JP2018093765A - Method for producing oils and fats containing docosahexaenoic acid produced by microalga belonging to genus aurantiochytrium - Google Patents

Method for producing oils and fats containing docosahexaenoic acid produced by microalga belonging to genus aurantiochytrium Download PDF

Info

Publication number
JP2018093765A
JP2018093765A JP2016239620A JP2016239620A JP2018093765A JP 2018093765 A JP2018093765 A JP 2018093765A JP 2016239620 A JP2016239620 A JP 2016239620A JP 2016239620 A JP2016239620 A JP 2016239620A JP 2018093765 A JP2018093765 A JP 2018093765A
Authority
JP
Japan
Prior art keywords
extraction
phase
oils
fats
fat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016239620A
Other languages
Japanese (ja)
Inventor
信 渡邉
Makoto Watanabe
信 渡邉
吉田 昌樹
Masaki Yoshida
昌樹 吉田
清志 多田
Kiyoshi Tada
清志 多田
順子 伊藤
Junko Ito
順子 伊藤
元 井上
Hajime Inoue
元 井上
一彦 大橋
Kazuhiko Ohashi
一彦 大橋
正隆 服部
Masataka Hattori
正隆 服部
真司 茅野
Shinji Kayano
真司 茅野
完二 阿部
Kanji Abe
完二 阿部
久司 宮川
Hisashi Miyagawa
久司 宮川
清史 佐竹
Kiyoshi Satake
清史 佐竹
純一郎 池田
Junichiro Ikeda
純一郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sobio Tech Inc
Sobio Technologies Inc
TEC Project Services Corp
Original Assignee
Sobio Tech Inc
Sobio Technologies Inc
TEC Project Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sobio Tech Inc, Sobio Technologies Inc, TEC Project Services Corp filed Critical Sobio Tech Inc
Priority to JP2016239620A priority Critical patent/JP2018093765A/en
Publication of JP2018093765A publication Critical patent/JP2018093765A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing oils and fats having a step of extracting and separating oils and fats containing a higher unsaturated fatty acid such as docosahexaenoic acid (DHA) produced by microalga belonging to the genus Aurantiochytrium.SOLUTION: A culture liquid obtained by culturing microalga belonging to the genus Aurantiochytrium in a salt-containing culture medium is mixed with an organic solvent without pretreatment such as concentration, dehydration, or desiccation, and oils and fats including DHA, etc. are extracted in the organic solvent when the cell membrane of the culture alga contained in the culture liquid is crushed. The oils and fats are separated in the extraction solvent phase, the crushed algal residue is separated in the dehydrated solid phase, and the culture liquid is separated in the drainage phase. After washing with water and removing contaminants contained in the extraction solvent phase such as salts and gum, the extraction solvent phase is treated with a solvent separation and recovery system and solvent is separated and recovered from oils and fats and recycled. The separated oils and fats is made into oil and fat products by separation and removal treatment from remaining solvent, and through purification treatment such as deoxidation and decoloration.SELECTED DRAWING: Figure 1

Description

本発明は、塩分を含む培養液で培養されたオーランチオキトリウム属に属する微細藻類の培養藻体から、この微細藻類が産生するドコサヘキサエン酸等の有用成分を含有する油脂を直接抽出分離する工程を有する、ドコサヘキサエン酸を含む油脂の製造方法に関する。   The present invention is a process for directly extracting and separating fats and oils containing useful components such as docosahexaenoic acid produced by microalgae from cultured algal cells belonging to the genus Aurantiochytrium cultivated in a culture medium containing salt The present invention relates to a method for producing fats and oils containing docosahexaenoic acid.

特許文献1にオーランチオキトリウム属に属する微細藻類の株の増殖速度が非常に速いことが示されている。オーランチオキトリウム属の微細藻類がスクアレン、ドコサヘキサエン酸(以下、「DHA」という)などの有用物質を高増殖速度下で大量に産生する能力があることが明らかとなったことから、微細藻類からスクアレン、DHAなどを含む油脂を効率的、経済的に生産することが可能となる製造方法が検討されてきた。
例えば、特許文献2は、ナビクラ属に属する微細藻類の特定株(JPCC DA0580株)が産生する油分の製造方法に関する。特許文献2では、培養した微細藻類を遠心沈殿やフィルターろ過等にて濃縮回収し回収藻体より有機溶媒にて油分が抽出される。特許文献2では、溶媒による抽出効率を高めるために超音波ホモジナイザー等により藻体を物理的に破壊することが好ましく、抽出した油分の精製は公知の方法で行えば良いとしている。すなわち、特許文献2には、抽出の前処理として、藻類を培養液から分離回収することが示されている。
特許文献3には、細胞内に有機溶媒ジメチルエーテル(DME)を浸透させ減圧気化させて細胞膜を破砕し、その後、破砕した細胞内の含有油脂に別途抽出溶媒を添加・混合して抽出することが示されている。
特許文献4では、対象とする微細藻類を固液分離、即ち、濃縮脱水した後、細胞膜を破壊・溶解処理していない状態で無極性有機溶媒を含有する抽出溶媒で抽出するとしている。
特許文献5には、オーランチオキトリウム属に属する微細藻類等の微生物による炭化水素の製造を最適化する方法が記されている。
また、特許文献6では、凝集剤としてのキトサンを添加して凝集し、回収された微細藻類から含有する油脂を抽出し、油脂抽出後の藻残渣を有効利用するとしている。
Patent Document 1 shows that the growth rate of microalgae strains belonging to the genus Aurantiochytrium is very fast. From the microalgae, it became clear that the microalgae of the genus Aurantiochytrium are capable of producing large quantities of useful substances such as squalene and docosahexaenoic acid (hereinafter referred to as “DHA”) at a high growth rate. Manufacturing methods that enable efficient and economical production of fats and oils including squalene, DHA, and the like have been studied.
For example, Patent Document 2 relates to a method for producing an oil produced by a specific strain of microalga belonging to the genus Navikura (JPCC DA0580 strain). In Patent Document 2, the cultured microalgae are concentrated and recovered by centrifugal precipitation, filter filtration, or the like, and the oil is extracted from the recovered alga bodies with an organic solvent. In Patent Document 2, it is preferable to physically destroy algal bodies with an ultrasonic homogenizer or the like in order to increase extraction efficiency with a solvent, and it is said that purification of the extracted oil may be performed by a known method. That is, Patent Document 2 discloses that algae are separated and recovered from a culture solution as a pretreatment for extraction.
According to Patent Document 3, an organic solvent dimethyl ether (DME) is permeated into cells and vaporized under reduced pressure to crush the cell membrane, and then an extraction solvent is separately added to and mixed with the crushed cell-containing oil and fat for extraction. It is shown.
In Patent Document 4, after the target microalgae are subjected to solid-liquid separation, that is, concentration and dehydration, extraction is performed with an extraction solvent containing a nonpolar organic solvent in a state where the cell membrane is not destroyed or dissolved.
Patent Document 5 describes a method for optimizing the production of hydrocarbons by microorganisms such as microalgae belonging to the genus Aurantiochytrium.
Further, in Patent Document 6, chitosan as a flocculant is added to agglomerate, oil and fat contained in the collected microalgae is extracted, and algal residue after oil and fat extraction is effectively used.

国際公開第2012/077799号International Publication No. 2012/077779 国際公開第2010/116611号International Publication No. 2010/116611 特開2011−31170号公報JP 2011-31170 A 特開2014−140308号公報JP 2014-140308 A 特開2015−96050号公報Japanese Patent Laid-Open No. 2015-96050 特開2014−14284号公報JP 2014-14284 A

