JP2018100333A - High dielectric constant resin composition - Google Patents

High dielectric constant resin composition Download PDF

Info

Publication number
JP2018100333A
JP2018100333A JP2016246252A JP2016246252A JP2018100333A JP 2018100333 A JP2018100333 A JP 2018100333A JP 2016246252 A JP2016246252 A JP 2016246252A JP 2016246252 A JP2016246252 A JP 2016246252A JP 2018100333 A JP2018100333 A JP 2018100333A
Authority
JP
Japan
Prior art keywords
resin
dielectric constant
oxide
high dielectric
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016246252A
Other languages
Japanese (ja)
Inventor
藤木 弘直
Hironao Fujiki
弘直 藤木
原田 直樹
Naoki Harada
直樹 原田
耕己 内田
Yasuki Uchida
耕己 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Chemical Industry Co Ltd
Original Assignee
Nissin Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Chemical Industry Co Ltd filed Critical Nissin Chemical Industry Co Ltd
Priority to JP2016246252A priority Critical patent/JP2018100333A/en
Priority to PCT/JP2017/044522 priority patent/WO2018116907A1/en
Priority to TW106144521A priority patent/TW201835231A/en
Publication of JP2018100333A publication Critical patent/JP2018100333A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity

Abstract

SOLUTION: There are provided a high dielectric constant resin composition which contains (A) a resin and (B) conductive oxide particles, and is obtained by blending 0.03-13.0 pts.mass of (B) the conductive oxide particles with respect to 100 pts.mass of (A) the resin; a molded article containing the high dielectric constant resin composition; and an electric/electronic component containing the high dielectric constant resin composition.EFFECT: A high dielectric constant resin composition exhibits a high dielectric constant and a low dielectric loss tangent by addition of an extremely small amount of a filler, can sufficiently activate characteristics of the constituting resin, is excellent in moldability, and can be widely adopted to electronic components such as a film and a capacitor.SELECTED DRAWING: None

Description

本発明は、高誘電率樹脂組成物に関し、より詳しくは、樹脂と導電性酸化物とを含有する高誘電率樹脂組成物並びに該組成物を用いたフィルム等の成形品及び電気・電子部品に関する。   The present invention relates to a high dielectric constant resin composition, and more particularly to a high dielectric constant resin composition containing a resin and a conductive oxide, a molded article such as a film using the composition, and an electric / electronic component. .

近年、情報通信機器では、高周波領域に適応できる高性能な高周波用電子部品が求められている。そのため、コンデンサやアンテナ等の電子部品に使用される高誘電率樹脂材料に対しては、それぞれの設計に応じて適切な誘電率を示し、且つ低誘電正接であることが要求されている。   In recent years, information communication equipment has been demanded for high-performance high-frequency electronic components that can be adapted to a high-frequency region. Therefore, high dielectric constant resin materials used for electronic parts such as capacitors and antennas are required to exhibit an appropriate dielectric constant according to their design and to have a low dielectric loss tangent.

高誘電率樹脂材料としては、従来から、樹脂中にチタン酸バリウム等の高誘電率の金属酸化物フィラーを添加したものや、カーボンブラック、金属等の導電性フィラーを添加したものが知られている。   Conventionally known high dielectric constant resin materials include those obtained by adding a high dielectric constant metal oxide filler such as barium titanate to the resin, and those obtained by adding a conductive filler such as carbon black or metal. Yes.

特許文献1では、末端基が異なるシランカップリング剤で表面処理された2種類のチタン酸バリウム粉末を樹脂に添加することによって、比較的少ない誘電率粉末の添加で高誘電率樹脂組成物が得られることが記載されている。しかしながら、この文献では、エポキシ樹脂100質量部に対して誘電率粉末を少なくとも55質量部程度添加しており、樹脂組成物としての成形性は十分とはいえない。   In Patent Document 1, by adding two types of barium titanate powders surface-treated with silane coupling agents having different end groups to a resin, a high dielectric constant resin composition can be obtained with a relatively small amount of dielectric constant powder. It is described that However, in this document, at least about 55 parts by mass of dielectric constant powder is added to 100 parts by mass of the epoxy resin, and the moldability as a resin composition is not sufficient.

また、特許文献2では、誘電率を向上させるためにチタン酸バリウムの添加量を高めても樹脂組成物の成形性を損なわないようにするために、特定の化合物を添加剤として含有させる技術が提案されている。しかしながら、この技術では、チタン酸バリウムを40質量%以上配合するものであり、このため樹脂本来の特性が損なわれてしまうおそれがある。   Moreover, in patent document 2, in order not to impair the moldability of a resin composition even if it increases the addition amount of barium titanate in order to improve a dielectric constant, the technique which contains a specific compound as an additive is mentioned. Proposed. However, in this technique, barium titanate is blended in an amount of 40% by mass or more, so that the original characteristics of the resin may be impaired.

更に、特許文献3には、板形状の導電性フィラーを含有する誘電体樹脂材料が開示されている。しかしながら、この技術では、フィラー形状を制御した上に樹脂中で配向させることから、製造が煩雑であり使用様態に制限が生じる問題がある。   Furthermore, Patent Document 3 discloses a dielectric resin material containing a plate-shaped conductive filler. However, in this technique, since the filler shape is controlled and the resin is oriented in the resin, there is a problem that the production is complicated and the usage state is limited.

また、樹脂中に高誘電率フィラーを添加した高誘電率樹脂材料については、ごく少量の高誘電率フィラーを添加した場合、添加量に対して誘電率があまり増大しないことが知られている。これは、樹脂中に少量の高誘電率フィラーが分散している状態を等価回路で表すと、低誘電率の樹脂に対応する容量の小さなキャパシタンスと高誘電率フィラーに対応する容量の大きなキャパシタンスとの直列回路のようになっているためであると考えられる。このため、このような高誘電率樹脂材料では、誘電率を比較的小さく調整する場合でも、多量の高誘電率フィラーを添加する必要があり、その結果、成形性や樹脂本来の特性が損なわれてしまう。   Further, it is known that a high dielectric constant resin material in which a high dielectric constant filler is added to a resin does not increase the dielectric constant so much with respect to the addition amount when a very small amount of high dielectric constant filler is added. If the equivalent circuit represents a state in which a small amount of high dielectric constant filler is dispersed in the resin, a small capacitance corresponding to a low dielectric constant resin and a large capacitance corresponding to a high dielectric constant filler This is thought to be because of the series circuit. For this reason, in such a high dielectric constant resin material, even when the dielectric constant is adjusted to be relatively small, it is necessary to add a large amount of a high dielectric constant filler. As a result, the moldability and the inherent properties of the resin are impaired. End up.

一方、樹脂中に導電性フィラーを添加した高誘電率樹脂材料の場合、実質的に電極間距離(誘電体の厚み)が小さくなることにより、誘電率が増大すると考えられる。キャパシタンスは電極間距離に反比例するため、フィラーの添加量が少なくてもある程度の誘電率増大効果が得られると考えられる。   On the other hand, in the case of a high dielectric constant resin material in which a conductive filler is added to the resin, it is considered that the dielectric constant increases when the distance between electrodes (dielectric thickness) is substantially reduced. Since the capacitance is inversely proportional to the distance between the electrodes, it is considered that a certain dielectric constant increasing effect can be obtained even if the amount of filler added is small.

