JP2018096240A - Abnormal combustion detection device of internal combustion engine - Google Patents

Abnormal combustion detection device of internal combustion engine Download PDF

Info

Publication number
JP2018096240A
JP2018096240A JP2016239690A JP2016239690A JP2018096240A JP 2018096240 A JP2018096240 A JP 2018096240A JP 2016239690 A JP2016239690 A JP 2016239690A JP 2016239690 A JP2016239690 A JP 2016239690A JP 2018096240 A JP2018096240 A JP 2018096240A
Authority
JP
Japan
Prior art keywords
knocking
abnormal combustion
internal combustion
combustion engine
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016239690A
Other languages
Japanese (ja)
Other versions
JP6695266B2 (en
Inventor
典宏 新屋
Norihiro Araya
典宏 新屋
芳国 倉島
Yoshikuni Kurashima
芳国 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016239690A priority Critical patent/JP6695266B2/en
Priority to PCT/JP2017/044062 priority patent/WO2018105703A1/en
Publication of JP2018096240A publication Critical patent/JP2018096240A/en
Application granted granted Critical
Publication of JP6695266B2 publication Critical patent/JP6695266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormal combustion detection device of an internal combustion engine capable of securing detection accuracy for knocking, and also detecting abnormal combustion different from knocking.SOLUTION: An abnormal combustion detection device is configured to convert an output signal NS of a vibration sensor 1 installed on an internal combustion engine 100 into plural signals with different gain to acquire them; select a signal with lower gain as an engine speed becomes higher; and detect occurrence of knocking of the internal combustion engine. Further, the abnormal combustion detection device is configured to determine abnormal combustion different from the knocking, with a non-selective signal or signal with low gain among the plural signals with different gain acquired by converting the output signal of the vibration sensor.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関(エンジン)の異常燃焼を検出する異常燃焼検出装置に関する。   The present invention relates to an abnormal combustion detection device that detects abnormal combustion of an internal combustion engine (engine).

エンジンの異常燃焼現象には、例えば点火後に発生するノッキングと、点火前に発生するプレイグニッションがある。ノッキングの検出と対策は、従来から種々実施されているが、近年の過給直噴エンジンのダウンサイジングに伴う高圧縮比化や高過給化により、低回転・高負荷領域におけるプレイグニッションの問題が顕在化してきている。低回転・高負荷領域で発生するプレイグニッションはスーパーノックとも呼ばれ、急激な圧力上昇を伴い、エンジン破損に繋がる可能性がある。このため、ノッキング検出だけでなくプレイグニッション検出の必要性が高まってきている。   The abnormal combustion phenomenon of the engine includes, for example, knocking that occurs after ignition and preignition that occurs before ignition. Detection and countermeasures for knocking have been implemented in various ways, but due to the high compression ratio and high supercharging associated with downsizing of supercharged direct injection engines in recent years, there is a problem of pre-ignition in low rotation and high load areas. Has become apparent. Pre-ignition that occurs in low-rotation and high-load regions is also called super knock, and it may cause a sudden pressure rise and lead to engine damage. For this reason, the necessity for not only knocking detection but also pre-ignition detection is increasing.

特許文献1には、1つまたは2つの振動検出センサの出力信号を、独立した周波数の2つのバンドパスフィルタに供給し、これらを異なる利得(ゲイン)のA/D変換器を用いてデジタル信号に変換し、ノッキングとプレイグニッションのそれぞれ特異な振動成分を閾値と比較することで、ノッキングとプレイグニッションを検出する技術が記載されている。   In Patent Document 1, the output signals of one or two vibration detection sensors are supplied to two band-pass filters having independent frequencies, and these signals are converted into digital signals using A / D converters having different gains. And a technique for detecting knocking and pre-ignition by comparing each vibration component specific to knocking and pre-ignition with a threshold value.

特許3236766号公報Japanese Patent No. 3236766

上記特許文献1の技術によれば、振動検出センサの出力信号を用いてノッキングとプレイグニッションの双方を検出できる。しかしながら、エンジンの低回転時には振動検出センサの信号レベルが小さく、高回転時には信号レベルが大きいため、十分なダイナミックレンジを確保するのが難しく、ノッキングの検出精度が低下する可能性がある。   According to the technique disclosed in Patent Document 1, both knocking and pre-ignition can be detected using the output signal of the vibration detection sensor. However, since the signal level of the vibration detection sensor is low when the engine is low and the signal level is high when the engine is high, it is difficult to ensure a sufficient dynamic range, and knocking detection accuracy may be reduced.

本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、ノッキングの検出精度を確保しつつ、ノッキングと異なる異常燃焼を検出できる内燃機関の異常燃焼検出装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an abnormal combustion detection device for an internal combustion engine that can detect abnormal combustion different from knocking while ensuring detection accuracy of knocking. There is.

本発明の内燃機関の異常燃焼検出装置は、内燃機関に設置された振動センサの出力信号を、ゲインの異なる複数の信号に変換して取得し、機関回転数が高くなるにしたがってゲインの低い信号を選択し、前記内燃機関のノッキングの発生を検出する異常燃焼検出装置であって、非選択の信号、又はゲインの低い信号を用いてノッキングと異なる異常燃焼を判定する、ことを特徴とする。   The abnormal combustion detection apparatus for an internal combustion engine according to the present invention acquires an output signal of a vibration sensor installed in an internal combustion engine by converting it into a plurality of signals having different gains, and a signal having a lower gain as the engine speed increases. And detecting abnormal combustion different from knocking using a non-selected signal or a low gain signal.

