JP2018095893A - Production method of high quality iron source - Google Patents

Production method of high quality iron source Download PDF

Info

Publication number
JP2018095893A
JP2018095893A JP2016238548A JP2016238548A JP2018095893A JP 2018095893 A JP2018095893 A JP 2018095893A JP 2016238548 A JP2016238548 A JP 2016238548A JP 2016238548 A JP2016238548 A JP 2016238548A JP 2018095893 A JP2018095893 A JP 2018095893A
Authority
JP
Japan
Prior art keywords
iron
ore
raw material
gangue
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016238548A
Other languages
Japanese (ja)
Inventor
毅郎 足立
Takero Adachi
毅郎 足立
卓 對馬
Taku Tsushima
卓 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016238548A priority Critical patent/JP2018095893A/en
Publication of JP2018095893A publication Critical patent/JP2018095893A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of reducing shrinkage cavities inside of a small diameter ingot in a casting method of an active metal to improve the non-defective yield.SOLUTION: In a production method of high quality iron source, with a total iron amount Total. Fe, a SiOamount, and an AlOamount (% by mass) relative to a raw material ore, to a bony iron ore having a vein stone rate expressed by reduction (SiO+AlO)/Total. Fe×100 of 15% or higher, reduction is performed with the bony iron ore as the raw material ore, the raw material ore 1 after reduction is pulverized, the pulverized raw material ore is electromagnetically separated to produce a high quality iron source having the vein stone rate of 10% or smaller, and when the raw material iron ore 1 after reduction is pulverized, the pulverization is performed such that a cumulative weight average diameter Dof the raw material ore after pulverization is 200 μm or smaller.SELECTED DRAWING: Figure 1

Description

本発明は、劣質鉄鉱石の鉄品位を向上させて、鉄鋼原料として使用可能な高品位鉄源を製造する高品位鉄源の製造方法に関するものである。   The present invention relates to a method for producing a high-grade iron source that improves the iron grade of inferior iron ore and produces a high-grade iron source that can be used as a steel raw material.

従来より、鉄鋼原料である鉄鉱石の品位は含有する脈石の少なさで決定される。つまり、脈石成分としては主にSiO2、Al2O3が挙げられ、脈石成分(不要成分)であるSiO2やAl2O3が少なければ少ないほど鉄鉱石は高品位とされている。そのため、従来より高炉で使用される鉄鉱石は、鉄鉱石中のTotal.Fe、SiO2量、Al2O3量(質量%)を用いて(SiO2+Al2O3)/Total.Fe×100で表される脈石率(%)で品位が評価され、脈石率(%)が10%以下のものを使用することとされていた。 Conventionally, the quality of iron ore, which is a raw material for steel, is determined by the small amount of gangue contained. In other words, SiO 2 and Al 2 O 3 are mainly listed as gangue components, and the lower the gangue components (unnecessary components), SiO 2 and Al 2 O 3, the higher the quality of iron ore. . Therefore, iron ore conventionally used in blast furnaces is (SiO 2 + Al 2 O 3 ) /Total.Fe using the total Fe, SiO 2 content and Al 2 O 3 content (mass%) in the iron ore. The grade was evaluated by the gangue rate (%) represented by × 100, and the gangue rate (%) was supposed to be 10% or less.

しかし、近年は良質鉄源の枯渇に伴い、脈石分の少ない鉄鉱石を入手することが困難となりつつある。上述のように高炉には脈石率10%以下の鉄鉱石が使用されるため、10%以上の鉄鉱石については選鉱して脈石分を落としてから使用する必要がある。
このような選鉱の方法としては、粉砕した鉄鉱石を浮選あるいは磁選することにより品位を向上させる手法が行われてきた。ただ、従来より行われてきた粉砕鉱石の浮選や磁選は、酸化鉄中に脈石分が固溶した鉄鉱石を用いる場合や、微細な脈石分が分散した鉄鉱石を用いる場合には、あまり効果がない。それゆえ、このように脈石分が固溶または微分散された低品位鉱石に対しても脈石分を効果的に除去する技術として、以下の特許文献1〜3のようなものが開発されている。
However, in recent years, with the depletion of high-quality iron sources, it has become difficult to obtain iron ores with little gangue. As described above, iron ores with a gangue rate of 10% or less are used in the blast furnace. Therefore, iron ores with a gangue rate of 10% or more need to be selected and used after dropping the gangue.
As such a beneficiation method, a method has been performed in which the quality is improved by flotation or magnetic separation of crushed iron ore. However, the flotation and magnetic separation of pulverized ore that have been performed in the past can be used when using iron ore in which gangue is dissolved in iron oxide, or when using iron ore in which fine gangue is dispersed. , Not very effective. Therefore, the following Patent Documents 1 to 3 have been developed as techniques for effectively removing the gangue from even the low-grade ore in which the gangue is dissolved or finely dispersed. ing.

例えば、特許文献1には、低品位鉱石の有効利用を可能とする、製造効率良く還元鉄である粒鉄を製造可能な、鉱石を用いた粒鉄製造方法が開示されている。この特許文献1の粒鉄製造方法は、鉱石と、炭素系固体還元材と、造滓材とを、混合した混合原料を移動型炉床上に積載し、該炉床上部から熱供給して混合原料を還元し、更に溶融させて還元鉄である粒鉄を製造するものとなっている。また、この粒鉄製造方法では、造滓材の少なくとも一部としてNa及び/またはKの化合物を使用することとされている。   For example, Patent Document 1 discloses a method for producing granular iron using ore that enables effective use of low-grade ore and that can produce granular iron that is reduced iron with high production efficiency. In the method for producing granular iron disclosed in Patent Document 1, a mixed raw material in which ore, a carbon-based solid reducing material, and a slagging material are mixed is loaded on a movable hearth and mixed by supplying heat from the upper portion of the hearth. The raw material is reduced and further melted to produce granular iron which is reduced iron. Further, in this method for producing granular iron, a compound of Na and / or K is used as at least a part of the ironmaking material.