特許文献2〜6に記載される方法は製造の経済性を向上させる目的でなされたものである。しかしながら、微細藻類から油脂を抽出、分離、精製する方法については、部分的な処理手段の改善や各工程の有する一般的な機能を示すに留まっており、更なる経済性の改善、安定運転性の向上を図る上でこれらの各工程に内包する技術的な課題を解決する手段は示されていない。特に、オーランチオキトリウム属に属する微細藻類から油脂を抽出分離するために特許文献2〜6に開示される方法を利用する場合には、更なる経済性の改善、安定運転性の向上の余地がある。
即ち、オーランチオキトリウム属に属する微細藻類のように、塩分を含む培養液で培養された微細藻類から油脂を分離回収する場合、その効率的、経済的および安定的製造の観点から微細藻類の脱水・濃縮、有機溶媒による抽出および抽出された油脂の溶媒からの分離を如何なる方法で実施するか、藻残渣の処理を如何にするかが課題である。
オーランチオキトリウム属に属する微細藻類の脱水・濃縮は藻体サイズが数μm〜数十μmと非常に細かく、且つ、藻体濃度(乾燥質量)が35g/L〜150g/Lと大きい為、ろ過等の単純な脱水濃縮操作による藻体の回収が非常に困難となる場合が多い。
また、有機溶媒による抽出操作は当該微細藻類の細胞膜を破砕し内部に産生された油脂と溶媒との混合を充分に行い、抽出そして抽出溶媒相としての分離が効率良くなされねばならない。
更に、抽出溶媒相に分離された溶媒を油脂から分離回収する場合、当該溶媒相に同伴する塩分による影響を考慮して、蒸留装置を含む有機溶媒蒸発処理用の設備の塩分に接触する部分をチタン製や耐海水性ステンレス製にするなど高価な設備が必要となる。ここで塩分濃度を低下することによって通常の金属材料が使用可能となるが、塩分濃度を下げるための追加の工程が必要となる。
また、製品油脂の品質上、溶媒の混入は極小とし、油脂中の不純物ガム質も効率的に除去することが好ましい。
本発明の目的は、塩分を含む培養液で培養されたオーランチオキトリウム属に属する微細藻類が産生するDHA等の有用成分を含有する油脂を効率的、経済的且つ安定的に抽出分離することができるDHA含有油脂の製造方法を提供することにある。
The methods described in Patent Documents 2 to 6 have been made for the purpose of improving the economics of production. However, the method for extracting, separating and refining oils and fats from microalgae has only improved the partial treatment means and the general functions of each process, and further improved economics and stable operation. Means for solving the technical problems included in each of these steps in improving the above are not shown. In particular, when the methods disclosed in Patent Documents 2 to 6 are used to extract and separate oils and fats from microalgae belonging to the genus Aurantiochytrium, there is room for further improvement in economic efficiency and stable operability. There is.
That is, when separating and recovering oils and fats from microalgae cultured in a culture medium containing salt, such as microalgae belonging to the genus Aurantiochytrium, microalgae are considered from the viewpoint of their efficient, economical and stable production. The problem is how to perform dehydration / concentration, extraction with an organic solvent, and separation of the extracted oil and fat from the solvent, and how to treat the algal residue.
Dehydration and concentration of microalgae belonging to the genus Aurantiochytrium is very fine, algal body size of several μm to several tens of μm, and the algal body concentration (dry mass) is as large as 35 g / L to 150 g / L. In many cases, it is very difficult to recover algal bodies by simple dehydration and concentration operations such as filtration.
In addition, the extraction operation with an organic solvent must crush the cell membrane of the microalgae and thoroughly mix the oil and fat produced therein and the solvent to perform extraction and separation as an extraction solvent phase efficiently.
Further, when the solvent separated into the extraction solvent phase is separated and recovered from the fats and oils, in consideration of the influence of the salt content accompanying the solvent phase, the portion in contact with the salt content of the equipment for the organic solvent evaporation treatment including the distillation apparatus is removed. Expensive equipment such as titanium or seawater resistant stainless steel is required. Here, a normal metal material can be used by reducing the salinity, but an additional step for reducing the salinity is required.
Moreover, it is preferable that contamination of a solvent is made into the minimum on the quality of product fats and oils, and the impurity gum substance in fats and oils is also removed efficiently.
An object of the present invention is to efficiently and economically and stably extract and separate oils and fats containing useful components such as DHA produced by microalgae belonging to the genus Aurantiochytrium cultivated in a culture medium containing salt. It is in providing the manufacturing method of DHA containing fats and oils which can do.

本発明者等は前述の課題を克服すべく研究を重ねた結果、効率的、経済的且つ安定的にDHA等の有用成分を含有する油脂を製造可能とする方法を見出し、本発明を完成するに至った。
特に、本発明者等は、オーランチオキトリウム属に属する微細藻類の藻体が微細であり、ろ過等の単純な分離操作では培養液からの分離操作が容易でない点に着目し、培養液中で培養藻体を破砕するとともに、培養液に添加した抽出用の有機溶媒中に油脂を直接抽出する破砕抽出法の油脂生産への適用が可能かどうかについて鋭意検討した。その結果、オーランチオキトリウム属に属する微細藻類の培養藻体は、培養液中における油脂抽出用の有機溶媒の存在下で直接破砕可能であり、且つ、培養藻体の破砕によって培養藻体の細胞膜内に内包された油脂が有機溶媒と接触可能となり培養液中の有機溶媒中に抽出可能であるとの新たな知見を得た。本発明は、かかる本発明者等の新たな知見に基づいて成されたものである。
なお、特許文献3では、DME気化による細胞破砕後、抽出溶媒を添加混合して有機物を抽出溶媒で抽出しており、破砕と抽出を同時に行うものではない。
すなわち、本発明にかかるオーランチオキトリウム属に属する微細藻類からのDHA含有油脂の製造方法は、
DHA含有油脂を産生するオーランチオキトリウム属に属する微細藻類の塩分を含有する培養液による培養により得られ、DHA含有油脂を有する培養藻体を含む培養液中で、油脂抽出用の有機溶媒の存在下に、前記培養藻体の細胞膜を破砕して、前記DHA含有油脂を前記有機溶媒により抽出して、該DHA含有油脂を含む抽出溶媒相を形成する破砕抽出工程と、
前記破砕抽出工程で得られた抽出溶媒相を分離回収する分離回収工程と、
前記分離回収された抽出溶媒相からDHA含有油脂を回収する油脂回収工程と、
を有することを特徴とする。
As a result of repeated studies to overcome the above-mentioned problems, the present inventors have found a method that enables production of oils and fats containing useful components such as DHA efficiently, economically and stably, and complete the present invention. It came to.
In particular, the present inventors pay attention to the fact that the algae bodies of microalgae belonging to the genus Aurantiochytrium are fine, and the separation operation from the culture solution is not easy by simple separation operations such as filtration. In addition, the cultured algal bodies were crushed and the pulverized extraction method, in which the fats and oils were directly extracted into the organic solvent for extraction added to the culture solution, was intensively studied to determine whether or not it could be applied to the production of fats and oils. As a result, the cultured alga of microalgae belonging to the genus Aurantiochytrium can be directly crushed in the presence of an organic solvent for extracting fats and oils in the culture solution. We obtained new knowledge that the fats and oils encapsulated in the cell membrane can come into contact with the organic solvent and can be extracted into the organic solvent in the culture medium. The present invention has been made based on such new knowledge of the present inventors.
In Patent Document 3, after cell disruption by DME vaporization, an extraction solvent is added and mixed to extract an organic substance with the extraction solvent, and the disruption and extraction are not performed simultaneously.
That is, the method for producing DHA-containing fats and oils from the microalga belonging to the genus Aurantiochytrium according to the present invention,
An organic solvent for extraction of fats and oils in a culture solution containing cultured algal bodies containing DHA-containing fats and oils obtained by culturing with a culture solution containing a salt content of microalgae belonging to the genus Aulanthiochytrium that produces DHA-containing fats and oils Crushing and extracting step of crushing the cell membrane of the cultured alga body in the presence, extracting the DHA-containing fat with the organic solvent, and forming an extraction solvent phase containing the DHA-containing fat;
A separation and recovery step for separating and recovering the extraction solvent phase obtained in the crushing extraction step;
An oil and fat recovery step of recovering DHA-containing oil and fat from the separated and recovered extraction solvent phase;
It is characterized by having.

本発明にかかるDHA含有油脂の製造方法によれば、オーランチオキトリウム属に属する微細藻類が産生するDHA、スクアレン等の有用成分を含む油脂を効率的、経済的且つ安定的に製造することが可能となる。   According to the method for producing DHA-containing fats and oils according to the present invention, it is possible to efficiently, economically and stably produce fats and oils containing useful components such as DHA and squalene produced by microalgae belonging to the genus Aurantiochytrium. It becomes possible.

本発明の一実施形態に係るオーランチオキトリウム属に属する微細藻類が産生するDHA、スクアレン等の有用成分を含む油脂の製造方法の構成を示す説明図である。It is explanatory drawing which shows the structure of the manufacturing method of the fats and oils containing useful components, such as DHA and squalene which the microalga which belongs to Aulanthiochytrium which concerns on one Embodiment of this invention produces. 本発明の他の実施形態に係る製造方法の構成を示す説明図である。It is explanatory drawing which shows the structure of the manufacturing method which concerns on other embodiment of this invention. 圧力式ホモジナイザーによる藻体破砕前後の粒度分布測定結果を示す図である。It is a figure which shows the particle size distribution measurement result before and behind algal body crushing by a pressure type homogenizer. 圧力式ホモジナイザーによる藻体破砕前後の粒度分布測定結果を示す図である。It is a figure which shows the particle size distribution measurement result before and behind algal body crushing by a pressure type homogenizer. 破砕抽出後の抽出油脂量の測定結果を示す図である。It is a figure which shows the measurement result of the amount of extraction fats and oils after crushing extraction.

