JP2018091324A - 蠕動ポンプ装置 - Google Patents

蠕動ポンプ装置 Download PDF

Info

Publication number
JP2018091324A
JP2018091324A JP2017203356A JP2017203356A JP2018091324A JP 2018091324 A JP2018091324 A JP 2018091324A JP 2017203356 A JP2017203356 A JP 2017203356A JP 2017203356 A JP2017203356 A JP 2017203356A JP 2018091324 A JP2018091324 A JP 2018091324A
Authority
JP
Japan
Prior art keywords
flow path
arc
roller
discharge
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017203356A
Other languages
English (en)
Inventor
直也 浅井
Naoya Asai
直也 浅井
彰仁 高塚
Akihito Takatsuka
彰仁 高塚
内田 圭亮
Yoshiaki Uchida
圭亮 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Elec Inc
Takasago Electric Inc
Original Assignee
Takasago Elec Inc
Takasago Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Elec Inc, Takasago Electric Inc filed Critical Takasago Elec Inc
Priority to US15/818,714 priority Critical patent/US20180149152A1/en
Priority to CN201711216224.6A priority patent/CN108119345B/zh
Publication of JP2018091324A publication Critical patent/JP2018091324A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】流体を送出する際の脈動を、低減することができる蠕動ポンプ装置を提供する。【解決手段】シート状に形成されたマイクロ流体チップ内の円弧状流路21に、複数のローラ15を押し付け、モータによりロータを回転駆動し、ロータの回転により円弧状流路21を蠕動させて流体を送るマイクロ蠕動ポンプを備えた蠕動ポンプ装置である。該円弧状流路は複数のローラの回転軌跡に沿って配置され、該ローラが回転時、円弧状流路の吐出側となる外側吐出流路25から除々に離れるように、該吐出流路が形成されたことを特徴とする。【選択図】図13