しかしながら、従来から導電性フィラーとして用いられるカーボンブラックや金属では、十分な誘電率が得られない。導電性フィラーの添加量を多くすれば誘電率の増大が望めるが、樹脂としての特性や絶縁性が損なわれてしまう。   However, sufficient dielectric constant cannot be obtained with carbon black or metal conventionally used as a conductive filler. Increasing the amount of conductive filler can be expected to increase the dielectric constant, but the properties and insulation as a resin will be impaired.

特開2005−15652号公報JP 2005-15652 A 特開2003−97074号公報JP 2003-97074 A 特開2004−247382号公報JP 2004-247382 A

本発明は、上記事情に鑑みなされたもので、少量のフィラー添加により得られる高誘電率樹脂組成物並びに該組成物を用いたフィルム等の成形品及び電気・電子部品を提供することを目的とする。   The present invention has been made in view of the above circumstances, and aims to provide a high dielectric constant resin composition obtained by adding a small amount of filler, a molded article such as a film using the composition, and an electric / electronic component. To do.

本発明者らは、上記目的を達成するために鋭意検討した結果、熱可塑樹脂等の樹脂材料に導電性酸化物、特に、平均粒子径が所定範囲以下の導電性酸化物粒子を少量配合することにより、樹脂材料の持つ成形性等の特性を損なうことなく、従来用いられる導電性フィラーよりも誘電率を増大させることができ、且つ、誘電正接が低くなることを見出し、本発明をなすに至ったものである。   As a result of intensive investigations to achieve the above object, the present inventors have blended a small amount of conductive oxide, in particular, conductive oxide particles having an average particle diameter of a predetermined range or less, into a resin material such as a thermoplastic resin. Thus, it is found that the dielectric constant can be increased and the dielectric loss tangent becomes lower than that of a conventionally used conductive filler without impairing properties such as moldability of the resin material. It has come.

即ち、本発明は、下記の高誘電率樹脂組成物及び該組成物を用いたフィルム、成形品、電気・電子部品を提供する。
[1](A)樹脂と(B)導電性酸化物粒子とを含有し、上記(A)樹脂100質量部に対して上記(B)導電性酸化物粒子を0.03〜13.0質量部配合してなることを特徴とする高誘電率樹脂組成物。
[2]上記(B)導電性酸化物粒子の酸化物は、酸化スズ、酸化インジウム、酸化アンチモン、酸化亜鉛及び酸化カドミウムの群から選ばれる少なくとも1種を含む酸化物又は複合酸化物である[1]記載の高誘電率樹脂組成物。
[3]上記(B)導電性酸化物粒子の酸化物は、アンチモンドープ酸化スズ又はスズドープ酸化インジウムである[1]記載の高誘電率樹脂組成物。
[4]上記(B)導電性酸化物粒子の平均粒子径が100nm以下である[1]〜[3]のいずれかに記載の高誘電率樹脂組成物。
[5]上記(A)樹脂は、ポリスチレン樹脂、ポリアクリル樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、低密度ポリエチレン樹脂、中密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ポリ乳酸樹脂、6ナイロン樹脂、66ナイロン樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンスルファイド樹脂、ポリスルホン樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリフッ化ビニリデン樹脂及びポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体樹脂の群から選ばれる少なくとも1種を含む熱可塑性樹脂である[1]〜[4]のずれか1項記載の高誘電率樹脂組成物。
[6]上記[1]〜[5]のいずれか1項記載の高誘電率樹脂組成物を含有することを特徴とする成形品。
[7]体積抵抗率が1×109〜1×1015Ω・cmである[6]記載の成形品。
[8]上記成形品がフィルムである[6]又は[7]記載の成形品。
[9]上記[1]〜[5]のいずれかに記載の高誘電率樹脂組成物を含有することを特徴とする電気・電子部品。
That is, the present invention provides the following high dielectric constant resin composition and films, molded articles, and electric / electronic parts using the composition.
[1] It contains (A) resin and (B) conductive oxide particles, and 0.03 to 13.0 masses of the (B) conductive oxide particles with respect to 100 parts by mass of the (A) resin. A high dielectric constant resin composition comprising a part of the composition.
[2] The oxide of the conductive oxide particles (B) is an oxide or composite oxide containing at least one selected from the group consisting of tin oxide, indium oxide, antimony oxide, zinc oxide, and cadmium oxide. 1] The high dielectric constant resin composition according to the above.
[3] The high dielectric constant resin composition according to [1], wherein the oxide of the conductive oxide particles (B) is antimony-doped tin oxide or tin-doped indium oxide.
[4] The high dielectric constant resin composition according to any one of [1] to [3], wherein the (B) conductive oxide particles have an average particle size of 100 nm or less.
[5] The resin (A) is polystyrene resin, polyacrylic resin, polyvinyl chloride resin, polypropylene resin, polycarbonate resin, low density polyethylene resin, medium density polyethylene resin, high density polyethylene resin, polylactic acid resin, 6 nylon resin. 66 nylon resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyester resin, polyimide resin, polyether ether ketone resin, polyether imide resin, polyvinylidene fluoride resin and polyvinylidene fluoride-hexafluoropropylene copolymer resin The high dielectric constant resin composition according to any one of [1] to [4], which is a thermoplastic resin containing at least one selected from the group of [1].
[6] A molded article comprising the high dielectric constant resin composition according to any one of [1] to [5].
[7] The molded article according to [6], wherein the volume resistivity is 1 × 10 9 to 1 × 10 15 Ω · cm.
[8] The molded product according to [6] or [7], wherein the molded product is a film.
[9] An electric / electronic component comprising the high dielectric constant resin composition according to any one of [1] to [5].

本発明の高誘電率樹脂組成物は、ごく少量のフィラー添加により高い誘電率及び低誘電正接を示すものであり、このため構成する樹脂の特性を十分に活用することでき、成形性に優れると共に、フィルムやコンデンサ等の電子部品に広く採用することができる。   The high dielectric constant resin composition of the present invention exhibits a high dielectric constant and a low dielectric loss tangent by adding a very small amount of filler, so that the characteristics of the resin constituting it can be fully utilized, and the moldability is excellent. It can be widely used for electronic parts such as films and capacitors.

本発明は、(A)樹脂と(B)導電性酸化物粒子とを含有するものであり、(A)樹脂100質量部に対して(B)導電性酸化物粒子を0.03〜13.0質量部配合してなる高誘電率樹脂組成物である。   This invention contains (A) resin and (B) electroconductive oxide particle, and (B) electroconductive oxide particle is 0.03-13. With respect to 100 mass parts of (A) resin. It is a high dielectric constant resin composition containing 0 part by mass.