本発明では、ノッキング検出用の振動センサの出力信号を、ゲインの異なる複数の信号に変換した信号のうち、機関回転数が高い場合にはノッキングの検出に用いない非選択の信号、又はゲインの低い信号を用いてノッキングと異なる異常燃焼を判定するようにしている。これによって、ノッキングの検出には振動センサの出力信号をゲインの異なる複数の信号に変換し、機関回転数に応じて選択することで精度を確保し、ノッキング検出に用いない非選択の信号、又はゲインの低い信号を利用して、ノッキングと異なる異常燃焼を検出できる。   In the present invention, among the signals obtained by converting the output signal of the vibration sensor for knock detection into a plurality of signals having different gains, a non-selected signal that is not used for knock detection when the engine speed is high, or the gain Abnormal combustion different from knocking is determined using a low signal. Thereby, for detection of knocking, the output signal of the vibration sensor is converted into a plurality of signals having different gains, and accuracy is ensured by selecting according to the engine speed, and a non-selected signal not used for knocking detection, or Abnormal combustion that is different from knocking can be detected by using a low gain signal.

本発明の実施形態に係る内燃機関の異常燃焼検出装置の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an abnormal combustion detection device for an internal combustion engine according to an embodiment of the present invention. プレイグニッションについて説明するためのもので、過給直噴エンジンのパフォーマンスカーブを示す特性図である。FIG. 5 is a characteristic diagram illustrating a performance curve of a supercharged direct injection engine for explaining pre-ignition. プレイグニッションについて説明するためのもので、スーパーノック発生時のシリンダ内圧力カーブを示す波形図である。FIG. 6 is a waveform diagram for illustrating pre-ignition and showing a pressure curve in a cylinder when a super knock occurs. 図1に示した異常燃焼検出装置におけるプレイグニッション検出区間とノッキング検出区間について説明するための図である。It is a figure for demonstrating the pre-ignition detection area and the knocking detection area in the abnormal combustion detection apparatus shown in FIG. 図1に示した異常燃焼検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the abnormal combustion detection apparatus shown in FIG. 図5に続く動作を示すフローチャートである。6 is a flowchart illustrating an operation following FIG. 5.

以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の実施形態に係る内燃機関の異常燃焼検出装置におけるノッキングの検出とプレイグニッションの検出に関係する要部を抽出して示している。図2及び図3は低回転・高負荷領域で発生するプレイグニッションについて説明するためのもので、図2は過給直噴エンジンのエンジンパフォーマンスカーブを示す特性図、図3はスーパーノック発生時のシリンダ内圧力カーブを示す波形図である。図4は図1の異常燃焼検出装置におけるプレイグニッション検出区間とノッキング検出区間を示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows extracted main parts related to the detection of knocking and the detection of preignition in the abnormal combustion detection apparatus for an internal combustion engine according to the embodiment of the present invention. 2 and 3 are diagrams for explaining pre-ignition that occurs in a low rotation / high load region. FIG. 2 is a characteristic diagram showing an engine performance curve of a supercharged direct injection engine. FIG. It is a wave form diagram which shows a pressure curve in a cylinder. FIG. 4 shows a pre-ignition detection section and a knocking detection section in the abnormal combustion detection apparatus of FIG.

本実施形態では、エンジン破損に至る虞があるプレイグニッションは、エンジンの低回転領域で発生すること、及び振動センサの信号強度はノッキングよりもプレイグニッションの方が大きいことに着目し、エンジン低回転時には不使用である高回転時用(低ゲイン)の信号処理部をプレイグニッションの検出に用いることで、基本的なシステム構成とノッキング検出精度を維持しつつ、ノッキングとプレイグニッションの双方を検出する。   In this embodiment, paying attention to the fact that pre-ignition that may lead to engine breakage occurs in the low-rotation region of the engine, and that the signal strength of the vibration sensor is greater in pre-ignition than knocking, engine low-speed By using a high-speed (low gain) signal processing unit that is sometimes not used for pre-ignition detection, both the knocking and pre-ignition are detected while maintaining the basic system configuration and knock detection accuracy. .

図2に示すように、過給直噴エンジンでは、エンジン回転速度の上昇に伴って破線20で示すように出力(パワー)が上昇するが、トルクは実線30で示すように比較的低回転で最大トルクが発生し、高回転近くまで最大トルクを維持する。プレイグニッションは、斜線で囲んで示す低回転領域40で発生しやすい。   As shown in FIG. 2, in the supercharged direct injection engine, the output (power) increases as indicated by the broken line 20 as the engine speed increases, but the torque is relatively low as indicated by the solid line 30. Maximum torque is generated, and the maximum torque is maintained near high rotation. Pre-ignition is likely to occur in the low-rotation region 40 surrounded by a diagonal line.

車輌停止状態からの急加速や全開加速のような低回転・高負荷領域で発生するプレイグニッション(スーパーノック)は、図3に実線50で示すように急激な圧力上昇と圧力変動を伴う。図3において、一点鎖線60はエンジンを空回りさせたときのシリンダ内圧力変化を示し、破線70は正常燃焼時の圧力変化、破線80はノッキング(スパークノック)時の圧力変化をそれぞれ示している。
このように、低回転・高負荷領域でプレイグニッションが発生すると、エンジンに大きなダメージを与える可能性がある。なお、Tigは点火タイミングである。
Preignition (super knock) that occurs in a low rotation / high load region such as sudden acceleration from a vehicle stopped state or full open acceleration is accompanied by a rapid pressure increase and pressure fluctuation as shown by a solid line 50 in FIG. In FIG. 3, an alternate long and short dash line 60 indicates a change in pressure in the cylinder when the engine is idling, a broken line 70 indicates a change in pressure during normal combustion, and a broken line 80 indicates a change in pressure during knocking (spark knock).
Thus, if pre-ignition occurs in the low rotation / high load region, there is a possibility that the engine will be greatly damaged. Tig is the ignition timing.