Description

本発明は、培養液、各種試薬等の微少流体を、マイクロ流体流路に流して、細胞培養、試薬スクリーニング、化学分析などを行なう際に使用する蠕動ポンプ装置に関し、特に流体を送る際の脈動を、効果的に低減することができる蠕動ポンプ装置に関する。
従来、円形のロータに複数のローラが回転自在に軸支され、ロータの各ローラの外周面を、チューブに押し付け、ロータを回転させながら、チューブ内の流体を送液する、蠕動ポンプが、下記特許文献1などで知られている。
特開2004−92537号公報 WO2015/173926A1
従来のこの種の蠕動ポンプは、モータにより回転駆動する円形のロータが、その外周部に複数のローラを回転自在に軸支し、各ローラの支軸がロータの回転軸と平行に配置され、ロータの回転時、各ローラの外周面をチューブ(可撓性導管)に、押し当て、ロータのローラを順にチューブに押し付けて回転移動させながら、液体を送液するように構成される。
然るに、この種の蠕動ポンプは、ロータに複数のローラを設け、チューブに各ローラを押し付けながら、ロータを回動させて、液体をチューブを通して送液するため、必然的に、チューブ内を流れる液体の流量に脈動が生じる。
このため、上記蠕動ポンプは、ロータの回転位置を検出するセンサを設け、各ローラが所定の回転角度で、チューブを押し潰して進む際、液体の流量の脈動が最少となるように、ロータ駆動用のモータの回転を制御するようにしている。
しかし、上記蠕動ポンプは、ロータの回転に伴い、各ローラが押し付けていたチューブから離れるとき、チューブの復元力によってチューブ内に負圧がかかり、流量が急激に減少する、という現象が生じる。このため、上記蠕動ポンプは、ローラ駆動用のモータの回転を、各ロータの回転位置に応じて、液体の脈動を抑制するように制御しているものの、やはり脈動を十分に減少させることが難しいという課題があった。
一方、本出願人は、上記特許文献2において、ロータの回転により円弧状流路を蠕動させて流路内の液体を送液する蠕動ポンプを提案した。この蠕動ポンプは、シート状のマイクロ流体チップ内にマイクロ流体流路として円弧状流路が形成され、マイクロ流体チップの円弧状流路にロータを押し付け、モータによりロータを回転駆動する。
この蠕動ポンプは、ロータの回転軸と垂直の平面上には、3個のローラが、平面上で円弧状流路に押圧接触して自在回転するように保持され、マイクロ流体チップの円弧状流路は、横断面が略山形形状となるように、マイクロ流体チップの平面から膨出して円弧状に形成されるとともに、ローラの回転軌跡に沿って配置され、ローラの反対側から円弧状流路を覆ってカバーが取り付けられ、モータによるロータの回転駆動時、ローラが、その外周面を平面上で円弧状流路に押し付けながら回転し、円弧状流路内の液体を送液するように構成される。
しかし、この蠕動ポンプは、ローラが非常に小さい荷重で円弧状流路を押し潰して送液することができるため、ロータの回転負荷を小さくしてモータを小型化することができ、さらに、カバーを外せば、マイクロ流路チップを簡便に交換することができるものの、やはり流体の脈動が発生し、脈動を減少させることが難しいという課題があった。
本発明は、上述の課題を解決するものであり、流体を送出する際の脈動を、十分に小さく低減することができる蠕動ポンプ装置を提供することを目的とする。
上記目的を達成するために、本発明の蠕動ポンプ装置は、
カバー部材を有し、内部にチップ収容部を有したベースと、
該チップ収容部内に収容され、内部に円弧状流路を形成したシート状のマイクロ流体チップと、
先端部に、複数のローラを回転自在に軸支したロータを、モータにより回転駆動可能に取り付け、該ローラを該円弧状流路に押し付けて、該ベースに固定されるマイクロ蠕動ポンプと、
を備え、
該複数のローラは、該ロータの回転軸と垂直の平面上に、等しい角度間隔をおいて該平面上で該円弧状流路に対し押圧接触して自在回転するように軸支され、
該マイクロ流体チップの該円弧状流路は、該マイクロ流体チップの表面から膨出して円弧状に形成されるとともに、該複数のローラの回転軌跡に沿って配置され、
該ローラが回転時、該円弧状流路の吐出側の吐出流路から徐々に離れるように、該吐出流路が形成されたことを特徴とする。
ここで、上記円弧状流路の吐出側の吐出流路は、円弧部の曲率半径が該ローラの回転軌跡の曲率半径より大きく、且つローラの回転軌跡の曲率半径の1.5倍より小さい曲率で曲げられて、吐出流路が形成され、吐出流路の円弧中心が、ロータの回転軸中心から円弧開口側にずれて形成される構成とすることができる。
またここで、上記吐出流路は、該マイクロ流体チップの表面から一部が膨出して円弧状に形成されるとともに、吐出端に向かって該マイクロ流体チップ内に徐々に埋め込まれて膨出部分が消失するように形成され、該ローラが、回転時、該膨出する吐出流路から徐々に離れるように構成することができる。
この発明の蠕動ポンプ装置によれば、ロータの各ローラが、マイクロ流体チップに形成された円弧状流路を、押圧して押し潰し流体を吐出する際、ローラが円弧状流路の吐出流路から徐々に離れ、押圧が徐々に終了するように動作する。
このため、ローラが吐出流路から離れる際、マイクロ流体チップの復元力により吐出流路内にかかる負圧は徐々に生じる。このため、吐出流路内の急激な流量の増大とその後の急激な減少が抑制され、これにより、マイクロ流体チップの円弧状流路から送出される流量は均一化され、流体の流量の脈動を十分に小さく低減することができる。
ここで、上記マイクロ流体チップ内の円弧状流路の吐出側の流路に、バッファ室を設け、バッファ室の吐出側の流路に狭窄部を設けることが好ましい。これによれば、吐出流路にバッファ作用を生じさせ、吐出流量の脈動をさらに一層小さく低減することができる。
またここで、上記蠕動ポンプ装置において、上記モータの回転速度を制御する制御回路を設け、制御回路には、ロータの回転位置を検出し、回転位置を示す検出信号を発生する回転センサと、ロータの回転位置と回転位置に対応した該モータの回転速度データを、予め記憶するメモリと、を設けることが好ましい。
また、制御回路は、該回転センサから送られた検出信号に基づき、該メモリに記憶されたデータから、該モータの指令回転速度を算出し、該指令回転速度に基づき該モータの回転を制御し、前記ローラが前記吐出流路を押圧して流体を押し出した後、該吐出流路を離れる行程で、該ローラの回転速度を増速し、該ローラが該吐出流路を離れた直後に、該ローラの回転速度を減速して該回転速度を通常速度に戻すように制御する構成とすることが好ましい。
これによれば、上記ローラが吐出流路を押圧し流体を押し出して吐出流路を離れる行程で、ローラの回転速度が一時的に増速されるので、ローラが吐出流路から離れた直後に生じる、マイクロ流体チップの復元力による、吐出流路内の負圧に起因した吐出流量の低下が抑制され、吐出流量の脈動を一層小さく低減することができる。
本発明の蠕動ポンプ装置によれば、流体を送出する際の脈動を、十分に小さく低減することができる。
A、Bは本発明の蠕動ポンプ装置のマイクロ蠕動ポンプの第1実施形態を示す斜視図である。 同マイクロ蠕動ポンプの平面図である。 図2のIII-III断面図である。 下方から見たマイクロ蠕動ポンプの斜視図である。 マイクロ蠕動ポンプの左側面図である。 同マイクロ蠕動ポンプの底面図である。 カバー部材及びマイクロ流体チップを外した状態の平面図である。 図7のVIII-VIII断面図である。 Aはマイクロ流体チップの下面側の斜視図、Bは平面側から見た斜視図である。 Aはマイクロ流体チップの底面図、Bはその側面図である。 図10のXI‐XI断面図である。 Aはロータの斜視図、Bは底面側から見た斜視図である。 Aはカバー部材と円弧状流路、ロータとの関係を示す平面図、BはそのB−B断面図である。 円弧状流路の曲率半径r1と外側吐出流路の曲率半径r2を示す、マイクロ流体チップの底面図である。 蠕動ポンプ装置の制御回路を含む全体構成図である。 蠕動ポンプ装置の動作を示す説明図である。 円弧状流路の流路幅とローラの軸方向の長さの関係を示す説明図である。 Aは他の実施形態の、カバー部材と円弧状流路、ロータとの関係を示す平面図、BはそのB−B断面図である。 他の実施形態の、カバー部材、円弧状流路、ロータ、吐出側流路を示す平面図である。 第2実施形態の蠕動ポンプ装置のマイクロ流体チップの底面図である。 同蠕動ポンプ装置の動作を示す説明図である。 Aはロータの回転速度制御を行ない、脈動を最少にしたときの、吐出流量変化を示すグラフ、Bは回転速度制御を行なわない場合の同蠕動ポンプ装置の流量変化を示すグラフ、Cは比較例として従来の蠕動ポンプ装置の流量変化を示すグラフである。 他の実施形態のマイクロ流体チップの平面図である。 第3実施形態の蠕動ポンプ装置のマイクロ流体チップの底面図である。 同マイクロ流体チップの底面斜視図である。 同マイクロ流体チップとロータとの関係を示す底面図である。
以下、本発明の一実施形態を図面に基づいて説明する。図1〜図17は第1実施形態の蠕動ポンプ装置を示し、この蠕動ポンプ装置は、図15に示すように、マイクロ流体チップ20を収容するベース2と、ベース2の下部に固定され、モータ4によりロータ10を駆動するマイクロ蠕動ポンプ1と、モータ4の回転速度を制御する制御回路30とを備えて構成される。
マイクロ蠕動ポンプ1は、モータ4により駆動されるロータ10がその上部に取り付けられ、ロータ10には、3個のローラ15がその水平面上に、間隔をおいて放射状に軸支され、マイクロ流体チップ20の凹部27内に形成した円弧状流路21に対し、3個のローラ15が押圧され、ロータ10及びローラ15が回転し、微小流量の液体を送液する。
マイクロ蠕動ポンプ1は、概略的には、シート状のマイクロ流体チップ20内にマイクロ流体流路として円弧状流路21が形成され、マイクロ流体チップ20の円弧状流路21にロータ10の3個のローラ15を押し付け、モータ4によりロータ10を回転駆動し、3個のローラ15の回転により円弧状流路21を蠕動させて流路内の液体を送液する。図1に示すように、モータ4は、ベース2の下部に設けた取付部3に、上向きに固定される。