(A)樹脂としては、熱可塑性樹脂であることが好ましく、具体的には、ポリ塩化ビニル樹脂(PVC)、ポリスチレン樹脂(PS)、ABS樹脂、AS樹脂、ポリアクリル樹脂(PMMA)、超低密度ポリエチレン樹脂(VLDPE)、低密度ポリエチレン樹脂(LDPE)、線状低密度ポリエチレン樹脂(LLDPE)、中密度ポリエチレン樹脂(MDPE)、高密度ポリエチレン樹脂(HDPE)、超高分子量ポリエチレン(U−PE)、ポリプロピレン樹脂(PP)、ポリカーボネート樹脂(PC)、変性PPE樹脂(m−PPE)、6ナイロン樹脂(PA6)、66ナイロン樹脂(PA66)、ポリアセタール樹脂(POM)、ポリエチレンテレフタレート樹脂(PET)、ポリブチレンテレフタレート(PBT)、ポリエステル樹脂(PEs)、ポリスルホン樹脂(PSF)、ポリアリレート樹脂(PAR)、ポリエーテルイミド樹脂(PEI)、ポリイミド樹脂、ポリ乳酸樹脂(PLA)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリフェニレンスルファイド樹脂(PPS)、ポリフェニレンオキシド樹脂(PPO)、ポリアミドイミド樹脂(PAI)、液晶ポリマー樹脂(LCP)、ポリテトラフルオロエチレン樹脂(PTFE)、ポリクロロトリフルオロエチレン樹脂(PCTFE)、ポリフッ化ビニリデン樹脂(PVDF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体樹脂(PVDF−HFP)、ウレタン樹脂、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン樹脂、エチレン−テトラフルオロエチレエン共重合体、エチレン−クロロフルオロエチレン共重合体、塩化ビニリデン樹脂、塩素化ポリオレフィン樹脂、変性ポリオレフィン樹脂、水架橋ポリオレフィン樹脂、エチレン−ビニルアセテート共重合体、エチレン−エチルアクリレート共重合体、フッ素樹脂フェノール樹脂、エポキシ樹脂、ポリ酢酸ビニル樹脂、ポリウレタン樹脂及び各種高分子物質の共重合物、混合物等が挙げられる。   (A) The resin is preferably a thermoplastic resin, specifically, polyvinyl chloride resin (PVC), polystyrene resin (PS), ABS resin, AS resin, polyacrylic resin (PMMA), ultra-low Density polyethylene resin (VLDPE), low density polyethylene resin (LDPE), linear low density polyethylene resin (LLDPE), medium density polyethylene resin (MDPE), high density polyethylene resin (HDPE), ultra high molecular weight polyethylene (U-PE) , Polypropylene resin (PP), polycarbonate resin (PC), modified PPE resin (m-PPE), 6 nylon resin (PA6), 66 nylon resin (PA66), polyacetal resin (POM), polyethylene terephthalate resin (PET), poly Butylene terephthalate (PBT), polyester Fat (PEs), polysulfone resin (PSF), polyarylate resin (PAR), polyetherimide resin (PEI), polyimide resin, polylactic acid resin (PLA), polyetheretherketone resin (PEEK), polyphenylene sulfide resin ( PPS), polyphenylene oxide resin (PPO), polyamideimide resin (PAI), liquid crystal polymer resin (LCP), polytetrafluoroethylene resin (PTFE), polychlorotrifluoroethylene resin (PCTFE), polyvinylidene fluoride resin (PVDF) , Polyvinylidene fluoride-hexafluoropropylene copolymer resin (PVDF-HFP), urethane resin, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkylvinyl -Ter copolymer, vinylidene fluoride resin, ethylene-tetrafluoroethylene copolymer, ethylene-chlorofluoroethylene copolymer, vinylidene chloride resin, chlorinated polyolefin resin, modified polyolefin resin, water-crosslinked polyolefin resin, ethylene-vinyl Examples thereof include acetate copolymers, ethylene-ethyl acrylate copolymers, fluororesin phenol resins, epoxy resins, polyvinyl acetate resins, polyurethane resins, and copolymers and mixtures of various polymer substances.

上記の熱可塑性樹脂の中でも、(A)樹脂としては、特に、ポリフェニレンオキシド樹脂、ポリフェニレンスルファイド樹脂、ポリスルホン樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリスチレン樹脂、ポリアクリル樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、低密度ポリエチレン樹脂、中密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ポリ乳酸樹脂、6ナイロン樹脂、66ナイロン樹脂、ポリエーテルイミド樹脂、ポリフッ化ビニリデン樹脂、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体樹脂が好ましく、ポリスチレン樹脂、ポリアクリル樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリエーテルイミド樹脂、ポリフッ化ビニリデン樹脂、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体樹脂がさらに好ましく、特に、ポリエーテルイミド樹脂、ポリフッ化ビニリデン樹脂、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体樹脂を採用することが好適である。   Among the above thermoplastic resins, (A) as the resin, in particular, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyester resin, polyimide resin, polyether ether ketone resin, polystyrene resin, polyacrylic resin, polychlorinated resin Vinyl resin, polypropylene resin, polycarbonate resin, low density polyethylene resin, medium density polyethylene resin, high density polyethylene resin, polylactic acid resin, 6 nylon resin, 66 nylon resin, polyetherimide resin, polyvinylidene fluoride resin, polyvinylidene fluoride Hexafluoropropylene copolymer resin is preferred, polystyrene resin, polyacrylic resin, polycarbonate resin, polylactic acid resin, polyetherimide resin, polyvinylidene fluoride resin, polyfluoride resin. Vinylidene - hexafluoropropylene copolymer resin is more preferable, in particular, polyether imide resins, polyvinylidene fluoride resins, polyvinylidene fluoride - be employed hexafluoropropylene copolymer resin are preferred.

次に、(B)導電性酸化物粒子は、特に限定されないが、酸化スズ、酸化インジウム、酸化アンチモン、酸化亜鉛及び酸化カドミウムの群から選ばれる少なくとも1種を含む酸化物又は複合酸化物であることが好ましい。具体的には、アンチモンドープ酸化スズ(ATO)、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、リンドープ酸化スズ(PTO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)等が挙げられる。なかでも、アンチモンドープ酸化スズ(ATO)またはスズドープ酸化インジウム(ITO)を採用することが好適である。   Next, the conductive oxide particles (B) are not particularly limited, but are oxides or composite oxides containing at least one selected from the group consisting of tin oxide, indium oxide, antimony oxide, zinc oxide, and cadmium oxide. It is preferable. Specifically, antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), phosphorus-doped tin oxide (PTO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO) Etc. Among these, it is preferable to employ antimony-doped tin oxide (ATO) or tin-doped indium oxide (ITO).

(B)導電性酸化物粒子の平均粒子径は、特に限定されないが、100nm以下であることが好ましく、より好ましくは10〜100nmである。この粒子径が大きすぎると、成形性に悪影響を与えるおそれがある。なお、(B)導電性酸化物の上記粒子径は、1次粒子径であり、BET法(比表面積計算法)やTEM、SEM等により直接観察される測定値を意味する。 (B) Although the average particle diameter of electroconductive oxide particle is not specifically limited, It is preferable that it is 100 nm or less, More preferably, it is 10-100 nm. If this particle size is too large, the moldability may be adversely affected. In addition, the said particle diameter of (B) electroconductive oxide is a primary particle diameter, and means the measured value directly observed by BET method (specific surface area calculation method), TEM, SEM, etc.