また、特許文献2には、酸化鉄含有物質と炭素質還元剤を含む塊成物を還元した後、磁選することで鉄純度の高い金属鉄を製造する金属鉄の製造方法が開示されている。この特許文献2の金属鉄の製造方法は、酸化鉄含有物質および炭材を含む塊成物を加熱して金属鉄含有焼結体を製造し、得られた金属鉄含有焼結体の少なくとも一部を粉砕し、スラグを除去して金属鉄を製造するものとなっている。この方法によれば、酸化鉄含有物質として、脈石含有量の多い低品位な酸化鉄含有物質を用いた場合であっても、金属鉄含有焼結体からのスラグ除去率を高めることができるとされている。   Patent Document 2 discloses a method for producing metallic iron that produces metallic iron with high iron purity by magnetic separation after reducing an agglomerate containing an iron oxide-containing substance and a carbonaceous reducing agent. . In the method for producing metallic iron of Patent Document 2, an agglomerate containing an iron oxide-containing substance and a carbonaceous material is heated to produce a metallic iron-containing sintered body, and at least one of the obtained metallic iron-containing sintered bodies is obtained. A part is grind | pulverized and slag is removed and metal iron is manufactured. According to this method, even when a low-grade iron oxide-containing substance with a high gangue content is used as the iron oxide-containing substance, the slag removal rate from the sintered metal-containing sintered body can be increased. It is said that.

さらに、特許文献3には、CaO、SiO2、Al2O3、およびFeを含む塊成物から粒状金属鉄を製造する方法であって、副生するスラグ量が多い場合でも、粒状金属鉄を高歩留まりで、しかも短時間で製造できる方法、言い換えれば粒状金属鉄の生産性を向上できる方法が開示されている。この特許文献3の技術は、塊成物中の全CaO量、全SiO2量、全Al2O3量、および全Fe量が、所定の関係を満足するように成分調整することで、高融点で、且つFeOxとの反応性が乏しいダイカルシウムシリケート(Dicalcium Silicate;2CaO・SiO2)の生成を抑制するものとなっている。このようにダイカルシウムシリケートの生成を抑えれば、酸化鉄を還元して生成した金属鉄同士の凝集が促進されるため、粒状金属鉄を高歩留まりで、しかも短時間で製造できるようになり、粒状金属鉄の生産性を高めることも可能となる。 Further, Patent Document 3 discloses a method for producing granular metallic iron from an agglomerate containing CaO, SiO 2 , Al 2 O 3 , and Fe, and even when the amount of by-product slag is large, granular metallic iron. Has been disclosed in a high yield and in a short time, in other words, a method capable of improving the productivity of granular metallic iron. The technology of this Patent Document 3 is achieved by adjusting the components so that the total CaO amount, the total SiO 2 amount, the total Al 2 O 3 amount, and the total Fe amount in the agglomerate satisfy a predetermined relationship. It suppresses the formation of dicalcium silicate (2CaO · SiO 2 ) having a melting point and poor reactivity with FeO x . By suppressing the formation of dicalcium silicate in this way, the aggregation of metallic iron produced by reducing iron oxide is promoted, so that granular metallic iron can be produced at a high yield and in a short time, It is also possible to increase the productivity of granular metallic iron.

特開2011−132578号公報JP 2011-132578 A 特開2016−014184号公報JP 2006-014184 A 特開2016−056416号公報JP, 2006-056416, A

ところで、特許文献1の技術は、炭素系固体還元材を内装して還元を行うため、混合原料を1200℃以上、好ましくは1450℃以上に加熱することが必要となる。また、一部を溶融させるために脈石同様に不純物となるフラックスの添加が必要であり、後で不純物であるフラックスを除去する工程が必要となるため効率の良い方法とは言えない。さらに、炭素系固体還元材を使用することにより、炭素系固体還元材に由来する硫黄分が回収鉄中にも含まれることになるため、後工程(使用時)に脱硫処理が必要となる。   By the way, in the technique of Patent Document 1, since the reduction is performed with the carbon-based solid reducing material incorporated therein, it is necessary to heat the mixed raw material to 1200 ° C. or higher, preferably 1450 ° C. or higher. Moreover, in order to melt a part, it is necessary to add a flux as an impurity as in the case of a gangue, and a process for removing the flux as an impurity is required later, which is not an efficient method. Furthermore, by using the carbon-based solid reducing material, the sulfur content derived from the carbon-based solid reducing material is also contained in the recovered iron, so that a desulfurization process is required in the subsequent step (when used).

また、特許文献2の技術は、脈石分が溶融したスラグから、粉砕後の平均粒径を45μmとしてスラグ除去率を高めるものであり、本発明のように酸化鉄中に脈石分が固溶した鉄鉱石や微細な脈石分が分散した鉄鉱石を対象とするものではない。つまり、特許文献2の技術は、本発明とは脈石の存在形態が異なるため、本発明のように粉砕により劣質鉄鉱石の鉄品位を向上させる方法の指針とはなり得ないものとなっている。   Further, the technique of Patent Document 2 is to increase the slag removal rate from the slag in which the gangue is melted by setting the average particle size after pulverization to 45 μm, and the gangue is solidified in the iron oxide as in the present invention. It does not target molten iron ore or iron ore in which fine gangue is dispersed. In other words, since the technique of Patent Document 2 is different from the present invention in the presence of gangue, it cannot serve as a guideline for a method for improving the iron quality of inferior iron ore by grinding as in the present invention. Yes.

