JP2018096824A - Method and device for soil property measurement - Google Patents

Method and device for soil property measurement Download PDF

Info

Publication number
JP2018096824A
JP2018096824A JP2016241231A JP2016241231A JP2018096824A JP 2018096824 A JP2018096824 A JP 2018096824A JP 2016241231 A JP2016241231 A JP 2016241231A JP 2016241231 A JP2016241231 A JP 2016241231A JP 2018096824 A JP2018096824 A JP 2018096824A
Authority
JP
Japan
Prior art keywords
soil
microwave
resistivity
moisture content
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016241231A
Other languages
Japanese (ja)
Other versions
JP6730173B2 (en
Inventor
小林 一三
Kazumi Kobayashi
一三 小林
大道 三上
Hiromichi Mikami
大道 三上
一成 佐藤
Kazunari Sato
一成 佐藤
恵祐 田中
Keisuke Tanaka
恵祐 田中
昇 富樫
Noboru Togashi
昇 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2016241231A priority Critical patent/JP6730173B2/en
Publication of JP2018096824A publication Critical patent/JP2018096824A/en
Application granted granted Critical
Publication of JP6730173B2 publication Critical patent/JP6730173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To measure a dry density and a moisture content of soil without specifying the number of compacting operations.SOLUTION: A resistance of soil is measured in a resistance measurement step, and a mass moisture content of soil is calculated in the mass moisture content calculation step by a first correlation with a strength of a micro wave measured in a microwave reflection strength measurement step, the strength of the microwave reflected from soil, and a mass moisture content of soil. A dry density of soil is calculated in a dry density calculation step by a second correlation with the resistance measured by a resistance measurement step, the mass moisture content calculated by the mass moisture content calculation step, a resistance of soil, a mass moisture content, and a dry density. The moisture content of soil is calculated in a moisture content calculation step by a third correlation with the mass moisture content calculated by the mass moisture content calculation step, the dry density calculated by a dry density calculation step, the moisture content of the soil and the dry density. Thus, the dry density of soil and the mass moisture content of soil can be measured without specifying the number of compacting operations.SELECTED DRAWING: Figure 2

Description

本発明は、土質測定方法及び土質測定装置に関する。   The present invention relates to a soil measurement method and a soil measurement device.

盛土施工時における土質の品質管理の規定は(1)乾燥密度規定、(2)空気間隙率規定(飽和度規定)及び(3)強度特性規定の3種類に分別される。(1)乾燥密度規定及び(2)空気間隙率規定を満足することを評価するための試験として、密度計測(砂置換法、水置換法)及びRI法が挙げられ、(3)強度特性規定を満足することを評価するための試験としてはコーン貫入試験及び平板載荷試験などが挙げられる。これらの品質管理手法は、狭い一地点のみの計測結果しか得られず、試験実施に時間を要する欠点がある。   Soil quality control regulations at the time of embankment construction are classified into three categories: (1) dry density regulations, (2) air porosity ratio regulations (saturation degree regulations), and (3) strength characteristic regulations. Tests for evaluating whether (1) dry density regulations and (2) air porosity regulations are satisfied include density measurement (sand substitution method, water substitution method) and RI method, and (3) strength characteristic definition. Examples of the test for evaluating the satisfaction of the cone include a cone penetration test and a flat plate loading test. These quality control methods have a drawback that only a narrow measurement point can be obtained, and it takes time to perform the test.

そこで、施工現場の各所の土について乾燥密度を迅速に測定するための技術が提案されている。例えば、特許文献1に記載の方法では、試験場において、締固め試験が何度も行われ、締固めの回数ごとの土の含水比と乾燥密度との相関関係を示すグラフの曲線が取得される。既知の含水比と乾燥密度と体積含水率との相関関係と、締固めの回数ごとの土の含水比と乾燥密度との相関関係を示すグラフの曲線とに基づいて、締固めの回数ごとの土の体積含水率と乾燥密度との相関関係を示すグラフの曲線が取得される。   In view of this, a technique for quickly measuring the dry density of soil at various locations on the construction site has been proposed. For example, in the method described in Patent Document 1, a compaction test is performed many times at a test site, and a graph curve indicating the correlation between the moisture content of soil and the dry density for each number of compactions is obtained. . Based on the known moisture content, the correlation between the dry density and the volumetric moisture content, and the graph curve showing the correlation between the moisture content of the soil and the dry density for each number of compactions, A curve of a graph showing the correlation between the volumetric moisture content of the soil and the dry density is obtained.

施工現場では、施工現場の土壌の体積含水率が測定される。施工現場での土の体積含水率は、土に電磁波を透過させ、電磁波が土を透過するときのインピーダンス又は伝搬速度と、電磁波が基準の媒質を透過するときのインピーダンス又は伝搬速度とに基づいて測定される。施工現場で土に行われた締固めの回数に対応する土の体積含水率と乾燥密度との相関関係を示すグラフの曲線上において、測定された体積含水率に対応する乾燥密度の値が当該土の乾燥密度として測定される。   At the construction site, the volumetric water content of the soil at the construction site is measured. The volumetric moisture content of soil at the construction site is based on the impedance or propagation speed when electromagnetic waves are transmitted through the soil, and when electromagnetic waves are transmitted through the reference medium. Measured. On the curve of the graph showing the correlation between the volumetric moisture content of the soil and the dry density corresponding to the number of compactions performed on the soil at the construction site, the value of the dry density corresponding to the measured volumetric moisture content is Measured as the dry density of the soil.

特開2007‐010568号公報JP 2007-010568 A

ところで、上記のような技術では、締固めの回数を特定しない限り、締固めの回数ごとに複数本取得した土の体積含水率と乾燥密度との相関関係を示すグラフの曲線を一本に特定することができず、土の乾燥密度を特定することができない。したがって、上記のような技術では、締固めの回数を特定せずに、土の乾燥密度と土の含水比とを測定することにより、締固めの効果を確認するようなことはできず、改善が望まれている。   By the way, in the above-mentioned technique, unless the number of compaction is specified, a single curve of the graph showing the correlation between the volumetric moisture content of the soil and the dry density obtained for each compaction is specified. It is not possible to determine the dry density of the soil. Therefore, with the above technology, it is not possible to confirm the effect of compaction by measuring the dry density of soil and the moisture content of soil without specifying the number of compactions. Is desired.

そこで本発明は、締固めの回数を特定せずに、土の乾燥密度と土の含水比とを測定することができる土質測定方法及び土質測定装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a soil measurement method and a soil measurement device that can measure the dry density of soil and the moisture content of soil without specifying the number of times of compaction.

本発明は、土の抵抗率を測定する抵抗率測定工程と、土にマイクロ波を照射し、土から反射されたマイクロ波の強度を測定するマイクロ波反射強度測定工程と、マイクロ波反射強度測定工程により測定された土から反射されたマイクロ波の強度と、土から反射されたマイクロ波の強度と土の体積含水率との予め規定された第1の相関関係とにより、土の体積含水率を導出する体積含水率導出工程と、抵抗率測定工程により測定された土の抵抗率と、体積含水率導出工程により導出された土の体積含水率と、土の抵抗率と土の体積含水率と土の乾燥密度との予め規定された第2の相関関係とにより、土の乾燥密度を導出する乾燥密度導出工程と、体積含水率導出工程により導出された土の体積含水率と、乾燥密度導出工程により導出された土の乾燥密度と、土の体積含水率と土の乾燥密度と土の含水比との予め規定された第3の相関関係とにより、土の含水比を導出する含水比導出工程とを備えた土質測定方法である。   The present invention includes a resistivity measurement step for measuring the resistivity of soil, a microwave reflection intensity measurement step for irradiating the soil with microwaves and measuring the intensity of the microwave reflected from the soil, and a microwave reflection intensity measurement. The volumetric moisture content of the soil is determined by the first correlation between the intensity of the microwave reflected from the soil measured by the process and the intensity of the microwave reflected from the soil and the volumetric moisture content of the soil. Soil resistivity measured by the volume moisture content derivation process, the resistivity measurement process, the soil volume moisture content derived by the volume moisture content derivation process, the soil resistivity and the soil volume moisture content. And the second predetermined correlation between the dry density of the soil and the dry density deriving step of deriving the dry density of the soil, the volumetric moisture content of the soil derived by the volume moisture content deriving step, and the dry density The soil derived by the derivation process Soil measurement comprising a dry density, a moisture content deriving step for deriving a moisture content ratio of the soil by a predetermined third correlation between the soil moisture content, the soil dry density, and the soil moisture content Is the method.

この構成によれば、抵抗率測定工程で土の抵抗率が測定され、マイクロ波反射強度測定工程で測定されたマイクロ波の強度と、土から反射されたマイクロ波の強度と土の体積含水率との予め規定された第1の相関関係とにより、体積含水率導出工程では土の体積含水率が導出される。抵抗率測定工程により測定された土の抵抗率と、体積含水率導出工程により導出された土の体積含水率と、土の抵抗率と土の体積含水率と土の乾燥密度との予め規定された第2の相関関係とにより、乾燥密度導出工程では、土の乾燥密度が導出される。さらに、体積含水率導出工程により導出された土の体積含水率と、乾燥密度導出工程により導出された土の乾燥密度と、土の体積含水率と土の乾燥密度と土の含水比との予め規定された第3の相関関係とにより、含水比導出工程では土の含水比が導出される。つまり、締固めの回数を特定しなくとも、第1の相関関係と第2の相関関係と第3の相関関係とにより、土の乾燥密度と含水比との両方を導出することができる。これにより、締固めの回数を特定せずに、土の乾燥密度と土の含水比とを測定することができる。   According to this configuration, the resistivity of the soil is measured in the resistivity measurement step, the intensity of the microwave measured in the microwave reflection intensity measurement step, the strength of the microwave reflected from the soil, and the volumetric water content of the soil The volume moisture content of the soil is derived in the volume moisture content deriving step. The soil resistivity measured by the resistivity measurement step, the soil volume moisture content derived by the volume moisture content deriving step, the soil resistivity, the soil volume moisture content, and the soil dry density are defined in advance. According to the second correlation, the dry density of the soil is derived in the dry density deriving step. Further, the volumetric moisture content of the soil derived by the volume moisture content deriving step, the dryness density of the soil derived by the drying density deriving step, the volumetric moisture content of the soil, the dryness density of the soil, and the moisture content of the soil in advance. Based on the specified third correlation, the water content ratio of the soil is derived in the water content ratio deriving step. That is, without specifying the number of times of compaction, both the dry density and the moisture content of the soil can be derived from the first correlation, the second correlation, and the third correlation. Thereby, the dry density of the soil and the moisture content of the soil can be measured without specifying the number of times of compaction.