また、本発明に用いられる導電性酸化物粒子は、体積抵抗率が106Ω・cm以下、好ましくは1.0×10-4〜1.0×105Ω・cmであることが好適である。 The conductive oxide particles used in the present invention have a volume resistivity of 10 6 Ω · cm or less, preferably 1.0 × 10 −4 to 1.0 × 10 5 Ω · cm. is there.

本発明では、(A)樹脂100質量部に対して、(B)導電性酸化物粒子を0.03〜13.0質量部の範囲で配合することにより、本発明の高誘電率樹脂組成物が得られるものであり、(B)導電性酸化物粒子の更に好ましい配合量は0.05〜10.0質量部の範囲である。(B)導電性酸化物粒子の含有量が0.03質量部未満であると、誘電率が十分に増大しなくなる。また、上記(B)成分の含有量が13.0質量部を超えると、凝集物が発生しやすく、成形性の悪化や絶縁性の低下によって誘電正接が増大するおそれがある。なお、本発明の高誘電率樹脂組成物の使用形態については、粉体、ペレット等の固体の形態であってもよいし、分散液、水溶液等の液体の形態であってもよい。   In the present invention, the high dielectric constant resin composition of the present invention is prepared by blending (B) conductive oxide particles in the range of 0.03 to 13.0 parts by mass with respect to (A) 100 parts by mass of the resin. (B) The more preferable compounding quantity of electroconductive oxide particle is the range of 0.05-10.0 mass parts. (B) A dielectric constant will not fully increase that content of electroconductive oxide particle is less than 0.03 mass part. Moreover, when content of the said (B) component exceeds 13.0 mass parts, an aggregate will be easy to generate | occur | produce, and there exists a possibility that a dielectric loss tangent may increase by the deterioration of a moldability or insulation fall. In addition, about the usage form of the high dielectric constant resin composition of this invention, solid forms, such as a powder and a pellet, may be sufficient as liquid forms, such as a dispersion liquid and aqueous solution.

(A)樹脂に(B)導電性酸化物粒子を配合する方法としては特に限定されないが、例えば、下記のいずれかの方法が挙げられる。
(i)(A)樹脂を(C)有機溶媒に溶解した後、(B)導電性酸化物を添加,分散する方法、
(ii)(A)樹脂を水に分散させ、この水分散体に(B)導電性酸化物粒子を添加,分散する方法、
(iii)(A)樹脂を溶融混練し、(B)導電性酸化物粒子を分散する方法
などが挙げられる。
(A) Although it does not specifically limit as a method of mix | blending (B) electroconductive oxide particle with resin, For example, any of the following methods is mentioned.
(I) a method in which (A) a resin is dissolved in (C) an organic solvent and then (B) a conductive oxide is added and dispersed;
(Ii) (A) a method of dispersing resin in water and adding and dispersing (B) conductive oxide particles in the aqueous dispersion;
(Iii) (A) A method in which a resin is melt-kneaded and (B) conductive oxide particles are dispersed.

(i)の方法の場合、使用する(C)有機溶媒としては、(A)樹脂が溶解するものを適宜選択すればよく、その種類は特に限定されない。例えば、アルコール、エーテル、ケトン、芳香族炭化水素、窒素含有有機溶媒等が挙げられ、(A)樹脂と(C)有機溶媒との溶解パラメーター(SP値)や極性を考慮して選択される。
例えば、(A)樹脂が、ポリエーテルイミド樹脂やポリアクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリフッ化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体樹脂等であれば、N−メチルピロリドン(NMP)を(C)有機溶媒として用いることができる。
In the case of the method (i), the (C) organic solvent to be used may be appropriately selected from those in which (A) the resin dissolves, and the kind thereof is not particularly limited. Examples include alcohols, ethers, ketones, aromatic hydrocarbons, nitrogen-containing organic solvents, and the like, which are selected in consideration of the solubility parameter (SP value) and polarity of (A) resin and (C) organic solvent.
For example, if the resin (A) is a polyetherimide resin, polyacrylic resin, polycarbonate resin, polystyrene resin, polyvinylidene fluoride resin, polyvinyl chloride resin, polyvinylidene fluoride-hexafluoropropylene copolymer resin, N -Methylpyrrolidone (NMP) can be used as (C) organic solvent.

上記(i)の場合、(B)導電性酸化物粒子を、(A)樹脂を(C)有機溶媒に溶解させた溶液に直接添加・混合してもよいが、予め、(B)導電性酸化物粒子を(C)有機溶媒に分散させた分散体とし、これを混合してもよい。   In the case of (i) above, (B) conductive oxide particles may be directly added and mixed in a solution in which (A) resin is dissolved in (C) an organic solvent. The oxide particles may be dispersed in (C) an organic solvent and mixed.

(C)有機溶媒の使用量は特に限定はされないが、工業上使用するにあたり、(A)樹脂100質量部に対して、(C)有機溶媒を10〜5,000質量部で用いることが好ましい。   (C) Although the amount of organic solvent used is not particularly limited, it is preferable to use 10 to 5,000 parts by mass of (C) organic solvent with respect to 100 parts by mass of (A) resin for industrial use. .

(A)樹脂と(C)有機溶媒をプロペラ式撹拌機やホモジナイザー等の公知の混合調製方法によって混合溶解した後、(B)導電性酸化物粒子または(C)有機溶媒に(B)導電性酸化物粒子を分散させたものを混合することによって本発明の高誘電率樹脂組成物を得ることができる。   (A) Resin and (C) organic solvent are mixed and dissolved by a known mixing preparation method such as a propeller stirrer or homogenizer, and then (B) conductive oxide is added to (B) conductive oxide particles or (C) organic solvent. The high dielectric constant resin composition of the present invention can be obtained by mixing the oxide particles dispersed therein.

(ii)の方法の場合、(A)樹脂を水に分散させたエマルジョン等の水分散体と(B)導電性酸化物粒子を、プロペラ式撹拌機やホモジナイザー等の公知の混合調製方法で混合することによって本発明の高誘電率樹脂組成物を得ることができる。この場合、用いられる水分散体としては、ポリアクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリ乳酸樹脂、ポリウレタン樹脂の水分散体であることが好ましい。   In the case of the method (ii), (A) an aqueous dispersion such as an emulsion in which a resin is dispersed in water and (B) conductive oxide particles are mixed by a known mixing preparation method such as a propeller type agitator or a homogenizer. By doing so, the high dielectric constant resin composition of the present invention can be obtained. In this case, the aqueous dispersion used is preferably an aqueous dispersion of polyacrylic resin, polyvinyl chloride resin, polyvinyl acetate resin, polylactic acid resin, or polyurethane resin.

(i)及び(ii)の方法においては、このようにして得られた混合液を型に流し込み、乾燥させることにより所望の形状に成形することができ、特に、フィルム等の成形品に好適である。   In the methods (i) and (ii), the mixed solution thus obtained can be poured into a mold and dried to be formed into a desired shape, and is particularly suitable for a molded article such as a film. is there.

