JP2018091413A - Telescopic member and robot member - Google Patents

Telescopic member and robot member Download PDF

Info

Publication number
JP2018091413A
JP2018091413A JP2016235567A JP2016235567A JP2018091413A JP 2018091413 A JP2018091413 A JP 2018091413A JP 2016235567 A JP2016235567 A JP 2016235567A JP 2016235567 A JP2016235567 A JP 2016235567A JP 2018091413 A JP2018091413 A JP 2018091413A
Authority
JP
Japan
Prior art keywords
basic structure
elastic member
connecting members
elastic
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016235567A
Other languages
Japanese (ja)
Inventor
直行 武居
Naoyuki Takei
直行 武居
裕貴 武井
Yuki Takei
裕貴 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2016235567A priority Critical patent/JP2018091413A/en
Publication of JP2018091413A publication Critical patent/JP2018091413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a telescopic member capable of deforming to a complicated form, minimizing the number of driving devices, and excellent in portability of a device, and a robot member using the telescopic member.SOLUTION: An expandable and deformable telescopic member includes a plurality of basic structures comprising: an annular member; and a plurality of connection members whose base end is attached to the annular member. One basic structure is connected to another basic structure, which is provided adjacently to the one basic structure, by connecting, through an engagement member, a tip of each connection member in the one basic structure to a tip of each connection member of the other basic structure.SELECTED DRAWING: Figure 1

Description

本発明は、伸縮自在で複雑な形態に変形可能な伸縮部材およびそれを用いたロボット部材に関する。   The present invention relates to a telescopic member that can be stretched and deformed into a complicated form, and a robot member using the same.

近年、ドローンや介護ロボット、掃除ロボットなど、ロボットは日常生活の中でより近い存在となってきている。ロボット自身が移動するものや、小型で持ち運びできるものは多く存在するが、広いワークスペースに対応可能なように伸縮自在で且つ複雑な形態に変形可能で、可搬できるロボットアームはほとんど提案されていない。
現在、そのようなロボットアームとして提案されているものとしては、柔軟で軽量なロボットとして、空気圧を利用したロボットアームが提案されている(非特許文献1)。
また一方で、幾何学的な(規則的な)形状を利用したロボットが多く提案されている。幾何学形状ロボットはその形状を利用した構造変形をすることが特徴である。外装に折り紙機構を用いて変形するロボット(非特許文献2及び3)やテンセグリティ構造を用いて形状に変化させることで転がり移動を実現するロボット(非特許文献4)などが提案されており、立体図形を簡易的に折りたたみ可能にするための設計法(非特許文献5)も提案されている。幾何学形状を利用することによる柔軟な動きを利用したものも多くあり、その一例として蛇型の形状をしたもの(非特許文献6及び7、特許文献1)が挙げられる。
また、幾何学玩具の1つである「インドの毬」の構造変形特性に着目した提案もされている(非特許文献8)。もともとのインドの毬は、両端の開閉自由度と中間の伸縮自由度の合計3つの自由度を持つ。その3つの自由度により、球形、円筒形、円板形、瓢箪形などの多様な形状に変形できる。非特許文献8の提案では、全体で保有する自由度を3つから9つに増やし、通常のインドの毬よりも複雑で多様な形状の変形を実現している。
In recent years, robots such as drones, nursing robots, and cleaning robots have become closer in daily life. There are many things that the robot itself can move, and there are many things that are small and portable, but most robot arms that can be stretched and deformed into a complex shape to accommodate a wide work space and can be carried are proposed. Absent.
Currently, as a robot arm that has been proposed, a robot arm using air pressure has been proposed as a flexible and lightweight robot (Non-Patent Document 1).
On the other hand, many robots using geometric (regular) shapes have been proposed. The geometric shape robot is characterized by structural deformation using the shape. Robots (Non-patent Documents 2 and 3) that deform using an origami mechanism on the exterior, and robots (Non-patent Document 4) that realize rolling movement by changing the shape using a tensegrity structure have been proposed. A design method (Non-patent Document 5) for easily folding a figure has also been proposed. Many of them use a flexible movement by using a geometric shape, and examples thereof include a snake-like shape (Non-patent Documents 6 and 7, Patent Document 1).
There has also been a proposal that focuses on the structural deformation characteristics of “Indian eagle”, one of the geometric toys (Non-Patent Document 8). The original Indian eagle has three degrees of freedom: opening and closing degrees of freedom at both ends and a middle degree of freedom of expansion and contraction. With these three degrees of freedom, it can be transformed into various shapes such as spherical, cylindrical, disc-shaped, and bowl-shaped. In the proposal of Non-Patent Document 8, the number of degrees of freedom possessed as a whole is increased from three to nine, realizing deformations of various shapes that are more complex than ordinary Indian folds.

また、大きく伸縮可能なロボットアームを実現するための伸縮変形機構が種々提案されている。たとえば、RAPUDA(非特許文献9)やSpherical Robot Arm(非特許文献10)などが挙げられる。RAPUDA(Robotic Arm for Persons with Upper−limb DisAbilities)はバラバラのブロックを押し出すことにより、伸縮を可能にした構造である。Spherical Robot Armはジッパーのように隣り合う素材同士を組み合わせるSpiral Zipperの機構を用いた構造である。また、金属のロール材を半月状にたわませて束ね、巻き取ることで伸縮を可能にする高伸縮比マニピュレータ機構(非特許文献11)も提案されている。   Various expansion / contraction deformation mechanisms have been proposed for realizing a robot arm that can be largely expanded and contracted. For example, RAPUDA (Non-Patent Document 9), Speral Robot Arm (Non-Patent Document 10), and the like can be given. RAPUDA (Robotic Arm for Persons with Upper Lim DisAbilities) is a structure that enables expansion and contraction by extruding disjoint blocks. Spiral Robot Arm is a structure using the mechanism of Spiral Zipper that combines adjacent materials like a zipper. Further, a high expansion / contraction ratio manipulator mechanism (Non-patent Document 11) that enables expansion and contraction by bending and winding a metal roll material in a half-moon shape has also been proposed.