この場合、土を締固める締固め工程をさらに備え、抵抗率測定工程では、締固め工程後の土の抵抗率を測定し、マイクロ波反射強度測定工程では、締固め工程後の土から反射されたマイクロ波の強度を測定することが好適である。   In this case, it further comprises a compacting process for compacting the soil. In the resistivity measuring process, the resistivity of the soil after the compacting process is measured, and in the microwave reflection intensity measuring process, it is reflected from the soil after the compacting process. It is preferable to measure the intensity of the microwave.

この構成によれば、抵抗率測定工程では、締固め工程後の土の抵抗率が測定され、マイクロ波反射強度測定工程では、締固め工程後の土から反射されたマイクロ波の強度が測定されるため、乾燥密度導出工程では、締固め工程後の土の乾燥密度が導出され、含水比導出工程では、締固め工程後の土の含水比が導出されることになり、締固め工程の効果を確認することができる。   According to this configuration, the resistivity measurement step measures the resistivity of the soil after the compaction step, and the microwave reflection strength measurement step measures the intensity of the microwave reflected from the soil after the compaction step. Therefore, the dry density derivation process derives the dry density of the soil after the compaction process, and the moisture content derivation process derives the soil moisture content after the compaction process. Can be confirmed.

この場合、締固め工程は締固め機械により行われ、抵抗率測定工程では、締固め機械の進行方向の後方に配置された電極により締固め工程後の土の抵抗率を測定し、マイクロ波反射強度測定工程では、締固め機械の進行方向の後方に配置されたマイクロ波照射器とマイクロ波測定器とにより締固め工程後の土から反射されたマイクロ波の強度を測定することが好適である。   In this case, the compaction process is performed by a compaction machine, and in the resistivity measurement process, the resistivity of the soil after the compaction process is measured by an electrode disposed at the rear of the compaction machine in the traveling direction, and microwave reflection is performed. In the strength measurement process, it is preferable to measure the intensity of the microwave reflected from the soil after the compacting process by a microwave irradiator and a microwave measuring instrument arranged at the rear of the compaction machine in the traveling direction. .

この構成によれば、抵抗率測定工程では、締固め機械の進行方向の後方に配置された電極により締固め工程後の土の抵抗率が測定され、マイクロ波反射強度測定工程では、締固め機械の進行方向の後方に配置されたマイクロ波照射器とマイクロ波測定器とにより締固め工程後の土から反射されたマイクロ波の強度が測定されるため、簡単な方法で締固め工程後の土の乾燥密度と含水比とを導出することができる。   According to this configuration, in the resistivity measurement process, the resistivity of the soil after the compaction process is measured by the electrode disposed behind the advancing direction of the compaction machine, and in the microwave reflection intensity measurement process, the compaction machine Since the intensity of the microwave reflected from the soil after the compacting process is measured by the microwave irradiator and the microwave measuring instrument arranged behind the traveling direction of the soil, the soil after the compacting process is measured by a simple method. The dry density and water content ratio can be derived.

この場合、抵抗率測定工程では、締固め機械の進行方向の後方に配置された一対の電極の間隔を調整することにより、締固め工程後の土の抵抗率を測定する深度を調整し、マイクロ波反射強度測定工程では、締固め機械の進行方向の後方に配置されたマイクロ波照射器の出力を調整することにより、締固め工程後の土から反射されたマイクロ波の強度を測定する深度を調整することが好適である。   In this case, in the resistivity measurement step, the depth for measuring the resistivity of the soil after the compaction step is adjusted by adjusting the distance between the pair of electrodes arranged behind the direction of travel of the compaction machine, In the wave reflection intensity measurement process, the depth to measure the intensity of the microwave reflected from the soil after the compaction process is adjusted by adjusting the output of the microwave irradiator placed behind the direction of travel of the compaction machine. It is preferable to adjust.

この構成によれば、抵抗率測定工程では、締固め機械の進行方向の後方に配置された一対の電極の間隔を調整することにより、締固め工程後の土の抵抗率を測定する深度が調整され、マイクロ波反射強度測定工程では、締固め機械の進行方向の後方に配置されたマイクロ波照射器の出力を調整することにより、締固め工程後の土から反射されたマイクロ波の強度を測定する深度が調整されるため、簡単な方法で土の抵抗率と土から反射されたマイクロ波の強度を測定する深度とを調整することができる。   According to this configuration, in the resistivity measurement step, the depth for measuring the resistivity of the soil after the compaction step is adjusted by adjusting the distance between the pair of electrodes arranged behind the direction of travel of the compaction machine. In the microwave reflection intensity measurement process, the intensity of the microwave reflected from the soil after the compaction process is measured by adjusting the output of the microwave irradiator placed behind the direction of travel of the compaction machine. Since the depth to be adjusted is adjusted, the resistivity of the soil and the depth at which the intensity of the microwave reflected from the soil is measured can be adjusted by a simple method.

また、乾燥密度導出工程では、GNSS(Global NavigationSatellite System)測量により測位された締固め機械、電極、マイクロ波照射器及びマイクロ波測定器のいずれかの位置と、土の乾燥密度とを関連付けて導出し、含水比導出工程では、GNSS測量により測位された締固め機械、電極、マイクロ波照射器及びマイクロ波測定器のいずれかの位置と、土の含水比とを関連付けて導出することが好適である。   Also, in the drying density derivation process, the position of any one of the compacting machine, electrode, microwave irradiator and microwave measuring instrument measured by the GNSS (Global Navigation Satellite System) survey is associated with the soil drying density. In the moisture content deriving step, it is preferable to derive the position of any one of the compacting machine, the electrode, the microwave irradiator, and the microwave measuring device measured by the GNSS survey in association with the moisture content of the soil. is there.

この構成によれば、乾燥密度導出工程では、GNSS測量により測位された締固め機械、電極、マイクロ波照射器及びマイクロ波測定器のいずれかの位置と、土の乾燥密度とが関連付けて導出され、含水比導出工程では、GNSS測量により測位された締固め機械、電極、マイクロ波照射器及びマイクロ波測定器のいずれかの位置と、土の含水比とが関連付けて導出されるため、締固め工程が行われた地点ごとの締固め工程の効果を確認することができる。   According to this configuration, in the drying density deriving step, the position of any one of the compacting machine, the electrode, the microwave irradiator, and the microwave measuring instrument measured by the GNSS survey and the soil drying density are derived in association with each other. In the moisture content deriving step, the position of any one of the compacting machine, the electrode, the microwave irradiator and the microwave measuring device measured by the GNSS survey is derived in association with the moisture content of the soil. The effect of the compaction process for each point where the process was performed can be confirmed.

一方、本発明は、土の抵抗率を測定する抵抗率測定部と、土にマイクロ波を照射し、土から反射されたマイクロ波の強度を測定するマイクロ波反射強度測定部と、マイクロ波反射強度測定部により測定された土から反射されたマイクロ波の強度と、土から反射されたマイクロ波の強度と土の体積含水率との予め規定された第1の相関関係とにより、土の体積含水率を導出する体積含水率導出部と、抵抗率測定部により測定された土の抵抗率と、体積含水率導出部により導出された土の体積含水率と、土の抵抗率と土の体積含水率と土の乾燥密度との予め規定された第2の相関関係とにより、土の乾燥密度を導出する乾燥密度導出部と、体積含水率導出部により導出された土の体積含水率と、乾燥密度導出部により導出された土の乾燥密度と、土の体積含水率と土の乾燥密度と土の含水比との予め規定された第3の相関関係とにより、土の含水比を導出する含水比導出部とを備えた土質測定装置である。   On the other hand, the present invention includes a resistivity measurement unit that measures the resistivity of soil, a microwave reflection intensity measurement unit that irradiates the soil with microwaves and measures the intensity of the microwave reflected from the soil, and a microwave reflection The volume of the soil is determined by the intensity of the microwave reflected from the soil measured by the intensity measuring unit and the first predetermined correlation between the intensity of the microwave reflected from the soil and the volumetric water content of the soil. Volume moisture content deriving unit for deriving moisture content, soil resistivity measured by resistivity measuring unit, soil volume moisture content derived by volume moisture content deriving unit, soil resistivity and soil volume Based on the second predetermined correlation between the moisture content and the dry density of the soil, a dry density deriving unit for deriving the dry density of the soil, a volume moisture content of the soil derived by the volume moisture content deriving unit, The dry density of the soil derived by the dry density deriving section; By the volumetric water content of the soil dry density and soil water content ratio of the third correlation and defined in advance of a soil measuring apparatus equipped with a water content ratio deriving unit that derives the water content ratio of the soil.

この場合、土を締固める締固め部をさらに備え、抵抗率測定部は、締固め部により締固められた後の土の抵抗率を測定し、マイクロ波反射強度測定部は、締固め部により締固められた後の土から反射されたマイクロ波の強度を測定することが好適である。   In this case, a compaction unit for compacting the soil is further provided, the resistivity measurement unit measures the resistivity of the soil after compacted by the compaction unit, and the microwave reflection intensity measurement unit is measured by the compaction unit. It is preferred to measure the intensity of the microwave reflected from the soil after compaction.