乾燥は、有機溶媒又は水が沸騰し、フィルムに空気が混合してしまうことを防ぐために、有機溶媒又は水の沸点以下の温度(例えば、30〜400℃)で段階的に乾燥させることが好ましく、沸点以下の温度で予備乾燥(プレ乾燥)を行い、その後、沸点近くの温度で本乾燥を行うことが好ましい。なお、本乾燥後は、沸点より高温で乾燥してもよい。この予備乾燥を行うことにより、均一な品質のフィルムを成形することが可能となる。例えば、(A)樹脂をN−メチルピロリドン(NMP)に溶解させ、(B)導電性酸化物粒子を混合したNMP分散液では150℃で予備乾燥し、その後、沸点近くの200℃で本乾燥を行うことが好ましい。乾燥時間は、形状やフィルムの厚みによって適宜調整できるが、工業上の使用を考慮すると0.1〜100時間で乾燥することが好ましい。   In order to prevent the organic solvent or water from boiling and the air from mixing with the film, the drying is preferably performed stepwise at a temperature not higher than the boiling point of the organic solvent or water (for example, 30 to 400 ° C.). It is preferable to perform preliminary drying (pre-drying) at a temperature below the boiling point and then perform main drying at a temperature near the boiling point. In addition, after this drying, you may dry at higher temperature than a boiling point. By performing this preliminary drying, a film having a uniform quality can be formed. For example, (A) a resin is dissolved in N-methylpyrrolidone (NMP), and (B) an NMP dispersion mixed with conductive oxide particles is preliminarily dried at 150 ° C., and then finally dried at 200 ° C. near the boiling point. It is preferable to carry out. Although drying time can be suitably adjusted with a shape and the thickness of a film, when industrial use is considered, it is preferable to dry in 0.1 to 100 hours.

このような高誘電率樹脂組成物を含んで構成されるフィルムにおいて、乾燥前の塗膜の厚みについては、乾燥後に所望の厚みとなるように適宜設定すればよく、好ましくは1μm〜10mm、より好ましくは2μm〜1mmの範囲に設定することができる。塗膜の厚みが10mmを超えると、溶媒がフィルム中に残存したり、乾燥が長時間となるため好ましくない。また、塗膜の厚みを1μm未満とすると、破れなどの欠陥が増えて成形不良となる可能性がある。   In a film comprising such a high dielectric constant resin composition, the thickness of the coating film before drying may be appropriately set so as to have a desired thickness after drying, preferably 1 μm to 10 mm. Preferably it can set to the range of 2 micrometers-1 mm. When the thickness of the coating film exceeds 10 mm, the solvent remains in the film or drying takes a long time, which is not preferable. On the other hand, if the thickness of the coating film is less than 1 μm, defects such as tearing may increase, resulting in poor molding.

(iii)の方法の場合、(A)樹脂を溶融し、(B)導電性酸化物粒子を混合する。この溶融混練工程は、単軸押出機、二軸押出機、ニーダー、バンバリーミキサー等を用いて実施される。その条件は特に限定されないが、200〜500℃の温度で混練して成形することが好ましい。溶融混練したものは射出成形等によって所望の形状に成形することができ、幅広い用途に使用することができる。   In the case of the method (iii), (A) the resin is melted, and (B) the conductive oxide particles are mixed. This melt-kneading step is performed using a single screw extruder, a twin screw extruder, a kneader, a Banbury mixer, or the like. The conditions are not particularly limited, but preferably kneaded and molded at a temperature of 200 to 500 ° C. The melt-kneaded product can be molded into a desired shape by injection molding or the like, and can be used for a wide range of applications.

得られたフィルム等の成形品については、体積抵抗率が1×109Ω・cm以上、特に1×1010Ω・cm以上であることが好ましい。体積抵抗率が1×109Ω・cmよりも低いと、絶縁性の悪化による不具合が懸念される。1×109Ω・cm以上であれば、本発明の高誘電率樹脂組成物を誘電体材料として使用するのに十分な絶縁性を確保することができる。また、得られたフィルム等の成形品の体積抵抗率の上限値としては、1×1015Ω・cm以下であることが好ましい。 The obtained molded article such as a film preferably has a volume resistivity of 1 × 10 9 Ω · cm or more, particularly 1 × 10 10 Ω · cm or more. If the volume resistivity is lower than 1 × 10 9 Ω · cm, there is a concern about defects due to deterioration of insulation. If it is 1 × 10 9 Ω · cm or more, sufficient insulation can be secured for using the high dielectric constant resin composition of the present invention as a dielectric material. In addition, the upper limit value of the volume resistivity of the obtained molded article such as a film is preferably 1 × 10 15 Ω · cm or less.

本発明の高誘電率樹脂組成物は、(B)導電性酸化物粒子の含有量を0.03〜13.0質量部の範囲で変化させることにより、その誘電率を周波数100kHzで2.5〜20の範囲に設定することができる。誘電率は、目的とするアプリケーションに応じて適切な値を選択すればよい。   The high dielectric constant resin composition of the present invention has a dielectric constant of 2.5 at a frequency of 100 kHz by changing the content of (B) conductive oxide particles in the range of 0.03 to 13.0 parts by mass. It can be set in the range of ~ 20. The dielectric constant may be selected appropriately depending on the intended application.

また、高誘電率樹脂組成物には、性能に影響を与えない範囲で、酸化防止剤、着色剤、紫外線吸収剤、光安定化剤、帯電防止剤、可塑剤、難燃剤等の各種添加剤を適宜添加してもよい。   In addition, the high dielectric constant resin composition has various additives such as an antioxidant, a colorant, an ultraviolet absorber, a light stabilizer, an antistatic agent, a plasticizer, and a flame retardant, as long as the performance is not affected. May be added as appropriate.

本発明の高誘電率樹脂組成物は、フィルムや射出成形品等の成形品など幅広い用途に展開可能であり、特に高誘電率で優れた電気的特性を有するため、コンデンサなどの電気・電子部品材料として好適に使用することができる。   The high dielectric constant resin composition of the present invention can be used for a wide range of applications such as molded products such as films and injection molded products, and has particularly high dielectric constant and excellent electrical characteristics. It can be suitably used as a material.

以下に実施例及び比較例を示し、本発明を具体的に説明するが、本発明は実施例に制限されるものではない。なお、下記の例において、部及び%はそれぞれ質量部、質量%を示す。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the examples. In addition, in the following example, a part and% show a mass part and the mass%, respectively.