ベース2は、取付部3の上部に板状部を一体に形成して構成され、板状部には、マイクロ流体チップ20を収容するホルダーとして機能させるために、略正方形のチップ収容部8が形成される。板状部の下側には取付部3が下側に向けて突設され、その取付部3にモータ4が上向きに取り付けられる。取付部3には開口部が下方に開口して形成され、その開口部に、下側からモータ4の出力軸側が挿入されて固定される。ベース2の板状部には、上面に略長方形のチップ収容部8がシート状の空間として、且つ上方を開口して形成される。チップ収容部8の中央に円形の開口部9が形成され、円形の開口部9には、図12に示すロータ10の上部が下側から挿入される。
図3に示すように、モータ4の出力軸4aは上向きに設けられ、その出力軸4aには、ばね保持部13が上から被せるように固定される。ばね保持部13上にはコイルばね14を介して、カップを伏せた形状のロータ10(図12)が、上から被せるように取り付けられる。ばね保持部13の外周には、コイルばね14が、そのフランジ部13aとロータ10との間に装着される。
ロータ10は、このコイルばね14によって、ばね保持部13つまりモータ4の出力軸4aに対し上方に付勢される。ばね保持部13の上部には、ロータ10の回転軸となる軸状の先端部13bが突設され、ばね保持部13の先端部13bは、回転軸として、ロータ10の中央に設けた異形孔に嵌合してロータ10と連結される。
ばね保持部13は、その中央軸孔に、モータ4の出力軸4aを嵌合させて出力軸4aと連結され、モータ4の回転駆動力を、ばね保持部13を介してロータ10に伝達し、ロータ10が回転するようになっている。モータ4には、例えば、減速機を内蔵した、非常に小型のDCモータ或いはステッピングモータが使用され、その出力軸4aは低速で回転駆動される。
図15に示すように、モータ4は、制御回路30によりその回転を、ロータ10の回転位置に応じて正確に制御される。そのために、モータ4には、その出力軸4aつまりロータ10の回転を検出しその検出信号を発生する回転センサ33が取り付けられる。回転センサ33は、例えばフォトインタラプタ、或いは磁気センサなどを用いて構成され、所定の回転角度位置で検出信号を出力する。回転センサ33は、原点位置とともに回転角度位置を検出するセンサ、或いはロータ10の原点位置のみを検出するセンサであってもよく、その場合、制御回路30が、モータ4の回転駆動に応じて原点位置に基づき、回転角度データを算出する。
制御回路30は、マイクロコンピュータから構成され、予め記憶されたモータ制御用プログラムに基づき、マイクロ蠕動ポンプ1の吐出流量の脈動を抑制するように、モータ4の回転速度を制御する。このために、制御回路30のメモリ31には、予め、ロータ10の回転角度と指令回転速度データが例えばテーブルデータとして記憶される。制御回路30は、モータ4の駆動時、回転センサ33から入力される検出信号(回転角度信号)に基づき、指令回転速度を決定し、指令回転速度に基づき、モータ4を駆動制御し、特に、ロータ10上の各ローラ15がマイクロ流体チップ20の外側吐出流路25に達したとき、ローラ15が外側吐出流路25から離れるタイミングで、ロータ10の回転速度を急激に加速させ、或いは徐々に低下させるように適正に速度制御し、流体吐出時の流量の増減を抑制するように制御する。
ばね保持部13に装着されるコイルばね14は、非常に小さいばね力のばねであり、ロータ10を上から押えたとき、コイルばね14のばね力により、ロータ10が弱いばね力で僅かに押し上げられ、ロータ10に上向き荷重を付与する。なお、コイルばねに代えて、板ばねなどを使用してロータ10を上方に付勢することもできる。
上記ロータ10は、図8,12に示すように、円筒部12の上部に円形の平面部11を設けて形成され、平面部11には、3個の保持穴17が形成され、上記自在回転体となるローラ15が各保持穴17内に回転自在に軸支される。平面部11には、カバー部11aが3本の取付ねじ19により3個のローラ15を覆うように取り付けられ、保持穴17内の各ローラ15は、ローラ軸15aにより回転自在に軸支して取り付けられる。平面部11に設けた3個の保持穴17は、120°の角度間隔で形成され、各保持穴17内にはローラ15が、放射状に配設されたローラ軸15aにより、回転自在に軸支される。カバー部11aには保持穴17より小径の穴が形成され、図8に示す如く、この穴から各ローラ15の上部が僅かに突き出し露出するようになっている。
ロータ10上に3個のローラ15が約120°の角度間隔で配置され、120°間隔の3個のローラ15が、マイクロ流体チップ20に約240°の角度範囲で形成された、円弧状流路21に当接して回転するため、回転時、常に2個のローラ15が円弧状流路21を押し潰した状態にあり、これにより、ポンプのシール性を良好にすることができる。
ローラ15のローラ軸15aは、図7に示すように、平面視で放射状に配置されるとともに、図8に示すように、外周部でより下方に、内周部でより上方になるように傾斜して、保持される。また、ローラ15は円錐台状に形成され、その外周面は、図8のように内周側で細く外周側で太くなるように、傾斜して形成される。これにより、3個のローラ15は、その上部外周面を、図3、8に示す如く、ロータ10の平面部11上において、平面部11の平面と水平となるように配設されている。
このように、平面部11上に放射状に配設されたローラ15が円錐台状に形成され、それらのローラ軸15aが傾斜して軸支されて各ローラ15の上部外周面が平面部11と平行となって僅かに突出するため、3個のローラ15が、その上のマイクロ流体チップ20の円弧状流路21に当接して回転したとき、内周部と外周部との周速が同じとなるようにしている。また、これら3個のローラ15の回転軌跡5(図14)の半径は、マイクロ流体チップ20の円弧状流路21の半径と同じに設定される。
さらに、図3に示す如く、ローラ15は、保持穴17の底面との間に、隙間を有して軸支され、ローラ15の外周面が保持穴17の底面に接触しない構造となっている。これにより、ロータ10の回転時、ローラ15の回転負荷を最少にして、最少の負荷でローラ15を回転させることができる。さらに、図17に示すように、円弧状流路21の流路幅h1とローラ15の軸方向の幅h2は略同一に形成される。これにより、ローラ15の軸方向の幅h2が、円弧状流路21を押し潰して転動可能で、且つ最少の幅となっているため、ローラ15が外側吐出流路25を押圧して流体を吐出させる際、徐々に流体を吐出させるようになり、吐出流量の脈動を低減することができる。
一方、ロータ10が下から挿入されるベース2内には、図3に示すように、長方形板状のチップ収容部8が形成され、チップ収容部8内にマイクロ流体チップ20が、その凹部27内の円弧状流路21を底面側として収容される。ベース2の上部には、図1に示す如く、マイクロ流体チップ20の上面、つまりローラ15の反対側から、且つ円弧状流路21の部位を上面から覆うように、板状のカバー部材6が、ベース2上に固定ねじ2aにより固定される。カバー部材6は、硬質の透明合成樹脂により成形され、内部のマイクロ流体チップ20内の状態がカバー部材6を通して観察できるようになっている。なお、カバー部材6を固定する固定ねじ2aに代えて、固定クリップなどの固定具を使用して、カバー部材6を固定することもできる。
カバー部材6は、図13に示すように、そのマイクロ流体チップ20側の内側面に、平坦部62と凹部61を有して形成される。カバー部材6の凹部61は、円弧状流路21の外側に曲がる吐出側部分、つまり外側吐出流路25に対応した部位に設けられ、図13に示す如く、各ローラ15が円弧状流路21の接触を終了して流体を吐出する部分に設けられる。ここで、外側吐出流路25は、図14に示すように、円弧状流路21がローラ15の回転軌跡5の部位から離れて外側に導出されるように、外側に湾曲した流路部分である。
カバー部材6の凹部61を除く内側面には、図13に示す如く、平坦部62が設けられている。平坦部62と凹部61の境界部分は、段差のない、なだらかな曲面63で繋がって形成されている。つまり、カバー部材6の内側面に形成した凹部61は、円弧状流路21の吐出流路に対応した位置に形成され、ローラ15による円弧状流路21の押圧が吐出流路において徐々に減少或いは消失するように、凹部61が形成される。これにより、各ローラ15が円弧状流路21の外側吐出流路25近傍に達したとき、流路への押圧力を徐々に低下させ、ローラ15が円弧状流路21の外側吐出流路25に達したときに発生しやすい吐出流量の増減を抑制することができる。
なお、流体の吐出流量の脈動を低減するためには、外側吐出流路25を覆うカバー部材6の内側面に、凹部61を設けて、外側吐出流路25へのローラ15の押圧力を低下させるように形成すればよく、吸入流路24は、脈動の低減のためには、必ずしもカバー部材6の凹部61で覆う必要はない。しかし、図18に示すように、吸入流路24を覆うカバー部材6の内側面においても、凹部61を設けて、その部分へのローラ15の押圧力を下げるようにすれば、例えばモータ4を逆回転させ、ロータ10を図16の正回転とは逆方向に回転させて、流体の送り方向を逆にするように使用したときでも、正回転時と同様に、流体の吐出流量の脈動を低減することが可能となる。
マイクロ流体チップ20は、図9,10,11に示すように、PDMS,シリコーン樹脂等の、軟質透明の合成樹脂である高分子弾性体により、長方形のシート状に形成される。マイクロ流体チップ20の底面中央に、円形の凹部27が形成され、その凹部27内に円弧状流路21が形成されている。円弧状流路21の半径は、ロータ10上の3個のローラ15の回転軌跡5の半径と同じであり、ローラ15が円弧状流路21の下面を正確に転動して押圧する。また、図17に示すように、円弧状流路21の横断方向の幅(流路幅h1)は、ローラ15の軸方向の長さh2と同一に形成される。