この場合、締固め部は締固め機械により土を締固め、抵抗率測定部は、締固め機械の進行方向の後方に配置された電極により締固め機械により締固められた後の土の抵抗率を測定し、マイクロ波反射強度測定部は、締固め機械の進行方向の後方に配置されたマイクロ波照射器とマイクロ波測定器とにより締固め機械により締固められた後の土から反射されたマイクロ波の強度を測定することが好適である。   In this case, the compaction unit compacts the soil with a compaction machine, and the resistivity measurement unit confirms the resistivity of the soil after compacted by the compaction machine with an electrode arranged behind the compaction machine in the traveling direction. The microwave reflection intensity measuring part was reflected from the soil after being compacted by the compacting machine by the microwave irradiator and the microwave measuring instrument arranged at the rear of the compacting machine in the traveling direction. It is preferable to measure the intensity of the microwave.

この場合、抵抗率測定部は、締固め機械の進行方向の後方に配置された一対の電極の間隔を調整することにより、締固め機械により締固められた後の土の抵抗率を測定する深度を調整し、マイクロ波反射強度測定部は、締固め機械の進行方向の後方に配置されたマイクロ波照射器の出力を調整することにより、締固め機械により締固められた後の土から反射されたマイクロ波の強度を測定する深度を調整することが好適である。   In this case, the resistivity measuring unit adjusts the distance between the pair of electrodes arranged behind the direction of travel of the compacting machine, thereby measuring the resistivity of the soil after compacted by the compacting machine. The microwave reflection intensity measuring unit is reflected from the soil after being compacted by the compacting machine by adjusting the output of the microwave irradiator placed behind the direction of travel of the compacting machine. It is preferable to adjust the depth at which the microwave intensity is measured.

また、乾燥密度導出部は、GNSS(Global NavigationSatellite System)測量により測位された締固め機械、電極、マイクロ波照射器及びマイクロ波測定器のいずれかの位置と、土の乾燥密度とを関連付けて導出し、含水比導出部は、GNSS測量により測位された締固め機械、電極、マイクロ波照射器及びマイクロ波測定器のいずれかの位置と、土の含水比とを関連付けて導出することが好適である。   The dry density deriving unit derives the position of any one of the compacting machine, the electrode, the microwave irradiator, and the microwave measuring instrument measured by GNSS (Global Navigation Satellite System) survey and the dry density of the soil in association with each other. It is preferable that the moisture content deriving unit derives the position of any one of the compacting machine, the electrode, the microwave irradiator, and the microwave measuring device measured by the GNSS survey in association with the moisture content of the soil. is there.

本発明の土質測定方法及び土質測定装置によれば、締固めの回数を特定せずに、土の乾燥密度と土の含水比とを測定することができる。   According to the soil measurement method and soil measurement apparatus of the present invention, the dry density of soil and the moisture content of soil can be measured without specifying the number of times of compaction.

第1実施形態の土質測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the soil quality measuring apparatus of 1st Embodiment. 第1実施形態の土質測定方法の工程を示すフローチャートである。It is a flowchart which shows the process of the soil measurement method of 1st Embodiment. (A)は土の抵抗率を測定する深度が浅い場合の電極の間隔を示す図であり、(B)は土の抵抗率を測定する深度が(A)よりも深い場合の電極の間隔を示す図である。(A) is a figure which shows the space | interval of an electrode when the depth which measures soil resistivity is shallow, (B) is the space | interval of an electrode when the depth which measures the resistivity of soil is deeper than (A). FIG. 土から反射されたマイクロ波の強度と土の体積含水率との予め規定された第1の相関関係を示すグラフである。It is a graph which shows the 1st correlation previously prescribed | regulated with the intensity | strength of the microwave reflected from the soil, and the volumetric water content of the soil. 一般的な砂を含む土における土の抵抗率と土の体積含水率と土の乾燥密度との予め規定された第2の相関関係を示すグラフである。It is a graph which shows the 2nd predetermined correlation with the resistivity of the soil in the soil containing general sand, the volume moisture content of the soil, and the dry density of the soil. 第2実施形態の土質測定装置の構成を示す側面図である。It is a side view which shows the structure of the soil quality measuring apparatus of 2nd Embodiment.

以下、図面を参照しつつ本発明に係る土質測定方法及び土質測定装置の実施形態について詳細に説明する。図1に示すように、本発明の第1実施形態の土質測定装置1Aは、ロードローラ等の締固め機械11と一体化され、締固め機械11により締固められた後の土の乾燥密度と含水比とを導出することによって、締固め機械11による締固めの効果を確認する。   Hereinafter, embodiments of a soil measurement method and a soil measurement device according to the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the soil quality measuring apparatus 1 </ b> A according to the first embodiment of the present invention is integrated with a compacting machine 11 such as a load roller, and the dry density of the soil after compacted by the compacting machine 11. The effect of compaction by the compaction machine 11 is confirmed by deriving the water content ratio.

土質測定装置1Aは、抵抗率測定部2、マイクロ波反射強度測定部3、体積含水率導出部4、乾燥密度導出部5、含水比導出部6、締固め部7、締固め機械11、電極12、マイクロ波照射器13、マイクロ波測定器14、GNSS測量部15及びディスプレイ16を備える。抵抗率測定部2、マイクロ波反射強度測定部3、体積含水率導出部4、乾燥密度導出部5及び含水比導出部6は、CPU[CentralProcessing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]等を有する電子制御ユニットである。電子制御ユニットでは、ROMに記憶されているプログラムをRAMにロードし、CPUで実行することで、後述する各種の制御及び演算を実行する。   A soil measuring apparatus 1A includes a resistivity measuring unit 2, a microwave reflection intensity measuring unit 3, a volume moisture content deriving unit 4, a dry density deriving unit 5, a moisture content deriving unit 6, a compacting unit 7, a compacting machine 11, and electrodes. 12, a microwave irradiator 13, a microwave measuring instrument 14, a GNSS surveying unit 15, and a display 16. The resistivity measuring unit 2, the microwave reflection intensity measuring unit 3, the volume water content deriving unit 4, the dry density deriving unit 5 and the water content deriving unit 6 are a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random An electronic control unit having an “Access Memory” or the like. In the electronic control unit, a program stored in the ROM is loaded into the RAM and executed by the CPU, thereby executing various controls and operations described later.

抵抗率測定部2は、土の抵抗率を測定する。抵抗率測定部2は、締固め機械11の進行方向Tの後方に配置された電極12により締固め機械11により締固められた後の土の抵抗率を測定する。電極12は、例えば、締固め機械11の進行に伴い土の上を転がりながら締固め機械11と一緒に移動可能な円板、円柱、多角形板又は多角柱の形状を有するローラ型(車輪型)の電極である。   The resistivity measuring unit 2 measures the resistivity of the soil. The resistivity measuring unit 2 measures the resistivity of the soil after being compacted by the compacting machine 11 by the electrode 12 disposed at the rear of the compacting machine 11 in the traveling direction T. The electrode 12 is, for example, a roller type (wheel type) having a disk, cylinder, polygonal plate or polygonal column shape that can move together with the compacting machine 11 while rolling on the soil as the compacting machine 11 advances. ) Electrode.

例えば、4つのローラ型の電極12が、締固め機械11の幅方向に並列に配置され、ウェンナー法により土の抵抗率が測定される。4つのローラ型の電極12は、互いにその間隔を拡大自在及び縮小自在である。後述するように、抵抗率測定部2は、締固め機械11の進行方向Tの後方に配置された一対のローラ型の電極12の間隔を調整することにより、締固め機械11により締固められた後の土の抵抗率を測定する深度を調整する。土質測定装置1Aは、ローラ型の電極12が土の表面から飛び跳ねないように土の表面に所定の力で押し付ける不図示のサスペンション及び錘のいずれかを備える。   For example, four roller-type electrodes 12 are arranged in parallel in the width direction of the compacting machine 11, and the resistivity of the soil is measured by the Wenner method. The distance between the four roller-type electrodes 12 can be enlarged and reduced. As will be described later, the resistivity measuring unit 2 is compacted by the compacting machine 11 by adjusting the distance between the pair of roller-type electrodes 12 arranged behind the traveling direction T of the compacting machine 11. Adjust the depth at which the soil resistivity is measured later. The soil quality measuring apparatus 1A includes either a suspension (not shown) or a weight that presses against the surface of the soil with a predetermined force so that the roller-type electrode 12 does not jump from the surface of the soil.

マイクロ波反射強度測定部3は、土にマイクロ波を照射し、土から反射されたマイクロ波の強度を測定する。マイクロ波反射強度測定部3は、締固め機械11の進行方向Tの後方に配置されたマイクロ波照射器13とマイクロ波測定器14とにより締固め機械11により締固められた後の土から反射されたマイクロ波の強度を測定する。マイクロ波照射器13は、例えば、マグネトロン及び導波管等により構成されている。マイクロ波照射器13は、土に照射するマイクロ波の出力(振幅及び周波数の少なくともいずれか)を調整自在である。後述するように、マイクロ波反射強度測定部3は、締固め機械11の進行方向Tの後方に配置されたマイクロ波照射器13の出力を調整することにより、締固め機械11により締固められた後の土から反射されたマイクロ波の強度を測定する深度を調整する。マイクロ波測定器14は、例えば、導波管及びダイオード等により構成されている。   The microwave reflection intensity measurement unit 3 irradiates the soil with microwaves and measures the intensity of the microwave reflected from the soil. The microwave reflection intensity measuring unit 3 is reflected from the soil after being compacted by the compacting machine 11 by the microwave irradiator 13 and the microwave measuring instrument 14 disposed behind the compacting machine 11 in the traveling direction T. The intensity of the applied microwave is measured. The microwave irradiator 13 is composed of, for example, a magnetron and a waveguide. The microwave irradiator 13 is capable of adjusting the output (at least one of amplitude and frequency) of the microwave irradiated to the soil. As will be described later, the microwave reflection intensity measuring unit 3 was compacted by the compacting machine 11 by adjusting the output of the microwave irradiator 13 disposed behind the traveling direction T of the compacting machine 11. Adjust the depth to measure the intensity of the microwave reflected from the later soil. The microwave measuring instrument 14 is composed of, for example, a waveguide and a diode.