[実施例1]
ポリアクリル樹脂(PMMA)(旭化成ケミカルズ(株)製デルペット60N)100部を、N−メチルピロリドン(NMP)500部に室温で溶解させた。そこに粒子径50nmのアンチモンドープ酸化スズ(ATO)(シグマアルドリッチジャパン社製)0.3部を混合し、液状の樹脂組成物を得た。
得られた樹脂組成物を、アルミ製トレーに流しこみ、150℃で2時間の予備乾燥を行った後、200℃で2時間の本乾燥を行った。厚さ0.40mmのフィルムを得た。
得られたフィルムの体積抵抗率、誘電率、誘電正接を測定し、その結果を表1に示す。なお、各測定の詳細は以下に示す。
[Example 1]
100 parts of polyacrylic resin (PMMA) (Delpet 60N manufactured by Asahi Kasei Chemicals Corporation) was dissolved in 500 parts of N-methylpyrrolidone (NMP) at room temperature. Thereto, 0.3 part of antimony-doped tin oxide (ATO) (manufactured by Sigma-Aldrich Japan) having a particle diameter of 50 nm was mixed to obtain a liquid resin composition.
The obtained resin composition was poured into an aluminum tray, preliminarily dried at 150 ° C. for 2 hours, and then main dried at 200 ° C. for 2 hours. A film having a thickness of 0.40 mm was obtained.
The volume resistivity, dielectric constant, and dielectric loss tangent of the obtained film were measured, and the results are shown in Table 1. Details of each measurement are shown below.

[体積抵抗率の測定]
高抵抗抵抗率計として(株)三菱化学アナリテック製Hiresta−UX MCP−HT800を、治具としてリングプローブに(株)三菱化学アナリテック製URSプローブを、レジテーブルに(株)三菱化学アナリテック製UFLを用い、作製した樹脂フィルムを挟み、印加電圧1,000V、10秒間の条件で樹脂フィルムの体積抵抗率を測定した。
[Measurement of volume resistivity]
The Hiresta-UX MCP-HT800 manufactured by Mitsubishi Chemical Analytech Co., Ltd. as a high resistance resistivity meter, the URS probe manufactured by Mitsubishi Chemical Analytech Co., Ltd. as a ring probe, and the Mitsubishi Chemical Analytech Co., Ltd. as a register table Using the manufactured UFL, the produced resin film was sandwiched, and the volume resistivity of the resin film was measured under the condition of an applied voltage of 1,000 V for 10 seconds.

[誘電率及び誘電正接の測定]
LCRメータとしてAgilent社製E−4980Aを、治具にAgilent社製16451B誘電体テストフィクスチャとを用い、平行板法の電極接触法によって樹脂フィルムの誘電率及び誘電正接を測定した。各周波数(100Hz、1kHz、10kHz、100kHz、1MHz、2MHz)において測定した静電容量Cp[F]の値を、下記式に代入し、誘電率(εr)を算出した。また、同時に誘電正接Dを測定・算出した。

Figure 2018100333
m:膜厚[m]
A:主電極の表面積[m2
d:主電極の直径[m]
ε0:真空の誘電率=8.854×10-12[F/m] [Measurement of dielectric constant and dissipation factor]
Using an E-4980A manufactured by Agilent as an LCR meter and a 16451B dielectric test fixture manufactured by Agilent as a jig, the dielectric constant and dielectric loss tangent of the resin film were measured by an electrode contact method of a parallel plate method. The value of the capacitance C p [F] measured at each frequency (100 Hz, 1 kHz, 10 kHz, 100 kHz, 1 MHz, 2 MHz) was substituted into the following equation to calculate the dielectric constant (ε r ). At the same time, the dielectric loss tangent D was measured and calculated.
Figure 2018100333
t m : film thickness [m]
A: Main electrode surface area [m 2 ]
d: Diameter of main electrode [m]
ε 0 : Dielectric constant of vacuum = 8.854 × 10 −12 [F / m]

[実施例2]
実施例1のポリアクリル樹脂(PMMA)をポリスチレン樹脂(PS)(PSジャパン(株)製GPPS SGP10)に代えた以外は実施例1と同様に樹脂組成物とフィルムとを作製し、評価を行った。その結果を表1に示す。
[Example 2]
A resin composition and a film were prepared and evaluated in the same manner as in Example 1 except that the polyacrylic resin (PMMA) in Example 1 was replaced with polystyrene resin (PS) (GPPS SGP10 manufactured by PS Japan Co., Ltd.). It was. The results are shown in Table 1.

[実施例3]
実施例1のポリアクリル樹脂(PMMA)をポリカーボネート樹脂(PC)(出光興産(株)製タフロンIR2200)に代えた以外は実施例1と同様に樹脂組成物とフィルムとを作製し、評価を行った。その結果を表1に示す。
[Example 3]
A resin composition and a film were prepared and evaluated in the same manner as in Example 1 except that the polyacrylic resin (PMMA) in Example 1 was replaced with polycarbonate resin (PC) (Taflon IR2200 manufactured by Idemitsu Kosan Co., Ltd.). It was. The results are shown in Table 1.

[実施例4]
実施例1のポリアクリル樹脂(PMMA)をポリフッ化ビニリデン樹脂(PVDF)(アルケマ(株)製Kynar741)に代えた以外は実施例1と同様に樹脂組成物とフィルムとを作製し、評価を行った。その結果を表1に示す。
[Example 4]
A resin composition and a film were prepared and evaluated in the same manner as in Example 1 except that the polyacrylic resin (PMMA) in Example 1 was replaced with polyvinylidene fluoride resin (PVDF) (Kynar 741 manufactured by Arkema Co., Ltd.). It was. The results are shown in Table 1.

[実施例5]
実施例1のポリアクリル樹脂(PMMA)をポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体樹脂(PVDF−HFP)(アルケマ(株)製Kynar2801−00)に代えた以外は実施例1と同様に樹脂組成物とフィルムとを作製し、評価を行った。その結果を表1に示す。
[Example 5]
Resin composition similar to Example 1 except that polyacrylic resin (PMMA) of Example 1 was replaced with polyvinylidene fluoride-hexafluoropropylene copolymer resin (PVDF-HFP) (Kynar 2801-00 manufactured by Arkema Co., Ltd.) A product and a film were prepared and evaluated. The results are shown in Table 1.

[実施例6]
ポリ乳酸樹脂(PLA)エマルジョン(ミヨシ油脂(株)製ランディPL−3000)250部(固形分換算100部)に粒子径50nmのアンチモンドープ酸化スズ(ATO)(シグマアルドリッチジャパン(株)社製)0.3部を分散させ、液状の樹脂組成物を得た。実施例1と同様にフィルムを作製し、評価を行った。その結果を表1に示す。
[Example 6]
Polylactic acid resin (PLA) emulsion (Randy PL-3000 manufactured by Miyoshi Oil & Fats Co., Ltd.) 250 parts (100 parts in terms of solid content) antimony doped tin oxide (ATO) having a particle diameter of 50 nm (manufactured by Sigma Aldrich Japan Co., Ltd.) 0.3 parts was dispersed to obtain a liquid resin composition. A film was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例7]
実施例1のポリアクリル樹脂(PMMA)をポリエーテルイミド樹脂(PEI)(ウルテムレジン1000:SABIC.I.P.製)に代えた以外は実施例1と同様に樹脂組成物とフィルムとを作製し、評価を行った。その結果を表2に示す。
[Example 7]
A resin composition and a film were produced in the same manner as in Example 1 except that the polyacrylic resin (PMMA) in Example 1 was replaced with a polyetherimide resin (PEI) (Ultem Resin 1000: manufactured by SABIC.IP). And evaluated. The results are shown in Table 2.