加えて、特許文献2の技術も、炭素質還元剤を内装して還元を行うため、塊成物を1200℃以上に加熱することが必要となる。また、塊成物の一部を溶融させるために脈石同様に不純物となるフラックスの添加が必要であり、後で不純物であるフラックスを除去する工程が必要となるため効率の良い方法とは言えない。
さらに、特許文献3には磁選条件が明記されておらず、磁選を行うことで鉱石の品位向上の本発明の技術に対して何ら指針とはなりえない。また、スラグを溶融させる特許文献3でも、不純物となるフラックスの使用や製造コストの上昇に繋がる加熱は特許文献1、2同様に必要となっている。
In addition, since the technique of Patent Document 2 also performs reduction by incorporating a carbonaceous reducing agent, it is necessary to heat the agglomerate to 1200 ° C. or higher. In addition, in order to melt a part of the agglomerate, it is necessary to add a flux that becomes an impurity like a gangue, and a process for removing the flux that is an impurity later is required, which is an efficient method. Absent.
Furthermore, the magnetic separation conditions are not specified in Patent Document 3, and no magnetic guidance can be used for the technique of the present invention for improving the quality of ore. Also, in Patent Document 3 in which slag is melted, heating that leads to the use of flux as impurities and an increase in manufacturing cost is required as in Patent Documents 1 and 2.

つまり、上述した特許文献1〜3の技術は、酸化鉄中の脈石分を除去して劣質鉄鉱石の鉄品位を向上可能なものではあっても、脈石分を除去する際に高温加熱が必要であったり、溶銑中に持ち込まれたフラックスや硫黄分を後で除去することが必要となったりするものであり、加熱設備に余計なコストが必要となったり余計な後工程が必要となったりして脈石分の除去を簡便且つ効率的に行えるものではなかった。   In other words, even if the techniques of Patent Documents 1 to 3 described above can improve the iron quality of the inferior iron ore by removing the gangue in the iron oxide, high temperature heating is performed when removing the gangue. It is necessary to remove the flux and sulfur introduced into the hot metal later, which requires extra cost for the heating equipment or extra post-process. As a result, the removal of the gangue was not easy and efficient.

本発明は、上述の問題に鑑みてなされたものであり、高温加熱やフラックス添加などを行わなくても、高炉で利用可能な脈石分が10%以下とされた高品位鉄源を簡便且つ効率的に製造することができる高品位鉄源の製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and a high-grade iron source having a gangue content of 10% or less that can be used in a blast furnace without using high-temperature heating or flux addition is simple and easy. It aims at providing the manufacturing method of the high quality iron source which can be manufactured efficiently.

上記課題を解決するため、本発明の高品位鉄源の製造方法は以下の技術的手段を講じている。
即ち、本発明の高品位鉄源の製造方法は、原料鉱石に対する総鉄量Total.Fe、SiO2量、Al2O3量(質量%)を用いて、(SiO2+Al2O3)/Total.Fe×100で表される脈石率が15%以上とされた劣質鉄鉱石に対して、当該劣質鉄鉱石を原料鉱石として還元を行い、還元後の原料鉱石を粉砕し、粉砕した原料鉱石を磁選して脈石率が10%以下とされた高品位鉄源を製造する高品位鉄源の製造方法であって、前記還元後の原料鉱石を粉砕するに際しては、粉砕後の原料鉱石の累積重量平均径D50が200μm未満となるように粉砕を行うことを特徴とするものである。
In order to solve the above problems, the method for producing a high-grade iron source of the present invention employs the following technical means.
That is, the method for producing a high-grade iron source of the present invention uses the total iron amount Total.Fe, the SiO 2 amount, and the Al 2 O 3 amount (mass%) with respect to the raw ore, and (SiO 2 + Al 2 O 3 ) The inferior iron ore with a gangue rate expressed as /Total.Fe×100 is reduced to 15% or more, and the inferior iron ore is reduced as raw material ore, and the reduced raw material ore is crushed and crushed A method for producing a high-grade iron source for magnetically selecting a raw ore to produce a high-grade iron source having a gangue rate of 10% or less, and when pulverizing the reduced raw material ore, Grinding is performed so that the cumulative weight average diameter D 50 of the ore is less than 200 μm.

本発明の高品位鉄源の製造方法によれば、高温加熱やフラックス添加などを行わなくても、高炉で利用可能な脈石分が10%以下とされた高品位鉄源を簡便且つ効率的に製造することができる。   According to the method for producing a high-grade iron source of the present invention, a high-grade iron source having a gangue content of 10% or less that can be used in a blast furnace without using high-temperature heating or flux addition is simple and efficient. Can be manufactured.

本発明に係る高品位鉄源の製造方法の手順を示した模式図である。It is the schematic diagram which showed the procedure of the manufacturing method of the high quality iron source which concerns on this invention. 実施例及び比較例に用いられた原料鉱石の粒度分布を示す図である。It is a figure which shows the particle size distribution of the raw material ore used for the Example and the comparative example. 磁選前の鉄鉱石の体積平均径と、鉄鉱石の脈石率との相関関係を示す図である。It is a figure which shows the correlation with the volume average diameter of the iron ore before magnetic separation, and the gangue rate of an iron ore.

[第1実施形態]
以下、本発明の高品位鉄源の製造方法の実施形態を、図面に基づき詳しく説明する。
図1は、本実施形態の高品位鉄源の製造方法を模式的に示したものである。
図1に示すように、本実施形態の高品位鉄源の製造方法は、(1)鉄鉱石中の酸化鉄を金属鉄に還元する還元工程、(2)還元工程で還元された後の鉄鉱石を粉砕する粉砕工程、(3)粉砕工程で粉砕後の鉄鉱石を磁選する磁選工程の3つの工程に従って高品位鉄源を製造するものとなっている。
[First Embodiment]
Hereinafter, an embodiment of a method for producing a high-grade iron source of the present invention will be described in detail with reference to the drawings.
FIG. 1 schematically shows a method for producing a high-grade iron source according to this embodiment.
As shown in FIG. 1, the high-grade iron source manufacturing method of the present embodiment includes (1) a reduction step of reducing iron oxide in iron ore to metallic iron, and (2) an iron ore after being reduced in the reduction step. A high-grade iron source is manufactured in accordance with three steps: a pulverization step of pulverizing stones, and (3) a magnetic separation step of magnetically selecting iron ore after pulverization in the pulverization step.

