JP2018096857A - Fog transmittance measuring device and road tunnel ventilation system using the same - Google Patents

Fog transmittance measuring device and road tunnel ventilation system using the same Download PDF

Info

Publication number
JP2018096857A
JP2018096857A JP2016241880A JP2016241880A JP2018096857A JP 2018096857 A JP2018096857 A JP 2018096857A JP 2016241880 A JP2016241880 A JP 2016241880A JP 2016241880 A JP2016241880 A JP 2016241880A JP 2018096857 A JP2018096857 A JP 2018096857A
Authority
JP
Japan
Prior art keywords
tunnel
transmittance
haze
measuring device
dust concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016241880A
Other languages
Japanese (ja)
Inventor
大志 八幡
Hiroshi Hachiman
大志 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016241880A priority Critical patent/JP2018096857A/en
Publication of JP2018096857A publication Critical patent/JP2018096857A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fog transmittance measuring device used for measuring luminous transmittance in a road tunnel, which has a light projection part and a light receiving part which are generally installed 100 m separated away from each other; the fog transmittance measuring device capable of being installed at point of a tunnel with a small curve radius which a straight line of 100 m is hardly ensured.SOLUTION: A signal processing part 13 carries out a series of calculation processing on a dust density in an ambient space obtained by a sensor part 12 in a manner of moving average and calculation. With this, 100 m luminous transmittance, i.e., fog transmittance can be obtained same as a conventional general fog transmittance measuring device.SELECTED DRAWING: Figure 3

Description

本発明は、道路トンネル内の視感透過率測定に使用される煙霧透過率測定装置およびそれを用いた道路トンネル換気システムに関するものである。   The present invention relates to a haze transmittance measuring device used for measuring luminous transmittance in a road tunnel and a road tunnel ventilation system using the same.

従来、道路トンネル内の視感透過率測定に用いられる煙霧透過率測定装置は、一般的に投光部と受光部を100m離して設置される(例えば、特許文献1および特許文献2参照)。すなわち、道路トンネル内の煙霧透過率とは、100m先の視感透過率(言い換えれば、光源から100m離れた位置における光の到達度合い)を用いている。図4は従来型の煙霧透過率測定装置の構成図である。透過率は、投光部101の光源102から投射された光が、道路トンネル内に存在する煤煙の微粒子の吸収または散乱により変化し、受光部103の受光素子104でその変化に応じた電気信号に変換され、処理部105で演算処理することにより得られる。また、道路トンネル用換気制御装置はこの透過率を基に道路トンネル内の視環境改善のための換気機運転を行う。   2. Description of the Related Art Conventionally, a haze transmittance measuring apparatus used for measuring luminous transmittance in a road tunnel is generally installed with a light projecting unit and a light receiving unit separated by 100 m (see, for example, Patent Document 1 and Patent Document 2). That is, the haze transmittance in the road tunnel uses a luminous transmittance 100 m ahead (in other words, the degree of arrival of light at a position 100 m away from the light source). FIG. 4 is a block diagram of a conventional haze transmittance measuring apparatus. The transmittance is changed by the light projected from the light source 102 of the light projecting unit 101 due to the absorption or scattering of soot particulates present in the road tunnel, and an electric signal corresponding to the change in the light receiving element 104 of the light receiving unit 103. And is obtained by performing arithmetic processing in the processing unit 105. The road tunnel ventilation control device operates a ventilator to improve the visual environment in the road tunnel based on this transmittance.

特開昭59−116037号公報JP 59-116037 A 特開昭61−137049号公報JP-A-61-137049

このような従来の煙霧透過率測定装置においては、投光部と受光部という構成となっていた。従って、従来の煙霧透過率測定装置で100m先の視感透過率(煙霧透過率)を測定するためには、投光部と受光部の間に障害物のない100mの直線が必要であった。トンネルがカーブしている場合は、100mの直線部分を確保することが困難であり、投光部および受光部を設置することができないという課題を有していた。近年においては、都市部の地下に道路トンネルを建設する場合が多くなり、このようなトンネルでは、とりわけ100mの直線部分を確保することが困難となっている。   Such a conventional haze transmittance measuring device has a configuration of a light projecting unit and a light receiving unit. Therefore, in order to measure the luminous transmittance (fumes transmittance) 100 m ahead with the conventional haze transmittance measuring device, a straight line of 100 m without an obstacle is required between the light projecting portion and the light receiving portion. . When the tunnel is curved, it is difficult to secure a straight portion of 100 m, and there is a problem that the light projecting unit and the light receiving unit cannot be installed. In recent years, road tunnels are often built underground in urban areas, and in such tunnels, it is particularly difficult to secure a straight portion of 100 m.