図4(a)に示すように、エンジンの筒内圧はピストンの上昇に伴って上昇していき、上死点の直前のタイミングTigで点火される。点火によって筒内圧は大きく上昇し、その後、徐々に低下していく。図4(b)に示すように、プレイグニッション検出区間とノッキング検出区間の一部がオーバーラップしているが、本実施形態では2つのA/D変換器の出力信号を選択することにより、ノッキングとプレイグニッションの双方を検出することができる。振動センサの出力信号は、図4(c)に示すようにプレイグニッションの場合には点火の前に発生し、ノッキングの場合には点火の後に発生するので、プレイグニッション検出区間かノッキング検出区間かを判定することで、1つの振動センサの出力信号で双方の異常燃焼を検出できる。   As shown in FIG. 4A, the in-cylinder pressure of the engine rises as the piston rises, and is ignited at a timing Tig immediately before the top dead center. The in-cylinder pressure greatly increases due to ignition, and then gradually decreases. As shown in FIG. 4B, the pre-ignition detection section and the knocking detection section partially overlap. In this embodiment, knocking is performed by selecting the output signals of the two A / D converters. And pre-ignition can be detected. As shown in FIG. 4 (c), the output signal of the vibration sensor is generated before ignition in the case of pre-ignition, and is generated after ignition in the case of knocking. Therefore, whether the output signal is in the pre-ignition detection period or the knocking detection period. Therefore, both abnormal combustions can be detected with the output signal of one vibration sensor.

すなわち、図1に示す異常燃焼検出装置は、エンジン100に設置された振動センサ(ノックセンサ)1の出力信号NSがECU200に入力され、このECU200により振動センサ1で検出された燃焼室の圧力振動に基づいてプレイグニッションとノッキングが検出され、エンジン100が制御されて異常燃焼を抑制するものである。
エンジン100には、例えばクランク角センサ2及び水温センサ3が更に設置されており、クランク角センサ2の出力信号NE、水温センサ3の出力信号TSがそれぞれECU200に入力される。クランク角センサ2はエンジン回転数の検出に用いられ、水温センサ3はオイル起因のスーパーノックが低水温時に発生する可能性があるため、これを検出するために用いられる。
That is, in the abnormal combustion detection apparatus shown in FIG. 1, the output signal NS of the vibration sensor (knock sensor) 1 installed in the engine 100 is input to the ECU 200, and the pressure vibration of the combustion chamber detected by the vibration sensor 1 by the ECU 200. Based on this, pre-ignition and knocking are detected, and the engine 100 is controlled to suppress abnormal combustion.
For example, a crank angle sensor 2 and a water temperature sensor 3 are further installed in the engine 100, and an output signal NE of the crank angle sensor 2 and an output signal TS of the water temperature sensor 3 are input to the ECU 200, respectively. The crank angle sensor 2 is used to detect the engine speed, and the water temperature sensor 3 is used to detect oil-induced super knocks at low water temperatures.

ECU200に入力された振動センサ1の出力信号NSは、増幅器4で増幅されてCPU6の高回転時用信号入力部(低ゲイン)6aに入力されるとともに、この振動センサ1の出力信号NSが、増幅器4,5で増幅されてCPU6の低回転時用信号入力部(高ゲイン)6bに入力される。これら信号入力部6a,6bにはそれぞれ、A/D変換器7,8の入力端が接続されており、異なるゲインで増幅された振動センサ1の出力信号(アナログ信号)NSがA/D変換器7,8によりそれぞれデジタル信号に変換されるようになっている。また、A/D変換器7の出力は、エンジン回転数が高い場合にはノッキング検出処理部9aに供給され、回転数が低い場合にはプレイグニッション検出処理部9cに供給される。ここでは、ノッキング検出処理部9a、プレイグニッション検出処理部9c及び入力の切り換えをソフトウェアで実現しているが、各処理部を専用のICチップやモジュールで形成し、トランジスタなどのスイッチ素子で切り換えるように構成すれば、ハードウェアで実現することもできる。   The output signal NS of the vibration sensor 1 input to the ECU 200 is amplified by the amplifier 4 and input to the high rotation signal input unit (low gain) 6a of the CPU 6, and the output signal NS of the vibration sensor 1 is Amplified by the amplifiers 4 and 5 and input to the low rotation signal input section (high gain) 6 b of the CPU 6. The input terminals of the A / D converters 7 and 8 are connected to the signal input units 6a and 6b, respectively, and the output signal (analog signal) NS of the vibration sensor 1 amplified with different gains is A / D converted. Each of the devices 7 and 8 converts the signal into a digital signal. The output of the A / D converter 7 is supplied to the knocking detection processing unit 9a when the engine speed is high, and is supplied to the pre-ignition detection processing unit 9c when the engine speed is low. Here, the knocking detection processing unit 9a, the pre-ignition detection processing unit 9c, and the input switching are realized by software, but each processing unit is formed by a dedicated IC chip or module and switched by a switch element such as a transistor. If configured, it can also be realized by hardware.

CPU6は、ノッキングを検出する際には、エンジン回転数が低い場合には信号入力部6bから入力されたゲインの高い信号を選択し、エンジン回転数が高い場合には信号入力部6aから入力されたゲインの低い信号を選択する。したがって、エンジンが低回転時にはA/D変換器8から出力されるデジタル信号がノッキング検出処理部9bに入力され、エンジンが高回転時にはA/D変換器7から出力されるデジタル信号がノッキング検出処理部9aに入力され、演算装置9によりノッキング検出処理が実行される。ノッキング検出処理部9bもソフトウェアで実現しているが、ハードウェアで構成することもできる。   When detecting knocking, the CPU 6 selects a high gain signal input from the signal input unit 6b when the engine speed is low, and is input from the signal input unit 6a when the engine speed is high. Select a low gain signal. Therefore, a digital signal output from the A / D converter 8 is input to the knocking detection processing unit 9b when the engine is running at a low speed, and a digital signal output from the A / D converter 7 is processed when the engine is running at a high speed. Is input to the unit 9a, and the arithmetic unit 9 performs a knocking detection process. The knocking detection processing unit 9b is also realized by software, but can also be configured by hardware.