図10に示すように、円弧状流路21の左側に、流体を吸入する吸入流路24が、回転するローラ15が円弧状流路21の押圧を開始する部分として形成され、円弧状流路21の右側に、流体を吐出する外側吐出流路25が、回転するローラ15が円弧状流路21の押圧を終了する部分として形成される。この吸入流路24及び外側吐出流路25は、上記のように、ローラ15の回転軌跡5から円弧状流路21が離れる部分であり、円弧状流路21から緩やかに曲げられて繋がるように形成される。つまり、円弧状流路21の吸入側近傍部分である吸入流路24と、吐出側近傍部分である外側吐出流路25は、ここでは図14に示す如く、その曲率半径r2がローラ15の回転軌跡5の曲率半径r1と略同じ長さに形成され、緩やかな曲りでローラ15の回転軌跡5から離れる。
ここで、外側に曲がる外側吐出流路25の曲率半径r2は、ロータ10のローラ15における回転軌跡5の曲率半径r1の1/2より大きく、曲率半径r1の2倍より短い範囲で、緩やかな曲率で、外側吐出流路25を曲げて形成すれば、吐出流量の増減を抑制することが可能である。これにより、図16Fに示すように、ローラ15が円弧状流路21の押付を終了する外側吐出流路25では、ローラ15による外側吐出流路25の押付が徐々に終了するようにして、流体の吐出流量の増減を抑制するように形成される。外側吐出流路25の曲率半径r2を、回転軌跡5の曲率半径r1の1/2以下にした場合、流体の吐出流量の脈動を抑制する作用は少なくなる。
なお、流体の吐出流量の脈動を低減するためには、外側吐出流路25を円弧状流路21から緩やかに曲げられて繋がるように形成すればよく、吸入流路24は、脈動の低減のためには、必ずしも緩やかに曲げる必要はない。しかし、図14に示すように、吸入流路24においても、その曲率半径r2がローラ15の回転軌跡5の曲率半径r1と略同じ長さに形成し、緩やかな曲りでローラ15の回転軌跡5から離れるように延設すれば、例えばモータ4を逆回転させ、ロータ10を図16の正回転とは逆方向に回転させ、流体の送り方向を逆に反転するように使用したとき、正回転時と同様に逆回転時も流体の吐出流量の脈動を低減することが可能となる。
図13に示す如く、マイクロ流体チップ20の本体中央の底面に、円形の凹部27が形成され、この円形の凹部27内に下方からロータ10の上部が挿入され、ローラ15がその回転軌跡5上の円弧状流路21を押し潰しながら回転する。円弧状流路21の吸入側の吸入流路24及び吐出側の外側吐出流路25は、円弧状流路21から離れて凹部27の外に延設され、微少流体を流すためのチューブ状の流路が、マイクロ流体チップ20内の縁部まで形成される。さらに図9に示すように、吸入流路24の端縁部には外部接続用の接続パイプ(ステンレスパイプ等)26が接続される。
図11に示すように、マイクロ流体チップ20の円弧状流路21は、その横断面が、下側に山形形状に膨出するように底面に形成され、円弧状流路21の上面は平坦形状となり、これにより、小さい押圧荷重でも、ローラ15が、円弧状流路21を良好に潰しながら転動できるようになっている。
このような形状のマイクロ流体チップ20は、製造時、例えば、同じ厚さの2枚の高分子弾性シート(PDMS等のシート)を使用し、下側のシートを上側のシートに重ね合わせ、下側のシートを成形して円形の凹部27を底面に形成し、さらに、凹部27内に円弧状流路21を形成するように成形・接合して製作することができる。その際、凹部27内の円弧状流路21は、流路の横断面が山形形状に膨出するように、下側の薄い第2弾性シート23の部分を円弧状に撓ませながら接着して製作する。これにより、図11に示すように、マイクロ流体チップ20のポンプ部となる円弧状流路21の部分は、厚さの厚い第1弾性シート22の下に、厚さの薄い第2弾性シート23を、円弧状に撓ませながら、接合することとなる。
マイクロ流体チップ20の具体例としては、例えば、図11に示すように、厚さ約1.1mmの第1弾性シート22と第2弾性シート23とを重ね合わせて接合し製作される。その場合、ポンプ部の凹部27の深さを約0.8mmとすれば、ポンプ部の第2弾性シート23の厚さは約0.3mmとなり、円弧状流路21は、その膨出側の外側層の厚さが約0.1mmとなり、円弧状流路21内空間の高さ幅は約0.1mmとなる。
このように、第2弾性シート23の下面に、円形の凹部27を形成し、凹部27内に円弧状流路21を形成しているので、この凹部27の深さを調整することにより、僅かな押圧荷重で潰すことができる円弧状流路21を形成することができる。つまり、凹部27の深さを変えれば、円弧状流路21の外側層の厚さを調整することができるため、円弧状流路21の耐久性を良好に保ちながら、ローラ15による押し潰し時の荷重が最少となるように、円弧状流路21を製作することができる。
なお、上記実施形態では、ベース2の下側からモータ4を上向きに固定し、ベース2内のチップ収容部8内に収容したマイクロ流体チップ20の下面に、蠕動ポンプ用の円弧状流路21を設け、モータ4により回転駆動されるロータ10の上面に押圧用のローラ15を軸支したが、それらの部材を上下反転した位置と形態に配設し、マイクロ流体チップ20の上面に形成した円弧状流路に対し、その上側に配設したロータの下面のローラを押し付け、出力軸を下方に向けて配設したモータによりロータを回転駆動する構成とすることもできる。
また、上記チップ収容部8内に収容したマイクロ流体チップ20の形状は、図9に示すように、長方形としたが、正方形或いは三角形とすることもでき、また、各々のチップ部材をチップモジュールとして形成し、それらのチップモジュールを組み合わせて使用するチップモジュールとして、マイクロ流体チップ20を構成することもできる。
次に、上記構成の蠕動ポンプ装置の使用形態とその動作を説明する。この蠕動ポンプ装置は、例えば、培養液、各種試薬等の微少流体を、マイクロ流体チップ20の流路に流して、細胞培養、試薬スクリーニング、化学分析などを行なう際に使用される。
使用するマイクロ流体チップ20は、ポンプ上面の固定ねじ2aを外してカバー部材6を外し、図8のように、ベース2内のチップ収容部8上を開放し、その内部の所定位置に、マイクロ流体チップ20の凹部27の円弧状流路21を下側にして収容する。このように、カバー部材6を外すのみで、容易にマイクロ流体チップ20を簡単にセットすることができるので、培養や分析ごとにマイクロ流体チップ20を交換する場合、非常に簡単にチップの交換を行なうことができ、マイクロ流体チップの使い捨て使用を容易に行うことができる。
チップ収容部8内にマイクロ流体チップ20をセットしてカバー部材6を所定の位置に取り付け、固定ねじ2aによりカバー部材6を固定すると、マイクロ流体チップ20の凹部27内の円弧状流路21は、ロータ10の3個のローラ15に当接し、ローラ15が円弧状流路21を押圧して潰す状態となり、ロータ10はコイルばね14を圧縮して僅かに押し下げられる。このときのローラ15にかかる押圧荷重は非常に小さいが、山形形状に膨出した円弧状流路21の外側層は非常に薄く、また円弧状流路21の反押圧側は平坦形状となっているため、図3に示す如く、ローラ15が当接する円弧状流路21の外側層は低荷重で容易に潰される。
この状態で、モータ4が起動すると、ロータ10が、図16の時計方向に回転し、3個のローラ15が図16のAからHに示すように、転動しながら移動し、120°間隔の3個のローラ15は、順に円弧状流路21を押し潰しながら、回転軌跡5上を自在回転し、円弧状流路21に沿って移動する。このとき、図16のAからEでは、(2)のローラ15が円弧状流路21内の流体を押し出すように転動して外側吐出流路25から流体が送出される。
そして、(2)のローラ15が外側吐出流路25に到達すると、図16のFからGのように、(2)のローラ15が徐々に外側吐出流路25から離れる。このとき、外側吐出流路25から送出される流体は、(2)のローラ15の手前に位置する(1)のローラ15による押し出し動作により送られ、(2)のローラ15が徐々に外側吐出流路25から離れて押圧を解除するように転動して、外側吐出流路25から流体を押し出す。これは、外側吐出流路25が緩やかに曲りながら、ローラの回転軌跡5から外れる形状となっているためである。またこのとき、(2)のローラ15は、カバー部材6の凹部61により押圧力を、中間部より弱くした状態で外側吐出流路25を押圧するようになる。このため、外側吐出流路25から吐出される流体の流量は、急激に増大することはない。
また、ローラ15が外側吐出流路25から離れるタイミングで、制御回路30は、モータ4の回転速度を急激に短時間だけ加速するように制御する。(2)のローラ15が図16のGで外側吐出流路25から離れる際、押し潰された外側吐出流路25が復元するために流路内に負圧が生じ、流量が急激に減少しやすい。このとき、モータ4の回転速度が短時間だけ急激に加速され、離れたローラ15より1個上流側(反回転側)の(1)のローラ15も急激に加速される。
このため、(1)のローラ15の急速な押圧によって、吐出流量が増大し、負圧による流量の減少分が補填され、ローラ15が外側吐出流路25から離れる際の、流路内負圧に伴う流量の急激な減少は、抑制される。モータ4の回転速度は、短時間の急激な加速後、直ぐ通常速度に復帰する。
このように、(2)のローラ15が外側吐出流路25から完全に離れ、図16のHでは、(1)のローラ15により流体が外側吐出流路25から送り出され、略一定の吐出流量が維持される。
そして(1)のローラ15が外側吐出流路25に達すると、上記と同様に、(1)のローラ15が徐々に外側吐出流路25から離れ、このとき、カバー部材6の凹部61により押圧力を弱くした状態で外側吐出流路25が押圧される。また、制御回路30は、(1)のローラ15の離脱タイミングで、モータ4の回転速度を短時間急激に加速するように速度制御する。これにより、上記と同様、(1)のローラ15が外側吐出流路25から離れる際に生じる負圧に起因した、流量の減少は、(1)のローラ15の1個上流側のローラ15の加速制御により、補填され、これにより外側吐出流路25から吐出される流体の流量の急激な減少は抑制され、略一定の吐出流量が維持されることとなる。