そこで本発明は上記従来の課題を解決するものであり、投光部・受光部という一対の機器を用いず、トンネル内の一ヶ所の周囲の粉じん濃度を測定することによって、100m先の視感透過率を測定する方法を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problems, and by measuring the dust concentration around one place in the tunnel without using a pair of light emitting unit and light receiving unit, a visual sense of 100 m ahead An object is to provide a method for measuring transmittance.

そして、この目的を達成するために、本発明は、周囲空間の粉じん濃度を測定するセンサ部と、前記センサ部で測定した粉じん濃度を煙霧透過率に変換する信号処理部とを有する煙霧透過率測定装置であって、前記信号処理部は、前記センサ部で測定した粉じん濃度の瞬時値を、移動平均化して煙霧透過率に変換するものであり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention provides a smoke transmittance having a sensor unit for measuring the dust concentration in the surrounding space and a signal processing unit for converting the dust concentration measured by the sensor unit into a smoke transmittance. In the measuring device, the signal processing unit converts the instantaneous value of the dust concentration measured by the sensor unit to a moving average by moving average, thereby achieving the intended purpose. is there.

本発明によれば、周囲空間の粉じん濃度を測定するセンサ部と、前記センサ部で測定した粉じん濃度を煙霧透過率に変換する信号処理部とを有する煙霧透過率測定装置であって、前記信号処理部は、前記センサ部で測定した粉じん濃度の瞬時値を、移動平均化して煙霧透過率に変換することにより、一ヶ所の周囲粉じん濃度を測定し、透過率に換算するだけで100m先の煙霧透過率を得ることができる。   According to the present invention, there is provided a smoke transmittance measuring device having a sensor unit for measuring the dust concentration in the surrounding space, and a signal processing unit for converting the dust concentration measured by the sensor unit into a smoke transmittance. The processing unit measures the ambient dust concentration at one location by moving and averaging the instantaneous value of the dust concentration measured by the sensor unit into a haze transmittance. Smoke transmittance can be obtained.

本発明の実施の形態1の煙霧透過率測定装置構成図Configuration diagram of the haze transmittance measuring apparatus according to Embodiment 1 of the present invention 本発明の実施の形態1による粉じん濃度から100m透過率への変換過程を示すグラフ (a)センサ値に基づく粉じん濃度瞬時値のグラフ (b)粉じん濃度の移動平均値のグラフ (c)粉じん濃度の移動平均値から算出した透過率のグラフThe graph which shows the conversion process from the dust concentration by Embodiment 1 of this invention to 100m transmittance | permeability (a) The graph of the dust concentration instantaneous value based on a sensor value (b) The graph of the moving average value of a dust concentration (c) Dust concentration Graph of transmittance calculated from moving average value of 本発明の実施の形態1の道路トンネル換気システム構成図Configuration diagram of road tunnel ventilation system according to Embodiment 1 of the present invention 従来の煙霧透過率測定装置構成図Configuration of conventional haze transmittance measuring device

以下、本発明の実施の形態について図面を参照しながら説明する。
(実施の形態1)
図1は、道路トンネル用煙霧透過率測定装置の構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a configuration diagram of a haze transmittance measuring apparatus for a road tunnel.

煙霧透過率測定装置11は、センサ部12と信号処理部13からなる。センサ部12は光散乱方式による粉じん濃度センサであり、煙霧透過率測定装置11の周囲の粉じん濃度を測定するものである。粉じん濃度とは、単位体積あたりの粉じん重量、あるいは、粉じん個数で表される。一方、煙霧透過率は、100m離れた位置における視認度合いであって、周囲の粉じん濃度が濃いほど視認度合いは低くなる。   The haze transmittance measuring device 11 includes a sensor unit 12 and a signal processing unit 13. The sensor unit 12 is a dust concentration sensor using a light scattering method, and measures the dust concentration around the haze transmittance measuring device 11. The dust concentration is expressed by the weight of dust per unit volume or the number of dust. On the other hand, the haze transmittance is a degree of visibility at a position 100 m away, and the degree of visibility becomes lower as the surrounding dust concentration is higher.