このように構成しているのは、ノッキングはエンジン100が低回転時には信号レベルが小さく、高回転時には信号レベルが大きいという特性のためである。1つの振動センサ1に対して低回転時用(高ゲイン)と高回転時用(低ゲイン)に2つのA/D変換器7,8を割り当て、これらのA/D変換器7,8から出力されるデジタル信号を演算装置9に入力して、エンジン回転数に応じてノッキング検出処理を行う。このように、低回転時用と高回転時用の二系統で信号処理を行うことで、十分なダイナミックレンジを確保して高精度なノッキング検出を実現できる。   The reason for this configuration is that knocking has a characteristic that the signal level is small when the engine 100 is rotating at a low speed and the signal level is large when the engine 100 is at a high speed. Two A / D converters 7 and 8 are assigned to one vibration sensor 1 for low rotation (high gain) and high rotation (low gain), and these A / D converters 7 and 8 The output digital signal is input to the arithmetic unit 9 to perform knocking detection processing according to the engine speed. Thus, by performing signal processing with two systems for low rotation and high rotation, a sufficient dynamic range can be ensured and highly accurate knock detection can be realized.

これに対し、エンジン破損に至るプレイグニッションの発生領域は、上述したように低回転領域に限られており、信号強度はノッキングに比べてプレイグニッションの方が大きい。そこで、エンジン100の低回転時には、高回転時用(低ゲイン)のA/D変換器7をプレイグニッション検出用として用い、プレイグニッション検出処理を実行する。この際、A/D変換器8はノッキング検出用として用い、ノッキング検出処理を実行する。このように、1つの振動センサ1で、異なるゲインの出力信号を用いてノッキングを検出するとともに、ノッキングと異なる異常燃焼であるプレイグニッションも検出できる。   On the other hand, the pre-ignition generation region leading to engine breakage is limited to the low rotation region as described above, and the signal strength is larger in the pre-ignition than in the knocking. Therefore, when the engine 100 is rotating at low speed, the A / D converter 7 for high rotation (low gain) is used for detecting the pre-ignition, and the pre-ignition detection process is executed. At this time, the A / D converter 8 is used for knocking detection and executes knocking detection processing. As described above, one vibration sensor 1 can detect knocking using an output signal having a different gain, and can also detect preignition that is abnormal combustion different from knocking.

また、CPU6の信号入力部6cにはクランク角センサ2の出力信号NEが入力され、信号入力部6dには水温センサ3の出力信号TSが入力されて、これらの信号もデジタル信号に変換される。そして、クランク角センサ2の出力信号NEにより、例えばエンジン回転数が検出され、A/D変換器7の出力のノッキング検出処理部9aとプレイグニッション検出処理部9cへの入力の切り換えに利用される。また、水温センサ3の出力信号TSは、エンジン100の状態や周囲環境の判断に利用される。
更に、ECU200は、記憶装置11を備え、エンジン100を制御装置12で制御するための種々のプログラムやデータの初期値、ノッキング検出処理部9aとプレイグニッション検出処理部9cを切り換えるための判断に用いるエンジン回転数、負荷及び水温の所定値などが記憶されており、学習値を記憶するようになっている。
Further, the output signal NE of the crank angle sensor 2 is input to the signal input unit 6c of the CPU 6, and the output signal TS of the water temperature sensor 3 is input to the signal input unit 6d, and these signals are also converted into digital signals. . Then, for example, the engine speed is detected from the output signal NE of the crank angle sensor 2, and is used for switching the input of the output of the A / D converter 7 to the knocking detection processing unit 9a and the pre-ignition detection processing unit 9c. . Further, the output signal TS of the water temperature sensor 3 is used for determining the state of the engine 100 and the surrounding environment.
Further, the ECU 200 includes a storage device 11 and is used for various programs and initial values of data for controlling the engine 100 by the control device 12, and determination for switching between the knocking detection processing unit 9a and the pre-ignition detection processing unit 9c. Predetermined values such as engine speed, load, and water temperature are stored, and learning values are stored.

演算装置9によるノッキング検出処理及びプレイグニッション検出処理によりエンジン100の異常燃焼が検出されると、制御装置12により異常燃焼を抑制するようにエンジン100が制御される。例えば、ノッキングが発生していることが検出された場合には、点火タイミングの遅角化が行われる。また、プレイグニッションが発生していることが検出された場合には、ETB(Electronic throttle body)の閉駆動や燃料カットが行われる。   When abnormal combustion of engine 100 is detected by the knocking detection process and the pre-ignition detection process by arithmetic unit 9, engine 100 is controlled by control device 12 so as to suppress the abnormal combustion. For example, when it is detected that knocking has occurred, the ignition timing is retarded. Further, when it is detected that pre-ignition has occurred, an ETB (Electronic throttle body) is closed and fuel is cut.

次に、上記のような構成において、図5及び図6のフローチャートにより動作を説明する。エンジン100に設置されたセンサ(本例ではクランク角センサ2)によってエンジン回転数が検出され(ステップS1)、エンジン回転数が記憶装置11に予め記憶されている所定値と比較される(ステップS2)。エンジン回転数が所定値より小さいか等しい場合には、負荷が所定値と比較される(ステップS3)。負荷が所定値よりも大きいか等しい場合には、更に水温が所定値と比較される(ステップS4)。そして、水温が所定値よりも低いか等しい場合には、プレイグニッション検出区間か否かが判定される(ステップS5)。   Next, the operation of the above configuration will be described with reference to the flowcharts of FIGS. The engine speed is detected by a sensor (crank angle sensor 2 in this example) installed in the engine 100 (step S1), and the engine speed is compared with a predetermined value stored in advance in the storage device 11 (step S2). ). If the engine speed is less than or equal to the predetermined value, the load is compared with the predetermined value (step S3). If the load is greater than or equal to the predetermined value, the water temperature is further compared with the predetermined value (step S4). When the water temperature is lower than or equal to the predetermined value, it is determined whether or not the pre-ignition detection section (step S5).