このように、各ローラ15が円弧状流路21の押圧を終了する外側吐出流路25は、緩やかな曲率で曲げられ、且つ外側吐出流路25がカバー部材6の凹部61で覆われているので、ローラ15が円弧状流路21の外側吐出流路25から徐々に離れるとともに、ローラ15による外側吐出流路25の押圧は弱くなる。このため、ローラ15が押し潰していた外側吐出流路25から押し出す際の、流体流量の急激な増大は、抑制され、さらに、各ローラ15が円弧状流路21との接触を終了して離れるタイミングで、回転速度を短時間急激に加速するように制御され、これにより、マイクロ流体チップの円弧状流路から送出される流量の変化、特に各ローラ15が円弧状流路21から離れる際の流路の負圧に起因した、流体流量の脈動を、小さく抑制することができる。
図19は、他の実施形態の蠕動ポンプ装置を示している。この蠕動ポンプ装置は、円弧状流路21の吐出側の流路に、バッファ室41が設けられ、バッファ室41の吐出側の流路に狭窄部42が接続され、狭窄部42を通して流体を送出するように構成される。バッファ室41は閉鎖された先端を有する流路として形成され、狭窄部42としては、例えばマイクロニードルバルブが使用される。
これによれば、ローラ15が円弧状流路21を押圧して流体を吐出する際、狭窄部42により吐出側の流体圧が上昇して、流体がバッファ室41内の空気を圧縮してその内部に流入する。その後、流体が狭窄部42を通して徐々に小流量で吐出し、且つ外側吐出流路25の流体圧の上昇がバッファ室41により吸収される。このため、ローラ15が円弧状流路21の外側吐出流路25から離れる際の流体の吐出流量の変動は、バッファ室41と狭窄部42に吸収され、吐出流量の脈動は一層小さく低減される。
図20〜図23は第2実施形態の蠕動ポンプ装置を示し、図20はそのマイクロ流体チップ220を示している。なお、図20、図21、図23に示す平面図においては、マイクロ流体チップ220の平面視では現れない内部の流路等の線が、理解し易いように、実線で表示される。
マイクロ流体チップ220は、PDMS,シリコーン樹脂等の、軟質透明の合成樹脂である高分子弾性体により、長方形のシート状に形成される。マイクロ流体チップ220の本体内中央に、円形の凹部227が形成され、その凹部227内に円弧状流路221が形成されている。円弧状流路221の半径は、上記ロータ10(図7)上の3個のローラ15(図7)の回転軌跡5の半径と同じであり、ローラ15が円弧状流路221の下面を正確に転動して押圧する。また、円弧状流路221の横断方向の幅は、ローラ15の軸方向の長さと同一に形成される。
図20に示すように、円弧状流路221の左側に、流体を吸入する吸入流路224が、回転するローラ15(図7)が円弧状流路221の押圧を開始する部分として形成され、円弧状流路221の右側に、流体を吐出する吐出流路225が、回転するローラ15が円弧状流路221を押圧して流体を押し出す部分として形成される。この吐出流路225は、ローラ15の回転軌跡5から円弧状流路221が徐々に離れるように、吐出流路225の円弧部の曲率半径r3は、ローラ15の回転軌跡の曲率半径r1より大きく、且つローラ15の回転軌跡の曲率半径r1の1.5倍より小さい曲率で曲げられて、形成される。
さらに、図20に示す如く、吐出流路225の円弧中心C2は、ロータ10の回転軸中心C1から円弧開口側(図20右下の吐出側)にずれて形成される。これにより、吐出流路225が、緩やかな曲りでローラ15の回転軌跡5から離れ、ローラ15の回転時、ローラ15が吐出流路225から徐々に外れる形状となっている。
なお、緩やかな曲りでローラ15の回転軌跡5から離れる形状の吐出流路は、図23に示す如く、吐出流路229の円弧中心C3を、ロータ10の回転軸中心C1から円弧開口側の図23下側にずれて形成することもできる。吐出流路229の円弧部の曲率半径r4は、ローラ15の回転軌跡の曲率半径r1より大きく、且つローラ15の回転軌跡の曲率半径r1の1.5倍より小さい曲率で曲げられて、形成される。これにより、吐出流路229は、図20の吐出流路225と同様、緩やかな曲りでローラ15の回転軌跡5から離れ、ローラ15の回転時、ローラ15が吐出流路229から徐々に外れる形状となる。
ここで、吐出流路225の曲率半径r3または吐出流路229の曲率半径r4は、ローラ15における回転軌跡5の曲率半径r1より小さくし、或いは曲率半径r1の1.5倍以上の曲率で、吐出流路225,229を曲げて形成した場合、ローラ15の回転時、ローラ15が吐出流路225,229から徐々に外れ或いは離れるように回転することは難しい。このため、流体の吐出流量の脈動を抑制する作用は少なくなる。
図20に示す如く、円弧状流路221の吸入側の吸入流路224の端部に、マイクロ流体チップ220内で、外部接続用の接続パイプ(ステンレスパイプ等)が接続される。吐出側の吐出流路225は、凹部227からマイクロ流体チップ220の内部に入り、マイクロ流体チップ220内に設けたバッファ室222に連通接続される。
マイクロ流体チップ220内には、2個のバッファ室222,223が形成されており、バッファ室222とバッファ室223間に狭窄部226が接続され、バッファ室226の出力側に狭窄部228が接続され、狭窄部228の出力側が図示しない吐出ポートに連通接続される。バッファ室222,223の断面積は通常の流路及び狭窄部226,228より大きく形成され、吐出流体の流量変化にバッファ作用を生じさせる。
これにより、蠕動ポンプから吐出される流体は、円弧状流路221の吐出流路225から、バッファ室222、狭窄部226、バッファ室223及び狭窄部228を通して吐出され、蠕動ポンプの吐出流量の脈動は、直列接続されたバッファ室222、223と狭窄部226,228により、大きく吸収される。
マイクロ流体チップ220は、上記と同様、例えば、同じ厚さの2枚の高分子弾性シート(PDMS等のシート)を使用し、下側のシートを上側のシートに重ね合わせ、下側のシートを成形して円形の凹部227を形成し、さらに、凹部227内に円弧状流路221を形成するように成形・接合して製作することができる。その際、凹部227内の円弧状流路221は、流路の横断面が山形形状に膨出するように、下側の薄い第2弾性シートの部分を円弧状に撓ませながら接着する。
これにより、マイクロ流体チップ220のポンプ部となる円弧状流路221の部分は、厚さの厚い第1弾性シートの下に、厚さの薄い第2弾性シートを、円弧状に撓ませながら、接合することとなる。このようなマイクロ流体チップ220には、上記のように、円形の凹部227内に円弧状流路221が形成され、その吐出流路225は、ローラ15の回転軌跡5から離れ、ローラ15の回転時、ローラ15が吐出流路225または吐出流路229(図23)から徐々に外れる形状となっている。
図22Bのグラフは、上記構成のマイクロ流体チップ220を設けた蠕動ポンプについて、吐出流量の変化を測定した際のグラフを示している。このグラフBは、モータ4を一定速度で回転させて、ロータ10を駆動し、3個のローラ15が円弧状流路221を潰しながら旋回し、流体を送出する際の吐出流量の変化が示される。図22Cのグラフは、従来一般に使用されている通常の蠕動ポンプ(円弧状のチューブを複数のローラにより順に押し潰して流体を吐出する構造の蠕動ポンプ)の吐出流量の変化を示す。
図22Cのグラフから、複数のローラが円弧状の流路から離れるタイミングShで流量が増大し、その直後、急激に吐出流量が大きく低下することがわかる。この現象は、ローラがチューブを押し潰して流体を押し出し、チューブから離れるタイミングShで、潰されていたチューブがその弾性復元力により膨らみ、その際にチューブ内に負圧が生じることに起因する。
これに対し、マイクロ流体チップ220を設けた上記構成の蠕動ポンプでは、図22Bのグラフに示す如く、各ローラ15が、吐出流路225から徐々に離れるように回転し、且つ、マイクロ流体チップ220の吐出側に、2個のバッファ室222,223と狭窄部226,228が設けられるため、各ローラ15が離れるタイミングShでは、吐出流量が上下に変化するものの、その吐出流量の上下変化は減少し、吐出流量の脈動が抑制されていることが分かる。
ローラ15を有するロータ10は、モータ4により回転駆動され、モータ4は、図15に示すように、制御回路30により回転速度が制御される。制御回路30は、マイクロコンピュータから構成され、予め記憶されたモータ制御用プログラムに基づき、マイクロ蠕動ポンプ1の吐出流量の脈動を抑制するように、モータ4の回転速度を制御する。このために、制御回路30のメモリ31には、予め、ロータ10の回転角度と指令回転速度データが例えばテーブルデータとして記憶される。回転角度と指令回転速度データは、試作された蠕動ポンプの性能試験を行うことにより、計測され、脈動の低減に最適なデータがメモリ31に記憶される。
すなわち、上記構成の蠕動ポンプ装置について、吐出流量を測定しながら性能試験を行い、このとき、吐出流量が大きく低下するタイミングShで、ロータ10の回転速度を急激に上昇させ、吐出流量が略一定となるよう、モータ4の回転速度を制御する。このときのロータ10の回転角度と回転速度データが、指示回転速度データとして、メモリ31にロータ10の回転角度に対応して記憶される。
指示回転速度データを記憶した制御回路30は、モータ4の駆動時、回転センサ33から入力される検出信号(回転角度信号)に基づき、指令回転速度を決定し、指令回転速度に基づき、モータ4を駆動制御する。モータ4の回転制御では、ロータ10上の各ローラ15がマイクロ流体チップ220の吐出流路225に達したとき、ローラ15が吐出流路225から離れるタイミングShで、ロータ10の回転速度を、急激に加速させ、その後、直ぐに通常速度に戻すように回転制御が行なわれる。これにより、吐出流量の脈動は、図22Aのグラフに示すように、大きく低減される。