気水域で生息するオーランチオキトリウム属に属する微細藻類の培養液には塩分が含まれている。塩分を含有する培養液で培養された藻体(培養藻体)から産生されたDHA等を含む油脂を効率的、経済的且つ安定的に分離することが命題である。収穫された培養液中の微細藻体の濃度、油脂の存在場所、微細藻体のサイズ・形状と物理的強度等が製造方法の決定に大きく関与する。
DHA等を産生するオーランチオキトリウム属に属する微細藻類は、収穫された培養液中の藻体濃度(乾燥質量)は35〜150g/L、藻体サイズは数μm〜数十μmで、油脂は細胞膜の内部に存在する。油脂の藻体からの分離は、通常、藻体の培養液からの分離、分離された藻体からの水分の低減または藻体の乾燥、すなわち藻体の脱水濃縮処理を行った後に、有機溶媒による抽出を行うことが一般的である。しかしながら、当該微細藻類に対しては、収穫培養液中の藻体濃度が高く、藻体サイズが非常に微細であるとの理由から、培養液中の培養藻体のそのままの状態での脱水濃縮は困難である。本願発明者等はかかる当該藻類に特有の技術課題について着目し、培養液から培養藻体を分離せずに、油脂の抽出処理が可能な方法について鋭意検討し、破砕抽出方法が当該微細藻類からの油脂の抽出に利用できるとの新たな知見を得た。すなわち、本発明にかかる破砕抽出工程によれば、収穫培養液を有機溶媒と混合し、破砕装置にて藻体細胞膜を破砕すると同時に有機溶媒と油脂の充分な混合による接触によって油脂を抽出し、抽出後の液体を、抽出溶媒相、抽出残渣藻(固形分相)および培養液排水相に分離することができる。油脂抽出用の有機溶媒としては、少なくともDHAを含む油脂の抽出が可能であり、かつ、蒸発または蒸留操作により油脂と有機溶媒との分離が容易なn−ヘキサン等一般的に用いられる無極性有機溶媒が使用できる。
更に、細胞膜の破砕と油脂の抽出は圧力式ホモジナイザー等の破砕装置で同時に実施できること、抽出後の相分離は遠心分離機で効率的に達成できることが判明した。なお、抽出率向上のため破砕及び/又は抽出操作を2回以上繰返しても良い。
培養された藻体を含む培養液をn−ヘキサン等の無極性有機溶媒と混合し、そのまま破砕と溶媒抽出を同時に実施することで油脂中の不純物のガム質の大部分は水と充分に接触し水相中に移行し、下流の油脂精製工程でのガム質除去の負荷が低減される。
油脂の抽出操作では、乾燥した藻体の二酸化炭素による超臨界或いは亜臨界抽出法も考えられるが、培養液からの脱塩及び脱水、水分の蒸発除去は大きなエネルギーとコストを要し経済的ではない。
The culture solution of microalgae belonging to the genus Aurantiochytrium inhabiting aerial waters contains salt. The proposition is to efficiently and economically and stably separate fats and oils containing DHA and the like produced from algae (cultured algae) cultured in a culture solution containing salt. The concentration of the microalgae in the harvested culture, the location of the fats and oils, the size / shape and physical strength of the microalgae are greatly involved in determining the production method.
The microalgae belonging to the genus Aulanthiochytrium that produces DHA, etc., has an algal body concentration (dry mass) in the harvested culture solution of 35 to 150 g / L, an algal body size of several μm to several tens of μm, Exists inside the cell membrane. Separation of fats and oils from alga bodies usually involves separation of the alga bodies from the culture solution, reduction of water from the separated alga bodies or drying of the alga bodies, that is, dehydrating and concentrating the alga bodies. It is common to perform extraction with However, for the microalgae, the concentration of algal bodies in the harvested culture solution is high and the size of the algal bodies is very fine. It is difficult. The inventors of the present application pay attention to the technical problems peculiar to such algae, and intensively study a method capable of extracting fats and oils without separating the cultured algal bodies from the culture solution. New knowledge that it can be used for extraction of oils and fats. That is, according to the crushing and extracting step according to the present invention, the harvested culture solution is mixed with an organic solvent, and the algal cell membrane is crushed with a crushing device, and at the same time, the oil and fat is extracted by contact with the organic solvent and the fat and oil sufficiently mixed, The liquid after extraction can be separated into an extraction solvent phase, an extraction residue algae (solid content phase), and a culture solution drainage phase. As an organic solvent for extracting fats and oils, non-polar organic materials such as n-hexane which can extract fats and oils containing at least DHA and can be easily separated from fats and organic solvents by evaporation or distillation operations. A solvent can be used.
Furthermore, it was found that the disruption of cell membranes and the extraction of fats and oils can be carried out simultaneously with a crushing device such as a pressure homogenizer, and phase separation after extraction can be efficiently achieved with a centrifuge. In addition, crushing and / or extraction operation may be repeated twice or more in order to improve the extraction rate.
The culture solution containing cultured algal cells is mixed with a non-polar organic solvent such as n-hexane, and then the crushing and solvent extraction are carried out at the same time, so that most of the gums of impurities in fats and oils are in sufficient contact with water. It moves into the water phase, and the burden of gum removal in the downstream oil refining process is reduced.
In the extraction of fats and oils, supercritical or subcritical extraction methods using carbon dioxide from dried algae are conceivable. However, desalting and dehydration from the culture broth and evaporative removal of water require great energy and cost. Absent.

以上の各事項に基づいて成された本発明にかかるDHA含有油脂の製造方法は、以下の工程を有する。
(1)DHA含有油脂を産生するオーランチオキトリウム属に属する微細藻類を、塩分を含有する培養液により培養して得られた培養液に油脂抽出用の有機溶媒を添加し、培養液中で培養藻体の細胞膜を破砕して、有機溶媒によりDHA含有油脂を抽出し、少なくともDHA含有油脂を含む有機溶媒相からなる抽出溶媒相と水相を含む液体を得る破砕抽出工程。
(2)破砕抽出工程により得られた抽出溶媒相と水相を含む液体から抽出溶媒相を分離回収する分離回収工程。
(3)分離回収された抽出溶媒相からDHA含有油脂を回収する油脂回収工程。
破砕抽出工程において処理される培養液には、少なくともDHAを含有する油脂、すなわちDHA含有油脂を細胞膜内に有する培養藻体が含まれている。培養液中で培養藻体の細胞膜を破砕することで、DHA含有油脂は培養液に添加した油脂抽出用の有機溶媒と接触して有機溶媒での抽出が可能となる。従って、培養藻体を含む培養液は、培養操作終了後、濃縮脱水および/又は乾燥処理されることなく、破砕抽出工程に供給される。
溶媒抽出された後の藻体の破砕により生じる残渣(以下、「藻残渣」という)には有用な成分が残されており、飼料や肥料等の添加物等として利用する価値がある。藻残渣は、藻体の破砕装置での破砕によって微細化されており、粒子径サイズ10μm以下が90体積%以上の微粒子として得ることができる。
そこで、破砕抽出工程、分離回収工程及び油脂回収工程に加えて、必要に応じて、藻残渣を含む固形分を分離回収する工程を追加することができる。
The manufacturing method of the DHA containing fats and oils based on this invention formed based on each above matter has the following processes.
(1) An organic solvent for oil and fat extraction is added to a culture solution obtained by culturing microalgae belonging to the genus Aurantiochytrium that produces DHA-containing fats and oils in a culture solution containing salt, A crushing and extracting step of crushing a cell membrane of cultured algal bodies, extracting DHA-containing fats and oils with an organic solvent, and obtaining a liquid containing an extraction solvent phase and an aqueous phase composed of an organic solvent phase containing at least the DHA-containing fats and oils.
(2) A separation and recovery step of separating and recovering the extraction solvent phase from the liquid containing the extraction solvent phase and the aqueous phase obtained by the crushing extraction step.
(3) Oil / fat recovery step of recovering DHA-containing oil / fat from the separated and recovered extraction solvent phase.
The culture solution to be treated in the crushing and extracting step contains at least a DHA-containing oil or fat, that is, a cultured algal body having a DHA-containing oil or fat in the cell membrane. By crushing the cell membrane of cultured algal cells in the culture solution, the DHA-containing fat can be extracted with the organic solvent in contact with the organic solvent for fat extraction added to the culture solution. Therefore, the culture solution containing the cultured algal bodies is supplied to the crushing and extraction step without being concentrated and dehydrated and / or dried after the completion of the culture operation.
Useful components remain in the residue (hereinafter referred to as “algae residue”) generated by crushing the algal bodies after the solvent extraction, and are useful as additives such as feed and fertilizer. Algae residue is refined | miniaturized by the crushing with the alga body crushing apparatus, and it can obtain as a microparticles | fine-particles whose particle diameter size is 10 micrometers or less 90 volume% or more.
Therefore, in addition to the crushing and extracting step, the separation and recovery step, and the oil and fat recovery step, a step of separating and recovering the solid content including the algal residue can be added as necessary.

藻残渣の分離回収工程には、凝集剤を用いる分離回収方法が好ましく利用できる。
凝集剤を用いる分離回収工程は、藻残渣の分離回収対象となる相に対して行うことができる。すなわち、破砕抽出工程により形成される水相と抽出溶媒相を含む二相系の液体の水相及び/または抽出溶媒相に対して凝集剤を用いた藻残渣の分離回収工程を適用することができる。
水相及び抽出溶媒相の両方を処理する場合は、破砕抽出工程により形成された水相と抽出溶媒相を含む二相系の液体全体に、凝集剤を添加し、二相系の液体に含まれる藻残渣を含む固形分を凝集・フロック化し、水相、抽出溶媒相及び固形分相の三相を形成し、各相を分離回収する分離回収工程により藻残渣を分離回収することができる。この分離回収工程によって回収された抽出溶媒相は油脂回収工程に供給される。
また、破砕抽出工程により形成される二相系の液体の水相に藻残渣が分散している場合には、この水相を分取して凝集剤による処理を行い、藻残渣を凝集・フロック化して回収することができる。
このように、凝集剤を添加して藻残渣を凝集・フロック化すれば脱水濃縮でき、藻残渣の有効利用が可能である。
なお、海水分を含む培養液中の藻類の凝集についてはpH調整により可能との報告もあるが、本発明が対象とする微細藻類の藻体の破砕物である藻残渣に対しては効果的でなく、凝集・フロック化が迅速且つ効率的に達成できる凝集剤の添加が適している。
For the separation and recovery step of the algae residue, a separation and recovery method using a flocculant can be preferably used.
The separation and recovery step using the flocculant can be performed on the phase that is the target of separation and recovery of the algal residue. That is, the step of separating and recovering algae residues using a flocculant may be applied to a two-phase liquid aqueous phase and / or extraction solvent phase including an aqueous phase and an extraction solvent phase formed by the crushing extraction step. it can.
When processing both the aqueous phase and the extraction solvent phase, the flocculant is added to the entire two-phase liquid containing the aqueous phase and the extraction solvent phase formed by the crushing extraction process, so that it is contained in the two-phase liquid. The algae residue can be separated and recovered by a separation and recovery step in which the solid content including the algae residue is agglomerated and flocked to form an aqueous phase, an extraction solvent phase, and a solid content phase, and each phase is separated and recovered. The extraction solvent phase recovered by this separation and recovery process is supplied to the oil and fat recovery process.
In addition, when algae residues are dispersed in the two-phase liquid aqueous phase formed by the crushing extraction process, the aqueous phase is separated and treated with a flocculant to agglomerate and floc the algae residues. Can be recovered.
As described above, if the flocculant is added to agglomerate and floc the algae residue, it can be dehydrated and concentrated, and the algae residue can be effectively used.
Although there is a report that agglomeration of algae in a culture solution containing seawater is possible by pH adjustment, it is effective for algal residues that are crushed algal bodies of the present invention. Rather, addition of a flocculant that can achieve agglomeration and flocification quickly and efficiently is suitable.