特開2005−169602号公報JP 2005-169602 A

金慧鍾, 田中悠登, 河村晃宏, 川村貞夫, 西岡靖貴: 操作型4自由度インフレータブルロボットアームの開発, 日本機械学会ロボティクス・メカトロニクス講演会2015, 1P2-D04, 2015.Kinjo, Yasunori Tanaka, Yasuhiro Kawamura, Sadao Kawamura, Yuki Nishioka: Development of an Inflatable Robot Arm with Operational 4 Degrees of Freedom, Japan Society of Mechanical Engineers Robotics and Mechatronics Lecture 2015, 1P2-D04, 2015. 佐藤滉太, 青木岳史: 完全気密なクローラベルトを持つ柔軟変形移動体の開発 ―折紙理論を用いたクローラベルトの設計―, 日本機械学会ロボティクス・メカトロニクス講演会2014, 2A2-D07, 2014.Yuta Sato, Takeshi Aoki: Development of a flexible deformation mobile body with a completely airtight crawler belt -Design of a crawler belt using origami theory-, The Japan Society of Mechanical Engineers Robotics and Mechatronics Lecture 2014, 2A2-D07, 2014. Evan Vander Hoff, Donghwa Jeong, Kiju Lee: OrigamiBot-I: A Thread-Actuated Origami Robot for Manipulation and Locomotion, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp.1421-1426, 2014Evan Vander Hoff, Donghwa Jeong, Kiju Lee: OrigamiBot-I: A Thread-Actuated Origami Robot for Manipulation and Locomotion, 2014 IEEE / RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp.1421-1426, 2014 小泉祐介, 柴田瑞穂,平井慎一: テンセグリティロボットの連続転がりの評価, 第29回日本ロボット学会学術講演会, AC2I1-1, 2011.Yui Koizumi, Mizuho Shibata, Shinichi Hirai: Evaluation of continuous rolling of tensegrity robot, 29th Annual Conference of the Robotics Society of Japan, AC2I1-1, 2011. 加瀬悠人, 三谷純, 福井幸男, 金森由博: 折りたたみ可能な切開辺を含む軸対称形状の設計, 映情学技報, vol.38, no.16, AIT2014-44, pp.55-58, 2014.Hayato Kase, Jun Mitani, Yukio Fukui, Yoshihiro Kanamori: Designing an Axisymmetric Shape Including a Foldable Incision, Eizo Technical Report, vol.38, no.16, AIT2014-44, pp.55-58 , 2014. Richard Primerano, Stephen Wolfe: New Rolling and Crawling Gaits for Snake-like Robots, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp.281-286, 2014Richard Primerano, Stephen Wolfe: New Rolling and Crawling Gaits for Snake-like Robots, 2014 IEEE / RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp.281-286, 2014 岩本憲泰, 山本元司: 粒子間摩擦を利用した可変剛性機構を有する柔軟尻尾の評価手法, 日本機械学会ロボティクス・メカトロニクス講演会2015, 1P2-E05, 2015.Noriyasu Iwamoto, Motoshi Yamamoto: Evaluation method of flexible tail with variable stiffness mechanism using interparticle friction, The Japan Society of Mechanical Engineers Robotics and Mechatronics Lecture 2015, 1P2-E05, 2015. 阿嘉倫大, 武居直行: 「インドの毬」ロボットの開発, 第15回計測自動制御学会システムインテグレーション部門講演会, 2H1-2, 2014.Aka Rindai, Naoyuki Takei: Development of "Indian Samurai" Robot, 15th SICE System Integration Division Conference, 2H1-2, 2014. 山野辺 夏樹, 尹 祐根, 脇田 優仁, 永田 和之, 木之瀬 隆, 小野 栄一: ロボットアームによる上肢に障害を持つ方の自立支援, 第24回人工知能学会全国大会, 1H2-NFC3b-10, 2010.Naoki Yamanobe, Yune Tsuji, Yuhito Wakita, Kazuyuki Nagata, Takashi Kinose, Eiichi Ono: Supporting Independence of People with Disabilities in the Upper Limb by Robotic Arms, 24th Annual Conference of the Japanese Society for Artificial Intelligence, 1H2-NFC3b-10 , 2010. Foster Collins, Mark Yim: Design of a Spherical Robot Arm with the Spiral Zipper Prismatic Joint, 2016 IEEE International Conference on Robotics and Automation (ICRA 2016), pp.2137-2143, 2016.Foster Collins, Mark Yim: Design of a Spherical Robot Arm with the Spiral Zipper Prismatic Joint, 2016 IEEE International Conference on Robotics and Automation (ICRA 2016), pp.2137-2143, 2016. 齋藤 敬, 鎌田 裕也, 工藤 大輝, 榊原 智之, 中村 空広, 丹 研斗: 高伸縮比マニピュレータ機構を用いた屋根の雪下ろしシステムの開発, ロボティクス・メカトロニクス講演会2016 (ROBOMECH2016), 2P2-09b1, 2016.Takashi Saitoh, Yuya Kamada, Daiki Kudo, Tomoyuki Sugawara, Sorahiro Nakamura, Kento Tan: Development of snow removal system for roof using high-stretch ratio manipulator mechanism, Robotics and Mechatronics Lecture 2016 (ROBOMECH2016), 2P2-09b1, 2016 .

しかし、特許文献1及び非特許文献1〜11に記載のロボットアームでは、未だに十分に複雑な形状に対応して自在に変形可能なものではなく、より複雑な形態に変形可能なものが要望されているのが現状である。また実際にロボットアームとして使用するには、関節にモータなどのアクチュエータ等の駆動装置を装着する必要があり、アームが長いほど必要なモーメントは大きくなるため、多数の駆動装置が必要となり、装置の可搬性が悪くなるという問題もあった。   However, the robot arms described in Patent Document 1 and Non-Patent Documents 1 to 11 are not yet freely deformable in response to sufficiently complicated shapes, and those that can be deformed into more complicated forms are desired. This is the current situation. Also, in order to actually use it as a robot arm, it is necessary to attach a drive device such as an actuator such as a motor to the joint, and the longer the arm, the greater the required moment. There was also a problem that portability deteriorated.

したがって、本発明の目的は、複雑な形態に変形可能であり、駆動装置が必要最小限で済み、装置の可搬性も優れた伸縮部材及びそれを用いたロボット部材を提供することにある。   Accordingly, an object of the present invention is to provide a telescopic member that can be deformed into a complicated form, requires a minimum number of drive devices, and has excellent portability of the device, and a robot member using the same.