粉じん濃度から透過率を求めるには、ランベルト・ベールの法則に基づいて求める。すなわち、このランベルト・ベールの法則によれば、光の吸収において、物質に入射する光の強度と透過光の強度との比の対数は,物質の厚さと濃度の積に比例する。透過率とは、この物質に入射する光の強度と透過光の強度との比である。ここで、100m先の煙霧透過率を考えるとき、次式が成り立つと考えられる。

Figure 2018096857
To determine the transmittance from the dust concentration, it is determined based on the Lambert-Beer law. That is, according to this Lambert-Beer law, in the light absorption, the logarithm of the ratio of the intensity of light incident on a substance and the intensity of transmitted light is proportional to the product of the thickness and concentration of the substance. The transmittance is a ratio between the intensity of light incident on this substance and the intensity of transmitted light. Here, it is considered that the following equation holds when the haze transmittance of 100 m ahead is considered.
Figure 2018096857

なお、濃度係数aは、粉じん濃度を用いて透過率を求める際の定数である。   The concentration coefficient “a” is a constant when the transmittance is obtained using the dust concentration.

煙霧透過率測定装置11では、以下のようにして煙霧透過率を求める。まず、信号処理部13では、センサ部12から出力される粉じん濃度に相当する電気信号を収集する。得られた粉じん濃度は、煙霧透過率測定装置11の設置場所における局所的な瞬時値である。一方で、上述したように、煙霧透過率とは、100mの直線区間の透過率である。従って、100mの直線区間の粉じん濃度の平均値を用いることによって煙霧透過率が得られるものと考えられる。これをトンネル内での空気の移動に着目して説明すれば、トンネル内において、煙霧透過率に影響する粉じん、煙は、測定対象の100mの距離をトンネル内の空気の流れによって移動する。従って、粉じん濃度の瞬時値を100m移動するときの移動平均とすることによって、所望する煙霧透過率に対応する粉じん濃度が得られるのである。   In the haze transmittance measuring device 11, the haze transmittance is obtained as follows. First, the signal processing unit 13 collects electrical signals corresponding to the dust concentration output from the sensor unit 12. The obtained dust concentration is a local instantaneous value at the installation location of the haze transmittance measuring device 11. On the other hand, as described above, the haze transmittance is the transmittance of a straight section of 100 m. Therefore, it is considered that the haze transmittance can be obtained by using the average value of the dust concentration in the straight section of 100 m. If this is explained by focusing on the movement of air in the tunnel, the dust and smoke that affect the haze transmittance in the tunnel move by a flow of air in the tunnel at a distance of 100 m to be measured. Therefore, by setting the instantaneous value of the dust concentration as the moving average when moving 100 m, the dust concentration corresponding to the desired haze transmittance can be obtained.

さらに、信号処理部13は、移動平均して得られた粉じん濃度を演算式(1)による演
算処理を行い、煙霧透過率を求めるのである。
Further, the signal processing unit 13 performs a calculation process on the dust concentration obtained by the moving average according to the calculation formula (1) to obtain the smoke transmittance.

このようにして、センサ部12で得られた粉じん濃度cを、信号処理部13によって移動平均化することによって、従来の煙霧透過率測定装置と同等の透過率を得ることができる。   In this way, the dust concentration c obtained by the sensor unit 12 is moved and averaged by the signal processing unit 13, whereby a transmittance equivalent to that of the conventional haze transmittance measuring device can be obtained.