次に、上記構成の蠕動ポンプ装置の動作を説明する。マイクロ流体チップ220は、上記と同様、図8のように、ベース2のカバー部材6を外してチップ収容部8上を開放し、その内部の所定位置に、マイクロ流体チップ220の円弧状流路221を下側にして収容する。
チップ収容部8内にマイクロ流体チップ220をセットしてカバー部材6を所定の位置に取り付け、固定ねじ2aによりカバー部材6を固定すると、マイクロ流体チップ220の凹部227内の円弧状流路221は、ロータ10の3個のローラ15に当接して押圧する状態となり、ロータ10はコイルばね14を圧縮して僅かに押し下げられる。このときのローラ15にかかる押圧荷重は非常に小さいが、山形形状に膨出した円弧状流路221の外側層は非常に薄く、また円弧状流路221の反押圧側は平坦形状となっているため、ローラ15が当接する円弧状流路221の外側層は低荷重で容易に潰される。
この状態で、モータ4が起動すると、ロータ10が回転し、3個のローラ15が図21の時計方向に旋回する。このとき、3個のローラ15は、図21のAからHに示すように、転動しながら移動し、120°間隔の各ローラ15は、円弧状流路221を、吸入流路224から吐出流路225側に、順に押し潰しながら自在回転し、回転軌跡5上を旋回移動する。
このとき、図21のAからBでは、(2)のローラ15が円弧状流路221内の流体を押し出すように転動して吐出流路225から流体が吐出され、そして、図21のCからFでは、(2)のローラ15が押し潰す吐出流路225の幅は徐々に減少し、図21のGでは、(2)のローラ15が吐出流路225から離れていく。このとき、吐出流路225は弾性シートがその弾性力で復元し内部に負圧がかかるが、同時にロータ10の回転速度が増速するため、(2)のローラ15の上流側(反回転側)の(1)のローラ15が急速に流体を押し出すように作用する。
これにより、吐出流路225内に生じる負圧に起因した吐出流量の減少は効果的に補填され、ローラ15が吐出流路225から離れるタイミングShにおける脈動は、ロータ10の回転速度を一時的に増速制御し、直ぐに通常速度の戻すように制御することにより、大きく低減される。
図22Aは、上記構成のマイクロ流体チップ220を設けた蠕動ポンプ装置について、上記制御回路30を動作させてモータ4の回転速度を制御し、性能試験を行って、吐出流量の変化を測定した際のグラフを示している。この図22Aのグラフによれば、各ローラ15が吐出流路225から離れるタイミングShにおいて、ローラ15の回転速度を一時的に増速制御し、直ぐに回転速度を通常速度に戻すことにより、吐出流量の上下のピークが大幅に低減され、脈動が大きく低減されることがわかる。
このような吐出流量の脈動低減効果は、上記マイクロ流体チップ220の吐出流路225の形状をローラ15の回転軌跡から徐々に離す形状とし、バッファ室222,223と狭窄部226,228によりバッファ作用を生じさせるようにし、且つ制御回路30のモータ4の回転速度の制御によって、タイミングShで、ローラ15の回転速度を一時的に増速制御し、直ぐに回転速度を通常速度に戻すように制御し、これによって、吐出流量の上下の変動つまり脈動を大きく低減することができる。
すなわち、図22に示す、AのグラフとB、Cのグラフを対比した場合、図22Bのグラフでは、図20に示すように、吐出流路225の円弧中心がロータ10の回転軸中心C1から吐出側にずれて形成され、各ローラ15が吐出流路225を押し潰して離れる際、徐々に離れ、且つ吐出側に設けたバッファ室222,223及び狭窄部226,228のバッファ作用により、タイミングShにおける流量変化は低減される。さらに、本実施形態の蠕動ポンプ装置は、タイミングShで、さらに各ローラ15の回転速度が一時的に増速制御されるので、図22Aのグラフに示す如く、各ローラ15が吐出流路225から離れるタイミングShで、吐出流量の上下変化が大幅に低減され、脈動が大幅に抑制される。
このように、ローラ15が押し付けていた吐出流路225から離れる際、マイクロ流体チップ220の復元力に起因した吐出流路225内にかかる負圧は、ローラ15が吐出流路225から徐々に離れることにより、流体がバッファ室222、223、狭窄部226、228を通って送出され、さらにロータ10の回転速度が負圧のタイミングで一時的に増速制御されることによって抑制され、急激な流量の減少とその後の急激な増大は低減される。これにより、蠕動ポンプのマイクロ流体チップ220の円弧状流路221から送出される流量は均一化され、流体の流量の脈動を十分に小さく低減することができる。
図24〜図26は、蠕動ポンプ装置の第3実施形態のマイクロ流体チップ320を示している。図24〜図26では、便宜上、マイクロ流体チップ320の内側面を上にした状態を示しており、図のマイクロ流体チップ320は、図示の形態から裏返した状態で、ベース2上のチップ収容部8内に収容され、使用される。
このマイクロ流体チップ320は、上記と同様、例えば、同じ厚さの2枚の高分子弾性シート(PDMS等のシート)を使用し、下側のシートを上側のシートに重ね合わせ、図24に示す如く、下側のシートを成形して中央に、円形の凹部327を形成し、さらに、凹部327内に円弧状流路321を形成している。
その際、凹部327内の円弧状流路321は、流路の横断面が山形形状に膨出するように、下側の薄い第2弾性シートの部分を円弧状に撓ませながら接着して製作される。これにより、マイクロ流体チップ320のポンプ部となる円弧状流路321の部分は、厚さの厚い第1弾性シートの下に、厚さの薄い第2弾性シートを、円弧状に撓ませながら、接合することとなる。また、円弧状流路321の流路幅は、上記ローラ15の軸方向の幅と略同一に形成され、円弧状流路321の曲率半径は、ローラ15の回転軌跡の半径と略同一に形成される。
さらに、円弧状流路321は、その吐出側の吐出流路325が、マイクロ流体チップ320の表面から膨出して円弧状に形成されるとともに、吐出端に向かってマイクロ流体チップ320内に徐々に埋め込まれる形状となっている。つまり、円弧状流路321は、図24〜図26に示す如く、吸入側の吸入流路324が表面から膨出して円弧状に形成され、吐出流路325が、その吐出端に向かってマイクロ流体チップ320内に徐々に進入し、膨出部分が徐々に消失するようになっている。これにより、図26に示す如く、ローラ15が、回転時、吐出流路325に達した時、吐出流路325から徐々に離れるように構成される。
マイクロ流体チップ320は、上記ベース2のチップ収容部8内に収容された状態で、上記ロータ10のローラ15が図26の反時計方向に回転する。このため、図26の右側が円弧状流路321の吸入側の流路となり、その左側が円弧状流路321の吐出流路325となる。図25に示す如く、吐出流路325は、吐出端に向かってマイクロ流体チップ320内に徐々に埋め込まれ、膨出する部分が徐々に消失するように形成される。なお、図示は省略されるが、吐出流路325の吐出端の出力ポート側には、上記と同様、バッファ室222、223と狭窄部226、228(図20)がマイクロ流体チップ320内に設けられ、連通接続される。
上記マイクロ流体チップ320は、上記と同様に、ベース2内のチップ収容部8に収容され、モータ4を起動して、ロータ10を回転駆動すると、3個のローラ15が図26のように反時計方向に旋回し、マイクロ流体チップ320の円弧状流路321を押し潰しながら、吐出流路325から流体を押し出して流体を送出する。
ロータ10が回転駆動されると、3個のローラ15は、円弧状流路321を、押圧し押し潰しながら回転移動し、吸入流路324から吐出流路325側に向けて、順に流路を押圧しながら自在回転し、図26の如く回転軌跡5上を旋回移動する。
各ローラ15が円弧状流路321内の流体を押し出すように転動して吐出流路325から流体が吐出され、各ローラ15が、吐出流路325上を押し潰して転動する際、吐出端に向けてローラ15による押し潰し量が徐々に少なくなり、その結果、吐出流路325からローラ15が徐々に離れていく。
ローラ15が吐出流路325から離れるとき、マイクロ流体チップ320の弾性力で吐出流路が復元して内部に負圧がかかりやすいが、吐出流路325はその膨出する断面積が徐々に少なくなり、チップ内に進入してローラ15が吐出流路325から徐々に離れ、同時にローラ15が離れるタイミングで、ローラ15の回転速度が一時的に増速制御され、上流側(反回転側)のローラ15が急速に流体を押し出し、直ぐに通常速度に戻すように動作する。
これにより、吐出流路325内に生じる負圧に起因した吐出流量の減少は補填され、ローラ15が吐出流路325から離れるタイミングで生じる流量の脈動は、ローラ15が吐出流路325から徐々に離れ、且つローラ15の回転速度が増速制御されることにより、大きく低減される。さらに、吐出側に設けたバッファ室222、223及び狭窄部226、228(図20)によるバッファ作用によっても、吐出流量の脈動は効果的に低減することができる。このように、蠕動ポンプのマイクロ流体チップ320の円弧状流路321から送出される流量は均一化され、流体の流量の脈動を十分に小さく低減することができる。
1 マイクロ蠕動ポンプ
2 ベース
3 取付部
4 モータ
4a 出力軸
5 回転軌跡
6 カバー部材
8 チップ収容部
9 開口部
10 ロータ
11 平面部
11a カバー部
12 円筒部
13 保持部
13a フランジ部
13b 先端部
15 ローラ
15a ローラ軸
17 保持穴
20 マイクロ流体チップ
21 円弧状流路
22 第1弾性シート
23 第2弾性シート
24 吸入流路
25 外側吐出流路
26 接続パイプ
27 凹部
30 制御回路
31 メモリ
33 回転センサ
41 バッファ室
42 狭窄部
61 凹部
62 平坦部
63 曲面
220 マイクロ流体チップ
221 円弧状流路
222 バッファ室
223 バッファ室
224 吸入流路
225 吐出流路
226 狭窄部
227 凹部
228 狭窄部
229 吐出流路
320 マイクロ流体チップ
321 円弧状流路
324 吸入流路
325 吐出流路
327 凹部