体積含水率導出部4は、後述するように、マイクロ波反射強度測定部3により測定された土から反射されたマイクロ波の強度と、土から反射されたマイクロ波の強度と土の体積含水率との予め規定された第1の相関関係とにより、土の体積含水率を導出する。なお、土の体積含水率とは、土の体積に対する土に含まれる水の体積の割合を意味し、本実施形態では、百分率で表示される。   As will be described later, the volumetric water content deriving unit 4 is configured to measure the intensity of the microwave reflected from the soil, the intensity of the microwave reflected from the soil, and the volumetric water content of the soil. The volumetric water content of the soil is derived from the first correlation specified in advance. The volumetric water content of the soil means the ratio of the volume of water contained in the soil to the volume of the soil, and is displayed as a percentage in the present embodiment.

乾燥密度導出部5は、後述するように、抵抗率測定部2により測定された土の抵抗率と、体積含水率導出部4により導出された土の体積含水率と、土の抵抗率と土の体積含水率と土の乾燥密度との予め規定された第2の相関関係とにより、土の乾燥密度を導出する。なお、土の乾燥密度とは、土の体積に対する土に含まれる土粒子の質量の割合を意味する。また、乾燥密度導出部5は、GNSS測量部15によるGNSS(GlobalNavigation Satellite System)測量により測位された締固め機械11、電極12、マイクロ波照射器13及びマイクロ波測定器14のいずれかの位置と、土の乾燥密度とを関連付けて導出し、導出した結果をディスプレイ16に表示する。   As will be described later, the dry density deriving unit 5 includes the soil resistivity measured by the resistivity measuring unit 2, the volume moisture content of the soil derived by the volume moisture content deriving unit 4, the soil resistivity and the soil. The dry density of the soil is derived from the second predetermined correlation between the volumetric moisture content of the soil and the dry density of the soil. In addition, the dry density of soil means the ratio of the mass of the soil particle contained in the soil with respect to the volume of the soil. Further, the dry density deriving unit 5 includes any one of the positions of the compacting machine 11, the electrode 12, the microwave irradiator 13, and the microwave measuring instrument 14 measured by the GNSS (Global Navigation Satellite System) surveying by the GNSS surveying unit 15. The soil dry density is derived in association with it, and the derived result is displayed on the display 16.

含水比導出部6は、後述するように、体積含水率導出部4により導出された土の体積含水率と、乾燥密度導出部5により導出された土の乾燥密度と、土の体積含水率と土の乾燥密度と土の含水比との予め規定された第3の相関関係とにより、土の含水比を導出する。なお、土の含水比とは、土に含まれる土粒子の質量に対する土に含まれる水の質量の割合を意味し、本実施形態では、百分率で表示される。また、含水比導出部6は、GNSS測量部15によるGNSS測量により測位された締固め機械11、電極12、マイクロ波照射器13及びマイクロ波測定器14のいずれかの位置と、土の含水比とを関連付けて導出し、導出した結果をディスプレイ16に表示する。   As will be described later, the water content ratio deriving unit 6 includes the volumetric water content of the soil derived by the volumetric water content deriving unit 4, the dry density of the soil derived by the dry density deriving unit 5, and the volumetric water content of the soil. The moisture content of the soil is derived from the third predetermined correlation between the dry density of the soil and the moisture content of the soil. The water content ratio of soil means the ratio of the mass of water contained in the soil to the mass of soil particles contained in the soil, and is expressed as a percentage in the present embodiment. In addition, the water content ratio deriving unit 6 includes any position of the compacting machine 11, the electrode 12, the microwave irradiator 13 and the microwave measuring device 14 measured by the GNSS surveying by the GNSS surveying unit 15 and the water content ratio of the soil. Are derived in association with each other, and the derived result is displayed on the display 16.

GNSS測量部15は、3個以上の衛星から信号を受信することにより、締固め機械11等の位置(例えば締固め機械11等の緯度及び経度)を測位する。なお、GNSS測量部15によるGNSS測量に替えて、光学測量機能による自動追尾TS(Total Station)により締固め機械11等の位置を測位してもよい。ディスプレイ16は、例えば、液晶ディスプレイであり、乾燥密度導出部5及び含水比導出部6からの指令信号により、地図上の位置と土の乾燥密度と土の含水比とを関連付けて表示する。   The GNSS surveying unit 15 receives a signal from three or more satellites, thereby positioning the position of the compacting machine 11 or the like (for example, the latitude and longitude of the compacting machine 11 or the like). Instead of the GNSS surveying by the GNSS surveying unit 15, the position of the compacting machine 11 or the like may be measured by an automatic tracking TS (Total Station) using an optical surveying function. The display 16 is a liquid crystal display, for example, and displays the position on the map, the dry density of the soil, and the moisture content of the soil in association with the command signals from the dry density deriving unit 5 and the moisture content deriving unit 6.

締固め部7は、締固め機械11を制御しつつ、締固め機械11により土を締固める。締固め機械11には、ロードローラ、タイヤローラ、タンピングローラ、振動ローラ、マカダムローラ、コンバインドローラ及びハンドガイドローラ等のローラ系の機械や、プレートコンパクタ及びタンパ等の平板式の機械を適用することができる。   The compacting unit 7 compacts the soil by the compacting machine 11 while controlling the compacting machine 11. The compacting machine 11 may be a roller-type machine such as a road roller, a tire roller, a tamping roller, a vibration roller, a Macadam roller, a combined roller and a hand guide roller, or a flat type machine such as a plate compactor and a tamper. it can.

以下、本実施形態の土質測定方法について説明する。図2に示すように、土質測定装置1Aの締固め部7により、土を締固める締固め工程が行われる(S1)。締固め工程は締固め部7によって制御された締固め機械11により行われる。土質測定装置1Aの抵抗率測定部2により、土の抵抗率を測定する抵抗率測定工程が行われる(S2)。抵抗率測定工程では、締固め機械11の進行方向の後方に配置された電極12により締固め工程後の土の抵抗率が測定される。   Hereinafter, the soil measurement method of this embodiment will be described. As shown in FIG. 2, a compacting step for compacting the soil is performed by the compacting unit 7 of the soil quality measuring apparatus 1A (S1). The compacting process is performed by a compacting machine 11 controlled by the compacting unit 7. A resistivity measuring step of measuring the resistivity of the soil is performed by the resistivity measuring unit 2 of the soil measurement device 1A (S2). In the resistivity measuring process, the resistivity of the soil after the compacting process is measured by the electrode 12 disposed at the rear of the compacting machine 11 in the traveling direction.

図3(A)及び図3(B)に示すように、抵抗率測定工程では、締固め機械11の進行方向Tの後方に配置された一対の電極12の間隔d1,d2を調整することにより、締固め工程後の土Sの抵抗率を測定する深度D1,D2を調整する。図3(A)に示すように、電極12の間隔d1を短くすると、浅い深度D1の測定箇所P1における土Sの抵抗率を測定することができる。また、図3(B)に示すように、電極12の間隔d2を長くすると、深度D1よりも深い深度D2の測定箇所P2における土Sの抵抗率を測定することができる。なお、図3(A)及び図3(B)の例では、ウェンナー法による抵抗率の測定の例を示したが、他の4極法や、2極法及び3極法も同様に適用することができる。   As shown in FIGS. 3 (A) and 3 (B), in the resistivity measuring step, by adjusting the distances d1 and d2 between the pair of electrodes 12 arranged behind the advancing direction T of the compacting machine 11 The depths D1 and D2 for measuring the resistivity of the soil S after the compacting step are adjusted. As shown in FIG. 3A, when the distance d1 between the electrodes 12 is shortened, the resistivity of the soil S at the measurement point P1 at the shallow depth D1 can be measured. As shown in FIG. 3B, when the distance d2 between the electrodes 12 is increased, the resistivity of the soil S at the measurement point P2 at the depth D2 deeper than the depth D1 can be measured. In the example of FIGS. 3A and 3B, an example of measuring the resistivity by the Wenner method is shown, but other 4-pole methods, 2-pole methods, and 3-pole methods are also applied in the same manner. be able to.

抵抗率測定工程と並行して、土質測定装置1Aのマイクロ波反射強度測定部3により、土にマイクロ波を照射し、土から反射されたマイクロ波の強度を測定するマイクロ波反射強度測定工程が行われる(S3)。マイクロ波反射強度測定工程では、締固め機械11の進行方向Tの後方に配置されたマイクロ波照射器13とマイクロ波測定器14とにより締固め工程後の土から反射されたマイクロ波の強度が測定される。マイクロ波反射強度測定工程では、締固め機械11の進行方向Tの後方に配置されたマイクロ波照射器13の出力を調整することにより、締固め工程後の土から反射されたマイクロ波の強度を測定する深度が調整される。   In parallel with the resistivity measurement step, a microwave reflection intensity measurement step is performed in which the microwave reflection intensity measurement unit 3 of the soil measurement device 1A irradiates the soil with microwaves and measures the intensity of the microwave reflected from the soil. Performed (S3). In the microwave reflection intensity measurement process, the intensity of the microwave reflected from the soil after the compaction process by the microwave irradiator 13 and the microwave measurement instrument 14 disposed behind the traveling direction T of the compaction machine 11 is determined. Measured. In the microwave reflection intensity measuring step, the intensity of the microwave reflected from the soil after the compacting step is adjusted by adjusting the output of the microwave irradiator 13 disposed behind the traveling direction T of the compacting machine 11. The depth to measure is adjusted.