図2は、本実施形態の煙霧透過率測定装置と、従来の投光部・受光部で構成されている煙霧透過率測定装置を同じ場所で同時に測定して得られた透過率を比較したグラフである。図2(a)は、粉じん濃度の瞬時値、図2(b)は、粉じん濃度の移動平均値、図2(c)は、粉じん濃度の移動平均値から演算式(1)によって得られた煙霧透過率のグラフである。この図2で示すように、本発明による煙霧透過率測定装置で得られた透過率(実線)と、従来の煙霧透過率測定装置で得られた透過率(破線)の傾向が一致しており、本発明の煙霧透過率測定装置が有効であることがわかる。なお、信号処理部13で平均化処理する平均化時間は、実際のトンネル内の風速に応じて5秒から1000秒の範囲で任意に設定できる。   FIG. 2 is a graph comparing the transmittance obtained by simultaneously measuring the smoke transmittance measuring device of the present embodiment and the conventional smoke transmittance measuring device configured of the light projecting unit and the light receiving unit at the same place. It is. 2 (a) is the instantaneous value of the dust concentration, FIG. 2 (b) is the moving average value of the dust concentration, and FIG. 2 (c) is obtained from the moving average value of the dust concentration by the calculation formula (1). It is a graph of haze transmittance. As shown in FIG. 2, the tendency of the transmittance (solid line) obtained with the haze transmittance measuring device according to the present invention and the transmittance (broken line) obtained with the conventional haze transmittance measuring device coincide with each other. It turns out that the haze transmittance measuring device of the present invention is effective. The averaging time to be averaged by the signal processing unit 13 can be arbitrarily set in the range of 5 seconds to 1000 seconds according to the actual wind speed in the tunnel.

本実施形態の煙霧透過率測定装置によれば、トンネル内でカーブしている場所でも、トンネル内の一ヶ所の周囲粉じん濃度を測定することによって、煙霧透過率を測定することができる。   According to the haze transmittance measuring apparatus of the present embodiment, the haze transmittance can be measured by measuring the ambient dust concentration at one place in the tunnel even in a place that is curved in the tunnel.

図3は、本実施の形態による煙霧透過率測定装置11を道路トンネルに適用した道路トンネル換気システムの構成図である。図3において、図1と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。   FIG. 3 is a configuration diagram of a road tunnel ventilation system in which the haze transmittance measuring device 11 according to the present embodiment is applied to a road tunnel. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図3によれば、煙霧透過率測定装置11および風向風速測定装置15が道路トンネル17内の壁面に取り付けられる。センサ部12で測定した粉じん濃度は、信号処理部13で演算処理し、透過率を求める。このとき、移動平均を求めるにあたって、トンネル内の風速によって100mの距離をトンネル内空気が通過する時間を算出し、この算出された時間内の平均値を求める。そして、信号処理部13で演算処理された透過率は換気制御装置14に送信され、換気制御装置14は道路トンネル17内の視環境改善のために必要な換気機16の運転風量を決定する。運転風量の制御は、複数の換気機16を用いて、運転台数を変更することによって行っても良い。あるいは、各換気機16に風量変更装置(具体的には、例えばインバータ制御)を設け、各換気機16の運転風量を変更することによって行っても良い。   According to FIG. 3, the haze transmittance measuring device 11 and the wind direction and wind speed measuring device 15 are attached to the wall surface in the road tunnel 17. The dust concentration measured by the sensor unit 12 is processed by the signal processing unit 13 to obtain the transmittance. At this time, when obtaining the moving average, the time for the air in the tunnel to pass through a distance of 100 m is calculated according to the wind speed in the tunnel, and the average value within the calculated time is obtained. The transmittance calculated by the signal processing unit 13 is transmitted to the ventilation control device 14, and the ventilation control device 14 determines the operating air volume of the ventilator 16 necessary for improving the visual environment in the road tunnel 17. The control of the operating air volume may be performed by changing the number of operating units using a plurality of ventilators 16. Alternatively, an air volume changing device (specifically, for example, inverter control) may be provided in each ventilator 16, and the operation air volume of each ventilator 16 may be changed.

なお、図3では、信号処理部13は煙霧透過率測定装置11内に収める構造としているが、換気制御装置14の構成要素としても良い。   In FIG. 3, the signal processing unit 13 is configured to be housed in the haze transmittance measuring device 11, but may be a component of the ventilation control device 14.