ステップS5でプレイグニッション検出区間であると判定されると、プレイグニッション検出処理部9cが選択され(ステップS6)、高回転時用のA/D変換器7で振動センサ1の出力信号がA/D変換され(ステップS7)、このA/D変換結果が演算装置9に入力されてプレイグニッションの検出処理が実施される(ステップS8)。   If it is determined in step S5 that it is the pre-ignition detection section, the pre-ignition detection processing unit 9c is selected (step S6), and the output signal of the vibration sensor 1 is converted to A / D by the A / D converter 7 for high rotation. D conversion is performed (step S7), and the A / D conversion result is input to the arithmetic unit 9 to perform preignition detection processing (step S8).

プレイグニッションの検出処理は、振動センサ1の出力信号NSの電圧レベルが所定値を超えている場合に、記憶装置11に記憶されている振動センサ1の異常燃焼固有の周波数と比較することで周波数解析を行う。プレイグニッションはノッキングに比べて電圧レベルが大きいので、プレイグニッションの検出は、出力信号NSの電圧レベルのみでも判定可能である。また、プレイグニッションの検出は、周波数解析のみでも可能であり、特にエンジン100の圧縮工程と膨張行程がオーバーラップする領域では、振動センサ1の出力信号の周波数に基づいて判定すると良い。プレイグニッションが検出されたか否かが判定され(ステップS9)、プレイグニッションが発生していることが検出されると、ETBの閉駆動や燃料カットなどが行われてプレイグニッションが抑制される(ステップS10)。   The pre-ignition detection process is performed by comparing the frequency of the output signal NS of the vibration sensor 1 with a frequency unique to abnormal combustion of the vibration sensor 1 stored in the storage device 11 when the voltage level of the output signal NS exceeds a predetermined value. Perform analysis. Since the preignition has a higher voltage level than knocking, the preignition can be detected only by the voltage level of the output signal NS. Further, the pre-ignition can be detected only by frequency analysis, and particularly in a region where the compression process and the expansion stroke of the engine 100 overlap, it is preferable to make a determination based on the frequency of the output signal of the vibration sensor 1. It is determined whether or not pre-ignition has been detected (step S9). When it is detected that pre-ignition has occurred, ETB is closed, fuel cut, etc. is performed to suppress pre-ignition (step). S10).

一方、ステップS2でエンジン回転数が所定値より大きいと判定された場合には、ノッキング検出区間であるか否かが判定される(ステップS11)。ノッキング検出区間であると判定されると、ノッキング検出処理が選択され(ステップS12)、高回転時用のA/D変換器7で振動センサ1の出力信号がA/D変換され(ステップS13)、演算装置9でノッキング検出処理が実施される(ステップS14)。   On the other hand, if it is determined in step S2 that the engine speed is greater than the predetermined value, it is determined whether or not it is a knocking detection section (step S11). If it is determined that it is in the knocking detection section, knocking detection processing is selected (step S12), and the output signal of the vibration sensor 1 is A / D converted by the A / D converter 7 for high rotation (step S13). Then, the knocking detection process is performed in the arithmetic unit 9 (step S14).

ノッキングの検出処理は、振動センサ1の出力信号NSの電圧レベルが所定値を超えている場合に、記憶装置11に記憶されている振動センサ1の異常燃焼固有の周波数と比較することで周波数解析を行う。また、電圧レベルと周波数解析の組み合わせではなく、電圧レベルのみ、あるいは周波数解析のみでもノッキングを検出可能である。この場合には、ノイズなどによる影響を受けやすくなる可能性があるので、例えば記憶装置11にエンジン固有の背景ノイズを学習値として記憶させておき、この学習値で振動センサ1の出力信号NSを補正するとよい。ノッキングが発生していることが検出されると(ステップS15)、制御装置12によりノッキング回避抑制が実施され、例えば点火タイミングの遅角化が行われる(ステップS16)。
ステップS11でノッキング検出区間でないと判定された場合、ステップS15でノッキングが検出されない場合には異常燃焼の検出を終了してリターンする。
In the knocking detection process, when the voltage level of the output signal NS of the vibration sensor 1 exceeds a predetermined value, the knocking detection process is compared with the frequency specific to abnormal combustion of the vibration sensor 1 stored in the storage device 11. I do. Further, knocking can be detected not only by the combination of the voltage level and the frequency analysis but only by the voltage level or by the frequency analysis alone. In this case, since it may be easily affected by noise or the like, for example, background noise specific to the engine is stored as a learning value in the storage device 11, and the output signal NS of the vibration sensor 1 is used as the learning value. It is good to correct. When it is detected that knocking has occurred (step S15), the control device 12 performs knocking avoidance suppression, for example, retards the ignition timing (step S16).
If it is determined in step S11 that it is not a knocking detection section, if knocking is not detected in step S15, the detection of abnormal combustion is terminated and the process returns.

ステップS3で負荷が所定値より小さいと判定された場合、ステップS4で水温が所定値より高いと判定された場合、ステップS5でプレイグニッション検出区間ではないと判定された場合、及びステップS9でプレイグニッションが検出されない場合には、ノッキング検出区間であるか否かが判定される(ステップS17)。ノッキング検出区間であると判定されると、ノッキング検出処理が選択され(ステップS18)、低回転時用のA/D変換器8で振動センサ1の出力信号NSがA/D変換され(ステップS19)、演算装置9でノッキング検出処理が実施される(ステップS20)。   If it is determined in step S3 that the load is smaller than the predetermined value, if it is determined in step S4 that the water temperature is higher than the predetermined value, if it is determined in step S5 that it is not the pre-ignition detection zone, and if it is determined in step S9 When the ignition is not detected, it is determined whether or not it is a knocking detection section (step S17). If it is determined that it is the knocking detection section, knocking detection processing is selected (step S18), and the output signal NS of the vibration sensor 1 is A / D converted by the A / D converter 8 for low rotation (step S19). ), Knocking detection processing is performed in the arithmetic unit 9 (step S20).