[実施例8〜14]
アンチモンドープ酸化スズ(ATO)の添加量及び/又は粒子径を表2に示すようにした以外は、実施例7と同様に樹脂組成物とフィルムとを作製し、評価を行った。その結果を表2に示す。
[Examples 8 to 14]
A resin composition and a film were prepared and evaluated in the same manner as in Example 7 except that the addition amount and / or particle diameter of antimony-doped tin oxide (ATO) was as shown in Table 2. The results are shown in Table 2.

[実施例15〜17]
(B)導電性酸化物粒子としてスズドープ酸化インジウム(ITO)を用いて、その添加量及び/又は粒子径を表2に示すようにした以外は、実施例7と同様に樹脂組成物とフィルムとを作製し、評価を行った。その結果を表2に示す。
[Examples 15 to 17]
(B) Resin composition and film in the same manner as in Example 7 except that tin-doped indium oxide (ITO) was used as the conductive oxide particles, and the addition amount and / or particle diameter was as shown in Table 2. Were prepared and evaluated. The results are shown in Table 2.

[比較例1〜7]
表1及び表2に示すように、アンチモンドープ酸化スズ(ATO)を加えずに、各実施例と同様の方法で樹脂組成物とフィルムとを作製し、評価を行った。その結果を表1及び表2に示す。
[Comparative Examples 1 to 7]
As shown in Tables 1 and 2, resin compositions and films were prepared and evaluated in the same manner as in each Example without adding antimony-doped tin oxide (ATO). The results are shown in Tables 1 and 2.

[比較例8及び比較例9]
アンチモンドープ酸化スズ(ATO)の添加量を表2に示すようにした以外は、実施例7と同様に樹脂組成物とフィルムとを作製し、評価を行った。その結果を表2に示す。
[Comparative Example 8 and Comparative Example 9]
A resin composition and a film were prepared and evaluated in the same manner as in Example 7 except that the addition amount of antimony-doped tin oxide (ATO) was as shown in Table 2. The results are shown in Table 2.

[比較例10及び比較例11]
アンチモンドープ酸化スズ(ATO)をチタン酸バリウム(BaTiO3)(シグマアルドリッチジャパン社製)に代えて、その添加量を表3に示すように調整した以外は、実施例7と同様に樹脂組成物とフィルムとを作製し、評価を行った。その結果を表3に示す。
[Comparative Example 10 and Comparative Example 11]
Resin composition as in Example 7 except that antimony-doped tin oxide (ATO) was replaced with barium titanate (BaTiO 3 ) (manufactured by Sigma-Aldrich Japan) and the amount added was adjusted as shown in Table 3. And a film were prepared and evaluated. The results are shown in Table 3.

[比較例12及び比較例13]
アンチモンドープ酸化スズ(ATO)をカーボンナノパウダー(100nm)(シグマアルドリッチジャパン社製)に代えて、その添加量を表3に示すように調整した以外は、実施例7と同様に樹脂組成物とフィルムとを作製し、評価を行った。その結果を表3に示す。
[Comparative Example 12 and Comparative Example 13]
The resin composition was the same as in Example 7 except that the antimony-doped tin oxide (ATO) was replaced with carbon nanopowder (100 nm) (manufactured by Sigma-Aldrich Japan) and the amount added was adjusted as shown in Table 3. A film was prepared and evaluated. The results are shown in Table 3.

なお、下記表1〜3中の(B−1)及び(B−2)成分の材料の詳細は、下記のとおりである。
(B−1)
・アンチモンドープ酸化錫(粒子径50nm):シグマアルドリッチジャパン社製
・アンチモンドープ酸化錫(粒子径20nm):三菱マテリアル電子化成(株)社製 T−1
(B−2)
・錫ドープ酸化インジウム(粒子径50nm):シグマアルドリッチジャパン社製
・錫ドープ酸化インジウム(粒子径20nm):三菱マテリアル電子化成(株)社製 E−ITO
In addition, the detail of the material of the (B-1) and (B-2) component in the following Tables 1-3 is as follows.
(B-1)
Antimony-doped tin oxide (particle size 50 nm): Sigma-Aldrich Japan Co., Ltd. Antimony-doped tin oxide (particle size 20 nm): Mitsubishi Materials Electronics Chemical Co., Ltd. T-1
(B-2)
Tin-doped indium oxide (particle diameter 50 nm): Sigma-Aldrich Japan Co., Ltd. Tin-doped indium oxide (particle diameter 20 nm): Mitsubishi Materials Electronics Chemical Co., Ltd. E-ITO

Figure 2018100333
Figure 2018100333

Figure 2018100333
Figure 2018100333

Figure 2018100333
Figure 2018100333

表1〜3に示すとおり、本実施例の高誘電率樹脂組成物及びその樹脂フィルムは、いずれも、(A)樹脂100質量部に対して(B)導電性酸化物粒子を0.03〜13.0質量部配合させたものであり、カーボンナノパウダーやチタン酸バリウム粒子を含有させた各比較例よりも高い誘電率を示すことが分かる。   As shown in Tables 1-3, the high dielectric constant resin composition of this example and the resin film thereof all have (B) conductive oxide particles in an amount of 0.03 to 100 parts by mass of (A) resin. It can be seen that 13.0 parts by mass is blended and shows a higher dielectric constant than each comparative example containing carbon nanopowder and barium titanate particles.

即ち、前述したように、樹脂中に導電性フィラーを添加した高誘電率樹脂材料では、実質的に電極間距離(誘電体の厚み)が小さくなることにより、誘電率が増大すると考えられる。この効果そのものは、導電性フィラーの種類に依存するものではないため、導電性フィラーの種類を変えても誘電率は大きく変化しないと考えられていた。しかしながら、本発明(本実施例)では、上記表1〜3に示すように、導電性酸化物粒子を用いることによって、カーボンナノパウダーと比較して、非常に高い誘電率の増大効果及び低誘電正接を発揮し得る。更に、樹脂中にチタン酸バリウム等の高誘電率の金属酸化物フィラーを添加したものと比較しても、本実施例では、特定の誘電率を設定する場合は少ない添加量となり、成形性も良好なものである。   That is, as described above, in the high dielectric constant resin material in which the conductive filler is added to the resin, it is considered that the dielectric constant is increased by substantially reducing the distance between the electrodes (dielectric thickness). Since this effect itself does not depend on the type of the conductive filler, it has been considered that the dielectric constant does not change greatly even if the type of the conductive filler is changed. However, in the present invention (this example), as shown in Tables 1 to 3 above, by using conductive oxide particles, an extremely high dielectric constant increasing effect and low dielectric constant compared to carbon nanopowder. Can exhibit tangent. Furthermore, even when compared with a resin obtained by adding a high dielectric constant metal oxide filler such as barium titanate in the resin, in this example, when a specific dielectric constant is set, the addition amount is small and the moldability is also good. It is good.