また、本実施の形態では、風向風速測定装置15によってトンネル内の風速を求めたが、換気機16の運転風量からトンネル内の風速を求めても良い。   Moreover, in this Embodiment, although the wind speed in a tunnel was calculated | required by the wind direction wind speed measuring apparatus 15, you may obtain | require the wind speed in a tunnel from the driving | running air volume of the ventilator 16. FIG.

本実施形態の道路トンネル換気システムによれば、トンネル内でカーブしている場所でも、トンネル内の一ヶ所の周囲の粉じん濃度を測定することによって、100m先の視感透過率をさらに高精度で測定することができ、換気機の自動運転制御をより正確に行うことができる。   According to the road tunnel ventilation system of the present embodiment, even in a curved place in the tunnel, the luminous transmittance of 100 meters ahead can be obtained with higher accuracy by measuring the dust concentration around one place in the tunnel. It is possible to measure, and automatic operation control of the ventilator can be performed more accurately.

本発明によれば、トンネル内の一ヶ所の周囲の粉じん濃度を測定することによって、カーブしているトンネル内でも100m先の視感透過率を測定することができ、換気機より高精度に自動運転制御することができる。   According to the present invention, it is possible to measure the luminous transmittance 100 m ahead even in a curved tunnel by measuring the concentration of dust around one place in the tunnel, and automatically with higher accuracy than a ventilator. Operation control is possible.

11 煙霧透過率測定装置
12 センサ部
13 信号処理部
14 換気制御装置
15 風向風速測定装置
16 換気機
17 道路トンネル
101 投光部
102 光源
103 受光部
104 受光素子
105 処理部
DESCRIPTION OF SYMBOLS 11 Smoke | transmittance measuring device 12 Sensor part 13 Signal processing part 14 Ventilation control apparatus 15 Wind direction wind speed measuring apparatus 16 Ventilator 17 Road tunnel 101 Light projection part 102 Light source 103 Light receiving part 104 Light receiving element 105 Processing part

Claims (4)

周囲空間の粉じん濃度を測定するセンサ部と、
前記センサ部で測定した粉じん濃度を煙霧透過率に変換する信号処理部とを有する煙霧透過率測定装置であって、
前記信号処理部は、前記センサ部で測定した粉じん濃度の瞬時値を、移動平均化して煙霧透過率に変換する透過率測定装置。
A sensor unit for measuring the dust concentration in the surrounding space;
A haze transmittance measuring device having a signal processing unit that converts the dust concentration measured by the sensor unit into a haze transmittance,
The signal processing unit is a transmittance measuring apparatus that converts an instantaneous value of the dust concentration measured by the sensor unit into a haze transmittance by moving average.
道路トンネルにおいて、トンネル内空気を換気するための換気機と、トンネル内風向風速を測定するための風向風速測定装置と、トンネル内の煙霧透過率を測定する請求項1記載の煙霧透過率測定装置と、換気機の運転を制御する換気制御装置とを有する道路トンネル換気システムにおいて、
前記風向風速測定装置で得られた風速値から、所定距離をトンネル内空気が通過する時間を算出し、前記煙霧透過率測定装置で得られたトンネル内粉じん濃度の瞬時値を算出した時間で移動平均化して煙霧透過率を算出する道路トンネル換気システム。
2. A ventilation device for ventilating air in a tunnel in a road tunnel, a wind direction and wind speed measuring device for measuring the wind direction and wind velocity in the tunnel, and a haze permeability measuring device according to claim 1 for measuring the haze permeability in the tunnel. And a road tunnel ventilation system having a ventilation control device for controlling the operation of the ventilator,
From the wind speed value obtained by the wind direction wind speed measuring device, the time for the tunnel air to pass through a predetermined distance is calculated, and the instantaneous value of the dust concentration in the tunnel obtained by the fume permeability measuring device is calculated and moved. Road tunnel ventilation system that averages and calculates haze transmission.
道路トンネルにおいて、トンネル内空気を換気するための換気機と、トンネル内の一定距離の煙霧透過率を測定する請求項1記載の煙霧透過率測定装置と、換気機の運転を制御する換気制御装置とを有する道路トンネル換気システムにおいて、
前記換気機の運転風量を算出し、前記運転風量から道路トンネル内の風速を求め、
得られた風速値から、所定距離をトンネル内空気が通過する時間を算出し、前記煙霧透過率測定装置で得られたトンネル内粉じん濃度の瞬時値を算出した時間で移動平均化して煙霧透過率を算出する道路トンネル換気システム。
In a road tunnel, a ventilator for ventilating the air in the tunnel, a haze permeability measuring device according to claim 1 for measuring a haze permeation rate at a constant distance in the tunnel, and a ventilation control device for controlling the operation of the ventilator In a road tunnel ventilation system having
Calculate the operating air volume of the ventilator, determine the wind speed in the road tunnel from the operating air volume,
From the obtained wind speed value, calculate the time for the air in the tunnel to pass through a predetermined distance, and calculate the instantaneous value of the dust concentration in the tunnel obtained by the haze permeability measuring device to calculate the moving average for the haze permeability. Calculate the road tunnel ventilation system.
前記換気制御装置は、算出された前記煙霧透過率に基づいて前記換気機の運転を制御する道路トンネル換気システム。 The ventilation control device is a road tunnel ventilation system that controls operation of the ventilator based on the calculated haze transmittance.
JP2016241880A 2016-12-14 2016-12-14 Fog transmittance measuring device and road tunnel ventilation system using the same Pending JP2018096857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016241880A JP2018096857A (en) 2016-12-14 2016-12-14 Fog transmittance measuring device and road tunnel ventilation system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241880A JP2018096857A (en) 2016-12-14 2016-12-14 Fog transmittance measuring device and road tunnel ventilation system using the same