ノッキングの検出処理は、振動センサ1の出力信号NSの電圧レベルが所定値を超えている場合に、記憶装置11に記憶されている振動センサ1の異常燃焼固有の周波数と比較することで周波数解析を行う。また、電圧レベルと周波数解析の組み合わせではなく、電圧レベルのみ、あるいは周波数解析のみでもノッキングを検出可能である。この場合には、ノイズなどによる影響を受けやすくなる可能性があるので、例えば記憶装置11にエンジン固有の背景ノイズを学習値として記憶させておき、この学習値で振動センサ1の出力信号NSを補正するとよい。ノッキングが発生していることが検出されると(ステップS21)、制御装置12によりノッキング回避抑制が実施され、例えば点火タイミングの遅角化が行われる(ステップS22)。
ステップS17でノッキング検出区間でないと判定された場合、ステップS21でノッキングが検出されない場合には異常燃焼の検出を終了してリターンする。
In the knocking detection process, when the voltage level of the output signal NS of the vibration sensor 1 exceeds a predetermined value, the knocking detection process is compared with the frequency specific to abnormal combustion of the vibration sensor 1 stored in the storage device 11. I do. Further, knocking can be detected not only by the combination of the voltage level and the frequency analysis but only by the voltage level or by the frequency analysis alone. In this case, since it may be easily affected by noise or the like, for example, background noise specific to the engine is stored as a learning value in the storage device 11, and the output signal NS of the vibration sensor 1 is used as the learning value. It is good to correct. When it is detected that knocking has occurred (step S21), the control device 12 performs knocking avoidance suppression, for example, retards the ignition timing (step S22).
If it is determined in step S17 that it is not the knocking detection zone, if knocking is not detected in step S21, the detection of abnormal combustion is terminated and the process returns.

以上説明したように、本発明によれば、エンジン100に設置された振動センサ1の出力信号NSを、ゲインの異なる2つの信号に変換して取得し、エンジン回転数が高くなるにしたがってゲインの低い信号を選択し、ノッキングの発生を検出する。そして、非選択の信号を用いてノッキングと異なる異常燃焼を判定する。このように、エンジン低回転時にノッキング検出用のA/D変換器7をプレイグニッション検出に用いることで、ノッキング検出用の振動センサ1と信号処理部(増幅器4、A/D変換器7及び演算装置9)を利用してプレイグニッションを検出できる。したがって、ノッキング検出用の振動センサと信号処理部を利用して、ノッキングと異なる異常燃焼を検出できる。   As described above, according to the present invention, the output signal NS of the vibration sensor 1 installed in the engine 100 is acquired by converting into two signals having different gains, and the gain increases as the engine speed increases. Select a low signal and detect the occurrence of knocking. Then, abnormal combustion different from knocking is determined using a non-selection signal. In this way, by using the A / D converter 7 for detecting knocking at the time of engine low rotation for pre-ignition detection, the vibration sensor 1 for detecting knocking and the signal processing unit (the amplifier 4, the A / D converter 7 and the calculation). The preignition can be detected using the device 9). Therefore, abnormal combustion different from knocking can be detected using the vibration sensor for detecting knocking and the signal processing unit.

以上実施形態を用いて本発明の説明を行ったが、本発明は上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。   Although the present invention has been described above using the embodiment, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage.

<変形例1>
例えば、上述した実施形態では、エンジン回転数、負荷及び水温を検出してプレイグニッションの検出とノッキングの検出を切り換えるようにした。しかしながら、エンジン回転数の高低のみで切り換えることもでき、エンジン回転数と負荷を組み合わせて切り換えるようにしても良い。更に、エンジン回転数、負荷及び水温以外の他のセンサの出力を考慮して切り換えるようにしても良い。
<Modification 1>
For example, in the above-described embodiment, the engine speed, the load, and the water temperature are detected, and the detection of pre-ignition and the detection of knocking are switched. However, the engine speed can be switched only by the level of the engine speed, and the engine speed and the load may be switched in combination. Furthermore, the switching may be performed in consideration of the output of the sensor other than the engine speed, the load, and the water temperature.

<変形例2>
また、図5のステップS2及びステップS3において、演算装置9でエンジン回転数が所定値よりも大きいか小さいか、あるいは負荷が所定値よりも大きいか小さいか判定するようにしたが、例えば記憶装置11にエンジン回転数と負荷のマップを記憶しておき、このマップを用いて判定するように構成することもできる。
<Modification 2>
Further, in steps S2 and S3 in FIG. 5, it is determined by the arithmetic unit 9 whether the engine speed is larger or smaller than a predetermined value or whether the load is larger or smaller than a predetermined value. It is also possible to store the engine speed and load map in 11 and use this map for determination.

<変形例3>
更に、振動センサ1の出力信号を、増幅器4及び増幅器4,5でそれぞれ増幅し、A/D変換器7,8でそれぞれA/D変換する用にしたが、増幅器4及び増幅器4,5の出力をそれぞれDSP(Digital Signal Processor)により処理することもできる。更にまた、1段の増幅器4と2段の増幅器4,5で増幅するようにしたが、低ゲインと高ゲインで増幅できれば、この構成に限られない。
<Modification 3>
Further, the output signal of the vibration sensor 1 is amplified by the amplifier 4 and the amplifiers 4 and 5 and A / D converted by the A / D converters 7 and 8, respectively. Each output can be processed by a DSP (Digital Signal Processor). Further, although amplification is performed by the one-stage amplifier 4 and the two-stage amplifiers 4 and 5, the configuration is not limited to this configuration as long as amplification can be performed with low gain and high gain.

<変形例4>
また、振動センサの出力信号をゲインの異なる2つ信号に変換して取得するようにしたが、ゲインの異なる3つ以上の信号に変換して取得し、エンジン回転数が高くなるにしたがってゲインの低い信号を選択し、非選択の信号、又はゲインの低い信号を用いてノッキングと異なる異常燃焼を判定するようにしても良い。
<Modification 4>
Also, the output signal of the vibration sensor is obtained by converting it into two signals having different gains, but it is obtained by converting it into three or more signals having different gains, and the gain increases as the engine speed increases. A low signal may be selected, and abnormal combustion different from knocking may be determined using a non-selected signal or a low gain signal.