本発明者らは、上記課題を解消するため鋭意検討した結果、幾何学変形玩具である「インドの毬」のシンプルな構造変形機能に着目し、ワイヤーフレームによる伸縮変形要素を複数段連結して構成することにより、大きく伸縮し、自立することもでき、軽量・柔軟でワークスペースの広いロボットアームを構成可能なことを知見し、本発明を完成するに至った。
すなわち本発明は以下の発明を提供するものである。
1.環部材と、該環部材に基端が取り付けられた複数の連結用部材とからなる基本構造体を複数個具備する、伸縮自在で変形自在な伸縮部材であって、
一の基本構造体は、該一つの基本構造体における各連結用部材の先端を、該一の基本構造体に隣設された他の基本構造体の各連結用部材の先端に、それぞれ係合部材を介して連結することにより、該他の上記基本構造体に連結されている、
ことを特徴とする伸縮部材。
2.上記係合部材が、弾性部材からなる1記載の伸縮部材。
3.上記連結用部材は、それぞれ1本の棒状部材を折り曲げるか又は湾曲させてなり、該棒状部材の両端部を上記基端とし、該棒状部材の中央部を上記先端としてなり、一の連結用部材の基端は、それぞれ該一つの連結用部材に隣接する他の連結用部材の両基端間に位置するように配されている、1又は2記載の伸縮部材。
4.一の連結用部材の基端と他の連結用部材の基端との間には、それぞれ弾性部材からなる緩衝部材が配されている3記載の伸縮部材。
5.複数の上記基本構造体は、上記連結用部材として、それぞれ所定方向に向けて積層した場合に、積層方向両側に位置する他の基本構造体に連結可能なように、一方側に位置する基本構造体との連結用の連結用部材と、他方側に位置する基本構造体との連結用の連結用部材とを具備しており、これらの一方側との連結用の連結用部材と他方側との連結用の連結用部材と同数である、1〜4のいずれか1項記載の伸縮部材。
6.上記係合部材は、2つの連結用部材を収容して、さらにたわむことができる程度に遊びを設けた弾性部材により形成されており、
上記緩衝部材は、連結用部材の基端間の間隔よりも長く、圧縮された状態で配されている弾性部材からなる4記載の伸縮部材。
7.1〜6のいずれかに記載の伸縮部材と、
該伸縮部材における各基本構造体それぞれを駆動可能に取り付けられた基本構造体のコントロール部材と、
該コントロール部材に動力を伝達するように設けられた駆動部材とを具備するロボット部材。
As a result of intensive studies to solve the above-mentioned problems, the present inventors focused on the simple structural deformation function of the geometrically deformed toy “Indian eagle” and connected a plurality of expansion / contraction deformation elements by a wire frame. As a result of the construction, the inventors have found that it is possible to construct a robot arm that can expand and contract greatly and can stand on its own, and is lightweight, flexible, and has a wide work space.
That is, the present invention provides the following inventions.
1. A telescopic and deformable telescopic member comprising a plurality of basic structures comprising a ring member and a plurality of connecting members having base ends attached to the ring member,
One basic structure engages the tip of each connecting member in the one basic structure with the tip of each connecting member of another basic structure adjacent to the one basic structure. Connected to the other basic structure by connecting via a member,
An elastic member characterized by that.
2. 2. The elastic member according to 1, wherein the engagement member is an elastic member.
3. Each of the connecting members is formed by bending or bending one bar-shaped member, with both end portions of the bar-shaped member serving as the base end and the central portion of the bar-shaped member serving as the distal end, and one connecting member 3. The elastic member according to 1 or 2, wherein a base end of each is disposed so as to be positioned between both base ends of the other connecting members adjacent to the one connecting member.
4). 4. The telescopic member according to 3, wherein a buffer member made of an elastic member is disposed between a base end of one connecting member and a base end of another connecting member.
5. A plurality of the basic structures are arranged on one side so that they can be connected to other basic structures located on both sides in the stacking direction when stacked in the predetermined direction as the connecting members. A connecting member for connecting to the body, and a connecting member for connecting to the basic structure located on the other side, the connecting member for connecting to one side and the other side, The expansion / contraction member according to any one of 1 to 4, which is the same number as the number of connection members for connection.
6). The engaging member is formed of an elastic member that accommodates two connecting members and is provided with play to such an extent that it can bend further.
5. The expansion / contraction member according to 4, wherein the buffer member is made of an elastic member that is longer than a distance between the base ends of the connecting member and is arranged in a compressed state.
The elastic member according to any one of 7.1 to 6,
A control member of the basic structure attached to each of the basic structures in the elastic member so as to be driven;
A robot member comprising a drive member provided to transmit power to the control member.

本発明に係る伸縮部材は、複雑な形態に変形可能であり、駆動装置が必要最小限で済み、装置の可搬性も優れたものである。また、本発明のロボット部材は、本発明の伸縮部材を用いたものであるため、伸縮性及び変形性に優れ、少ない駆動装置をもって種々形態とすることができ、軽量性や可搬性にも優れたものである。   The elastic member according to the present invention can be deformed into a complicated form, requires a minimum number of drive devices, and is excellent in portability of the device. Further, since the robot member of the present invention uses the stretchable member of the present invention, it is excellent in stretchability and deformability, can be made into various forms with a small number of driving devices, and is excellent in lightness and portability. It is a thing.

図1(a)は、本発明の伸縮部材(各基本構造体が積層された状態のもの)を上方から見た状態を示す平面図(わかりやすくするために後方に見える部分を省略して示す図)であり、(b)はその一部拡大図であり、(c)は基本構造体ひとつのみの斜視図(わかりやすくするために係合部材及び緩衝部材を省略して示す図)である。FIG. 1A is a plan view showing a state in which the elastic member of the present invention (in a state in which each basic structure is laminated) is viewed from above (the part visible behind is omitted for the sake of clarity). (B) is a partially enlarged view thereof, and (c) is a perspective view of only one basic structure (a drawing in which an engagement member and a buffer member are omitted for clarity). . 図2は各基本構造体が積層されて全体としてたたまれた状態の側面を示す端面図(わかりやすくするために後方に見える部分を省略して示すと共に係合部材及び緩衝部材を省略して示す図)である。FIG. 2 is an end view showing the side surface of each basic structure stacked and folded as a whole (the parts visible behind are omitted for the sake of clarity, and the engagement member and the buffer member are omitted) FIG. 図3は、図2に示す伸縮部材を伸長させた状態を示す側面図(図面代用写真)である。FIG. 3 is a side view (drawing substitute photograph) showing a state in which the elastic member shown in FIG. 2 is extended. 図4は、図3に示す状態から各連結用部材の連結部分を内側に変位させた状態を示す側面図(図面代用写真)である。FIG. 4 is a side view (drawing substitute photograph) showing a state in which the connecting portion of each connecting member is displaced inward from the state shown in FIG. 図5は、図4に示す状態から変形させた使用態様を示す側面図(図面代用写真)である。FIG. 5 is a side view (drawing substitute photograph) showing a usage mode modified from the state shown in FIG. 図6は、図1に示す本発明の伸縮部材を用いたロボット部材(ロボットアーム)の1実施形態を示す側面図である。FIG. 6 is a side view showing an embodiment of a robot member (robot arm) using the elastic member of the present invention shown in FIG. 図7は、図1に示す本発明の伸縮部材を用いたロボット部材(ロボットアーム)の他の実施形態を示す側面図である。FIG. 7 is a side view showing another embodiment of a robot member (robot arm) using the telescopic member of the present invention shown in FIG. 図8(a)は、本発明の伸縮部材の他の実施形態を示す平面図(図面代用写真)であり、図8(b)は、その伸縮部材を引き延ばした状態を示す側面図(図面代用写真)である。FIG. 8 (a) is a plan view (drawing substitute photograph) showing another embodiment of the elastic member of the present invention, and FIG. 8 (b) is a side view (drawing substitute) showing a state in which the elastic member is extended. Photo).