Publications (1)

Publication Number Publication Date
JP2018096857A true JP2018096857A (en) 2018-06-21

Family

ID=62632820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241880A Pending JP2018096857A (en) 2016-12-14 2016-12-14 Fog transmittance measuring device and road tunnel ventilation system using the same

Country Status (1)

Country Link
JP (1) JP2018096857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113014773A (en) * 2021-03-02 2021-06-22 山东鲁能软件技术有限公司智能电气分公司 Overhead line video visual monitoring system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113014773A (en) * 2021-03-02 2021-06-22 山东鲁能软件技术有限公司智能电气分公司 Overhead line video visual monitoring system and method

Similar Documents

Publication Publication Date Title
US20160318368A1 (en) Automatic Vehicle Climate Control Based on Predicted Air Quality
JP2014048120A (en) Wind velocity measuring device and wind velocity measuring method
JP2017087917A (en) Flight vehicle for pipeline facility inspection and pipeline facility inspection system using the same
JP2009063578A (en) Method and device for measuring surface speed and flow rate of liquid in tube, opened or closed canal and water channel
US11774253B2 (en) Reactive operations to air pollution
CN107145737B (en) Pollution source reverse recognition algorithm under unsteady flow field based on Markov chain
JP5784530B2 (en) Tunnel ventilation control apparatus and method
CN105467072B (en) Air pollutant detection equipment
CN114787590A (en) System and method for measuring flow of gas through a channel
JP2018096857A (en) Fog transmittance measuring device and road tunnel ventilation system using the same
US6724917B1 (en) Control apparatus for ventilating a tunnel
US20200391059A1 (en) Control system for use during tunnel fire
WO2016083576A3 (en) Device for analyzing measurement gases, particularly breathing air
Lee et al. Field measurement and estimation of ventilation flow rates by using train-induced flow rate through subway vent shafts
JP2009053065A (en) Dust-photographing apparatus
JP2006016951A (en) Air conditioning system for underground space
JP2007315143A (en) Ventilation control method of road tunnel of vertical shaft intensive exhaust ventilation system
KR101746519B1 (en) Virtual sensing system and method for building monitoring
CN113272597B (en) Air conditioner and control method
JP2004219179A (en) Open channel flow rate observation method using noncontact type current meter, and its device
JP2014066601A (en) Abnormality detection method of smog transmittance measurement apparatus
CN105388097A (en) measurement device
KR200171993Y1 (en) An integrated control system for measuring an environment in a tunnel and watching an occurrence of a fire and lighting control
CN104089930A (en) Laser backscattering type smoke-dust monitoring system
KR20000006647A (en) An integrated control system for measuring an environment in a tunnel and watching an occurrence of a fire

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118