次に、本実施形態の高品位鉄源の製造方法を構成する各工程について説明する。
まず、本実施形態の高品位鉄源の製造方法に原料鉱石として用いられる劣質鉱石について説明する。この劣質鉱石は、一般に高炉に原料鉱石として投入可能な脈石率が10%以下の鉄鉱石ではなく、脈石率(%)が15%以上とされたものであり、不純物を多く含有するものとなっている。
Next, each process which comprises the manufacturing method of the high quality iron source of this embodiment is demonstrated.
First, the inferior ore used as a raw material ore in the manufacturing method of the high grade iron source of this embodiment is demonstrated. This inferior ore is not an iron ore with a gangue rate of 10% or less that can generally be input as a raw ore to a blast furnace, but has a gangue rate (%) of 15% or more and contains a large amount of impurities. It has become.

なお、脈石率とは、原料鉱石中に含まれる不純物成分(質量%)、すなわちSiO2量(質量%)や Al2O3量(質量%)を、原料鉱石(鉄鉱石)中のTotal.Fe (質量%)で除したものであり、以下の式(1)のように定義されるものである。 The gangue rate means the impurity component (mass%) contained in the raw material ore, that is, the amount of SiO 2 (mass%) and the amount of Al 2 O 3 (mass%), the total in the raw ore (iron ore) It is divided by .Fe (mass%) and is defined as the following formula (1).

還元工程は、原料鉱石中に含まれる酸化鉄を金属鉄(還元鉄)に還元するものであり、本実施形態では高温とされた雰囲気中に位置する原料鉱石に、還元性のガスを接触させることで、原料鉱石の還元を行うものとなっている。
上述した還元処理は、原料鉱石を容器などに収容して高温状態で還元性のガスと反応させることで実施されるものであり、還元性のガスを貯留すると共に加熱可能な加熱炉を用いて行われる。例えば、本実施形態では、回転する円筒型(ドラム型)の回転加熱炉の内部に原料鉱石を装入し、炉内を950℃程度の温度に加熱しつつ、還元性ガスを送り込んで還元を行うものとなっている。
In the reduction step, iron oxide contained in the raw material ore is reduced to metallic iron (reduced iron). In this embodiment, the reducing gas is brought into contact with the raw material ore located in the atmosphere at a high temperature. Thus, the raw material ore is reduced.
The reduction treatment described above is carried out by storing the raw ore in a container or the like and reacting with the reducing gas at a high temperature, and using a heating furnace capable of storing and heating the reducing gas. Done. For example, in this embodiment, raw material ore is charged into a rotating cylindrical (drum-type) rotary heating furnace, and the inside of the furnace is heated to a temperature of about 950 ° C., while reducing gas is fed to perform reduction. It is to do.

また、本実施形態の還元処理で用いられる還元性ガスは、還元成分としてH2、CH4、CO等のガスを混合状態で有する混合ガスとなっている。これらの混合ガスを用いることで1000℃以下となるような比較的低温であっても酸化鉄の還元反応が可能となる。つまり、本実施形態の還元処理では1000℃を超える高温の加熱は必要ではなく、昇温に時間やコストが必要となることはない。 In addition, the reducing gas used in the reduction treatment of the present embodiment is a mixed gas having a reducing component such as H 2 , CH 4 , and CO in a mixed state. By using these mixed gases, the iron oxide can be reduced at a relatively low temperature of 1000 ° C. or lower. That is, in the reduction treatment of the present embodiment, heating at a high temperature exceeding 1000 ° C. is not required, and time and cost are not required for temperature increase.

粉砕工程は、上述した還元工程で還元された後の原料鉱石1を粉砕するものであり、ケージミル、ボールミル、ロータリーミル、ジェットミルなどの粉砕設備を用いて行われる。なお、本実施形態では、粉砕設備としてケージミルを用いた例を挙げている。このようにして粉砕設備(ケージミル)で粉砕された原料鉱石1は、粒度分析計などを用いて粒度計測される。   The pulverization step is for pulverizing the raw ore 1 after being reduced in the above-described reduction step, and is performed using pulverization equipment such as a cage mill, a ball mill, a rotary mill, and a jet mill. In the present embodiment, an example in which a cage mill is used as the pulverization equipment is given. The raw material ore 1 pulverized by the pulverization equipment (cage mill) in this way is subjected to particle size measurement using a particle size analyzer or the like.

磁選工程は、粉砕工程で粉砕された原料鉱石1を、磁石の磁力を用いて、磁石に磁着する粒子(磁着粒子2)と磁着しない粒子(非磁着粒子3)とに分別する工程である。本実施形態の磁選工程では、上述した還元工程において鉱石中の酸化鉄が金属鉄4に還元されているため、粉砕後の原料鉱石(鉄鉱石)の粒子に金属鉄4が多く含まれている場合は磁石に磁着し、金属鉄4が少ししか含まれていない場合は磁石に磁着しない。   In the magnetic separation process, the raw ore 1 pulverized in the pulverization process is separated into particles that are magnetically attached to the magnet (magnetized particles 2) and particles that are not magnetized (non-magnetized particles 3) using the magnetic force of the magnet. It is a process. In the magnetic separation process of this embodiment, since iron oxide in the ore is reduced to metal iron 4 in the reduction process described above, a large amount of metal iron 4 is contained in the particles of the raw ore (iron ore) after pulverization. In this case, the magnet is magnetically attached to the magnet, and when only a small amount of the metallic iron 4 is contained, the magnet is not magnetically attached.