1:伸縮部材、10:環部材、22:基端、20:連結用部材、2a:一の基本構造体、2b:他の基本構造体、30:係合部材 1: telescopic member, 10: ring member, 22: base end, 20: connecting member, 2a: one basic structure, 2b: other basic structure, 30: engagement member

以下、本発明の伸縮部材及びロボット部材について詳述する。
<伸縮部材>
本実施形態の伸縮部材1、図1〜3に示すように、
環部材10と、環部材10に基端22が取り付けられた複数の連結用部材20とからなる基本構造体2を複数個具備する。また、図1(b)等に示すように、一の基本構造体2aは、一の基本構造体2aにおける各連結用部材20の先端24aを、一の基本構造体2aに隣設された他の基本構造体2bの各連結用部材の先端24bに、それぞれ係合部材30を介して連結することにより、他の基本構造体2bに連結されている。
以下、詳細に説明する。
Hereinafter, the telescopic member and the robot member of the present invention will be described in detail.
<Expandable member>
As shown in FIGS. 1-3, the elastic member 1 of this embodiment,
A plurality of basic structures 2 including a ring member 10 and a plurality of connecting members 20 each having a base end 22 attached to the ring member 10 are provided. Further, as shown in FIG. 1B and the like, one basic structure 2a is configured such that the tip 24a of each connecting member 20 in one basic structure 2a is adjacent to the one basic structure 2a. Each of the connecting members of the basic structure 2b is connected to the other basic structure 2b by being connected to the distal ends 24b of the connecting members via the engaging members 30, respectively.
Details will be described below.

(環部材)
環部材10は、ワイヤーからなる円形状の部材である。
環部材の大きさや太さ(ワイヤーの太さ)は任意であり、所望の伸縮部材の大きさや変形の度合いに応じて設定できる。
また、本実施形態においては真円形の環部材10を示したが、楕円形や多角形状などの種々の形状とすることができる。
(連結用部材)
連結用部材20は、それぞれ1本の棒状部材としてのワイヤーを湾曲させてなり、ワイヤーの両端部を環部材に輪のようにして巻きつけることでワイヤーからなる連結用部材の両端を環部材に摺動可能に取り付けて、基端22を構成している。具体的には本実施形態においては両端を円形状に折り曲げて、該円形状の取付金具の中に環部材を貫通させることで基端22を形成している。また、湾曲されたワイヤーの中央部(頂点を構成する部分)を先端24としている。このように湾曲させることにより、全体として半楕円形状とされている。
また、連結用部材20は、図1(c)に示すように、複数の基本構造体2を所定方向に向けて積層した場合に、積層方向両側に位置する他の基本構造体に連結可能なように、一方側に位置する基本構造体との連結用の連結用部材20−1(以下、「一方側連結用部材」という)と、他方側に位置する基本構造体との連結用の連結用部材20−2(以下、「他方側連結用部材」という)とにより構成されている。また、一方側連結用部材20−1と他方側連結用部材20−2とは同数であり、それぞれ9つである。
一方側連結用部材及び他方側連結部材は共に同様に形成されており、一方側連結用部材20−1をもって説明すると、一方側連結用部材20−1を構成する各連結用部材20はそれぞれ隣接する連結用部材とそれぞれ重なって配されている。すなわち、図1(a)及び(c)に示すように、1の連結用部材20に着目すると、1の連結用部材は左側に位置する連結用部材20の手前側(環部材の径方向方側)になるように配置されていると共に、右側に位置する連結用部材20の奥側(環部材の径方向方側)になるように配置されている。これにより各連結用部材が連動するようになされており、一つの連結用部材20を回動(環部材の軸方向に向けて回動)させるとすべての一方側連結用部材20−1が回動するように形成されている。このように構成されていることについては他方側連結用部材20−2も同じである。
そして、このように互い違いに重なるように配されている連結用部材は、図1(a)に示すように一の連結用部材20xにより形成される基端22xが、それぞれ一の連結用部材22xに隣接する他の連結用部材20yにより形成される両基端22y間に位置するように配され、他の連結用部材20yにより形成される基端22yの連結用部材20xと逆側に位置する基端20yは隣接する連結用部材20zの両基端20z間に位置するように配されている。これらの一の連結用部材20xの基端22xと他の連結用部材20yの基端22yとの間には、それぞれ弾性部材からなる緩衝部材40が配されている。具体的には本実施形態においてはコイルばね(圧縮コイルバネ)による緩衝部材が配されている。このように構成されている点は他の連結用部材についても同じである。
なお、連結用部材は湾曲させるのではなく、ワイヤーを折り曲げることにより形成してもよい。
(Ring member)
The ring member 10 is a circular member made of a wire.
The size and thickness of the ring member (wire thickness) are arbitrary, and can be set according to the desired size and degree of deformation of the elastic member.
Moreover, although the perfect circular ring member 10 was shown in this embodiment, it can be set as various shapes, such as an ellipse and a polygonal shape.
(Connecting member)
Each of the connecting members 20 is formed by bending a wire as a single rod-shaped member, and by winding both ends of the wire around the ring member like a ring, both ends of the connecting member made of the wire are used as ring members. The base end 22 is configured to be slidably attached. Specifically, in this embodiment, both ends are bent into a circular shape, and the base end 22 is formed by passing a ring member through the circular mounting bracket. Further, the center portion (portion constituting the apex) of the curved wire is a tip 24. By curving in this way, the overall shape is a semi-elliptical shape.
Further, as shown in FIG. 1C, the connecting member 20 can be connected to other basic structures positioned on both sides in the stacking direction when the plurality of basic structures 2 are stacked in a predetermined direction. Thus, the connection member 20-1 for connection with the basic structure located on one side (hereinafter referred to as "one side connection member") and the connection for connection between the basic structure located on the other side Member 20-2 (hereinafter referred to as “other-side connecting member”). Moreover, the number of the one side connecting members 20-1 and the other side connecting members 20-2 is the same, and each of them is nine.
The one-side connecting member and the other-side connecting member are both formed in the same manner. When described with the one-side connecting member 20-1, the connecting members 20 constituting the one-side connecting member 20-1 are adjacent to each other. It overlaps with each connecting member to be arranged. That is, as shown in FIGS. 1A and 1C, when attention is paid to one connecting member 20, one connecting member is located on the front side of the connecting member 20 located on the left side (in the radial direction of the ring member). And the rear side of the connecting member 20 located on the right side (the radial direction side of the ring member). As a result, each connecting member is interlocked. When one connecting member 20 is rotated (rotated in the axial direction of the ring member), all the one-side connecting members 20-1 are rotated. It is formed to move. The other side connection member 20-2 is the same in this way.
As shown in FIG. 1 (a), the connecting members arranged so as to overlap in this manner have base ends 22x formed by one connecting member 20x, and each connecting member 22x has one connecting member 22x. It is arranged so as to be positioned between both base ends 22y formed by the other connecting member 20y adjacent to the base member 22y, and is positioned on the opposite side to the connecting member 20x of the base end 22y formed by the other connecting member 20y. The proximal end 20y is disposed so as to be positioned between both proximal ends 20z of the adjacent connecting members 20z. Between the base end 22x of one of the connecting members 20x and the base end 22y of the other connecting member 20y, buffer members 40 each made of an elastic member are disposed. Specifically, in this embodiment, a buffer member by a coil spring (compression coil spring) is arranged. This is the same for the other connecting members.
The connecting member may be formed by bending a wire instead of bending.