従来、藻残渣の濃縮脱水は、含有油脂抽出後の抽出溶媒相(軽液)と抽出残水相(重液)との二相分離方式の遠心分離機等で分離された抽出残水相に凝集剤を添加し、抽出残水相に含まれる藻残渣を凝集・フロック化し遠心分離やろ過等にて再度濃縮脱水する二段階分離方式が一般的である。
本発明では破砕抽出工程後の二相系液体全体に凝集剤を添加し、三相分離式遠心分離機にて藻残渣を濃縮脱水し固形分相として藻残渣を一段で分離することが可能となった。この一段分離法は、工程数の低減を行う上で特に好ましい。
藻残渣を飼料添加物とする場合、水溶性キトサン等の食品添加物用の凝集剤を用いて、また肥料添加物とする場合にはカチオン変性ポリアクリルアミドやポリシリカ鉄等の一般用の凝集剤を用いて藻残渣を含水率約85質量%に脱水濃縮できる。
なお、藻残渣を有効活用せず油脂のみを製品とする場合は、凝集剤を添加せず藻残渣を含む抽出残水相を排水とする。
Conventionally, concentrated dehydration of algae residues has been performed on the extraction residual water phase separated by a two-phase separation centrifuge, etc., of the extraction solvent phase (light liquid) and the extraction residual aqueous phase (heavy liquid) after extraction of the contained fats and oils. A two-stage separation method is generally used in which a flocculant is added to agglomerate / floc the algae residue contained in the extraction residual aqueous phase and concentrate and dehydrate again by centrifugation or filtration.
In the present invention, it is possible to add a flocculant to the entire two-phase liquid after the crushing extraction process, concentrate and dehydrate the algae residue in a three-phase separation centrifuge, and separate the algae residue as a solid phase in one step. became. This one-stage separation method is particularly preferable for reducing the number of steps.
When using algae residues as feed additives, use a flocculant for food additives such as water-soluble chitosan. When using algae residues as fertilizer additives, use a general flocculant such as cation-modified polyacrylamide or polysilica iron. The alga residue can be dehydrated and concentrated to a water content of about 85% by mass.
In addition, when not using an algal residue effectively and making only fats and oils into a product, the coagulant | flocculant is not added but the extraction residual water phase containing an algal residue is made into waste_water | drain.

油脂回収工程は、必要に応じて、抽出溶媒相に含有される塩分および油脂中の、ガム質を含む水溶性あるいは水に対して親和性を有する不純物を水洗除去する水洗浄工程を有することができる。
分離された抽出溶媒相には有機溶媒への溶解水分と微量の同伴水が含まれる。この水分は塩分を含み、常温以上の温度域で炭素鋼等の金属材料を腐食させる場合があるため、前記水分中の塩化物イオン濃度を200mg/L(ミリグラム/リットル)以下とするように塩化物イオン濃度150mg/L以下の水にて抽出溶媒相を洗浄し塩分濃度を下げることが好ましい。
また、抽出溶媒相中の油脂は微量のガム質を含むが、水溶性のガム質は本水洗浄にて洗浄水中に溶解移行するため、油脂中のガム質濃度を更に削減することが可能となる。
抽出溶媒相中の有機溶媒量の2〜25質量%の量の、塩化物イオン濃度150mg/L以下の水による混合、沈降等の分離により塩化物イオン濃度を200mg/L以下とすること、およびガム質濃度の更なる削減が可能であることが判明した。
有機溶媒量の2質量%より少ない量では当該溶媒中に同伴する水分中の塩化物イオン濃度が大きくなり、設備の金属材料を腐食するリスクが増大する場合がある。また、有機溶媒量の25質量%を越える大量の追加水による洗浄は、洗浄分離装置および排水処理設備の容量増大となる。
また、油脂回収工程は、抽出溶媒相から有機溶媒を除去して油脂を得る有機溶媒除去工程を有することができる。抽出溶媒相からの有機溶媒の除去には、有機溶媒を蒸発させ、蒸発した有機溶媒を凝縮させて回収する方法が利用でき、この処理には蒸留法を好適に利用できる。
抽出溶媒相から除去された有機溶媒は、破砕抽出工程における油脂抽出用の有機溶媒としてリサイクルすることができる。
The oil and fat recovery step may include a water washing step of washing and removing impurities contained in the extraction solvent phase and water-soluble impurities in the oil and fat or water-soluble impurities or having an affinity for water, if necessary. it can.
The separated extraction solvent phase contains water dissolved in an organic solvent and a small amount of entrained water. Since this moisture contains salt and may corrode metal materials such as carbon steel in a temperature range above room temperature, the chloride ion concentration in the moisture is reduced to 200 mg / L (milligram / liter) or less. It is preferable to reduce the salt concentration by washing the extraction solvent phase with water having a product ion concentration of 150 mg / L or less.
In addition, although the fats and oils in the extraction solvent phase contain a small amount of gum, the water-soluble gums are dissolved and transferred to the wash water in the main water washing, and it is possible to further reduce the gum quality in the fats and oils. Become.
Mixing with water having a chloride ion concentration of 150 mg / L or less in an amount of 2 to 25% by mass of the amount of the organic solvent in the extraction solvent phase, separation of precipitation, etc., to make the chloride ion concentration 200 mg / L or less, and It has been found that further reduction of gum quality is possible.
If the amount is less than 2% by mass of the amount of the organic solvent, the chloride ion concentration in the water accompanying the solvent increases, and the risk of corroding the metal material of the equipment may increase. In addition, washing with a large amount of additional water exceeding 25% by mass of the organic solvent amount increases the capacity of the washing / separating apparatus and the wastewater treatment facility.
Moreover, an oil-and-fat collection | recovery process can have an organic-solvent removal process which removes an organic solvent from an extraction solvent phase, and obtains oil and fat. For removal of the organic solvent from the extraction solvent phase, a method of evaporating the organic solvent and condensing and recovering the evaporated organic solvent can be used, and a distillation method can be suitably used for this treatment.
The organic solvent removed from the extraction solvent phase can be recycled as an organic solvent for oil and fat extraction in the crushing extraction step.