本発明の磁選工程は、上述した金属鉄4の磁着特性を利用した磁選機を用いて行われるものであり、本実施形態ではベルト式の磁選機を用いて粉砕後の原料鉱石の粒子の中から金属鉄を多く含む粒子を乾式で磁選する構成となっている。なお、本発明の磁選工程には、ドラム式磁選機や吊り下げ式磁選機のようなベルト式以外の磁選機を用いても良いし、乾式磁選ではない湿式磁選を採用しても良い。また、本実施形態の磁選機の場合であれば、直下位置においてガウスメータで測定した場合に1200[G]となるような磁石(磁力)が使用されている。   The magnetic separation process of the present invention is performed using a magnetic separator using the magnetic adhesion characteristics of the metal iron 4 described above. In this embodiment, the raw ore particles after pulverization using a belt-type magnetic separator are used. It is configured to magnetically select particles containing a large amount of metallic iron from the inside. In the magnetic separation process of the present invention, a magnetic separator other than a belt type such as a drum type magnetic separator or a suspended magnetic separator may be used, or a wet magnetic separation that is not dry magnetic separation may be employed. Further, in the case of the magnetic separator of the present embodiment, a magnet (magnetic force) that is 1200 [G] when measured with a gauss meter at a position immediately below is used.

上述した還元工程、粉砕工程、及び磁選工程の順番で処理を行えば、還元工程で酸化鉄が金属鉄4に還元された原料鉱石1はまず粉砕工程で粉砕される。このとき、粉砕後の原料鉱石の粒子には、還元によって金属鉄4が多く含まれるようになった粒子と金属鉄4をあまり含まない粒子とが存在している。それゆえ、磁選工程で粉砕後の原料鉱石の粒子を処理すると、金属鉄4を多く含む原料鉱石の粒子は磁着粒子2として磁石に磁着し、脈石分5の多い金属鉄4をあまり含まない原料鉱石の粒子は非磁着粒子3として磁石に磁着せず、粒子の磁着特性の有無で粒子を互いに分別することができる。そのため、劣質鉱石から脈石分5を確実に分離して高品位鉄源を製造することが可能となるのである。   If processing is performed in the order of the reduction process, the pulverization process, and the magnetic separation process described above, the raw material ore 1 in which the iron oxide is reduced to the metallic iron 4 in the reduction process is first pulverized in the pulverization process. At this time, the particles of the raw material ore after pulverization include particles that contain a large amount of metallic iron 4 by reduction and particles that do not contain much metallic iron 4. Therefore, when the raw ore particles after pulverization are processed in the magnetic separation process, the raw ore particles containing a large amount of metallic iron 4 are magnetized on the magnet as magnetized particles 2, and the metallic iron 4 having a high gangue content is not much. The raw ore particles not included are not magnetized as non-magnetized particles 3 on the magnet, and the particles can be separated from each other depending on the presence or absence of the magnetic adhesion characteristics of the particles. Therefore, it becomes possible to manufacture the high-grade iron source by reliably separating the gangue portion 5 from the inferior ore.

ところで、本実施形態の高品位鉄源の製造方法は、粉砕工程の粉砕条件を規定するものである。この粉砕条件は、原料鉱石の粒子をどの程度のサイズにまで粉砕するかで、粉砕後の粒子に含まれる金属鉄4の量も異なるため、磁着の結果に影響するものとなる。そこで、本実施形態の高品位鉄源の製造方法では、上述した磁着粒子2と非磁着粒子3との分別に大きく影響する粉砕工程の粉砕条件を規定するために、粉砕後の原料鉱石を粒度計測して累積体積平均径D50(以降、単に体積平均径という)を求めている。そして、粉砕後の原料鉱石のD50が200μm未満とされているかどうかで、劣質鉱石から脈石分5を確実に分離できているかどうかを判断している。 By the way, the manufacturing method of the high grade iron source of this embodiment prescribes | regulates the grinding | pulverization conditions of a grinding | pulverization process. This pulverization condition affects the result of magnetic deposition because the amount of metallic iron 4 contained in the pulverized particles differs depending on the size of the raw ore particles. Therefore, in the method for producing a high-grade iron source according to the present embodiment, the raw material ore after pulverization is defined in order to define the pulverization conditions in the pulverization step that greatly affect the separation of the magnetically adsorbed particles 2 and the non-magnetically adsorbed particles 3 described above. The cumulative volume average diameter D 50 (hereinafter simply referred to as volume average diameter) is obtained by measuring the particle size. Then, it is determined whether or not the gangue content 5 can be reliably separated from the inferior ore based on whether or not D 50 of the crushed raw material ore is less than 200 μm.

ここで、体積平均径D50とは、粒度分析計を用いて計測された粒度分布において、粒径が小さい側から体積の累積をとり、累積された体積がちょうど50%となる粒径のことをいう。この本実施形態の粉砕工程では、体積平均径D50が200μm以上となる場合は粉砕が不十分なものとしてさらに粉砕を続けることで、体積平均径D50が200μm未満となるような原料鉱石の粒子を粉砕により得ることができる。 Here, the volume average diameter D 50 is a particle diameter in which the volume is accumulated from the smaller particle diameter side in the particle size distribution measured using a particle size analyzer, and the accumulated volume is exactly 50%. Say. In the pulverization step of this embodiment, when the volume average diameter D 50 is 200 μm or more, the pulverization is further continued and further pulverization is performed, so that the raw ore whose volume average diameter D 50 is less than 200 μm. The particles can be obtained by grinding.

このように粉砕工程で体積平均径D50が200μm未満となるように原料鉱石の粒子を粉砕すれば、粉砕工程に続いて行われる磁選工程で、原料鉱石から鉄源(金属鉄4)を精度良くかつ効率的に分離(選別)することができる。
つまり、粉砕工程で体積平均径D50が200μm以上となるまで粉砕した場合、金属鉄4として粉砕された粒子のサイズは大きく、粉砕された粒子中には金属鉄4のみならず脈石分5も大量に含まれる可能性が高くなる。それゆえ、磁選工程で磁着粒子2を分離できたとしても磁着粒子2中に脈石分5が不可避的に含まれてしまい、鉄源の分離精度は悪くなるし、分離の効率も低下してしまう。
In this way, if the raw ore particles are pulverized so that the volume average diameter D 50 is less than 200 μm in the pulverization process, the iron source (metallic iron 4) is accurately obtained from the raw ore in the magnetic separation process that follows the pulverization process. It can be separated (sorted) well and efficiently.
That is, when pulverization is performed until the volume average diameter D 50 becomes 200 μm or more in the pulverization step, the size of the particles pulverized as metallic iron 4 is large, and not only metallic iron 4 but also gangue content 5 in the pulverized particles. Is likely to be included in large quantities. Therefore, even if the magnetized particles 2 can be separated by the magnetic separation process, the gangue 5 is inevitably included in the magnetized particles 2, and the separation accuracy of the iron source is deteriorated and the efficiency of the separation is also lowered. Resulting in.