(基本構造体の連結構造)
そして、上述のように構成された複数の基本構造体2は、図2に示すように、それぞれ所定方向に向けて積層されている。本実施形態においては5つの基本構造体を積層しているが、積層の個数はこれに制限されるものではなく、伸縮部材の目的に応じて任意の数積層することができる。
5つの基本構造体2は、いずれも同じものであり、上述の一方側及び他方側それぞれ9つの連結用部材20を有する。そして、それぞれ対向する基本構造体における連結用部材と連結されており、両端に位置する基本構造体2a、2e(図2参照)における一方の連結用部材は、それぞれ連結されずに自由な状態とされている。
そして、図1〜4に示すように、各基本構造体2a〜2eは、それぞれ連結用部材の先端において、係合部材30を介して連結されているが、この係合部材30は弾性部材、具体的にはコイルバネ(圧縮コイルバネ)からなり、2つの連結用部材を収容してさらに十分にたわむことができる程度に遊びを設けた部材により形成されている。尚、係合部材を形成する弾性部材としては圧縮コイルバネ以外にゴム製のOリング等種々のものを用いることが可能である。
(Connection structure of basic structure)
And the some basic structure 2 comprised as mentioned above is laminated | stacked toward the predetermined direction, respectively, as shown in FIG. In the present embodiment, five basic structures are stacked, but the number of stacked layers is not limited to this, and any number can be stacked depending on the purpose of the elastic member.
The five basic structures 2 are all the same, and each has nine connecting members 20 on one side and the other side. And it is connected with the connection member in each basic structure which opposes, One connection member in basic structure 2a, 2e (refer FIG. 2) located in both ends is not connected, respectively, and is in a free state Has been.
As shown in FIGS. 1 to 4, the basic structures 2 a to 2 e are connected to each other through the engaging member 30 at the tip of the connecting member. The engaging member 30 is an elastic member, Specifically, it is composed of a coil spring (compression coil spring) and is formed of a member provided with play to such an extent that it can accommodate two connecting members and bend sufficiently. In addition to the compression coil spring, various members such as a rubber O-ring can be used as the elastic member forming the engaging member.

本実施形態の伸縮部材1は、上述のように構成されているので以下のように作用する。
まず、非伸縮状態では図1に示すように、各基本構造体2が重なり合った状態となる。そして、図2の矢印方向等伸長方向に引っ張られるなどして力が加わると、図3に示すように連結用部材20の向きが環部材1の径方向から該径方向に対して鉛直方向側に向けて傾く。これにより伸長された状態となる。
そしてさらに、連結用部材20の向きを環部材10に対して鉛直方向よりもさらに環部材の中心側に向けることにより図4に示すように各基本構造体2でヒョウタンのような形態が形成される。この形態は連結用部材同士が干渉し非常に安定な形態であり、特に力を加えなくても安定して直立状態を保持することができる。
Since the elastic member 1 of this embodiment is comprised as mentioned above, it acts as follows.
First, in the non-stretchable state, as shown in FIG. 1, the basic structures 2 are in an overlapping state. Then, when a force is applied, for example, by pulling in an extending direction such as the arrow direction in FIG. 2, the direction of the connecting member 20 is perpendicular to the radial direction from the radial direction of the ring member 1 as shown in FIG. Tilt towards. Thereby, it will be in the expanded state.
Further, the direction of the connecting member 20 is directed further toward the center side of the ring member than the vertical direction with respect to the ring member 10, whereby a form like a gourd is formed in each basic structure 2 as shown in FIG. 4. The This form is a very stable form in which the connecting members interfere with each other, and can maintain an upright state stably without applying any force.

そして、次に伸長させた状態でいずれかの方向に曲げるには、図5に示すように、いずれかの方向に伸縮部材1の先端を傾けることにより、傾けた方向側(図5における内側)に位置する連結用部材20の角度(連結用部材と環部材との角度)が小さくなり、逆側の連結用部材の角度が大きくなる。これにより所定の角度で伸縮部材1を曲げることができる。このように各連結用部材20の先端における各連結用部分20の連結部分(係合部材30)と連結用部材の基端22(連結用部材20と環部材10との取付部分)とがそれぞれ変曲点として作用するので、任意の角度をもっての変形が容易であり、更にはS字状や螺旋状等複雑な形状にも対応可能である。
このように任意の方向に折り曲げることができるのは、係合部材が弾性部材からなることが重要であり、係合部材が単なる環状部材であると連結用部材相互の連結部分に遊びが生じずに連結用部材の動きに自由度が少なくなる。このため伸縮部材全体で見たときに曲げ方向に対する自由度が少なくなり、変形しないものとなる(従来の「インドの毬」はこのような形態である)。しかし、本実施形態の伸縮部材は、係合部材が伸縮自在且つ圧縮自在な圧縮コイルバネ、すなわち十分にたわむことができる程度に遊びの設けられた弾性部材により形成されているので、連結用部材同士の連結部分における自由度が高く、前後左右に両者の連結部分をずらすような動きをすることが可能である。このため、伸縮部材全体で見たときに図に示すような自在な形態変化を実現できている。
さらに、この作用効果は緩衝部材についても圧縮コイルバネで形成した場合に、特に良好なものとなる。緩衝部材の長さは、連結用部材の基端間の間隔よりも長く、圧縮された状態で配されているのが、これらの作用効果をより効果的に発揮させる点で好ましい。
And in order to bend in either direction in the next extended state, as shown in FIG. 5, by tilting the tip of the elastic member 1 in either direction, the inclined direction side (inside in FIG. 5) The angle of the connecting member 20 located at (the angle between the connecting member and the ring member) is reduced, and the angle of the connecting member on the opposite side is increased. Thereby, the elastic member 1 can be bent at a predetermined angle. Thus, the connecting portion (engagement member 30) of each connecting portion 20 at the tip of each connecting member 20 and the base end 22 (attachment portion of the connecting member 20 and the ring member 10) of the connecting member are respectively provided. Since it acts as an inflection point, it can be easily deformed at an arbitrary angle, and it is also possible to deal with complicated shapes such as S-shape and spiral.
It is important that the engaging member is made of an elastic member so that it can be bent in an arbitrary direction. If the engaging member is a simple annular member, there is no play in the connecting portion between the connecting members. Further, the degree of freedom in movement of the connecting member is reduced. For this reason, when it sees with the whole expansion-contraction member, the freedom degree with respect to a bending direction decreases, and it does not deform | transform (the conventional "Indian cocoon" is such a form). However, since the elastic member of this embodiment is formed of a compression coil spring in which the engaging member is extendable and compressible, that is, an elastic member provided with play to such an extent that it can be sufficiently bent, the connecting members are The degree of freedom at the connecting part is high, and it is possible to move the connecting part between the front, rear, left and right. For this reason, when it sees with the whole expansion-contraction member, the free form change as shown in a figure is realizable.
Furthermore, this effect is particularly good when the buffer member is formed of a compression coil spring. The length of the buffer member is longer than the interval between the base ends of the connecting member, and is preferably arranged in a compressed state from the viewpoint of more effectively exerting these effects.