水洗浄工程後に有機溶媒除去工程を組み合わせることによって、より効率よい有機溶媒の分離回収を行うことができる。
塩化物イオン濃度を200mg/L以下としガム質濃度を削減した油脂を含む抽出溶媒相は製品油脂への溶媒の混入を避けるため、二段階の蒸発または蒸留操作にて油脂と溶媒を厳密に分離して、溶媒はリサイクルされることが好ましい。
蒸発または蒸留操作の一段階目では、抽出溶媒相から分離回収された油脂中の溶媒濃度を2〜50質量%まで、好ましくは9〜25質量%まで低下させるように有機溶媒を蒸発または蒸留分離する。この条件では、例えば有機溶媒にn−ヘキサンを使用した場合、n−ヘキサン供給量の99質量%以上が凝縮温度20〜90℃で分離回収が可能となる。
続いて二段階目の蒸発または蒸留操作は0.08〜2kPaA、より好ましくは0.1〜1kPaAの高真空下の操作で油脂から残留有機溶媒を厳密に分離除去することができる。二段階目は高真空下の操作であるが、二段階目の蒸留処理供給量を抽出溶媒相中の有機溶媒量の1/100(質量基準)以下とすることができ、一段階目および二段階目の蒸発または蒸留操作の組合せにて経済的に安定して製造できる方法を確立した。
分離回収されたn−ヘキサン等の抽出用の有機溶媒は再度破砕抽出工程にリサイクル使用することができ、また、ロス等による不足分が生じた場合は必要に応じて有機溶媒を新たに補充する。
残留溶媒を除去した油脂は必要により更に精製工程で処理することができる。すなわち油脂に脱ガム・脱酸・脱色の処理を常法に従って行うことにより、精製油脂を製造することができる。なお、通常の精製工程に含まれる脱ガム工程は、破砕抽出工程や必要に応じて追加される水洗浄工程等の前工程でガム質濃度が大幅に削減されているため省略できる場合もある。
By combining the organic solvent removal step after the water washing step, more efficient separation and recovery of the organic solvent can be performed.
The extraction solvent phase containing oils and fats with a chloride ion concentration of 200 mg / L or less and reduced gummy substance concentration strictly separates the oils and solvents in a two-stage evaporation or distillation operation in order to avoid mixing the solvent into the product oils and fats. Thus, the solvent is preferably recycled.
In the first stage of the evaporation or distillation operation, the organic solvent is evaporated or distilled and separated so as to reduce the solvent concentration in the oil separated from the extraction solvent phase to 2 to 50% by mass, preferably 9 to 25% by mass. To do. Under these conditions, for example, when n-hexane is used as the organic solvent, 99% by mass or more of the supplied amount of n-hexane can be separated and recovered at a condensation temperature of 20 to 90 ° C.
Subsequently, in the second stage of evaporation or distillation, the residual organic solvent can be strictly separated and removed from the fats and oils by an operation under a high vacuum of 0.08 to 2 kPaA, more preferably 0.1 to 1 kPaA. The second stage is an operation under a high vacuum, but the second stage distillation treatment feed rate can be 1/100 (mass basis) or less of the amount of organic solvent in the extraction solvent phase. A method has been established that can be economically and stably produced by a combination of evaporation or distillation operations in the first stage.
The separated organic solvent for extraction, such as n-hexane, can be reused again in the crushing extraction process, and if there is a deficiency due to loss or the like, a new organic solvent is replenished as necessary. .
The fats and oils from which the residual solvent has been removed can be further processed in a purification step if necessary. That is, refined fats and oils can be produced by subjecting fats and oils to degumming, deoxidation and decolorization according to conventional methods. In addition, the degumming process included in the normal purification process may be omitted because the gum concentration is greatly reduced in the previous process such as the crushing extraction process and the water washing process added as necessary.

以下、本発明にかかる製造方法の一実施形態について説明する。
〈油脂の製造〉
本発明において製造される油脂は、オーランチオキトリウム属に属する微細藻類を培養して得られる。培養した当該微細藻類中に含まれる油脂を抽出分離することにより当該油脂を製造することができる。
〈微細藻類〉
本発明におけるオーランチオキトリウム属に属する微細藻類としては、本発明で目的とするDHA含有油脂の製造に利用できるものであれば特に限定なく利用できる。例えば、かかる微細藻類が生息する自然環境から常法により採取した株や、公知の株から本発明で目的とするDHA含有油脂の製造に利用可能な株を選択して用いることができる。かかる微細藻類の株としては、特許第2764572号明細書に記載のSR21株(受託番号FERM BP-5034)、特許第5942197号明細書に記載のオーランチオキトリウム・tsukuba-3株(受託番号FERM BP-11442)等を含む従属栄養性藻類のオーランチオキトリウム属に属する微細藻類の株を挙げることができる。
〈培養条件〉
本発明のオーランチオキトリウム属に属する微細藻類の増殖・培養は、当該微細藻類株を水道水および人工海水で適切に調整した培養液に播種し、常法に従って培養することにより行われる。培養液としては任意の公知のものが使用できる。例えば、炭素源はグルコース、フルクトースなど、窒素源は酵母エキストラクト、コーンスチープリカ、グルタミン酸ナトリウム、硫酸アンモニウムなど、また前記培養液は適宜ビタミン類等を含むことができ、培養液中の水道水または海水の割合は約50質量%である。成分調整がなされた培養液は適宜滅菌処理がなされ、冷却後、前培養された当該微細藻類株が投入され、10〜30℃の適温で振とう培養又は通気撹拌培養が行われる。
培養液の塩分濃度は、塩化物イオン濃度として6.5g/L〜14g/Lの範囲から選択することが好ましい。
Hereinafter, an embodiment of a manufacturing method according to the present invention will be described.
<Manufacture of fats and oils>
The fats and oils produced in the present invention are obtained by culturing microalgae belonging to the genus Aurantiochytrium. The fats and oils can be produced by extracting and separating the fats and oils contained in the cultured microalgae.
<Microalgae>
As the microalgae belonging to the genus Aurantiochytrium in the present invention, any microalga can be used without particular limitation as long as it can be used for the production of the DHA-containing fats and oils intended in the present invention. For example, a strain collected by a conventional method from the natural environment where such microalgae inhabit, or a strain that can be used for the production of the DHA-containing fat and oil of the present invention can be selected from known strains. As strains of such microalgae, the SR21 strain (Accession No. FERM BP-5034) described in Japanese Patent No. 2746572, the Aurantiochytrium / tsukuba-3 strain (Accession No. FERM described in Patent No. 5842197) BP-11442) and other microalgae strains belonging to the genus Aurantiochytrium which are heterotrophic algae.
<Culture conditions>
The growth and culture of microalgae belonging to the genus Aurantiochytrium of the present invention is carried out by seeding the microalgae strain in a culture solution appropriately adjusted with tap water and artificial seawater and culturing according to a conventional method. Any known culture solution can be used. For example, the carbon source is glucose, fructose, etc., the nitrogen source is yeast extract, corn steep liquor, sodium glutamate, ammonium sulfate, etc., and the culture solution can contain vitamins and the like as appropriate, and tap water or seawater in the culture solution Is about 50% by weight. The culture solution in which the components are adjusted is appropriately sterilized, and after cooling, the pre-cultured microalgae strain is added, and shaking culture or aeration-agitation culture is performed at an appropriate temperature of 10 to 30 ° C.
The salinity concentration of the culture solution is preferably selected from the range of 6.5 g / L to 14 g / L as the chloride ion concentration.

〈破砕抽出、分離、水洗浄、溶媒分離回収、残留溶媒除去、精製、藻残渣と排水処理〉
培養された微細藻体を含む培養液を有機溶媒と混合し、破砕と抽出を同時に実施し、油脂を抽出溶媒相として分離し水洗浄し、溶媒を回収リサイクルし、分離された油脂を常法により精製して製品とすると共に、藻残渣と排水を分離する処理は、図1又は図2の処理方法の構成にて実施することができる。
培養された微細藻体を含む培養液と、油脂抽出用の有機溶媒の混合比(体積比)は、目的とする油脂抽出効果を得ることができるように設定すればよく、特に限定されないが、例えば、(油脂抽出用の有機溶媒)/(培養された微細藻体を含む培養液)=0.1〜1.0の範囲から選択することができる。
図1は、本発明の一実施形態に係るオーランチオキトリウム属に属する微細藻類が産生するDHA、スクアレン等の有用成分を含む油脂の製造方法の構成を工程フロー図で示す説明図である。
図1に示す工程フローを有する製造方法では、まず、培養槽1からのオーランチオキトリウム属に属する微細藻類の培養藻体を含む培養液に、油脂抽出用の有機溶媒が添加され、破砕抽出工程2に供給される。
製造工程の初動時には、油脂抽出用の有機溶媒の供給部8から有機溶媒を供給して培養液に添加する。後述する有機溶媒のリサイクルが可能な状態においては、溶媒分離回収工程5及び6から返送された有機溶媒を油脂抽出用として培養液に添加する。供給部8からの有機溶媒と溶媒分離回収工程5及び6から返送された有機溶媒とを混合して用いてもよい。
破砕抽出工程2では、培養藻体の細胞膜の破砕と培養藻体内に産生されたDHA含有油脂の有機溶媒での抽出が行われる。
更に、破砕抽出工程2では、水相と、抽出されたDHA含有油脂を含む抽出溶媒相の二相系の液体が形成され、この二相系の液体に凝集剤が添加される。凝集剤の添加により、二相系の液体に含まれる細胞残渣などの微細な固形分が凝集してフロック化されて沈降し、二相系の液体から水相、抽出溶媒相及び固形分相の三相が形成される。
この三相からそれぞれの相を、三相分離式遠心分離機などの分離装置を用いて分離工程3において分離し、水相は排水として、固形分相は藻残渣分として系外へそれぞれ排出する。三相から分離した抽出溶媒相には、洗浄用の水が添加され、水洗浄工程4において水洗浄処理が行われる。水洗浄処理後に得られる水相と抽出溶媒相を分離し、水相は、凝集剤の添加後に形成された三相から分離した水相に合流させて排水として処理される。
水洗浄処理後に得られる抽出溶媒相から有機溶媒を分離回収工程5において分離回収し、回収された有機溶媒は培養液への添加位置に返送されて油脂抽出用として再利用され、油脂抽出用の有機溶媒のリサイクルが可能となる。
溶媒分離回収工程5により油脂を得ることができる。この油脂に含まれる有機溶媒の残留濃度を残留溶媒除去工程6で更に低減し、後段の精製工程7によって油脂を常法により精製する。
溶媒分離回収工程5には先に述べた蒸発または蒸留操作における一段階目の操作条件を、残留溶媒除去工程6には先に述べた蒸発または蒸留操作における二段階目の操作条件を好ましく用いることができる。
精製工程7には、公知の精製方法から目的とする油脂成分を目的とする純度で得るための精製方法を適宜選択して用いることができる。
<Fracture extraction, separation, water washing, solvent separation and recovery, residual solvent removal, purification, algae residue and wastewater treatment>
The culture broth containing the cultured microalgae is mixed with an organic solvent, and crushing and extraction are performed simultaneously. The oil and fat is separated as an extraction solvent phase, washed with water, and the solvent is recovered and recycled. The process of separating the algae residue and the wastewater can be carried out with the configuration of the processing method of FIG. 1 or FIG.
The culture solution containing the cultured microalgae and the mixing ratio (volume ratio) of the organic solvent for oil extraction may be set so that the desired oil extraction effect can be obtained, and is not particularly limited. For example, it can be selected from the range of (organic solvent for oil extraction) / (cultured medium containing cultured microalgae) = 0.1 to 1.0.
FIG. 1 is an explanatory diagram showing, in a process flow diagram, the configuration of a method for producing fats and oils containing useful components such as DHA and squalene produced by microalgae belonging to the genus Aurantiochytrium according to one embodiment of the present invention.
In the manufacturing method having the process flow shown in FIG. 1, first, an organic solvent for oil and fat extraction is added to a culture solution containing cultured algae of microalga belonging to the genus Aurantiochytrium from the culture tank 1, and then extracted by crushing. Provided to step 2.
At the initial stage of the production process, the organic solvent is supplied from the organic solvent supply unit 8 for extracting oil and added to the culture solution. In a state where the organic solvent described later can be recycled, the organic solvent returned from the solvent separation and recovery steps 5 and 6 is added to the culture solution for oil and fat extraction. The organic solvent from the supply unit 8 and the organic solvent returned from the solvent separation and recovery steps 5 and 6 may be mixed and used.
In the crushing and extracting step 2, the cell membrane of the cultured alga body is disrupted and the DHA-containing oil and fat produced in the cultured algal body is extracted with an organic solvent.
Furthermore, in the crushing extraction step 2, a two-phase liquid of an aqueous phase and an extraction solvent phase containing the extracted DHA-containing oil and fat is formed, and a flocculant is added to the two-phase liquid. By adding the flocculant, fine solids such as cell residues contained in the two-phase liquid are agglomerated, flocked and settled, and the aqueous phase, extraction solvent phase and solid phase are separated from the two-phase liquid. Three phases are formed.
Each of the three phases is separated in the separation step 3 using a separation device such as a three-phase separation centrifuge, and the aqueous phase is discharged as wastewater and the solid phase is discharged out of the system as algae residue. . Water for washing is added to the extraction solvent phase separated from the three phases, and water washing treatment is performed in the water washing step 4. The aqueous phase obtained after the water washing treatment and the extraction solvent phase are separated, and the aqueous phase is combined with the aqueous phase separated from the three phases formed after the addition of the flocculant and treated as waste water.
The organic solvent is separated and recovered from the extraction solvent phase obtained after the water washing treatment in the separation and recovery step 5, and the recovered organic solvent is returned to the addition position to the culture solution and reused for oil and fat extraction. The organic solvent can be recycled.
Oils and fats can be obtained by the solvent separation and recovery step 5. The residual concentration of the organic solvent contained in the oil and fat is further reduced in the residual solvent removing step 6, and the oil and fat is purified by a conventional method in the subsequent purification step 7.
Preferably, the solvent separation / recovery step 5 uses the first stage operating conditions in the evaporation or distillation operation described above, and the residual solvent removal step 6 uses the second stage operating conditions in the evaporation or distillation operation described above. Can do.
In the purification step 7, a purification method for obtaining a target oil and fat component with a target purity from known purification methods can be appropriately selected and used.