Claims (9)

  1. カバー部材を有し、内部にチップ収容部を有したベースと、
    該チップ収容部内に収容され、内部に円弧状流路を形成したシート状のマイクロ流体チップと、
    先端部に、複数のローラを回転自在に軸支したロータを、モータにより回転駆動可能に取り付け、該ローラを該円弧状流路に押し付けて、該ベースに固定されるマイクロ蠕動ポンプと、
    を備え、
    該複数のローラは、該ロータの回転軸と垂直の平面上に、等しい角度間隔をおいて該平面上で該円弧状流路に対し押圧接触して自在回転するように軸支され、
    該マイクロ流体チップの該円弧状流路は、該マイクロ流体チップの表面から膨出して円弧状に形成されるとともに、該複数のローラの回転軌跡に沿って配置され、
    該ローラが回転時、該円弧状流路の吐出側の吐出流路から徐々に離れるように、該吐出流路が形成されたことを特徴とする蠕動ポンプ装置。
  2. 前記円弧状流路の吐出側の吐出流路は、円弧部の曲率半径が該ローラの回転軌跡の曲率半径より大きく、且つ該ローラの回転軌跡の曲率半径の1.5倍より小さい曲率で曲げられて、該吐出流路が形成され、該吐出流路の円弧中心は、該ロータの回転軸中心から円弧開口側にずれて形成されたことを特徴とする請求項1記載の蠕動ポンプ装置。
  3. 前記円弧状流路の吐出流路は、該マイクロ流体チップの表面から一部が膨出して円弧状に形成されるとともに、吐出端に向かって該マイクロ流体チップ内に徐々に埋め込まれて膨出部分が消失するように形成されたことを特徴とする請求項1記載の蠕動ポンプ装置。
  4. 前記マイクロ流体チップ内の円弧状流路の吐出側の流路に、バッファ室が設けられ、該バッファ室の吐出側の流路に狭窄部が設けられたことを特徴とする請求項2または3記載の蠕動ポンプ装置。
  5. 前記モータの回転速度を制御する制御回路が設けられ、該制御回路には、前記ロータの回転位置を検出し、該回転位置を示す検出信号を発生する回転センサと、該ロータの回転位置と該回転位置に対応した該モータの回転速度データを、予め記憶するメモリと、が設けられたことを特徴とする請求項2乃至4の何れかに記載の蠕動ポンプ装置。
  6. 前記制御回路は、該回転センサから送られた検出信号に基づき、該メモリに記憶されたデータから、該モータの指令回転速度を算出し、該指令回転速度に基づき該モータの回転を制御し、前記ローラが前記吐出流路を押圧して流体を押し出した後、該吐出流路を離れる行程で、該ローラの回転速度を増速し、該ローラが該吐出流路を離れた直後に、該ローラの回転速度を減速して該回転速度を通常速度に戻すように、構成されたことを特徴とする請求項5記載の蠕動ポンプ装置。
  7. カバー部材を有し、内部にチップ収容部を有したベースと、
    該チップ収容部内に収容され、内部に円弧状流路を形成したシート状のマイクロ流体チップと、
    先端部に、複数のローラを回転自在に軸支したロータを、モータにより回転駆動可能に取り付け、該ローラを該円弧状流路に押し付けて、該ベースに固定されるマイクロ蠕動ポンプと、
    を備え、
    該複数のローラは、該ロータの回転軸と垂直の平面上に、等しい角度間隔をおいて該平面上で該円弧状流路に対し押圧接触して自在回転するように軸支され、
    該マイクロ流体チップの該円弧状流路は、該マイクロ流体チップの表面から膨出して円弧状に形成されるとともに、該複数のローラの回転軌跡に沿って配置され、
    該カバー部材の内側面に凹部が形成され、該凹部は、該円弧状流路の吐出流路に対応した位置に形成され、
    該ローラによる該円弧状流路の押圧が該吐出流路において徐々に減少するように、該凹部が形成されたことを特徴とする蠕動ポンプ装置。
  8. 前記マイクロ流体チップ内の円弧状流路の吐出側の流路に、バッファ室が設けられ、該バッファ室の吐出側の流路に狭窄部が設けられたことを特徴とする請求項7記載の蠕動ポンプ装置。
  9. 前記モータの回転速度を制御する制御回路が設けられ、該制御回路には、前記ロータの回転位置を検出し、該回転位置を示す検出信号を発生する回転センサと、該ロータの回転位置と該回転位置に対応した該モータの回転速度データを、予め記憶するメモリと、が設けられたことを特徴とする請求項7または8記載の蠕動ポンプ装置。

