JP2018090907A - Method for manufacturing aluminum-base composite material, aluminum-base composite material manufactured thereby and aluminum-base structure including aluminum-base composite material - Google Patents

Method for manufacturing aluminum-base composite material, aluminum-base composite material manufactured thereby and aluminum-base structure including aluminum-base composite material Download PDF

Info

Publication number
JP2018090907A
JP2018090907A JP2017215334A JP2017215334A JP2018090907A JP 2018090907 A JP2018090907 A JP 2018090907A JP 2017215334 A JP2017215334 A JP 2017215334A JP 2017215334 A JP2017215334 A JP 2017215334A JP 2018090907 A JP2018090907 A JP 2018090907A
Authority
JP
Japan
Prior art keywords
aluminum
composite material
carbide
atomic
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017215334A
Other languages
Japanese (ja)
Other versions
JP6655588B2 (en
Inventor
永青 張
Yung-Ching Chang
永青 張
嘉紘 張
Chia-Hung Chang
嘉紘 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chang Chia Hung
Original Assignee
Chang Chia Hung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chang Chia Hung filed Critical Chang Chia Hung
Publication of JP2018090907A publication Critical patent/JP2018090907A/en
Application granted granted Critical
Publication of JP6655588B2 publication Critical patent/JP6655588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/68Boronising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an aluminum-base composite material, capable of manufacturing an aluminum-base metal into an aluminum-base metal composite material having preferable mechanical strength.SOLUTION: The method for manufacturing an aluminum-base composite material comprises covering the surface of aluminum-base metal with borax and heating the aluminum-base metal so as to exceed the melting point of borax. Preferably, the method for manufacturing an aluminum-base composite material including a ceramic material comprises mixing borax with the ceramic material, covering the surface of an aluminum-base metal with the mixture and heating the aluminum-base metal so as to exceed the melting point of borax. The aluminum-base composite material includes aluminum of 7-9 atomic%, sodium of 11-13 atomic% and oxygen of 79-81 atomic%. The aluminum-base structure includes: an aluminum-base base material constituted of the aluminum-base metal; and the aluminum-base composite material provided in the aluminum-base base material.SELECTED DRAWING: None

Description

本発明は、アルミニウム基複合材料の製造方法、当該方法により製造されたアルミニウム基複合材料、及びアルミニウム基複合材料を含むアルミニウム基構造に関する。   The present invention relates to a method for producing an aluminum matrix composite material, an aluminum matrix composite material produced by the method, and an aluminum matrix structure including the aluminum matrix composite material.

金属基複合材料(Metal Matrix Composite、MMC)は、金属材料を基材とし、特別なプロセスにより、種類の異なる、形態の異なるセラミック、非金属強化相を、連続する金属基材内に均一に分布させた新規複合材料である。その性能は、金属基材と強化相の利点を兼ね備え、高い比強度及び比剛性を有し、高温に耐えられ、摩耗に耐えられ、横性能及び層間せん断強度が高く、かつ高い熱的安定性、体積安定性及び材料の設計可能性を有するので、真っ先に航空宇宙産業に適用される。   Metal Matrix Composite (MMC) is based on a metal material, and with a special process, different types of ceramics with different forms and non-metallic reinforced phases are evenly distributed in a continuous metal substrate. New composite material. Its performance combines the advantages of metal base and reinforcing phase, has high specific strength and specific rigidity, can withstand high temperatures, withstands wear, has high lateral performance and interlaminar shear strength, and high thermal stability Because it has volume stability and material design possibility, it is first applied to aerospace industry.

現在、金属基複合材料は、例えば次の問題があるので、量産及び商業化が困難となる。1、金属基材が十分な流動性を有し、強化相の間の隙間に十分に浸透してそれと複合することを確保するために、高温で行う必要があり、しかしながら、高温で強化相と基材とは有害な界面反応が発生することがある。2、金属基材と強化相との間の相溶性が悪い。3、強化相が設計要求における含有量、方向で基材内に均一に分布していることを確保しなければならない。   At present, metal matrix composite materials have the following problems, for example, and are difficult to mass-produce and commercialize. 1.To ensure that the metal substrate has sufficient fluidity and sufficiently penetrates into and composites with the gaps between the reinforcing phases, it must be performed at a high temperature. A harmful interfacial reaction may occur with the substrate. 2. The compatibility between the metal substrate and the reinforcing phase is poor. 3. It must be ensured that the reinforcing phase is uniformly distributed in the substrate in the content and direction according to the design requirements.

本発明の主な目的は、アルミニウム基金属を、好ましい機械的強度を有するアルミニウム基金属複合材料に製造することができるアルミニウム基複合材料の製造方法を提供することにある。   A main object of the present invention is to provide a method for producing an aluminum-based composite material capable of producing an aluminum-based metal into an aluminum-based metal composite material having a preferable mechanical strength.

本発明の別の目的は、好ましい機械的強度を有するアルミニウム基複合材料を提供することにある。   Another object of the present invention is to provide an aluminum-based composite material having favorable mechanical strength.

本発明の別の目的は、好ましい機械的強度を有するアルミニウム基構造を提供することにある。 Another object of the present invention is to provide an aluminum-based structure having favorable mechanical strength.

本発明のアルミニウム基金属の処理方法は、ホウ砂でアルミニウム基金属の表面を覆い、アルミニウム基金属をホウ砂の融点を超えるように加熱することである。   The method for treating an aluminum base metal of the present invention is to cover the surface of the aluminum base metal with borax and to heat the aluminum base metal so as to exceed the melting point of borax.

本発明の一実施例において、アルミニウム基金属は、アルミニウム金属である。   In one embodiment of the present invention, the aluminum base metal is an aluminum metal.