図2は、本発明の他の実施形態に係るオーランチオキトリウム属に属する微細藻類が産生するDHA、スクアレン等の有用成分を含む油脂の製造方法の構成を工程フロー図で示す説明図である。
図2に示す製造工程は、凝集剤での処理の導入位置を変えた以外は図1に示す製造工程と同じ構成を有する。図2の製造工程においては、凝集剤による藻残渣成分の分離は、分離工程3から得られた水相(抽出残水相)に対して行われる。凝集剤の添加により得られる藻残渣を含むフロックは藻残渣脱水工程9において脱水処理され、脱水により生じる水分は水洗浄工程4からの排水経路に合流させて系外に排出される。また、脱水された藻残渣分は藻残渣として回収される。
図1及び2に示す製造工程は、バッチ方式、半連続方式または連続方式によって実施することができる。
なお、油脂抽出用の有機溶媒等の各種処理に用いる有機溶媒がそれを用いる処理環境下(例えば処理温度等)において揮発性である場合には、有機溶媒を用いた処理は密閉可能な系内で密閉状態にして行うことが好ましい。
FIG. 2 is a process flow diagram illustrating the structure of a method for producing fats and oils containing useful components such as DHA and squalene produced by microalgae belonging to the genus Aurantiochytrium according to another embodiment of the present invention. .
The manufacturing process shown in FIG. 2 has the same configuration as the manufacturing process shown in FIG. 1 except that the introduction position of the treatment with the flocculant is changed. In the production process of FIG. 2, the separation of the algae residue component by the flocculant is performed on the aqueous phase (extraction residual aqueous phase) obtained from the separation process 3. The flocs containing algae residue obtained by adding the flocculant are dehydrated in the algae residue dehydration step 9, and the water generated by the dehydration is joined to the drainage path from the water washing step 4 and discharged out of the system. In addition, the dehydrated algae residue is collected as algae residue.
The manufacturing process shown in FIGS. 1 and 2 can be performed by a batch method, a semi-continuous method, or a continuous method.
In addition, when the organic solvent used for various treatments such as the organic solvent for oil and fat extraction is volatile in the treatment environment (for example, treatment temperature) using the treatment, the treatment using the organic solvent is performed in a sealable system. It is preferable to carry out in a sealed state.

以下、実施例により本発明を更に詳細に説明する。なお、以下の実施例における各測定値は常法により求めた値である。
(実施例)
1リットル当りグルコース20g、ポリペプトン10g、酵母エキストラクト5gを含む水溶液を130℃で15分間高温滅菌した後25℃に冷却し、これとフィルター除菌された海水および水道水を混合して水分中の海水割合約50質量%に調整した培養液に、少なくともDHAを含む油脂を産生する株として選択したオーランチオキトリウム属に属する微細藻類株の前培養液を投入し、25℃で4日間、滅菌されたグルコース及びグルタミン酸ナトリウム水溶液を適宜添加すると共に、除菌した空気を通気し撹拌培養した。
なお、少なくともDHAを含む油脂の産生能を有する株としては、SR21株(受託番号FERM BP-5034)、オーランチオキトリウム・tsukuba-3株(受託番号FERM BP-11442)等を含む従属栄養性藻類のオーランチオキトリウム属に属する微細藻類の株を同様に用いることができる。
培養終了後に収穫された培養液は1リットル当り約60gの藻体濃度(乾燥質量)で、微細藻体のサイズは4〜30μm、頻度平均粒径9.9μm、体積平均粒径10.4μmであった。収穫培養液はそのまま有機溶媒n−ヘキサンと、有機溶媒/収穫培養液=1.0の体積比で混合し圧力式ホモジナイザーに供給され、収穫培養液に含まれる微細藻体はn−ヘキサンの存在下で破砕された。この破砕処理によって、微細藻体の細胞膜も破砕され、細胞膜内に産生された少なくともDHAを含む油脂が放出されn−ヘキサンにより抽出された。
別途実施した破砕後の状況について、レーザー回折・散乱式粒子径測定装置および光学顕微鏡で観測した結果、微細藻体の破砕により生成する藻残渣および油脂のサイズは0.3〜30μm、頻度平均粒径1.5〜2.2μm、体積平均粒径2.5〜4μm、油脂分平均粒径1μm、藻残渣(細胞片)平均粒子径5〜8μmであり、充分な藻体(細胞)の破砕および溶媒と油脂との混合接触がなされ、効率的な溶媒抽出が達成できることが確認できた。
図3(A)〜(C)及び図4(D)〜(F)、並びに表1は圧力式ホモジナイザーの各処理圧力下における細胞破砕前後の粒度分布、頻度および体積平均粒径を示したものである。図5及び表2は破砕抽出後のn−ヘキサンによる油脂抽出結果を示したものである。圧力式ホモジナイザーの処理圧力として20〜60MPaGで良好な抽出結果が得られた。
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, each measured value in the following examples is a value obtained by a conventional method.
(Example)
An aqueous solution containing 20 g of glucose per liter, 10 g of polypeptone, and 5 g of yeast extract was sterilized at 130 ° C. for 15 minutes and then cooled to 25 ° C., and this was mixed with filter-disinfected sea water and tap water. A pre-culture solution of a microalgae strain belonging to the genus Aulanthiochytrium selected as a strain producing oils and fats containing at least DHA is put into a culture solution adjusted to a seawater ratio of about 50% by mass, and sterilized at 25 ° C. for 4 days. The glucose and sodium glutamate aqueous solution were added as appropriate, and the sterilized air was aerated and cultured with stirring.
In addition, as a strain capable of producing fats and oils containing at least DHA, heterotrophic including SR21 strain (Accession No. FERM BP-5034), Aurantiochytrium / tsukuba-3 strain (Accession No. FERM BP-11442), etc. Microalgal strains belonging to the genus Aurantiochytrium can be used as well.
The culture broth harvested after completion of the culture has an algal body concentration (dry mass) of about 60 g per liter, the size of the microalgae is 4 to 30 μm, the frequency average particle size 9.9 μm, and the volume average particle size 10.4 μm. there were. The harvest culture is directly mixed with the organic solvent n-hexane at a volume ratio of organic solvent / harvest culture = 1.0 and supplied to the pressure homogenizer. The microalga contained in the harvest culture is the presence of n-hexane. It was crushed below. By this crushing treatment, the cell membrane of the microalgae was also crushed, and the fat and oil containing at least DHA produced in the cell membrane was released and extracted with n-hexane.
As a result of observation with a laser diffraction / scattering particle size measuring device and an optical microscope, the size of the algal residue and oil produced by crushing the microalgae is 0.3 to 30 μm, and the frequency average particle It has a diameter of 1.5 to 2.2 μm, a volume average particle size of 2.5 to 4 μm, an oil and fat average particle size of 1 μm, and an algal residue (cell debris) average particle size of 5 to 8 μm. In addition, it was confirmed that efficient solvent extraction can be achieved by making mixed contact between the solvent and the oil and fat.
3 (A) to 3 (C) and FIGS. 4 (D) to (F) and Table 1 show the particle size distribution, frequency, and volume average particle size before and after cell disruption under each processing pressure of a pressure homogenizer. It is. FIG. 5 and Table 2 show the oil and fat extraction results with n-hexane after crushing extraction. Good extraction results were obtained at a processing pressure of 20 to 60 MPaG as a pressure homogenizer.