以下に、本実施形態のように構成するに至った理由並びに各部材の寸法の詳細を示す。
まず、基本構造体の仕様に適した構成・寸法を選定するため、インドの毬をモデル化しパラメータで示すと、環部材を正円、連結用部材を楕円形とする。そして各パラメータを設定し、図1(b)に示す。ここでNは連結用部材の数、Rは環部材の半径、aは連結要部材の長軸、bは連結用部材の短軸、xは環部材の中心点と連結用部材の中心点との距離、αは環部材における連結用部材が占める角度、βは環部材における連結用部材の重複部分の占める角度を、それぞれ示す。
各適正パラメータ値を求める。まず、インドの毬のパラメータ特性を考慮し、以下の条件式を仮定する。
0<α <π (1)
0<β <α/2(2)
さらに、環部材と連結用部材との取付部分(連結用部材の基端)が等間隔と考えると、次のように表すことができる。
β=α/3(3)
N(α−β)=2π (4)
次に連結用部材の個数Nについて考える。通常のインドの毬の連結用部材数は7〜9枚である。それを考慮しながら、11枚まで実際に作成した結果、連結用部材を正円部の中心方向へ回転させた際にワイヤーによる干渉が大きくなっているため回転しづらく、扱いにくいという結果が得られた。そこで、適度な可動を考慮し、N<12とする。また、ここでαとβの値に着目し、式(1)、式(3)および式(4)を満たすような値であることを考慮すると、
N=5〜11という選択肢となる。
N=9の場合、環部材の中心方向に3分割するとシンメトリー性が保てるメリットがあり、3点で支持する際や駆動を導入する際に対称性による設置、使用しやすさなどが考えられる。そこで、これらの理由からN=9と決定した。したがって、αとβの値は次のように定まる。
α=π/3=60[deg]、β=π/9=20[deg]
また、正円部の直径を100[mm](半径R=50[mm])とし、半円部の長軸a=70[mm]とすると、bおよびxは次のように求めることができる。
b=25[mm] x=43.3[mm]
これらの結果からワイヤーフレームは線径φ2.0のステンレスワイヤーにより構成し、連結用部材同士を連結する係合部材には、ねじりばねとそれを保持する保持用パーツ(公知のねじりばねの保持パーツであれば特に制限なく用いることができる)からなる部材を使用することで、図2に示すように伸長させた際にこの係合部材がわずかに外側へ出る仕組みとなっている。上述の使用からなる本実施形態の伸縮部材はz軸方向の伸縮変形に9倍という大きな変化が可能であった。
Below, the reason for having comprised like this embodiment and the detail of the dimension of each member are shown.
First, in order to select the configuration and dimensions suitable for the specifications of the basic structure, when the Indian ridge is modeled and indicated by parameters, the ring member is a perfect circle and the connecting member is an ellipse. Each parameter is set and shown in FIG. Where N is the number of connecting members, R is the radius of the ring member, a is the long axis of the connecting member, b is the short axis of the connecting member, x is the center point of the ring member and the center point of the connecting member. , Α represents the angle occupied by the connecting member in the ring member, and β represents the angle occupied by the overlapping portion of the connecting member in the ring member.
Obtain each appropriate parameter value. First, the following conditional expression is assumed in consideration of the parameter characteristics of Indian moths.
0 <α <π (1)
0 <β <α / 2 (2)
Furthermore, when the attachment part (base end of the connecting member) between the ring member and the connecting member is considered to be equally spaced, it can be expressed as follows.
β = α / 3 (3)
N (α−β) = 2π (4)
Next, the number N of connecting members will be considered. The number of connecting members of a normal Indian bag is 7-9. As a result of actually creating up to 11 sheets while taking this into consideration, the result is that it is difficult to rotate and difficult to handle because the interference by the wire is large when the connecting member is rotated toward the center of the round circle. It was. Therefore, N <12 is set in consideration of moderate movement. Further, paying attention to the values of α and β, and considering that the values satisfy the expressions (1), (3), and (4),
N = 5 to 11 options.
In the case of N = 9, if the ring member is divided into three in the center direction, there is a merit that symmetry can be maintained. When supporting at three points or when driving is introduced, installation due to symmetry, ease of use, etc. can be considered. Therefore, N = 9 was determined for these reasons. Therefore, the values of α and β are determined as follows.
α = π / 3 = 60 [deg], β = π / 9 = 20 [deg]
Also, assuming that the diameter of the perfect circle part is 100 [mm] (radius R = 50 [mm]) and the major axis a = 70 [mm] of the semicircle part, b and x can be obtained as follows. .
b = 25 [mm] x = 43.3 [mm]
From these results, the wire frame is made of stainless steel wire with a diameter of φ2.0, and the engaging member for connecting the connecting members includes a torsion spring and a holding part for holding it (a known torsion spring holding part). 2 can be used without any particular limitation), the engagement member slightly protrudes outward when it is extended as shown in FIG. The elastic member of the present embodiment composed of the above-described use was capable of a large change of 9 times in the elastic deformation in the z-axis direction.