JP2017203356A 2016-11-29 2017-10-20 蠕動ポンプ装置 Pending JP2018091324A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/818,714 US20180149152A1 (en) 2016-11-29 2017-11-20 Peristaltic pump device
CN201711216224.6A CN108119345B (zh) 2016-11-29 2017-11-28 蠕动泵装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016231702 2016-11-29
JP2016231702 2016-11-29

Publications (1)

Publication Number Publication Date
JP2018091324A true JP2018091324A (ja) 2018-06-14

Family

ID=62565830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203356A Pending JP2018091324A (ja) 2016-11-29 2017-10-20 蠕動ポンプ装置

Country Status (1)

Country Link
JP (1) JP2018091324A (ja)

Similar Documents

Publication Publication Date Title
US20180149152A1 (en) Peristaltic pump device
JP6204582B2 (ja) マイクロ蠕動ポンプ
US7950908B2 (en) Fluid transporting device of a peristalic type with tube and push pin arrangement
US7104769B2 (en) Peristaltic pump and method with parking position
US9470220B2 (en) Pump module, pump base module and pump system
JP6794199B2 (ja) チューブポンプシステムおよびその制御方法
JP6093771B2 (ja) ポンプ適合機構及びその製造方法
JP2007500522A (ja) 腹膜透析システム
JP2015510990A (ja) ピストンポンプ
US20090285705A1 (en) Tube Pump And Liquid Ejection Apparatus
WO2017035020A1 (en) Continuous sample delivery peristaltic pump
JP2018091324A (ja) 蠕動ポンプ装置
JP7080472B2 (ja) チューブポンプシステムおよびその制御方法
JP2017125479A (ja) チューブポンプ
EP3337977A1 (en) Continuous sample delivery peristaltic pump
KR101037358B1 (ko) 전동식 화장품 용기
US10844851B2 (en) Infusion device comprising a wobbling device for acting onto a pump module
JP2004218626A (ja) チュウブポンプ等に使用する圧縮方法及び開閉弁構造
JP6512822B2 (ja) チューブポンプ
JP2009115151A (ja) バルブ装置
TW202404703A (zh) 除泡裝置
JP5440380B2 (ja) ポンプ
JP2010032333A (ja) 検査装置
JP2011153557A (ja) 流体輸送装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171023