Figure 2018093765
Figure 2018093765

Figure 2018093765
Figure 2018093765

また、収穫した培養液サンプルを超音波破砕後、クロロホルム/メタノールで含有油脂の全量を抽出した結果は15.9g/L(表2)であり、圧力式ホモジナイザーの処理圧力40MPaGのn−ヘキサンによる抽出油脂量15.0g/L(表2)との差はガム質量と推定された。
即ち、微細藻体で産生されたガム質の大部分が、藻体(細胞)が破砕されたことによって培養液の水中に溶け込み、油脂中のガム質含有量は低減したことを示している。
破砕抽出後の培養液は静置すると軽液相(抽出溶媒相)と重液相(水相)の二相に分離する二相系の液体となったが、本実施例の場合、抽出後の藻残渣は両相に均一に分散しており沈降しなかった。そこで、破砕抽出後の二相系の液体全体に食品添加物用水溶性キトサン凝集剤(商品名:フジクリーンKT−250、富士エンジニアリング株式会社)を添加し、藻残渣を凝集・フロック化し、三相分離式遠心分離機にて抽出溶媒相(軽液相)、排水相(重液相)、藻残渣(脱水固形分相)に分離した。凝集剤として一般用のカチオン変性ポリアクリルアミドのキースロックC−3298(商品名、協和産業株式会社)、又はポリシリカ鉄のPSI−025(商品名、水道機工株式会社等)を使用した場合も同様に藻残渣を濃縮脱水できた。
なお、本実施例の場合、破砕抽出により得られた二相系の液体全体に凝集剤を添加せずに遠心分離した場合は、藻残渣等の固形分は軽液相には分散せず、重液相(抽出残水相)に分散された。そこで遠心分離機で二相分離した抽出残水相に凝集剤フジクリーンKT−250を添加し、抽出残水相中の藻残渣を凝集・フロック化し回収した。凝集剤として一般用のキースロックC−3298、又はPSI−025を使用した場合も同様に藻残渣を回収できた。図2は、破砕抽出により得られた二相系液体全体を遠心分離した場合の抽出残水相に凝集剤を添加し、藻残渣を濃縮脱水し回収する方法の構成を示したものである。
分離された抽出溶媒相は溶解及び同伴する水分中の塩化物イオン濃度を200mg/L以下にし、残存するガム質の濃度を更に削減するため、塩化物イオン濃度約150mg/Lの水にて洗浄した。
抽出溶媒相に溶解および同伴水分中には塩化物イオン濃度が約8g/L、抽出された油脂中にガム質が約3g/L含まれているため、有機溶媒量の23質量%の量の塩化物イオン濃度約150mg/Lの水を注入しインラインミキサーにて混合・洗浄した後、静置沈降分離にて水相を抽出溶媒相から分離除去した。洗浄後の抽出溶媒相中の水分の塩化物イオン濃度は180mg/L以下、油脂中のガム質濃度は400mg/L以下を確認した。
塩化物イオン濃度を180mg/L以下としガム質濃度を削減した抽出溶媒相は、一段階目の蒸留分離操作で大気圧下、n−ヘキサン凝縮温度70℃の条件で分離回収された油脂中の残留n−ヘキサン濃度を9質量%とし、抽出溶媒相中の有機溶媒n−ヘキサンの99.8%を分離回収した。二段階目では0.12kPaAの高真空下で蒸留し、溶媒n−ヘキサンを実質的に含有しない油脂を得た。
溶媒を除去した油脂に対して更に脱酸・脱色操作を行い、精製油脂を製造した。
In addition, after ultrasonically crushing the harvested culture solution sample, the total amount of the fats and oils extracted with chloroform / methanol was 15.9 g / L (Table 2), which was determined by n-hexane at a processing pressure of 40 MPaG using a pressure homogenizer. The difference from the extracted oil and fat amount of 15.0 g / L (Table 2) was estimated as the gum mass.
That is, most of the gums produced in the microalgae were dissolved in the water of the culture solution due to the algal bodies (cells) being crushed, indicating that the gum content in the fats and oils was reduced.
The culture broth after crushing extraction became a two-phase liquid that separated into two phases, a light liquid phase (extraction solvent phase) and a heavy liquid phase (aqueous phase) when left standing, but in this example, after the extraction The algae residue was uniformly dispersed in both phases and did not settle. Therefore, a water-soluble chitosan flocculant for food additives (trade name: Fujiclean KT-250, Fuji Engineering Co., Ltd.) is added to the entire two-phase liquid after crushing and extraction, and the algae residue is agglomerated and flocked. It separated into the extraction solvent phase (light liquid phase), the drainage phase (heavy liquid phase), and the algae residue (dehydrated solid content phase) with a separation centrifuge. The same applies when Keithlock C-3298 (trade name, Kyowa Sangyo Co., Ltd.), a general cation-modified polyacrylamide, or PSI-025 (trade name, Suido Kiko Co., Ltd.) of polysilica iron is used as a flocculant. The algae residue could be concentrated and dehydrated.
In the case of this example, if the whole liquid of the two-phase system obtained by crushing extraction is centrifuged without adding a flocculant, solid content such as algae residue is not dispersed in the light liquid phase, Dispersed in the heavy liquid phase (extraction residual aqueous phase). Therefore, the flocculant Fujiclean KT-250 was added to the extraction residual aqueous phase separated into two phases by a centrifuge, and the algae residue in the extraction residual aqueous phase was aggregated and flocked and recovered. Algae residues could be recovered in the same manner when general-purpose Keith lock C-3298 or PSI-025 was used as the flocculant. FIG. 2 shows a configuration of a method of adding a flocculant to the extraction residual aqueous phase when the entire two-phase liquid obtained by crushing extraction is centrifuged, and concentrating and dewatering the algal residue.
The separated extraction solvent phase is washed with water having a chloride ion concentration of about 150 mg / L in order to reduce the concentration of chloride ions in the dissolved and entrained water to 200 mg / L or less and further reduce the concentration of the remaining gum. did.
Since the dissolved and entrained water in the extraction solvent phase contains a chloride ion concentration of about 8 g / L and the extracted oil contains about 3 g / L of gum, the amount of organic solvent is 23% by mass. After injecting water having a chloride ion concentration of about 150 mg / L, mixing and washing with an in-line mixer, the aqueous phase was separated and removed from the extraction solvent phase by stationary sedimentation separation. It was confirmed that the chloride ion concentration of water in the extraction solvent phase after washing was 180 mg / L or less, and the gum concentration in fats and oils was 400 mg / L or less.
The extraction solvent phase having a chloride ion concentration of 180 mg / L or less and reduced gum concentration is obtained by separating and recovering the oil and fat separated and recovered under the atmospheric pressure and the n-hexane condensation temperature of 70 ° C. in the first-stage distillation separation operation. The residual n-hexane concentration was 9% by mass, and 99.8% of the organic solvent n-hexane in the extraction solvent phase was separated and recovered. In the second stage, distillation was performed under a high vacuum of 0.12 kPaA to obtain fats and oils substantially free from the solvent n-hexane.
The oil and fat from which the solvent had been removed was further subjected to deoxidation and decolorization to produce purified oil and fat.