なお、上記実施形態及び変形例には種々の段階の発明が含まれており、開示される複数の構成要件の適宜な組み合わせにより種々の発明が抽出され得る。例えば実施形態及び変形例に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題の少なくとも1つが解決でき、発明の効果の欄で述べられている効果の少なくとも1つが得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   The above-described embodiments and modifications include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment and the modification, at least one of the problems described in the column of the problem to be solved by the invention can be solved, and in the column of the effect of the invention In the case where at least one of the stated effects can be obtained, a configuration in which this configuration requirement is deleted can be extracted as an invention.

1…振動センサ、2…クランク角センサ、3…水温センサ、4,5…増幅器、6…CPU、6a…高回転時用信号入力部(低ゲイン)、6b…低回転時用信号入力部(高ゲイン)、6c,6d…信号入力部、7,8…A/D変換器、9…演算装置、9a,9b…ノッキング検出処理部、9c…プレイグニッション検出処理部、11…記憶装置、12…制御装置、100…エンジン、200…ECU、NS…振動センサの出力信号、NE…クランク角センサの出力信号、TS…水温センサの出力信号   DESCRIPTION OF SYMBOLS 1 ... Vibration sensor, 2 ... Crank angle sensor, 3 ... Water temperature sensor, 4, 5 ... Amplifier, 6 ... CPU, 6a ... Signal input part for high rotation (low gain), 6b ... Signal input part for low rotation ( (High gain), 6c, 6d ... signal input unit, 7, 8 ... A / D converter, 9 ... arithmetic unit, 9a, 9b ... knocking detection processing unit, 9c ... pre-ignition detection processing unit, 11 ... storage device, 12 ... Control device, 100 ... Engine, 200 ... ECU, NS ... Vibration sensor output signal, NE ... Crank angle sensor output signal, TS ... Water temperature sensor output signal

Claims (8)

内燃機関に設置された振動センサの出力信号を、ゲインの異なる複数の信号に変換して取得し、機関回転数が高くなるにしたがってゲインの低い信号を選択し、前記内燃機関のノッキングの発生を検出する異常燃焼検出装置であって、
非選択の信号、又はゲインの低い信号を用いてノッキングと異なる異常燃焼を判定する、ことを特徴とする内燃機関の異常燃焼検出装置。
The output signal of the vibration sensor installed in the internal combustion engine is obtained by converting it into a plurality of signals having different gains, a signal having a lower gain is selected as the engine speed increases, and the occurrence of knocking of the internal combustion engine is detected. An abnormal combustion detection device for detecting,
An abnormal combustion detection apparatus for an internal combustion engine, characterized in that abnormal combustion different from knocking is determined using a non-selection signal or a low gain signal.
前記ノッキングと異なる異常燃焼の判定は、前記機関回転数が所定値よりも低い場合に実行する、ことを特徴とする請求項1に記載の内燃機関の異常燃焼検出装置。   The abnormal combustion detection device for an internal combustion engine according to claim 1, wherein the determination of abnormal combustion different from the knocking is executed when the engine speed is lower than a predetermined value. 前記ノッキングと異なる異常燃焼の判定は、前記機関回転数が所定値よりも低く且つ前記内燃機関に高負荷がかかった場合に実行する、ことを特徴とする請求項1に記載の内燃機関の異常燃焼検出装置。   The abnormality of the internal combustion engine according to claim 1, wherein the determination of abnormal combustion different from the knocking is executed when the engine speed is lower than a predetermined value and a high load is applied to the internal combustion engine. Combustion detection device. 前記ノッキングと異なる異常燃焼の判定は、前記機関回転数が所定値よりも低く、前記内燃機関に高負荷がかかり、冷却水温が所定値よりも低い場合に実行する、ことを特徴とする請求項1に記載の内燃機関の異常燃焼検出装置。   The determination of abnormal combustion different from the knocking is performed when the engine speed is lower than a predetermined value, a high load is applied to the internal combustion engine, and a cooling water temperature is lower than a predetermined value. The abnormal combustion detection device for an internal combustion engine according to claim 1. 前記ノッキングと異なる異常燃焼の判定は、前記振動センサの出力電圧、又は前記振動センサの異常燃焼固有の周波数を用いる、ことを特徴とする請求項1乃至4いずれか1項に記載の内燃機関の異常燃焼検出装置。   5. The internal combustion engine according to claim 1, wherein the determination of abnormal combustion different from the knocking uses an output voltage of the vibration sensor or a frequency specific to abnormal combustion of the vibration sensor. Abnormal combustion detection device. 前記ノッキングの判定は、前記振動センサの出力信号の周波数に基づいて実行し、前記ノッキングと異なる異常燃焼の判定は、電圧レベルによって判定する、ことを特徴とする請求項1乃至5いずれか1項に記載の内燃機関の異常燃焼検出装置。   The determination of knocking is performed based on the frequency of the output signal of the vibration sensor, and the determination of abnormal combustion different from the knocking is determined by a voltage level. An abnormal combustion detection device for an internal combustion engine according to claim 1. 前記ノッキングと異なる異常燃焼の判定は、更に前記内燃機関の圧縮工程と膨張行程がオーバーラップする領域では、前記振動センサの出力信号の周波数に基づいて実行する、ことを特徴とする請求項6に記載の内燃機関の異常燃焼検出装置。   The determination of abnormal combustion different from the knocking is further performed based on the frequency of the output signal of the vibration sensor in a region where the compression process and the expansion stroke of the internal combustion engine overlap. An abnormal combustion detection device for an internal combustion engine as described. 前記振動センサの出力信号を、複数の信号に変換する処理は、ゲインの異なる増幅器の出力をそれぞれA/D変換器でA/D変換するものである、又はゲインの異なる増幅器の出力をそれぞれDSP(Digital Signal Processor)により処理するものである、ことを特徴とする請求項1乃至7いずれか1項に記載の内燃機関の異常燃焼検出装置。   The process of converting the output signal of the vibration sensor into a plurality of signals is performed by A / D converting the outputs of the amplifiers having different gains by the A / D converter, or the outputs of the amplifiers having the different gains by the DSP. The abnormal combustion detection device for an internal combustion engine according to any one of claims 1 to 7, characterized in that the processing is performed by a (Digital Signal Processor).
JP2016239690A 2016-12-09 2016-12-09 Abnormal combustion detection device for internal combustion engine Active JP6695266B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016239690A JP6695266B2 (en) 2016-12-09 2016-12-09 Abnormal combustion detection device for internal combustion engine
PCT/JP2017/044062 WO2018105703A1 (en) 2016-12-09 2017-12-07 Abnormal combustion detection device for internal combustion engine and detection method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016239690A JP6695266B2 (en) 2016-12-09 2016-12-09 Abnormal combustion detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018096240A true JP2018096240A (en) 2018-06-21
JP6695266B2 JP6695266B2 (en) 2020-05-20