Claims (9)

(A)樹脂と(B)導電性酸化物粒子とを含有し、上記(A)樹脂100質量部に対して上記(B)導電性酸化物粒子を0.03〜13.0質量部配合してなることを特徴とする高誘電率樹脂組成物。   (A) Resin and (B) electroconductive oxide particle are contained, 0.03-13.0 mass parts of said (B) electroconductive oxide particle is mix | blended with respect to 100 mass parts of said (A) resin. A high dielectric constant resin composition characterized by comprising: 上記(B)導電性酸化物粒子の酸化物は、酸化スズ、酸化インジウム、酸化アンチモン、酸化亜鉛及び酸化カドミウムの群から選ばれる少なくとも1種を含む酸化物又は複合酸化物である請求項1記載の高誘電率樹脂組成物。   2. The oxide of the conductive oxide particles (B) is an oxide or composite oxide containing at least one selected from the group consisting of tin oxide, indium oxide, antimony oxide, zinc oxide, and cadmium oxide. High dielectric constant resin composition. 上記(B)導電性酸化物粒子の酸化物は、アンチモンドープ酸化スズ又はスズドープ酸化インジウムである請求項1記載の高誘電率樹脂組成物。   The high dielectric constant resin composition according to claim 1, wherein the oxide of the conductive oxide particles (B) is antimony-doped tin oxide or tin-doped indium oxide. 上記(B)導電性酸化物粒子の平均粒子径が100nm以下である請求項1〜3のいずれか1項記載の高誘電率樹脂組成物。   The high dielectric constant resin composition according to any one of claims 1 to 3, wherein the conductive oxide particles (B) have an average particle diameter of 100 nm or less. 上記(A)樹脂は、ポリスチレン樹脂、ポリアクリル樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、低密度ポリエチレン樹脂、中密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ポリ乳酸樹脂、6ナイロン樹脂、66ナイロン樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンスルファイド樹脂、ポリスルホン樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリフッ化ビニリデン樹脂及びポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体樹脂の群から選ばれる少なくとも1種を含む熱可塑性樹脂である請求項1〜4のずれか1項記載の高誘電率樹脂組成物。   The resin (A) is polystyrene resin, polyacrylic resin, polyvinyl chloride resin, polypropylene resin, polycarbonate resin, low density polyethylene resin, medium density polyethylene resin, high density polyethylene resin, polylactic acid resin, 6 nylon resin, 66 nylon. Resins, polyphenylene oxide resins, polyphenylene sulfide resins, polysulfone resins, polyester resins, polyimide resins, polyether ether ketone resins, polyether imide resins, polyvinylidene fluoride resins, and polyvinylidene fluoride-hexafluoropropylene copolymer resins The high dielectric constant resin composition according to claim 1, which is a thermoplastic resin containing at least one selected. 請求項1〜5のいずれか1項記載の高誘電率樹脂組成物を含有することを特徴とする成形品。   A molded article comprising the high dielectric constant resin composition according to any one of claims 1 to 5. 体積抵抗率が1×109〜1×1015Ω・cmである請求項6記載の成形品。 The molded article according to claim 6, wherein the volume resistivity is 1 × 10 9 to 1 × 10 15 Ω · cm. 上記成形品がフィルムである請求項6又は7記載の成形品。   The molded article according to claim 6 or 7, wherein the molded article is a film. 請求項1〜5のいずれか1項記載の高誘電率樹脂組成物を含有することを特徴とする電気・電子部品。   An electrical / electronic component comprising the high dielectric constant resin composition according to claim 1.
JP2016246252A 2016-12-20 2016-12-20 High dielectric constant resin composition Pending JP2018100333A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016246252A JP2018100333A (en) 2016-12-20 2016-12-20 High dielectric constant resin composition
PCT/JP2017/044522 WO2018116907A1 (en) 2016-12-20 2017-12-12 High dielectric constant resin composition
TW106144521A TW201835231A (en) 2016-12-20 2017-12-19 High dielectric constant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246252A JP2018100333A (en) 2016-12-20 2016-12-20 High dielectric constant resin composition

Publications (1)

Publication Number Publication Date
JP2018100333A true JP2018100333A (en) 2018-06-28

Family

ID=62626494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246252A Pending JP2018100333A (en) 2016-12-20 2016-12-20 High dielectric constant resin composition

Country Status (3)

Country Link
JP (1) JP2018100333A (en)
TW (1) TW201835231A (en)
WO (1) WO2018116907A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301052B2 (en) * 2004-03-25 2009-07-22 Jsr株式会社 Ultraviolet curable resin composition, cured product and laminate
JP5564752B2 (en) * 2007-12-26 2014-08-06 東洋インキScホールディングス株式会社 Metal oxide dispersion, resin composition using the same, and molded article
JP2013041922A (en) * 2011-08-12 2013-02-28 Sumitomo Bakelite Co Ltd Light receiving device
TWI541534B (en) * 2011-10-17 2016-07-11 Dainippon Printing Co Ltd Optical film, polarizing plate and image display device
JP5675919B2 (en) * 2012-09-14 2015-02-25 三菱エンジニアリングプラスチックス株式会社 Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP6179143B2 (en) * 2013-03-14 2017-08-16 大日本印刷株式会社 Cosmetic sheet and cosmetic material
JP2016188316A (en) * 2015-03-30 2016-11-04 株式会社クレハ Resin composition and application thereof

Also Published As

Publication number Publication date
TW201835231A (en) 2018-10-01
WO2018116907A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
US10685763B2 (en) Conductive polymer composite
JP7067908B2 (en) Resin composition and resin molded product
JP2013544904A (en) Novel composition for conductive transparent film
JP5369217B2 (en) Fluororesin composition
US10186344B2 (en) Conductive polymer composite
KR20110096596A (en) Composition for forming high-dielectric film for film capacitor
Harami et al. Mixed Matrix Membranes for Sustainable Electrical Energy‐Saving Applications
JP5275574B2 (en) Fluororesin composition
Gao et al. Fabrication and dielectric properties of poly (ether ether ketone)/polyimide blends with selectively distributed multi‐walled carbon nanotubes
JP5737464B2 (en) Composition and insulated wire
JP6015846B2 (en) Electrical insulation parts
JP2018100333A (en) High dielectric constant resin composition
JP6471661B2 (en) High dielectric constant resin moldings, films and electrical / electronic parts
US20050159540A1 (en) Fluororesin composition
JPH07286103A (en) Masterbatch pellet of electrically conductive resin and product of electrically conductive thermoplastic resin
KR101564587B1 (en) A composition comprising PEDOT/PSS and fluorinated polymer and a transparent electrode film using the same
Rinaldi et al. Electrical, spectroscopic, and thermal properties of blends formed by PEDOT, PVC, and PEO
JP5290082B2 (en) Fluororesin composition
JP6866141B2 (en) Resin composition, its manufacturing method and optical equipment
CN104419177A (en) Antistatic PC color master batch
JP2022098733A (en) Composition of tetrafluoroethylene polymer, liquid composition containing the same, and sheet
JP2019081818A (en) Resin composition and electronic apparatus
KR20200130397A (en) Conductive resin composition and manufacturing method thereof
JP4082149B2 (en) Method for producing resin composition having antistatic property and water repellency
KR101748028B1 (en) Masterbatch for conductive resin with improved conductivity and heat resistance and the manufacturing method thereof