土質測定装置1Aの体積含水率導出部4により、マイクロ波反射強度測定工程により測定された土から反射されたマイクロ波の強度と、土から反射されたマイクロ波の強度と土の体積含水率との予め規定された第1の相関関係とにより、土の体積含水率を導出する体積含水率導出工程が行われる(S4)。   The volume moisture content deriving unit 4 of the soil measurement apparatus 1A uses the microwave intensity reflected by the microwave reflection intensity measurement step, the intensity of the microwave reflected from the soil, and the volume moisture content of the soil. The volume moisture content deriving step for deriving the volume moisture content of the soil is performed based on the first predetermined correlation (S4).

土から反射されたマイクロ波の強度と土の体積含水率とは、図4に示すような第1の相関関係があることが確認されている。図4のC20_80%とは、土が日本工業規格のJIS A 5001に規定されているC20のクラッシャランであって、その締固め度が80[%]であることを示し、稲城砂_80%とは、土が稲城砂であって、その締固め度が80[%]であることを示している。図4に示すように、近似直線により、土から反射されたマイクロ波の強度と土の体積含水率との第1の相関関係が規定される。体積含水率導出部4は、近似直線においてマイクロ波反射強度測定工程により測定された土から反射されたマイクロ波の強度に対応する体積含水率を当該土の体積含水率として導出する。   It has been confirmed that the intensity of the microwave reflected from the soil and the volumetric water content of the soil have a first correlation as shown in FIG. C20_80% in FIG. 4 indicates that the soil is a C20 crusher orchid stipulated in JIS A 5001 of the Japanese Industrial Standard, and its compaction degree is 80 [%]. Inagi sand_80% , The soil is Inagi sand, and its compaction degree is 80 [%]. As shown in FIG. 4, the first correlation between the intensity of the microwave reflected from the soil and the volumetric water content of the soil is defined by the approximate straight line. The volume moisture content deriving unit 4 derives the volume moisture content corresponding to the intensity of the microwave reflected from the soil measured by the microwave reflection intensity measurement step in the approximate straight line as the volume moisture content of the soil.

土質測定装置1Aの乾燥密度導出部5により、抵抗率測定工程により測定された土の抵抗率と、体積含水率導出工程により導出された土の体積含水率と、土の抵抗率と土の体積含水率と土の乾燥密度との予め規定された第2の相関関係とにより、土の乾燥密度を導出する乾燥密度導出工程が行われる(S5)。   The soil resistivity measured by the resistivity measurement step, the soil volume moisture content derived by the volume moisture content derivation step, the soil resistivity and the soil volume by the dry density derivation unit 5 of the soil measurement device 1A. A drying density deriving step for deriving the soil drying density is performed based on the second predetermined correlation between the moisture content and the soil drying density (S5).

土の抵抗率と土の体積含水率と土の乾燥密度とは、同じ体積含水率の土について整理すると、図5に示すような第2の相関関係があることが確認されている。図5のθ=20とは、土の体積含水率θが20[%]である土の抵抗率と乾燥密度との第2の相関関係を示す線を意味する。図5の等しい体積含水率における土の抵抗率と乾燥密度との第2の相関関係を示す線は、例えば、締固め工程が行われる土と類似の組成を有する試料に対して、予め試料の含水比と乾燥密度とを変化させつつ、抵抗率を測定することにより、取得することができる。図5において、体積含水率導出工程により導出された体積含水率により、当該体積含水率における土の抵抗率と乾燥密度との第2の相関関係を示す線が決定される。乾燥密度導出部5は、当該第2の相関関係を示す線において抵抗率測定工程により想定された土の抵抗率に対応する乾燥密度を当該土の乾燥密度として導出する。   It is confirmed that the soil resistivity, the soil volume moisture content, and the soil dry density have a second correlation as shown in FIG. 5 when the soil having the same volume moisture content is arranged. In FIG. 5, θ = 20 means a line indicating the second correlation between the resistivity of the soil having a volume moisture content θ of the soil of 20 [%] and the dry density. The line indicating the second correlation between the soil resistivity and the dry density at the same volumetric water content in FIG. 5 is, for example, a sample having a composition similar to that of the soil subjected to the compaction process in advance. It can be obtained by measuring the resistivity while changing the water content ratio and the dry density. In FIG. 5, a line indicating the second correlation between the soil resistivity and the dry density at the volume moisture content is determined by the volume moisture content derived by the volume moisture content deriving step. The dry density deriving unit 5 derives the dry density corresponding to the resistivity of the soil assumed by the resistivity measurement step in the line indicating the second correlation as the dry density of the soil.

土質測定装置1Aの含水比導出部6により、体積含水率導出工程により導出された土の体積含水率と、乾燥密度導出工程により導出された土の乾燥密度と、土の体積含水率と土の乾燥密度と土の含水比との予め規定された第3の相関関係とにより、土の含水比を導出する含水比導出工程が行われる(S6)。土の体積含水率θ[%]、土の乾燥密度ρ[g/cm]及び含水比w[%]の間には、以下の式(1)に示す第3の相関関係があることが知られている。含水比導出部6は、体積含水率導出工程により導出された土の体積含水率θと乾燥密度導出工程により導出された土の乾燥密度ρとを式(1)に代入することにより、当該土の含水比wを導出する。

Figure 2018096824

The moisture content deriving unit 6 of the soil quality measuring apparatus 1A uses the volumetric moisture content of the soil derived by the volumetric moisture content deriving step, the dry density of the soil derived by the dry density deriving step, the volumetric moisture content of the soil, A water content ratio deriving step for deriving the water content ratio of the soil is performed based on the third predetermined correlation between the dry density and the water content ratio of the soil (S6). There is a third correlation shown in the following formula (1) among the soil volume moisture content θ [%], the soil dry density ρ d [g / cm 3 ] and the moisture content w [%]. It has been known. The moisture content deriving unit 6 substitutes the soil volume moisture content θ derived by the volume moisture content deriving step and the soil dry density ρ d derived by the dry density deriving step into the equation (1), The moisture content w of the soil is derived.
Figure 2018096824

乾燥密度導出工程では、GNSS測量部15によるGNSS測量により測位された締固め機械11、電極12、マイクロ波照射器13及びマイクロ波測定器14のいずれかの位置と、土の乾燥密度ρとが関連付けて導出され、含水比導出工程では、GNSS測量部15によるGNSS測量により測位された締固め機械11、電極12、マイクロ波照射器13及びマイクロ波測定器14のいずれかの位置と、土の含水比wとが関連付けて導出される。乾燥密度ρ及び含水比wが導出された位置と、乾燥密度ρ及び含水比wとは、締固め機械11の操作員に対してディスプレイ16により地図情報と併せて表示される。これにより、締固め機械11の操作員は、締固めの作業を行いつつ締固めの作業の効果を確認することができる。 The dry density deriving step, compaction machine 11 which is positioning by GNSS survey by the GNSS surveying unit 15, electrode 12, and any position of the microwave irradiator 13 and microwave meter 14, a dry density [rho d soil In the water content ratio deriving step, the position of the compacting machine 11, the electrode 12, the microwave irradiator 13 and the microwave measuring instrument 14 measured by the GNSS surveying by the GNSS surveying unit 15 and the soil Is derived in association with the water content ratio w. The position where the dry density ρ d and the water content ratio w are derived and the dry density ρ d and the water content ratio w are displayed together with the map information on the display 16 to the operator of the compacting machine 11. Thereby, the operator of the compacting machine 11 can confirm the effect of the compacting work while performing the compacting work.

本実施形態では、抵抗率測定工程で土の抵抗率が測定され、マイクロ波反射強度測定工程で測定されたマイクロ波の強度と、土から反射されたマイクロ波の強度と土の体積含水率との予め規定された第1の相関関係とにより、体積含水率導出工程では土の体積含水率が導出される。抵抗率測定工程により測定された土の抵抗率と、体積含水率導出工程により導出された土の体積含水率と、土の抵抗率と土の体積含水率と土の乾燥密度との予め規定された第2の相関関係とにより、乾燥密度導出工程では、土の乾燥密度が導出される。さらに、体積含水率導出工程により導出された土の体積含水率と、乾燥密度導出工程により導出された土の乾燥密度と、土の体積含水率と土の乾燥密度と土の含水比との予め規定された第3の相関関係とにより、含水比導出工程では土の含水比が導出される。つまり、締固めの回数を特定しなくとも、第1の相関関係と第2の相関関係と第3の相関関係とにより、土の乾燥密度と含水比との両方を導出することができる。これにより、締固めの回数を特定せずに、土の乾燥密度と土の含水比とを測定することができる。したがって、測定の効率が向上するため、測定に要する時間を著しく短縮することができる。   In this embodiment, the resistivity of the soil is measured in the resistivity measurement step, the intensity of the microwave measured in the microwave reflection intensity measurement step, the strength of the microwave reflected from the soil, and the volumetric water content of the soil, In the volume moisture content deriving step, the volume moisture content of the soil is derived according to the first predetermined correlation. The soil resistivity measured by the resistivity measurement step, the soil volume moisture content derived by the volume moisture content deriving step, the soil resistivity, the soil volume moisture content, and the soil dry density are defined in advance. According to the second correlation, the dry density of the soil is derived in the dry density deriving step. Further, the volumetric moisture content of the soil derived by the volume moisture content deriving step, the dryness density of the soil derived by the drying density deriving step, the volumetric moisture content of the soil, the dryness density of the soil, and the moisture content of the soil in advance. Based on the specified third correlation, the water content ratio of the soil is derived in the water content ratio deriving step. That is, without specifying the number of times of compaction, both the dry density and the moisture content of the soil can be derived from the first correlation, the second correlation, and the third correlation. Thereby, the dry density of the soil and the moisture content of the soil can be measured without specifying the number of times of compaction. Therefore, since the measurement efficiency is improved, the time required for measurement can be remarkably shortened.

