method for internal combustion engine
JPWO2010095221A1 (en) Exhaust gas purification system for internal combustion engine
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
CN110905636B (en) Method and device for treating automobile exhaust
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
JP2010242728A (en) Catalyst deterioration determining device and catalyst deterioration determining method
JP2014206150A (en) Exhaust gas purification control device and program
JP6769861B2 (en) Control device and control method for urea SCR system
JP2012082703A (en) DEVICE AND METHOD FOR DETECTING DEGRADATION OF SELECTIVE REDUCTION TYPE NOx CATALYST
JP5837312B2 (en) Exhaust gas purification system for internal combustion engine
CN104727913B (en) Determine the method and system of the adaptability of the correction to the control logic of catalyst converter
CN113316679B (en) Exhaust gas purifying device for internal combustion engine and vehicle
CN116783374A (en) Control device, control method, and exhaust gas purification system
JP5895882B2 (en) Exhaust gas purification system for internal combustion engine
JP2018178734A (en) Exhaust emission control system for internal combustion engine
US20240141814A1 (en) Control device, control method, and exhaust purification system
JP2022055025A (en) Internal combustion engine system, white accumulation amount monitoring device for internal combustion engine system and white accumulation amount monitoring method for internal combustion engine system
JP2022055026A (en) Internal combustion engine system, nitrogen oxide monitoring device for internal combustion engine system and nitrogen oxide monitoring method for internal combustion engine system
JP2021113537A (en) Urea SCR system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200924

R150 Certificate of patent or registration of utility model

Ref document number: 6769861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250