しかし、粉砕工程で体積平均径D50が200μm未満となるまで粉砕を行えば場合、金属鉄4として粉砕された粒子のサイズはそれほど大きなものではなく、粉砕された粒子中に脈石分5は含まれにくくなる。それゆえ、磁選工程で磁着粒子2を分離した場合には、鉄源の分離精度は良くなるし、分離の効率も良好なものとなる。
つまり、本実施形態の高品位鉄源の製造方法であれば、還元工程に1000℃以上の高温加熱を行わなくても、また後工程で除去が必要となるフラックスや炭素質還元剤(コークス)を使用しなくても、脈石率10%以下の高品位鉄源を回収できる。それゆえ、本実施形態の高品位鉄源の製造方法では、脈石率(%)が15%以上の劣質鉱石から脈石率10%以下の高品位鉄源を低い製造コストで且つ高効率に製造することが可能となるのである。
However, when pulverization is performed until the volume average diameter D 50 is less than 200 μm in the pulverization step, the size of the particles pulverized as the metallic iron 4 is not so large, and the gangue portion 5 is included in the pulverized particles. It becomes difficult to be included. Therefore, when the magnetized particles 2 are separated in the magnetic separation process, the separation accuracy of the iron source is improved and the separation efficiency is also improved.
In other words, with the high-grade iron source manufacturing method of the present embodiment, the flux or carbonaceous reducing agent (coke) that needs to be removed in the subsequent process without performing high-temperature heating at 1000 ° C. or higher in the reduction process. High quality iron source with a gangue rate of 10% or less can be recovered even without using. Therefore, in the method for producing a high-grade iron source of the present embodiment, a high-grade iron source having a gangue rate of 10% or less from an inferior ore having a gangue rate (%) of 15% or more can be produced at low production cost and with high efficiency. It can be manufactured.

次に、実施例及び比較例を用いて、本実施形態の高品位鉄源の製造方法が有する作用効果について、さらに詳しく説明する。
上述した実施例及び比較例は、上述した還元工程の処理条件(還元条件)、粉砕工程の処理条件(粉砕条件または磁選前条件)、磁選工程の処理条件(磁選条件)のうち、粉砕工程の処理条件のみを変更した場合に、分離回収された鉄源の脈石率がどのように変化するかを実験したものである。
Next, the effect which the manufacturing method of the high quality iron source of this embodiment has is demonstrated in detail using an Example and a comparative example.
In the above-described Examples and Comparative Examples, the processing conditions of the reduction process (reduction conditions), the processing conditions of the grinding process (conditions before grinding or magnetic separation), and the processing conditions of the magnetic separation process (magnetic separation conditions) are as follows. This is an experiment on how the gangue rate of the separated and recovered iron source changes when only the processing conditions are changed.

なお、実施例及び比較例に用いられた原料鉱石は、以下の組成を有するものとなっている。   In addition, the raw material ore used for the Example and the comparative example has the following compositions.

また、実施例及び比較例に用いられた原料鉱石を、破砕前に粒度計測すると、図2に示すような粒度分布結果を示す。
具体的には、還元条件、粉砕条件、及び磁選条件は、以下の通りとなっている。
実施例及び比較例の還元工程は、内径が130mmφで長さ200mmのドラム型の回転加熱炉の炉内に上述した原料鉱石を装入し、炉内を950℃に加熱し、2rpmで回転する回転加熱炉の内部に還元ガスを供給して還元を行ったものである。
Moreover, when the raw material ore used for the Example and the comparative example measured the particle size before crushing, a particle size distribution result as shown in FIG. 2 will be shown.
Specifically, reducing conditions, pulverizing conditions, and magnetic separation conditions are as follows.
In the reduction process of the example and the comparative example, the raw material ore described above is charged into a drum-type rotary heating furnace having an inner diameter of 130 mmφ and a length of 200 mm, the furnace is heated to 950 ° C., and rotated at 2 rpm. Reduction is performed by supplying a reducing gas into the rotary heating furnace.

なお、炉内に供給される還元ガスは、H2を45[vol%]、COを5[vol%]、CO2を5[vol%]、CH4を35[vol%]、N2を10[vol%]含む混合ガスであり、還元工程が行われる還元時間は30minと60minとの2水準で変化させた。
実施例及び比較例の粉砕工程は、還元後の原料鉱石1をケージミル(増野製作所製)を用いて粉砕したものである。このケージミルの回転数は、380rpm、1500rpm、2850rpmの3水準で変化させており、また1回分の原料鉱石1の供給量は200gとした。また、比較として、粉砕自体を行わなかったもの(表中に「−」で示すもの)を、比較例として設けている。このようにして粉砕工程で処理された原料鉱石については、粉砕後の粒度分布をレーザ回折式の粒度分析測定装置を用いて計測し、体積平均径D50を算出した。
Incidentally, the reducing gas supplied to the furnace, the H 2 45 [vol%], the CO 5 [vol%], the CO 2 5 [vol%], CH 4 and 35 [vol%], the N 2 It is a mixed gas containing 10 [vol%], and the reduction time during which the reduction process is performed was changed at two levels of 30 min and 60 min.
In the pulverization process of the examples and comparative examples, the raw material ore 1 after reduction was pulverized using a cage mill (manufactured by Masuno Seisakusho). The number of rotations of the cage mill was changed at three levels of 380 rpm, 1500 rpm, and 2850 rpm, and the supply amount of raw ore 1 for one batch was 200 g. In addition, as a comparison, a sample that was not pulverized itself (shown as “−” in the table) is provided as a comparative example. For the raw material ore treated in the pulverization step in this manner, the particle size distribution after pulverization was measured using a laser diffraction type particle size analyzer and the volume average diameter D 50 was calculated.