また、本実施形態によれば、抵抗率測定工程では、締固め工程後の土の抵抗率が測定され、マイクロ波反射強度測定工程では、締固め工程後の土から反射されたマイクロ波の強度が測定されるため、乾燥密度導出工程では、締固め工程後の土の乾燥密度が導出され、含水比導出工程では、締固め工程後の土の含水比が導出されることになり、締固め工程の効果を確認することができる。   Further, according to the present embodiment, the resistivity of the soil after the compaction process is measured in the resistivity measurement process, and the intensity of the microwave reflected from the soil after the compaction process is measured in the microwave reflection intensity measurement process. Therefore, in the dry density derivation process, the dry density of the soil after the compaction process is derived, and in the moisture content derivation process, the moisture content of the soil after the compaction process is derived. The effect of the process can be confirmed.

また、本実施形態によれば、抵抗率測定工程では、締固め機械11の進行方向Tの後方に配置された電極12により締固め工程後の土の抵抗率が測定され、マイクロ波反射強度測定工程では、締固め機械の進行方向Tの後方に配置されたマイクロ波照射器13とマイクロ波測定器14とにより締固め工程後の土から反射されたマイクロ波の強度が測定されるため、簡単な方法で締固め工程後の土の乾燥密度と含水比とを導出することができる。これにより、締固め機械11による締固めの直後の土の乾燥密度と含水比とを即時に測定することができる。   Further, according to the present embodiment, in the resistivity measurement process, the resistivity of the soil after the compaction process is measured by the electrode 12 disposed behind the traveling direction T of the compaction machine 11, and the microwave reflection intensity measurement. In the process, since the intensity of the microwave reflected from the soil after the compacting process is measured by the microwave irradiator 13 and the microwave measuring instrument 14 arranged behind the traveling direction T of the compacting machine, the process is simple. It is possible to derive the dry density and moisture content of the soil after the compacting process by a simple method. Thereby, the dry density and moisture content of the soil immediately after compaction by the compaction machine 11 can be measured immediately.

また、本実施形態によれば、抵抗率測定工程では、締固め機械11の進行方向Tの後方に配置された一対の電極12の間隔を調整することにより、締固め工程後の土の抵抗率を測定する深度が調整され、マイクロ波反射強度測定工程では、締固め機械11の進行方向Tの後方に配置されたマイクロ波照射器13の出力を調整することにより、締固め工程後の土から反射されたマイクロ波の強度を測定する深度が調整されるため、簡単な方法で土の抵抗率と土から反射されたマイクロ波の強度を測定する深度とを調整することができる。   Further, according to the present embodiment, in the resistivity measuring step, the resistivity of the soil after the compacting step is adjusted by adjusting the distance between the pair of electrodes 12 disposed behind the traveling direction T of the compacting machine 11. In the microwave reflection intensity measuring step, the output of the microwave irradiator 13 arranged behind the advancing direction T of the compacting machine 11 is adjusted to adjust the output from the soil after the compacting step. Since the depth for measuring the intensity of the reflected microwave is adjusted, the resistivity of the soil and the depth for measuring the intensity of the microwave reflected from the soil can be adjusted by a simple method.

また、本実施形態によれば、乾燥密度導出工程では、GNSS測量により測位された締固め機械11、電極12、マイクロ波照射器13及びマイクロ波測定器14のいずれかの位置と、土の乾燥密度とが関連付けて導出され、含水比導出工程では、GNSS測量により測位された締固め機械11、電極12、マイクロ波照射器13及びマイクロ波測定器14のいずれかの位置と、土の含水比とが関連付けて導出されるため、締固め工程が行われた地点ごとの締固め工程の効果を確認することができる。これにより、従来の方法では、狭い一地点のみの計測結果しか得られなかったのに対し、より広い面での計測結果が得られ、面での締固めの効果の管理が可能となる。   Further, according to the present embodiment, in the drying density deriving step, the position of any one of the compacting machine 11, the electrode 12, the microwave irradiator 13, and the microwave measuring instrument 14 measured by GNSS surveying, and the drying of soil The density is derived in association with the moisture content deriving step, and in the moisture content deriving step, the position of any one of the compacting machine 11, the electrode 12, the microwave irradiator 13 and the microwave measuring device 14 determined by the GNSS survey and the moisture content ratio of the soil Are derived in association with each other, so that the effect of the compaction process at each point where the compaction process is performed can be confirmed. As a result, in the conventional method, only a narrow measurement result can be obtained, whereas a measurement result on a wider surface can be obtained, and the effect of compaction on the surface can be managed.

以下、本発明の第2実施形態について説明する。上記第1実施形態では、土の抵抗率を測定する電極12や、土から反射されたマイクロ波の強度を測定するためのマイクロ波照射器13及びマイクロ波測定器14は、締固め機械11と一体化されていたが、電極12等を締固め機械11と一体化できない場合には、本実施形態を適用することができる。図6に示すように、本実施形態の土質測定装置1Bでは、電極12、マイクロ波照射器13及びマイクロ波測定器14は、締固め機械11の進行方向Tの後方を追従走行する走行計測機器20に備えられている。   Hereinafter, a second embodiment of the present invention will be described. In the first embodiment, the electrode 12 for measuring the resistivity of the soil, the microwave irradiator 13 and the microwave measuring device 14 for measuring the intensity of the microwave reflected from the soil, and the compacting machine 11 Although integrated, the electrode 12 and the like cannot be integrated with the compacting machine 11, and this embodiment can be applied. As shown in FIG. 6, in the soil measurement device 1 </ b> B of the present embodiment, the electrode 12, the microwave irradiator 13, and the microwave measurement device 14 are travel measurement devices that follow the back of the compaction machine 11 in the traveling direction T. 20 is provided.

走行計測機器20は、締固め機械11との距離を計測する距離センサ17を備える。距離センサ17は、ミリ波又は超音波等を前方の締固め機械11に放射し、締固め機械11から反射されたミリ波又は超音波等を検出することにより、締固め機械11と走行計測機器20との距離を計測する。電極12は、不図示の駆動装置により回転させられ、締固め機械11と走行計測機器20との距離を予め設定された長さに保つ。なお、走行計測機器20は、駆動装置を備えず、締固め機械11から牽引装置等により、予め設定された距離をおいて牽引されてもよい。   The travel measuring device 20 includes a distance sensor 17 that measures the distance from the compacting machine 11. The distance sensor 17 radiates millimeter waves or ultrasonic waves or the like to the front compacting machine 11 and detects the millimeter waves or ultrasonic waves reflected from the compacting machine 11 to thereby detect the compacting machine 11 and the travel measuring device. The distance to 20 is measured. The electrode 12 is rotated by a drive device (not shown) to keep the distance between the compacting machine 11 and the travel measuring device 20 at a preset length. The travel measuring device 20 may not be provided with a driving device, and may be pulled at a preset distance from the compacting machine 11 by a traction device or the like.

走行計測機器20は、GNSS測量部15を備える。また、走行計測機器20は、無線送信機18を備える。電極12により測定された土Sの抵抗率、マイクロ波測定器14により測定された土から反射されたマイクロ波の強度及びGNSS測量部15により測位された走行計測機器20の位置(電極12、マイクロ波照射器13及びマイクロ波測定器14の位置)に関する情報は、無線送信機18による無線通信により締固め機械11の無線受信機19に送信される。   The travel measurement device 20 includes a GNSS surveying unit 15. The travel measurement device 20 includes a wireless transmitter 18. The resistivity of the soil S measured by the electrode 12, the intensity of the microwave reflected from the soil measured by the microwave measuring instrument 14, and the position of the traveling measuring device 20 measured by the GNSS surveying unit 15 (electrode 12, micro Information regarding the position of the wave irradiator 13 and the microwave measuring instrument 14 is transmitted to the wireless receiver 19 of the compacting machine 11 by wireless communication by the wireless transmitter 18.

締固め機械11の側は、電極12、マイクロ波照射器13、マイクロ波測定器14及びGNSS測量部15を備えず、無線受信機19を備えている以外は、上記第1実施形態の土質測定装置1Aと同様の構成を有する。乾燥密度導出部5は、GNSS測量部15によるGNSS測量により測位された締固め機械11、電極12、マイクロ波照射器13及びマイクロ波測定器14のいずれかの位置と、土の乾燥密度とを関連付けて導出し、導出した結果をディスプレイ16に表示する。含水比導出部6は、GNSS測量部15によるGNSS測量により測位された締固め機械11、電極12、マイクロ波照射器13及びマイクロ波測定器14のいずれかの位置と、土の含水比とを関連付けて導出し、導出した結果をディスプレイ16に表示する。以上の構成によっても、上記第1実施形態の土質測定装置1Aと同様の効果を奏する。   The compacting machine 11 side does not include the electrode 12, the microwave irradiator 13, the microwave measuring instrument 14, and the GNSS surveying unit 15, but includes the wireless receiver 19, and the soil measurement of the first embodiment. It has the same configuration as the apparatus 1A. The drying density deriving unit 5 determines the position of the compaction machine 11, the electrode 12, the microwave irradiator 13, and the microwave measuring instrument 14 measured by the GNSS surveying by the GNSS surveying unit 15, and the soil dry density. Derivation is performed in association with each other, and the derived result is displayed on the display 16. The water content ratio deriving unit 6 calculates the position of any one of the compacting machine 11, the electrode 12, the microwave irradiator 13 and the microwave measuring device 14 measured by the GNSS surveying by the GNSS surveying unit 15 and the water content ratio of the soil. Derivation is performed in association with each other, and the derived result is displayed on the display 16. Even with the above configuration, the same effect as the soil quality measuring apparatus 1A of the first embodiment can be obtained.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく様々な形態で実施される。例えば、上記実施形態では、土の締固め後の土の乾燥密度と含水比とを測定する態様を中心に説明したが、本発明は、土の締固めが行われるか否かに関わらず、土の乾燥密度と含水比とを測定可能である。また、電極12は、ローラ型の電極に限定されず、他のプローブ型の電極により土の抵抗率が測定されてもよい。   As mentioned above, although embodiment of this invention was described, this invention is implemented in various forms, without being limited to the said embodiment. For example, in the above-described embodiment, the description has centered on the aspect of measuring the dry density and moisture content of the soil after the compaction of the soil, but the present invention, regardless of whether the compaction of the soil is performed, The dry density and moisture content of the soil can be measured. The electrode 12 is not limited to a roller-type electrode, and the resistivity of the soil may be measured by another probe-type electrode.