Family

ID=62491671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016239690A Active JP6695266B2 (en) 2016-12-09 2016-12-09 Abnormal combustion detection device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6695266B2 (en)
WO (1) WO2018105703A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200769A (en) * 2019-06-06 2020-12-17 マツダ株式会社 Control device of engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6744597B1 (en) 2019-10-18 2020-08-19 トヨタ自動車株式会社 Vehicle control data generation method, vehicle control device, vehicle control system, and vehicle learning device
JP6809587B1 (en) 2019-10-18 2021-01-06 トヨタ自動車株式会社 Vehicle control device
JP6705545B1 (en) 2019-10-18 2020-06-03 トヨタ自動車株式会社 Vehicle control data generation method, vehicle control device, vehicle control system, and vehicle learning device
JP7243642B2 (en) 2020-01-09 2023-03-22 トヨタ自動車株式会社 VEHICLE CONTROL DATA GENERATION METHOD, VEHICLE CONTROL DEVICE, VEHICLE CONTROL SYSTEM, AND VEHICLE LEARNING DEVICE
JP7287287B2 (en) 2020-01-09 2023-06-06 トヨタ自動車株式会社 VEHICLE CONTROL DATA GENERATION METHOD, VEHICLE CONTROL DEVICE, VEHICLE CONTROL SYSTEM, AND VEHICLE LEARNING DEVICE
JP7331704B2 (en) 2020-01-09 2023-08-23 トヨタ自動車株式会社 VEHICLE CONTROL DATA GENERATION METHOD, VEHICLE CONTROL DEVICE, AND VEHICLE CONTROL SYSTEM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035238A (en) * 1983-08-05 1985-02-23 Nippon Denso Co Ltd Knocking detecting device
JP3236766B2 (en) * 1995-09-29 2001-12-10 株式会社日本自動車部品総合研究所 Vibration detector
JP2013122229A (en) * 2011-12-12 2013-06-20 Denso Corp Electronic control device of internal combustion engine
JP2015040490A (en) * 2013-08-21 2015-03-02 三菱自動車工業株式会社 Control device of engine
JP2016169686A (en) * 2015-03-13 2016-09-23 日立オートモティブシステムズ株式会社 Control device and abnormal combustion detection method for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035238A (en) * 1983-08-05 1985-02-23 Nippon Denso Co Ltd Knocking detecting device
JP3236766B2 (en) * 1995-09-29 2001-12-10 株式会社日本自動車部品総合研究所 Vibration detector
JP2013122229A (en) * 2011-12-12 2013-06-20 Denso Corp Electronic control device of internal combustion engine
JP2015040490A (en) * 2013-08-21 2015-03-02 三菱自動車工業株式会社 Control device of engine
JP2016169686A (en) * 2015-03-13 2016-09-23 日立オートモティブシステムズ株式会社 Control device and abnormal combustion detection method for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200769A (en) * 2019-06-06 2020-12-17 マツダ株式会社 Control device of engine
JP7352136B2 (en) 2019-06-06 2023-09-28 マツダ株式会社 engine control device

Also Published As

Publication number Publication date
WO2018105703A1 (en) 2018-06-14
JP6695266B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6695266B2 (en) Abnormal combustion detection device for internal combustion engine
US7669459B2 (en) Knocking determination device for internal combustion engine
JP4390774B2 (en) Ignition timing control device for internal combustion engine
JP5464202B2 (en) Electronic control device for internal combustion engine
US8005607B2 (en) Device and method for controlling ignition timing of internal combustion engine
JP2007255208A (en) Knocking determining device for internal combustion engine
US10364760B2 (en) Engine control unit
US7478622B2 (en) Device and method for determining knocking of internal combustion engine
JP6591389B2 (en) Internal combustion engine knock detection device
US7621172B2 (en) Knocking determination device for internal combustion engine
JP2005090250A (en) Engine knock control device
JPH01203643A (en) Knocking detecting device for engine
JP4357501B2 (en) Internal combustion engine knock determination device
US9915240B2 (en) Method and system for engine auto-ignition detection and mitigation
JP4324137B2 (en) Control device for internal combustion engine
JP4877276B2 (en) Ignition timing control device for internal combustion engine
JP2018003631A (en) Control device for internal combustion engine and knock judgement method
JP6407828B2 (en) Control device for internal combustion engine
JP2007332916A (en) Ignition timing control device of internal combustion engine
KR102417381B1 (en) Apparatus and Method for controlling injection
JP4745198B2 (en) Internal combustion engine knock determination device, determination method, program for realizing the method, and recording medium recording the program
JP4919020B2 (en) Internal combustion engine knock determination device
JP6469058B2 (en) Electronic device for detecting looseness of fixation of knock sensor, vehicle equipped with electronic device, and method for detecting looseness
JP2019196737A (en) Knocking detector and knocking detection method
JP4487453B2 (en) Knocking detection device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200421

R150 Certificate of patent or registration of utility model

Ref document number: 6695266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250