<ロボット部材>
上述の本実施形態の伸縮部材を用いた本実施形態のロボット部材100はいわゆるロボットアームなどとして用いることができるものであり、伸縮部材1と、伸縮部材における各基本構造体それぞれを駆動可能に取り付けられた基本構造体2のコントロール部材110と、コントロール部材に動力を伝達するように設けられた駆動部材(図示せず)とを具備する。
駆動部材は特に図示しないが、無限回転可能なサーボモータを用いている。コントロール部材110は、図6に示すように各連結用部材20の連結部分に位置し、係合部材30に沿って取り付けられ、且つ環部材10の中央部に設けられた中継部112を介して外部に連通された、連結用部材20の連結部分により形成される連結部分周の径を調整する周径調整部材114とからなる。本実施形態においては、周径調整部材114は糸状の部材からなり、糸状の部材の一端に輪116を形成して、この輪116を係合部材30に係合させて、連結部分において、直径の変更自在な円形を形成すると共に、他方を、中継部112を介して外方へ連通させている。また、周径調整材114は、線径φ0.369のナイロン糸により構成されている。4つある連結部分のいずれにもこの周径調整材116が設けられている。
また、本実施形態においては、図7に示すように、長さ調整部材120が設けられている。なお、本実施形態の説明においては説明と理解を容易にするために、周径調整材と長さ調整部材の説明とはそれぞれ分けて説明するが、実際には両者ともに一つのロボット部材に同時に配備されている。長さ調整部材120は、変形角度を自在に調整できるように一方の端の環部材に120°間隔で取り付けられた3つのワイヤーからなる。そして、周径調整部材114と同様に他方の端が外部に連通されている。
周径調整部材114及び長さ調整部材120のいずれもそれぞれの部材の端部においてサーボモータ(図示せず)に連結されて、周径調整部材114においては巻き取ることで周径を小さくして図3に示す円筒状から図4に示すヒョウタン型に変形させ、または緩めることでヒョウタン型から円筒形状ひいては図2に示す折りたたみ形状に変形させることができる。また、長さ調整部材120は全てを同様に伸ばすと図2に示す折りたたみ形状から図3に示す伸長状態へと変形させることができる。また、曲げる場合には3つの部材のうち曲げたい方向の部材を短くし且つ他の2つを長くすることで任意の角度に曲げることができる。このような1つまたは2つを任意の割合で短くし且つ2つ又は1つを任意の割合で長くする操作を行うことで任意の形態に変形させることが可能となる。
<Robot materials>
The robot member 100 of the present embodiment using the elastic member of the present embodiment described above can be used as a so-called robot arm or the like, and attaches the elastic member 1 and each basic structure in the elastic member so as to be driven. The control member 110 of the basic structure 2 is provided, and a drive member (not shown) provided to transmit power to the control member.
The drive member is not particularly shown, but a servo motor capable of infinite rotation is used. As shown in FIG. 6, the control member 110 is located at the connecting portion of each connecting member 20, is attached along the engaging member 30, and is connected via a relay portion 112 provided at the center of the ring member 10. It consists of a peripheral diameter adjusting member 114 that adjusts the diameter of the connecting portion circumference formed by the connecting portion of the connecting member 20 communicated with the outside. In the present embodiment, the peripheral diameter adjusting member 114 is formed of a thread-like member, and a ring 116 is formed at one end of the thread-like member, and the ring 116 is engaged with the engaging member 30 so that the diameter is reduced at the connecting portion. The other circular shape is formed, and the other is communicated to the outside via the relay portion 112. Further, the peripheral diameter adjusting material 114 is made of a nylon thread having a wire diameter of φ0.369. The peripheral diameter adjusting material 116 is provided in any of the four connecting portions.
In the present embodiment, a length adjusting member 120 is provided as shown in FIG. In the description of this embodiment, the description of the peripheral diameter adjusting member and the length adjusting member will be described separately for ease of explanation and understanding, but in actuality, both of them are simultaneously performed on one robot member. Has been deployed. The length adjusting member 120 is composed of three wires attached to the ring member at one end at 120 ° intervals so that the deformation angle can be freely adjusted. The other end communicates with the outside in the same manner as the peripheral diameter adjusting member 114.
Each of the peripheral diameter adjusting member 114 and the length adjusting member 120 is connected to a servo motor (not shown) at the end of each member, and the peripheral diameter adjusting member 114 is wound to reduce the peripheral diameter. The cylindrical shape shown in FIG. 3 can be deformed into the gourd type shown in FIG. 4 or loosened to be changed from the gourd type into a cylindrical shape and eventually into a folded shape shown in FIG. Further, when all the length adjusting members 120 are extended in the same manner, they can be deformed from the folded shape shown in FIG. 2 to the extended state shown in FIG. In the case of bending, it is possible to bend at an arbitrary angle by shortening the member in the direction of bending among the three members and lengthening the other two members. Such an operation can be performed by shortening one or two at an arbitrary ratio and lengthening two or one at an arbitrary ratio.

本実施形態の伸縮部材1は、ワイヤーにより形成されたフレームによる基本構造体(伸縮変形要素)を複数段連結して構成することにより、大きく伸縮し、自立することもでき、軽量・柔軟でワークスペースの広いものである。
また、本実施形態のロボット部材100は、本実施形態の伸縮部材を用いているので、ワイヤー駆動により、回転関節を必要とせずに、アームの柔軟な動作が可能であり、軽量で可搬性に優れている。
また、本発明の伸縮部材1においては、連結用部材の形状を種々変形することにより、大きな伸縮変形が可能であり、本実施形態のように連結用部材の長軸と環部材の半径との比率を調整することでヒョウタン型となり、自立が可能である。
また、とくにヒョウタン状とすることで、連結用部材の変形により柔軟にたわませることが可能となり、駆動部材の駆動力を調整して3次元方向の柔軟な動作が可能である。
The elastic member 1 of the present embodiment can be expanded and contracted greatly by being constructed by connecting a plurality of basic structures (extensible / deformable deformation elements) with a frame formed of a wire, and is lightweight and flexible. It is a wide space.
Further, since the robot member 100 of the present embodiment uses the telescopic member of the present embodiment, the arm can be flexibly operated without the need for a rotating joint by wire driving, making it lightweight and portable. Are better.
Moreover, in the expansion / contraction member 1 of the present invention, a large expansion / contraction deformation is possible by variously deforming the shape of the connecting member, and the long axis of the connecting member and the radius of the ring member as in this embodiment By adjusting the ratio, it becomes a gourd type and can be independent.
In particular, by using a gourd-like shape, it is possible to flex flexibly by deformation of the connecting member, and it is possible to flexibly operate in a three-dimensional direction by adjusting the driving force of the driving member.

なお、本発明の伸縮部材及びロボット部材はいずれも上述の実施形態に制限されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更可能である。
例えば、環部材の内径は各基本構造体で変更してもよく、例えば、図8に示すように、順に内径を大きく(小さく)することで伸長させた際に先端側が細くなるように構成することも可能である。この場合には、環部材10の径は変更するが、連結部材を含む基本構造体の外形は全ての基本構造体において同じになるように構成するのが好ましい。
また、連結用部材を交互に重ねる構造とはせずにそれぞれ独立した形態とすることもでき、この場合にはより自由度の高い伸縮動作が可能となる。
また、連結用部材の数は一方側及び他方側それぞれ9つではなく、それぞれ7つとすることもできる。

Note that both the telescopic member and the robot member of the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, the inner diameter of the ring member may be changed for each basic structure. For example, as shown in FIG. 8, the inner diameter is increased (decreased) in order so that the tip end side becomes thinner. It is also possible. In this case, although the diameter of the ring member 10 is changed, it is preferable that the outer shape of the basic structure including the connecting member is the same in all the basic structures.
Moreover, it can also be set as each independent form, without setting it as the structure which piles up a member for connection alternately, In this case, a flexible operation | movement with a higher degree of freedom is attained.
Further, the number of connecting members can be seven instead of nine on each of the one side and the other side.