1A,1B…土質測定装置、2…抵抗率測定部、3…マイクロ波反射強度測定部、4…体積含水率導出部、5…乾燥密度導出部、6…含水比導出部、7…締固め部、11…締固め機械、12…電極、13…マイクロ波照射器、14…マイクロ波測定器、15…GNSS測量部、16…ディスプレイ、17…距離センサ、18…無線送信機、19…無線受信機、20…走行計測機器、S…土、T…進行方向、d1,d2…間隔、D1,D2…深度、P1,P2…測定箇所。   DESCRIPTION OF SYMBOLS 1A, 1B ... Soil measuring device, 2 ... Resistivity measuring part, 3 ... Microwave reflection intensity measuring part, 4 ... Volume water content deriving part, 5 ... Dry density deriving part, 6 ... Water content deriving part, 7 ... Compaction , 11 ... Compaction machine, 12 ... Electrode, 13 ... Microwave irradiator, 14 ... Microwave measuring instrument, 15 ... GNSS surveying unit, 16 ... Display, 17 ... Distance sensor, 18 ... Wireless transmitter, 19 ... Wireless Receiver, 20 ... travel measuring device, S ... soil, T ... traveling direction, d1, d2 ... interval, D1, D2 ... depth, P1, P2 ... measurement location.

Claims (10)

土の抵抗率を測定する抵抗率測定工程と、
前記土にマイクロ波を照射し、前記土から反射された前記マイクロ波の強度を測定するマイクロ波反射強度測定工程と、
前記マイクロ波反射強度測定工程により測定された前記土から反射された前記マイクロ波の強度と、前記土から反射された前記マイクロ波の強度と前記土の体積含水率との予め規定された第1の相関関係とにより、前記土の前記体積含水率を導出する体積含水率導出工程と、
前記抵抗率測定工程により測定された前記土の前記抵抗率と、前記体積含水率導出工程により導出された前記土の前記体積含水率と、前記土の前記抵抗率と前記土の前記体積含水率と前記土の乾燥密度との予め規定された第2の相関関係とにより、前記土の前記乾燥密度を導出する乾燥密度導出工程と、
前記体積含水率導出工程により導出された前記土の前記体積含水率と、前記乾燥密度導出工程により導出された前記土の前記乾燥密度と、前記土の前記体積含水率と前記土の前記乾燥密度と前記土の含水比との予め規定された第3の相関関係とにより、前記土の前記含水比を導出する含水比導出工程と、を備えた土質測定方法。
A resistivity measuring step for measuring the resistivity of the soil;
A microwave reflection intensity measurement step of irradiating the soil with microwaves and measuring the intensity of the microwaves reflected from the soil;
A predetermined first of the intensity of the microwave reflected from the soil measured by the microwave reflection intensity measuring step, the intensity of the microwave reflected from the soil, and the volumetric water content of the soil. A volume moisture content deriving step of deriving the volume moisture content of the soil according to the correlation of
The resistivity of the soil measured by the resistivity measuring step, the volume moisture content of the soil derived by the volume moisture content deriving step, the resistivity of the soil, and the volume moisture content of the soil. A drying density deriving step of deriving the drying density of the soil according to a second predetermined correlation between
The volume moisture content of the soil derived by the volume moisture content deriving step, the dry density of the soil derived by the dry density deriving step, the volume moisture content of the soil, and the dry density of the soil. And a water content ratio deriving step for deriving the water content ratio of the soil based on a predetermined third correlation between the soil and the water content ratio of the soil.
前記土を締固める締固め工程をさらに備え、
前記抵抗率測定工程では、前記締固め工程後の前記土の前記抵抗率を測定し、
前記マイクロ波反射強度測定工程では、前記締固め工程後の前記土から反射された前記マイクロ波の強度を測定する、請求項1に記載の土質測定方法。
Further comprising a compacting step of compacting the soil;
In the resistivity measurement step, measure the resistivity of the soil after the compaction step,
The soil measurement method according to claim 1, wherein, in the microwave reflection intensity measurement step, the intensity of the microwave reflected from the soil after the compaction step is measured.
前記締固め工程は締固め機械により行われ、
前記抵抗率測定工程では、前記締固め機械の進行方向の後方に配置された電極により前記締固め工程後の前記土の前記抵抗率を測定し、
前記マイクロ波反射強度測定工程では、前記締固め機械の進行方向の後方に配置されたマイクロ波照射器とマイクロ波測定器とにより前記締固め工程後の前記土から反射された前記マイクロ波の強度を測定する、請求項2に記載の土質測定方法。
The compaction process is performed by a compaction machine,
In the resistivity measurement step, the resistivity of the soil after the compaction step is measured by an electrode disposed at the rear of the compaction machine in the traveling direction,
In the microwave reflection intensity measuring step, the intensity of the microwave reflected from the soil after the compacting step by a microwave irradiator and a microwave measuring device arranged behind the direction of travel of the compacting machine The soil quality measuring method according to claim 2 which measures.
前記抵抗率測定工程では、前記締固め機械の進行方向の後方に配置された一対の前記電極の間隔を調整することにより、前記締固め工程後の前記土の前記抵抗率を測定する深度を調整し、
前記マイクロ波反射強度測定工程では、前記締固め機械の進行方向の後方に配置された前記マイクロ波照射器の出力を調整することにより、前記締固め工程後の前記土から反射された前記マイクロ波の強度を測定する深度を調整する、請求項3に記載の土質測定方法。
In the resistivity measurement step, the depth at which the resistivity of the soil after the compaction step is measured is adjusted by adjusting the distance between the pair of electrodes disposed behind the direction of travel of the compaction machine. And
In the microwave reflection intensity measuring step, the microwave reflected from the soil after the compacting step is adjusted by adjusting an output of the microwave irradiator disposed behind the direction of travel of the compacting machine. The soil measurement method according to claim 3, wherein a depth for measuring the strength of the soil is adjusted.
前記乾燥密度導出工程では、GNSS(Global NavigationSatellite System)測量により測位された前記締固め機械、前記電極、前記マイクロ波照射器及び前記マイクロ波測定器のいずれかの位置と、前記土の前記乾燥密度とを関連付けて導出し、
前記含水比導出工程では、前記GNSS測量により測位された前記締固め機械、前記電極、前記マイクロ波照射器及び前記マイクロ波測定器のいずれかの位置と、前記土の前記含水比とを関連付けて導出する、請求項3又は4に記載の土質測定方法。
In the drying density deriving step, the position of any one of the compacting machine, the electrode, the microwave irradiator, and the microwave measuring instrument measured by GNSS (Global Navigation Satellite System) surveying, and the drying density of the soil And derive
In the water content ratio deriving step, the position of any one of the compacting machine, the electrode, the microwave irradiator, and the microwave measuring device measured by the GNSS survey is associated with the water content ratio of the soil. The soil quality measuring method according to claim 3 or 4, which is derived.
土の抵抗率を測定する抵抗率測定部と、
前記土にマイクロ波を照射し、前記土から反射された前記マイクロ波の強度を測定するマイクロ波反射強度測定部と、
前記マイクロ波反射強度測定部により測定された前記土から反射された前記マイクロ波の強度と、前記土から反射された前記マイクロ波の強度と前記土の体積含水率との予め規定された第1の相関関係とにより、前記土の前記体積含水率を導出する体積含水率導出部と、
前記抵抗率測定部により測定された前記土の前記抵抗率と、前記体積含水率導出部により導出された前記土の前記体積含水率と、前記土の前記抵抗率と前記土の前記体積含水率と前記土の乾燥密度との予め規定された第2の相関関係とにより、前記土の前記乾燥密度を導出する乾燥密度導出部と、
前記体積含水率導出部により導出された前記土の前記体積含水率と、前記乾燥密度導出部により導出された前記土の前記乾燥密度と、前記土の前記体積含水率と前記土の前記乾燥密度と前記土の含水比との予め規定された第3の相関関係とにより、前記土の前記含水比を導出する含水比導出部と、を備えた土質測定装置。
A resistivity measuring unit for measuring the resistivity of the soil;
A microwave reflection intensity measuring unit that irradiates the soil with microwaves and measures the intensity of the microwave reflected from the soil;
A predetermined first of the intensity of the microwave reflected from the soil measured by the microwave reflection intensity measuring unit, the intensity of the microwave reflected from the soil, and the volumetric moisture content of the soil. And a volume moisture content deriving unit for deriving the volume moisture content of the soil,
The resistivity of the soil measured by the resistivity measurement unit, the volume moisture content of the soil derived by the volume moisture content deriving unit, the resistivity of the soil, and the volume moisture content of the soil A dry density deriving unit for deriving the dry density of the soil according to a predetermined second correlation between the dry density of the soil and
The volumetric water content of the soil derived by the volumetric water content deriving unit, the dry density of the soil derived by the dry density deriving unit, the volumetric water content of the soil, and the dry density of the soil And a water content ratio deriving unit for deriving the water content ratio of the soil based on a predetermined third correlation between the soil and the water content ratio of the soil.
前記土を締固める締固め部をさらに備え、
前記抵抗率測定部は、前記締固め部により締固められた後の前記土の前記抵抗率を測定し、
前記マイクロ波反射強度測定部は、前記締固め部により締固められた後の前記土から反射された前記マイクロ波の強度を測定する、請求項6に記載の土質測定装置。
Further comprising a compaction part for compacting the soil,
The resistivity measuring unit measures the resistivity of the soil after being compacted by the compaction unit;
The soil measurement apparatus according to claim 6, wherein the microwave reflection intensity measurement unit measures the intensity of the microwave reflected from the soil after being compacted by the compaction unit.
前記締固め部は締固め機械により前記土を締固め、
前記抵抗率測定部は、前記締固め機械の進行方向の後方に配置された電極により前記締固め機械により締固められた後の前記土の前記抵抗率を測定し、
前記マイクロ波反射強度測定部は、前記締固め機械の進行方向の後方に配置されたマイクロ波照射器とマイクロ波測定器とにより前記締固め機械により締固められた後の前記土から反射された前記マイクロ波の強度を測定する、請求項7に記載の土質測定装置。
The compaction part compacts the soil with a compaction machine,
The resistivity measuring unit measures the resistivity of the soil after being compacted by the compaction machine by an electrode disposed at the rear of the compaction machine in the traveling direction;
The microwave reflection intensity measuring unit is reflected from the soil after being compacted by the compacting machine by a microwave irradiator and a microwave measuring instrument arranged at the rear of the compacting machine in the traveling direction. The soil quality measuring device according to claim 7 which measures the intensity of said microwave.
前記抵抗率測定部は、前記締固め機械の進行方向の後方に配置された一対の前記電極の間隔を調整することにより、前記締固め機械により締固められた後の前記土の前記抵抗率を測定する深度を調整し、
前記マイクロ波反射強度測定部は、前記締固め機械の進行方向の後方に配置された前記マイクロ波照射器の出力を調整することにより、前記締固め機械により締固められた後の前記土から反射された前記マイクロ波の強度を測定する深度を調整する、請求項8に記載の土質測定装置。
The resistivity measuring unit adjusts the resistivity of the soil after being compacted by the compacting machine by adjusting a distance between a pair of the electrodes disposed at the rear of the compacting machine in the traveling direction. Adjust the depth to measure,
The microwave reflection intensity measuring unit reflects from the soil after being compacted by the compacting machine by adjusting an output of the microwave irradiator disposed behind the direction of travel of the compacting machine. The soil measurement apparatus according to claim 8, wherein a depth for measuring the intensity of the microwave is adjusted.
前記乾燥密度導出部は、GNSS(Global NavigationSatellite System)測量により測位された前記締固め機械、前記電極、前記マイクロ波照射器及び前記マイクロ波測定器のいずれかの位置と、前記土の前記乾燥密度とを関連付けて導出し、
前記含水比導出部は、前記GNSS測量により測位された前記締固め機械、前記電極、前記マイクロ波照射器及び前記マイクロ波測定器のいずれかの位置と、前記土の前記含水比とを関連付けて導出する、請求項8又は9に記載の土質測定装置。
The drying density deriving unit includes any one of the positions of the compacting machine, the electrode, the microwave irradiator, and the microwave measuring instrument measured by GNSS (Global Navigation Satellite System) surveying, and the drying density of the soil. And derive
The water content ratio deriving unit associates the position of any one of the compacting machine, the electrode, the microwave irradiator, and the microwave measuring device measured by the GNSS survey with the water content ratio of the soil. The soil quality measuring device according to claim 8 or 9, which is derived.
JP2016241231A 2016-12-13 2016-12-13 Soil measurement method and soil measurement device Active JP6730173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016241231A JP6730173B2 (en) 2016-12-13 2016-12-13 Soil measurement method and soil measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241231A JP6730173B2 (en) 2016-12-13 2016-12-13 Soil measurement method and soil measurement device