1 培養槽
2 破砕抽出
3 分離
4 水洗浄
5 溶媒分離回収
6 残留溶媒除去
7 精製
8 有機溶媒供給部
9 藻残渣脱水
DESCRIPTION OF SYMBOLS 1 Culture tank 2 Crushing extraction 3 Separation 4 Water washing 5 Solvent separation collection 6 Residual solvent removal 7 Purification 8 Organic solvent supply part 9 Algae residue dehydration

Claims (12)

ドコサヘキサエン酸含有油脂の製造方法であって、
ドコサヘキサエン酸含有油脂を産生するオーランチオキトリウム属に属する微細藻類の塩分を含有する培養液による培養により得られ、ドコサヘキサエン酸含有油脂を有する培養藻体を含む培養液中で、油脂抽出用の有機溶媒の存在下に、前記培養藻体の細胞膜を破砕して、前記ドコサヘキサエン酸含有油脂を前記有機溶媒により抽出して、該ドコサヘキサエン酸含有油脂を含む抽出溶媒相を形成する破砕抽出工程と、
前記破砕抽出工程で得られた抽出溶媒相を分離回収する分離回収工程と、
前記分離回収された抽出溶媒相からドコサヘキサエン酸含有油脂を回収する油脂回収工程と、
を有することを特徴とするドコサヘキサエン酸含有油脂の製造方法。
A method for producing docosahexaenoic acid-containing fats and oils,
Organics for extraction of fats and oils in a culture solution containing cultured algal bodies containing docosahexaenoic acid-containing fats and oils obtained by culturing with a culture solution containing salinity of microalgae belonging to the genus Aulanthiochytrium that produce docosahexaenoic acid-containing fats In the presence of a solvent, the cell membrane of the cultured alga body is crushed, the docosahexaenoic acid-containing fats and oils are extracted with the organic solvent, and a crushing extraction step for forming an extraction solvent phase containing the docosahexaenoic acid-containing fats and oils;
A separation and recovery step for separating and recovering the extraction solvent phase obtained in the crushing extraction step;
An oil and fat recovery step of recovering docosahexaenoic acid-containing oil and fat from the separated and recovered extraction solvent phase;
A process for producing a docosahexaenoic acid-containing fat or oil characterized by comprising:
破砕抽出工程により、水相と、前記抽出溶媒相を含む二相系の液体が形成され、該二相系の液体全体に、凝集剤を添加し、該二相系の液体に含まれる培養藻体残渣を含む固形分を凝集・フロック化し、水相、抽出溶媒相及び固形分相の三相を形成し、これらの相を互いに分離して回収する分離回収工程を有することを特徴とする請求項1に記載の製造方法。   By the crushing extraction step, a two-phase liquid containing the aqueous phase and the extraction solvent phase is formed, and a flocculant is added to the entire two-phase liquid, and the cultured algae contained in the two-phase liquid Claims characterized by having a separation and recovery step of agglomerating and flocking the solid content containing the body residue to form three phases of an aqueous phase, an extraction solvent phase and a solid content phase, and separating and recovering these phases from each other. Item 2. The manufacturing method according to Item 1. 前記分離回収された抽出溶媒相を前記油脂回収工程に供給することを特徴とする請求項2に記載の製造方法。   The method according to claim 2, wherein the separated and recovered extraction solvent phase is supplied to the oil and fat recovery step. 前記油脂回収工程が、前記抽出溶媒相に含有される塩分および油脂中のガム質を含む不純物を水洗除去する水洗浄工程を有することを特徴とする請求項1乃至3のいずれか1項記載の製造方法。   The said oil and fat collection | recovery process has a water washing | cleaning process of washing and removing the impurities containing the salt content contained in the said extraction solvent phase, and the gum | gum substance in fats and oils, The water washing process of Claim 1 characterized by the above-mentioned. Production method. 前記水洗浄工程において、抽出溶媒相が、該抽出溶媒相中の有機溶媒量の2〜25質量%の量の、塩化物イオン濃度150mg/L以下の水で洗浄され、該抽出溶媒相に含有される塩分および油脂中のガム質を含む不純物が該抽出溶媒相から除去されることを特徴とする請求項4に記載の製造方法。   In the water washing step, the extraction solvent phase is washed with water having a chloride ion concentration of 150 mg / L or less in an amount of 2 to 25% by mass of the amount of the organic solvent in the extraction solvent phase, and contained in the extraction solvent phase. 5. The production method according to claim 4, wherein impurities including greasy salt and oily fat are removed from the extraction solvent phase. 前記油脂回収工程が、前記抽出溶媒相から該抽出溶媒相に含まれる抽出用の有機溶媒を除去して油脂を得る有機溶媒除去工程を有することを特徴とする請求項1乃至5のいずれか1項に記載の製造方法。   The said oil and fat collection | recovery process has an organic solvent removal process which removes the organic solvent for extraction contained in this extraction solvent phase from the said extraction solvent phase, and obtains fats and oils. The production method according to item. 前記有機溶媒除去工程が、一段階目で油脂中の有機溶媒濃度を2〜50質量%に低減して油脂を濃縮し、二段階目で操作圧力0.08〜2kPaAの真空下で油脂中の残留溶媒を更に低減する二段工程を有することを特徴とする請求項6に記載の製造方法。   In the organic solvent removal step, the concentration of the organic solvent in the oil and fat is reduced to 2 to 50% by mass in the first stage, and the oil and fat is concentrated. In the second stage, the organic solvent in the oil and fat is vacuumed at an operating pressure of 0.08 to 2 kPaA. The production method according to claim 6, further comprising a two-stage process for further reducing the residual solvent. 前記一段階目で油脂中の有機溶媒濃度を9〜25質量%に低減することを特徴とする請求項7に記載の製造方法。   The manufacturing method according to claim 7, wherein the concentration of the organic solvent in the fat is reduced to 9 to 25% by mass in the first stage. 前記二段目の操作圧力が0.1〜1kPaAであることを特徴とする請求項7または8に記載の製造方法。   The manufacturing method according to claim 7 or 8, wherein the operation pressure of the second stage is 0.1 to 1 kPaA. 前記有機溶媒除去工程が、前記水洗浄工程の後に行われる請求項6乃至9のいずれか1項に記載の製造方法。   The manufacturing method according to claim 6, wherein the organic solvent removing step is performed after the water washing step. 前記有機溶媒除去工程で得られた有機溶媒を分離回収して前記破砕抽出工程の油脂抽出用としてリサイクルすることを特徴とする請求項6乃至10のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 6 to 10, wherein the organic solvent obtained in the organic solvent removal step is separated and recovered and recycled for oil and fat extraction in the crushing extraction step. 前記残留溶媒が除去された油脂を更に精製工程で処理することを特徴とする請求項6乃至11のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 6 to 11, wherein the fat and oil from which the residual solvent has been removed is further processed in a purification step.
JP2016239620A 2016-12-09 2016-12-09 Method for producing oils and fats containing docosahexaenoic acid produced by microalga belonging to genus aurantiochytrium Pending JP2018093765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016239620A JP2018093765A (en) 2016-12-09 2016-12-09 Method for producing oils and fats containing docosahexaenoic acid produced by microalga belonging to genus aurantiochytrium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016239620A JP2018093765A (en) 2016-12-09 2016-12-09 Method for producing oils and fats containing docosahexaenoic acid produced by microalga belonging to genus aurantiochytrium

Publications (1)

Publication Number Publication Date
JP2018093765A true JP2018093765A (en) 2018-06-21

Family

ID=62631195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016239620A Pending JP2018093765A (en) 2016-12-09 2016-12-09 Method for producing oils and fats containing docosahexaenoic acid produced by microalga belonging to genus aurantiochytrium

Country Status (1)

Country Link
JP (1) JP2018093765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164050A (en) * 2020-09-11 2022-03-11 青岛赛特生物科技有限公司 Novel industrial production method for extracting DHA from schizochytrium limacinum powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164050A (en) * 2020-09-11 2022-03-11 青岛赛特生物科技有限公司 Novel industrial production method for extracting DHA from schizochytrium limacinum powder

Similar Documents

Publication Publication Date Title
CA2874710C (en) Method for continuously enriching an oil produced by microalgae with ethyl esters of dha
EP2450424B1 (en) A method for recovery of oil from biomass
AU2011226731B2 (en) Lipid removal from suspensions
CN102492544A (en) Method for preparing microalgal docosahexaenoic acid (DHA) oil by dry method
Amaro et al. Microalgal fatty acids—From harvesting until extraction
JP6446866B2 (en) Shochu residue processing method and processing apparatus
JP2018502593A (en) Process for preparing ground microalgal powder rich in lipids
EP3119872A1 (en) Method for thermal permeabilization of a microalgae biomass
Kadir et al. Simultaneous harvesting and cell disruption of microalgae using ozone bubbles: optimization and characterization study for biodiesel production
CN114891554A (en) Method for extracting soybean oil body
JP2018093766A (en) Method for producing desalted and dried product of microalga belonging to genus aurantiochytrium cultured in culture liquid containing salt
JP2018093765A (en) Method for producing oils and fats containing docosahexaenoic acid produced by microalga belonging to genus aurantiochytrium
Guo et al. Extraction of protein from juice blend of grass and clover pressed by a pilot pressing facility combined with a pulsed electric field treatment
CN103911208B (en) A kind of heterophytic chlorella grease extraction
JP5747360B1 (en) Nutrient recovery method of algal lipid extraction residue, algae culture method, and algae culture medium
CN111448298B (en) Method for separating microbial oil
WO2016120548A1 (en) Method for fractionating components of a biomass of protein-rich microalgae
CN111072469A (en) Method for extracting natural nervonic acid
JP2011068738A (en) Method for extracting oil-and-fat from scenedesmus, and application of oil-and-fat and degreased residue
US20130337550A1 (en) Process for the extraction of lipids
US20230271930A1 (en) Process for isolation and purification of thca from cannabis
AU681096B2 (en) Process for the recovery of valuable substances, in particular carotinoids from algae and installations suitable therefor
RU2729822C2 (en) Method for combined destruction of cells and extraction of oil-containing seeds
US20070295326A1 (en) Method for obtaining long chain aliphatic alcohols and fatty acids from sugar cane mud and related wax esters
Pieter't Lam Harvesting and cell disruption of microalgae

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170420