Claims (7)

環部材と、該環部材に基端が取り付けられた複数の連結用部材とからなる基本構造体を複数個具備する、伸縮自在で変形自在な伸縮部材であって、
一の基本構造体は、該一つの基本構造体における各連結用部材の先端を、該一の基本構造体に隣設された他の基本構造体の各連結用部材の先端に、それぞれ係合部材を介して連結することにより、該他の上記基本構造体に連結されている、
ことを特徴とする伸縮部材。
A telescopic and deformable telescopic member comprising a plurality of basic structures comprising a ring member and a plurality of connecting members having base ends attached to the ring member,
One basic structure engages the tip of each connecting member in the one basic structure with the tip of each connecting member of another basic structure adjacent to the one basic structure. Connected to the other basic structure by connecting via a member,
An elastic member characterized by that.
上記係合部材が、弾性部材からなる請求項1記載の伸縮部材。 The elastic member according to claim 1, wherein the engaging member is made of an elastic member. 上記連結用部材は、それぞれ1本の棒状部材を折り曲げるか又は湾曲させてなり、該棒状部材の両端部を上記基端とし、該棒状部材の中央部を上記先端としてなり、一の連結用部材の基端は、それぞれ該一つの連結用部材に隣接する他の連結用部材の両基端間に位置するように配されている、請求項1又は2記載の伸縮部材。 Each of the connecting members is formed by bending or bending one bar-shaped member, with both end portions of the bar-shaped member serving as the base end and the central portion of the bar-shaped member serving as the distal end, and one connecting member The telescopic member according to claim 1, wherein the base ends of the connecting members are disposed so as to be positioned between both base ends of the other connecting members adjacent to the one connecting member. 一の連結用部材の基端と他の連結用部材の基端との間には、それぞれ弾性部材からなる緩衝部材が配されている請求項3記載の伸縮部材。 The expansion / contraction member according to claim 3, wherein a buffer member made of an elastic member is disposed between a base end of one connection member and a base end of another connection member. 複数の上記基本構造体は、上記連結用部材として、それぞれ所定方向に向けて積層した場合に、積層方向両側に位置する他の基本構造体に連結可能なように、一方側に位置する基本構造体との連結用の連結用部材と、他方側に位置する基本構造体との連結用の連結用部材とを具備しており、これらの一方側との連結用の連結用部材と他方側との連結用の連結用部材と同数である、
請求項1〜4のいずれか1項記載の伸縮部材。
A plurality of the basic structures are arranged on one side so that they can be connected to other basic structures located on both sides in the stacking direction when stacked in the predetermined direction as the connecting members. A connecting member for connecting to the body, and a connecting member for connecting to the basic structure located on the other side, the connecting member for connecting to one side and the other side, The same number of connecting members for connecting
The elastic member according to any one of claims 1 to 4.
上記係合部材は、2つの連結用部材を収容して、さらにたわむことができる程度に遊びを設けた弾性部材により形成されており、
上記緩衝部材は、連結用部材の基端間の間隔よりも長く、圧縮された状態で配されている弾性部材からなる
請求項4記載の伸縮部材。
The engaging member is formed of an elastic member that accommodates two connecting members and is provided with play to such an extent that it can bend further.
The expansion / contraction member according to claim 4, wherein the buffer member is made of an elastic member that is longer than the interval between the base ends of the connecting member and is arranged in a compressed state.
請求項1〜6のいずれかに記載の伸縮部材と、
該伸縮部材における各基本構造体それぞれを駆動可能に取り付けられた基本構造体のコントロール部材と、
該コントロール部材に動力を伝達するように設けられた駆動部材とを具備するロボット部材。

The elastic member according to any one of claims 1 to 6,
A control member of the basic structure attached to each basic structure in the stretchable member so as to be driven;
A robot member comprising a drive member provided to transmit power to the control member.

JP2016235567A 2016-12-05 2016-12-05 Telescopic member and robot member Pending JP2018091413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016235567A JP2018091413A (en) 2016-12-05 2016-12-05 Telescopic member and robot member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016235567A JP2018091413A (en) 2016-12-05 2016-12-05 Telescopic member and robot member

Publications (1)

Publication Number Publication Date
JP2018091413A true JP2018091413A (en) 2018-06-14

Family

ID=62565417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016235567A Pending JP2018091413A (en) 2016-12-05 2016-12-05 Telescopic member and robot member

Country Status (1)

Country Link
JP (1) JP2018091413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111775508A (en) * 2020-06-04 2020-10-16 天津大学 Novel multi-degree-of-freedom rigid thick plate paper-cut crawling robot
CN113580119A (en) * 2021-08-17 2021-11-02 苏州大学 Pneumatic continuum mechanism based on paper folding structure and continuum robot
CN114043469A (en) * 2021-12-13 2022-02-15 杭州电子科技大学 Free telescopic bending mechanical arm, wall crawling robot and crawling method thereof
CN114536366A (en) * 2022-03-04 2022-05-27 汕头大学 A boiler wall thickness detection arm that is used for unmanned aerial vehicle to patrol and examine that has paper folding telescopic link

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111775508A (en) * 2020-06-04 2020-10-16 天津大学 Novel multi-degree-of-freedom rigid thick plate paper-cut crawling robot
CN113580119A (en) * 2021-08-17 2021-11-02 苏州大学 Pneumatic continuum mechanism based on paper folding structure and continuum robot
CN113580119B (en) * 2021-08-17 2023-01-06 苏州大学 Pneumatic continuum mechanism based on paper folding structure and continuum robot
CN114043469A (en) * 2021-12-13 2022-02-15 杭州电子科技大学 Free telescopic bending mechanical arm, wall crawling robot and crawling method thereof
CN114536366A (en) * 2022-03-04 2022-05-27 汕头大学 A boiler wall thickness detection arm that is used for unmanned aerial vehicle to patrol and examine that has paper folding telescopic link

Similar Documents

Publication Publication Date Title
JP2018091413A (en) Telescopic member and robot member
EP2704881B1 (en) Robot having soft arms for locomotion and grip purposes
KR101357139B1 (en) Miniature Robot Hand
US9550299B2 (en) Robotic mechanism with two degrees of freedom
US5317952A (en) Tentacle-like manipulators with adjustable tension lines
JP7176710B2 (en) robot, grasping system
CN104924315B (en) Magnetorheological fluid assisted flexible palm surface self-adaptive under-actuated robot hand device
US20150066428A1 (en) Tissue-stabilization device and method for medical procedures
US10549576B2 (en) Transformable wheel
Wang et al. A dexterous tip-extending robot with variable-length shape-locking
US10967524B1 (en) System and method for conversion of rotational motion into linear actuation by mechanical stacking or unstacking of connected links
KR20090124552A (en) Arm and robot comprising the same
CN108237551B (en) Rope-driven flexible mechanical arm joint group with double-degree-of-freedom linkage
Aoki et al. Design of slim slime robot II (SSR-II) with bridle bellows
JP2002536196A (en) Robot manipulator and method
US20200070338A1 (en) Multidirectional locomotive module with omnidirectional bending
JP4998875B2 (en) Omni-directional moving mechanism
Yamane et al. Development of a flexible manipulator with changing stiffness by granular jamming
JP2020179470A (en) Joint mechanism and robot arm mechanism
JP2007216332A (en) Actuator, finger unit using it, and gripping hand
Kanada et al. Mobile continuum robot with unlimited extensible sections
WO2018008254A1 (en) Extension/retraction mechanism and four-legged robot
WO2011040137A1 (en) Movement mechanism
JP2022123192A (en) Rigidity variable deformable body and rigidity variable mechanism
Zhao et al. Soft lattice modules that behave independently and collectively

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161216