Publications (2)

Publication Number Publication Date
JP2018096824A true JP2018096824A (en) 2018-06-21
JP6730173B2 JP6730173B2 (en) 2020-07-29

Family

ID=62633442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241231A Active JP6730173B2 (en) 2016-12-13 2016-12-13 Soil measurement method and soil measurement device

Country Status (1)

Country Link
JP (1) JP6730173B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067297A (en) * 2018-10-22 2020-04-30 大成建設株式会社 Ri measurement device, ground surface measurement method and vibration roller
JP2020115114A (en) * 2019-01-18 2020-07-30 鹿島建設株式会社 Soil measuring method and soil measuring device
JP7449846B2 (en) 2020-12-02 2024-03-14 鹿島建設株式会社 Soil quality measurement device and soil quality measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103117A (en) * 1986-10-20 1988-05-07 Mitsuru Sangyo:Kk Control system for compaction of roadbed
JPH02196960A (en) * 1989-01-25 1990-08-03 Koden Electron Co Ltd Measuring instrument for compaction of soil
JPH08292253A (en) * 1995-04-20 1996-11-05 Asia Kosoku Kk Microwave scatterometer
JP2002062362A (en) * 2000-08-24 2002-02-28 Nishimatsu Constr Co Ltd Inspecting method for baking-work part
JP2007010568A (en) * 2005-07-01 2007-01-18 Hitachi Constr Mach Co Ltd Method for measuring soil dry density and method and apparatus for determining degree of soil compaction
US20150268218A1 (en) * 2013-03-14 2015-09-24 Robert Ernest Troxler Systems and methods for asphalt density and soil moisture measurements using ground penetrating radar

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103117A (en) * 1986-10-20 1988-05-07 Mitsuru Sangyo:Kk Control system for compaction of roadbed
JPH02196960A (en) * 1989-01-25 1990-08-03 Koden Electron Co Ltd Measuring instrument for compaction of soil
JPH08292253A (en) * 1995-04-20 1996-11-05 Asia Kosoku Kk Microwave scatterometer
JP2002062362A (en) * 2000-08-24 2002-02-28 Nishimatsu Constr Co Ltd Inspecting method for baking-work part
JP2007010568A (en) * 2005-07-01 2007-01-18 Hitachi Constr Mach Co Ltd Method for measuring soil dry density and method and apparatus for determining degree of soil compaction
US20150268218A1 (en) * 2013-03-14 2015-09-24 Robert Ernest Troxler Systems and methods for asphalt density and soil moisture measurements using ground penetrating radar

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067297A (en) * 2018-10-22 2020-04-30 大成建設株式会社 Ri measurement device, ground surface measurement method and vibration roller
JP7246039B2 (en) 2018-10-22 2023-03-27 大成建設株式会社 MOBILE OBJECT AND GROUND MEASUREMENT METHOD HAVING MEASUREMENT FUNCTION OF GROUND DENSITY OR MOISTURE
JP2020115114A (en) * 2019-01-18 2020-07-30 鹿島建設株式会社 Soil measuring method and soil measuring device
JP7083314B2 (en) 2019-01-18 2022-06-10 鹿島建設株式会社 Soil quality measurement method and soil quality measurement device
JP7449846B2 (en) 2020-12-02 2024-03-14 鹿島建設株式会社 Soil quality measurement device and soil quality measurement method

Also Published As

Publication number Publication date
JP6730173B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
Loizos et al. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches
JP6730173B2 (en) Soil measurement method and soil measurement device
Plati et al. Estimation of in-situ density and moisture content in HMA pavements based on GPR trace reflection amplitude using different frequencies
Tosti et al. An experimental-based model for the assessment of the mechanical properties of road pavements using ground-penetrating radar
Benedetto et al. Railway ballast condition assessment using ground-penetrating radar–An experimental, numerical simulation and modelling development
Al-Qadi et al. Data analysis techniques for GPR used for assessing railroad ballast in high radio-frequency environment
JP2007010568A (en) Method for measuring soil dry density and method and apparatus for determining degree of soil compaction
US20100052688A1 (en) Electromagnetic surveying
JP6396076B2 (en) Detection method and non-contact acoustic detection system using sound waves
US20090214300A1 (en) Devices, systems, and methods for measuring and controlling compactive effort delivered to a soil by a compaction unit
EP3605152A1 (en) Ground penetrating radar and electromagnetic soil analysis method
Choi et al. Array type miniaturized ultrasonic sensors to detect urban sinkholes
US11609322B2 (en) Ground material density measurement system
JP2003193416A (en) Method and device for controlling banking rolling
Uddin An overview of GPR applications for evaluation of pavement thickness and cracking
CN102759491A (en) Rockfill compaction density measurement method and device
JP6931603B2 (en) Metal burial depth measurement method and equipment
Ahmed et al. Incorporating transmitter–receiver offset to interpret pavement layer thicknesses by GPR
Tamura et al. A method for estimating the location of the drill-bit during horizontal directional drilling using a giant-magnetostrictive vibrator
Spears et al. Ground penetrating radar applications and implementations in civil construction
JP2018172866A (en) Soil measurement method and soil measurement apparatus
US20230175211A1 (en) Method for operating a movable compaction device during material compaction work
JP7083314B2 (en) Soil quality measurement method and soil quality measurement device
Heitor et al. Characterising compacted fills at Penrith Lakes development site using shear wave velocity and matric suction
JPH03272488A (en) Inspecting apparatus of tunnel structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200702

R150 Certificate of patent or registration of utility model

Ref document number: 6730173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250