また、粉砕後の原料鉱石1に対しては、表中に「T.Fe」で示される総鉄量、「M.Fe」で示される総金属鉄量を計測し、計測された総金属鉄量を総鉄量で除したものを金属化率(=M.Fe /T.Fe)として表中に記載した。この総鉄量は原料鉱石中に含まれる鉄を酸化物のものも金属鉄4のものも全て合わせて総量として示したものであり、総金属鉄量は原料鉱石1中に含まれる鉄のうち、金属鉄4のみの総量を示したものである。   In addition, for the raw ore 1 after pulverization, the total iron amount indicated by “T.Fe” and the total iron amount indicated by “M.Fe” in the table are measured, and the measured total iron The amount obtained by dividing the amount by the total iron amount is shown in the table as the metallization rate (= M.Fe / T.Fe). This total iron amount is the total amount of iron contained in the raw material ore, both oxide and metallic iron 4, and the total metallic iron amount is the iron content in the raw ore 1 The total amount of only metallic iron 4 is shown.

さらに、上述のようにして求められた体積平均径D50については、200μm未満を「○」の評価、200μm以上を「×」の評価として、表2の「判定」に示した。
実施例及び比較例の磁選工程は、ベルト式の磁選機を用いて磁着高さ(粉砕後の原料鉱石と磁石との距離)を5〜15mmの範囲(5mm、10mm、15mm)で変更しつつ粒子を選別したものである。なお、ベルト式磁選機に用いられる磁石には、磁石直下で1200Gの磁力を有する磁石を用いている。
Further, the volume average diameter D 50 determined as described above is shown in “Decision” in Table 2 with an evaluation of “◯” being less than 200 μm and an evaluation of “x” being 200 μm or more.
In the magnetic separation process of the examples and comparative examples, the height of magnetic adhesion (distance between the raw ore after pulverization and the magnet) is changed within a range of 5 to 15 mm (5 mm, 10 mm, 15 mm) using a belt type magnetic separator. While the particles are sorted. A magnet having a magnetic force of 1200 G directly under the magnet is used as the magnet used in the belt type magnetic separator.

なお、表中の「有効磁力」は、磁力を、磁着高さの二乗で除したものである。一般に、磁力は距離の2乗に反比例して減衰するので、磁力を磁着高さの二乗で除すれば磁選に実効的な磁力を求めることができるからである。
脈石率は、磁選後の原料鉱石について、原料鉱石中に含まれる総鉄量「T.Fe」、不純物として含まれるSiO2量やAl2O3量の鉱石中の濃度を分析で求め、求められた分析値を上述した式(1)を用いて求めたものである。
The “effective magnetic force” in the table is obtained by dividing the magnetic force by the square of the height of the magnetic adhesion. This is because, in general, the magnetic force is attenuated in inverse proportion to the square of the distance, so that an effective magnetic force can be obtained for magnetic separation by dividing the magnetic force by the square of the height of the magnetic adhesion.
The gangue rate is obtained by analyzing the raw iron ore after magnetic separation by analyzing the total iron content in the raw ore `` T.Fe '', the concentration of SiO 2 and Al 2 O 3 contained in the ore as impurities, The obtained analysis value is obtained using the above-described equation (1).

分離回収された鉄源の脈石率の計測結果を表2に示す。   Table 2 shows the measurement results of the gangue rate of the separated and recovered iron source.

ケージミルの回転数を370rpm〜2850 rpmと変化させて粉砕を行った後、磁選前の体積平均径D50が200μm未満となっている実施例(「No.1」〜「No.5」)は、いずれも脈石率が6.2%〜8.2%となっており、脈石率が10%以下まで低減された高品位鉄源が製造されていることが確認された。
これに対して、粉砕を行わなかった「No.6」や「No.8」、あるいはケージミルの回転数が370 rpm〜1500 rpmの「No.7」や「No.9」、「No.10」は、磁選前の体積平均径D50が200μm以上となっていて、脈石率も10.4%〜18.0%と10%を超えている。
Examples ("No. 1" to "No. 5") in which the volume average diameter D 50 before magnetic separation is less than 200 μm after grinding by changing the rotation speed of the cage mill from 370 rpm to 2850 rpm In both cases, the gangue rate was 6.2% to 8.2%, and it was confirmed that a high-grade iron source with a gangue rate reduced to 10% or less was produced.
In contrast, “No. 6” or “No. 8” that was not pulverized, or “No. 7”, “No. 9”, or “No. 10” in which the rotation speed of the cage mill was 370 rpm to 1500 rpm. The volume average diameter D 50 before magnetic separation is 200 μm or more, and the gangue rate is 10.4% to 18.0%, exceeding 10%.

特に、実施例である「No.1」〜「No.5」は、還元条件である還元時間や、磁選条件である磁着高さ(磁石から原料鉱石までの距離)を変更しても、脈石率が10%以下となっており、体積平均径D50を200μm未満にできれば還元条件や磁選条件によらず脈石率を10%以下に低減可能であることが分かる。
一方、上述した表2の結果は、脈石率と体積平均径D50との相関関係をまとめた図3においても明らかである。つまり、横軸に体積平均径D50を採り、縦軸に脈石率を採ると、体積平均径D50が増加するほど脈石率も増加するような変化傾向(右上がりの変化傾向)を示す。そして、体積平均径D50が200μmを超えた時点で、脈石率も10%を超えることが図3からわかる。
In particular, “No. 1” to “No. 5” that are the examples, even if the reduction time as the reduction condition and the magnetic deposition height (distance from the magnet to the raw material ore) as the magnetic separation conditions are changed, The gangue rate is 10% or less, and it can be seen that if the volume average diameter D 50 can be less than 200 μm, the gangue rate can be reduced to 10% or less regardless of the reduction conditions and magnetic separation conditions.
On the other hand, the results of Table 2 described above are also apparent in FIG. 3 in which the correlation between the gangue rate and the volume average diameter D 50 is summarized. In other words, when the volume average diameter D 50 is taken on the horizontal axis and the gangue rate is taken on the vertical axis, a change tendency (an upward change tendency) in which the gangue ratio increases as the volume average diameter D 50 increases. Show. It can be seen from FIG. 3 that when the volume average diameter D 50 exceeds 200 μm, the gangue rate also exceeds 10%.

以上のことから、磁選前の体積平均径D50が200μm未満となるように粉砕を行えば、脈石率が10%以下まで低減された高品位鉄源を製造可能と判断される。
なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
From the above, it is determined that a high-grade iron source with a gangue rate reduced to 10% or less can be produced by grinding so that the volume average diameter D 50 before magnetic separation is less than 200 μm.
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. In particular, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.

1 還元後の原料鉱石
2 磁着粒子
3 非磁着粒子
4 金属鉄
5 脈石分
50 体積平均径
T.Fe 総鉄量
M.Fe 総金属鉄量
1 Raw material ore after reduction 2 Magnetized particles 3 Non-magnetized particles 4 Metallic iron 5 Coral stone D 50 Volume average diameter
T.Fe Total iron content
M.Fe Total metal iron content

Claims (1)

原料鉱石に対する総鉄量Total.Fe、SiO2量、Al2O3量(質量%)を用いて、(SiO2+Al2O3)/Total.Fe×100で表される脈石率が15%以上とされた劣質鉄鉱石に対して、当該劣質鉄鉱石を原料鉱石として還元を行い、還元後の原料鉱石を粉砕し、粉砕した原料鉱石を磁選して脈石率が10%以下とされた高品位鉄源を製造する高品位鉄源の製造方法であって、
前記還元後の原料鉱石を粉砕するに際しては、粉砕後の原料鉱石の累積重量平均径D50が200μm未満となるように粉砕を行うことを特徴とする高品位鉄源の製造方法。
Using the total iron amount Total.Fe, SiO 2 amount, and Al 2 O 3 amount (% by mass) relative to the raw ore, the gangue rate represented by (SiO 2 + Al 2 O 3 ) /Total.Fe×100 Reducing the inferior iron ore to 15% or more using the inferior iron ore as raw material ore, crushing the reduced raw material ore, magnetically selecting the crushed raw material ore, and the gangue rate is 10% or less A method for producing a high-grade iron source for producing a high-grade iron source,
A method for producing a high-grade iron source, wherein the pulverized raw material ore is pulverized so that the cumulative weight average diameter D 50 of the pulverized raw material ore is less than 200 μm.
JP2016238548A 2016-12-08 2016-12-08 Production method of high quality iron source Pending JP2018095893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016238548A JP2018095893A (en) 2016-12-08 2016-12-08 Production method of high quality iron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016238548A JP2018095893A (en) 2016-12-08 2016-12-08 Production method of high quality iron source

Publications (1)

Publication Number Publication Date
JP2018095893A true JP2018095893A (en) 2018-06-21

Family

ID=62632611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016238548A Pending JP2018095893A (en) 2016-12-08 2016-12-08 Production method of high quality iron source

Country Status (1)

Country Link
JP (1) JP2018095893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062742A1 (en) * 2022-09-21 2024-03-28 Jfeスチール株式会社 Method for producing hot metal using solid reducing furnace and submerged arc furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062742A1 (en) * 2022-09-21 2024-03-28 Jfeスチール株式会社 Method for producing hot metal using solid reducing furnace and submerged arc furnace

Similar Documents

Publication Publication Date Title
Li et al. Recovery of iron from copper slag by deep reduction and magnetic beneficiation
JP5873600B2 (en) Nonferrous metallurgical slag processing method
CN112410586B (en) Method for comprehensively recovering niobium, rare earth and titanium from multi-metal ore containing iron, niobium and rare earth
Yang et al. Simultaneous recovery of iron and phosphorus from a high-phosphorus oolitic iron ore to prepare Fe-P alloy for high-phosphorus steel production
Bölükbaşı et al. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality
Jiao et al. Recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation: process optimization and mineralogical study
Wang et al. Separation of silicon and iron in copper slag by carbothermic reduction-alkaline leaching process
Wu et al. Effect of calcium compounds on direct reduction and phosphorus removal of high-phosphorus iron ore
Tenório Vinhal et al. Iron recovery from zinc mine tailings by magnetic separation followed by carbothermal reduction of self‐reducing briquettes
JP5017846B2 (en) Reuse of chromium-containing steel refining slag
JP6422037B2 (en) Mineral processing
JP2018095893A (en) Production method of high quality iron source
CN210875721U (en) Recovery system of multiple metallic element in metallurgical sediment
Li et al. Preparing high-purity iron by direct reduction‒smelting separation of ultra-high-grade iron concentrate
Han et al. Particle size distribution of metallic iron during coal-based reduction of an oolitic iron ore
Kuldeyev et al. Promising ways to increase raw material base of the chrome industry of the metallurgical industry of the Kazakhstan
CN103917668A (en) Process for manufacturing reduced iron/slag mixture
JP2018095894A (en) Production method of high quality iron source
Kou et al. Coal-based direct reduction and magnetic separation of lump hematite ore
JP6590130B1 (en) Method for producing manganese raw material and method for melting manganese-containing steel
Wang et al. Effects of reductant type on coal-based direct reduction of iron ore tailings.
JP2018095895A (en) Production method of high quality iron source
Gao et al. Removal of phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super-gravity field
CN113578521A (en) Dressing and smelting combined process for recovering iron from copper slag flotation tailings
JP2017205715A (en) Method for recovering valuables from dephosphorized slag

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161208