本発明の一実施例において、アルミニウム基金属は、アルミ合金である。   In one embodiment of the present invention, the aluminum base metal is an aluminum alloy.

本発明の一実施例において、ホウ砂をセラミック材料と混合してから、アルミニウム基金属の表面を覆い、アルミニウム基金属を、ホウ砂の融点を超えるように加熱し、当該ホウ砂に対するセラミック材料の含有量は、0.01〜90wt%である。   In one embodiment of the present invention, borax is mixed with a ceramic material, and then the surface of the aluminum base metal is covered, and the aluminum base metal is heated to exceed the melting point of borax, Content is 0.01-90 wt%.

本発明の一実施例において、セラミック材料の硬度は、アルミニウムの硬度よりも大きい。   In one embodiment of the invention, the hardness of the ceramic material is greater than the hardness of aluminum.

本発明の一実施例において、セラミック材料は、炭化シリコン(Silicon carbide)、タングステンカーバイド(Tungsten carbide)、炭化ホウ素(Boron carbide)、炭化ジルコニウム(Zirconium carbide)、炭化チタン(Titanium carbide)、炭化ベリリウム(Beryllium carbide)、ホウ化ジルコニウム(Zirconium boride)、二ホウ化チタン(Titanium diboride)、二ホウ化レニウム(Rhenium diboride)、ホウ化アルミニウム(Aluminum boride)、酸化アルミニウム(Aluminium oxide)、窒化ホウ素(Boron nitride)、ダイヤモンド、及びこれらの組合せからなる群から選ばれる。   In one embodiment of the present invention, the ceramic material may be silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide ( Beryllium carbide), Zirconium boride, Titanium diboride, Rhenium diboride, Aluminum boride, Aluminum oxide, Boron nitride ), Diamond, and combinations thereof.

本発明のアルミニウム基複合材料は、7〜9atomic%のアルミニウムと、11〜13atomic%のナトリウムと、79〜81atomic%の酸素とを含む。   The aluminum matrix composite of the present invention contains 7-9 atomic% aluminum, 11-13 atomic% sodium, and 79-81 atomic% oxygen.

本発明の一実施例において、アルミニウム基複合材料は、8atomic%のアルミニウムと、12atomic%のナトリウムと、80atomic%の酸素とを含む。   In one embodiment of the present invention, the aluminum based composite material includes 8 atomic% aluminum, 12 atomic% sodium, and 80 atomic% oxygen.

本発明の一実施例において、アルミニウム基複合材料は、セラミック材料をさらに含み、アルミニウム基複合材料におけるアルミニウムの含有量が2〜3wt%であり、ナトリウムの含有量が3.5〜5wt%であり、酸素の含有量が26〜27wt%であり、セラミック材料の含有量が65〜68wt%である。   In one embodiment of the present invention, the aluminum-based composite material further includes a ceramic material, the aluminum content in the aluminum-based composite material is 2-3 wt%, the sodium content is 3.5-5 wt%, oxygen The content of is 26 to 27 wt%, and the content of the ceramic material is 65 to 68 wt%.

本発明の一実施例において、セラミック材料の硬度は、アルミニウムの硬度よりも大きい。   In one embodiment of the invention, the hardness of the ceramic material is greater than the hardness of aluminum.

本発明の一実施例において、セラミック材料は、炭化シリコン(Silicon carbide)、タングステンカーバイド(Tungsten carbide)、炭化ホウ素(Boron carbide)、炭化ジルコニウム(Zirconium carbide)、炭化チタン(Titanium carbide)、炭化ベリリウム(Beryllium carbide)、ホウ化ジルコニウム(Zirconium boride)、二ホウ化チタン(Titanium diboride)、二ホウ化レニウム(Rhenium diboride)、ホウ化アルミニウム(Aluminum boride)、酸化アルミニウム(Aluminium oxide)、窒化ホウ素(Boron nitride)、ダイヤモンド、及びこれらの組合せからなる群から選ばれる。   In one embodiment of the present invention, the ceramic material may be silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide ( Beryllium carbide), Zirconium boride, Titanium diboride, Rhenium diboride, Aluminum boride, Aluminum oxide, Boron nitride ), Diamond, and combinations thereof.

本発明のアルミニウム基構造は、アルミニウム基金属で構成されるアルミニウム基基材と、アルミニウム基基材内に設けられているアルミニウム基複合材料とを含む。アルミニウム基複合材料は、7〜9atomic%のアルミニウムと、11〜13atomic%のナトリウムと、79〜81atomic%の酸素とを含む。   The aluminum-based structure of the present invention includes an aluminum-based substrate composed of an aluminum-based metal and an aluminum-based composite material provided in the aluminum-based substrate. The aluminum matrix composite contains 7-9 atomic% aluminum, 11-13 atomic% sodium, and 79-81 atomic% oxygen.

本発明の一実施例において、アルミニウム基複合材料は、8atomic%のアルミニウムと、12atomic%のナトリウムと、80atomic%の酸素とを含む。   In one embodiment of the present invention, the aluminum based composite material includes 8 atomic% aluminum, 12 atomic% sodium, and 80 atomic% oxygen.

本発明の一実施例において、アルミニウム基複合材料は、セラミック材料をさらに含み、アルミニウム基複合材料におけるアルミニウムの含有量が2〜3wt%であり、ナトリウムの含有量が3.5〜5wt%であり、酸素の含有量が26〜27wt%であり、セラミック材料の含有量が65〜68wt%である。   In one embodiment of the present invention, the aluminum-based composite material further includes a ceramic material, the aluminum content in the aluminum-based composite material is 2-3 wt%, the sodium content is 3.5-5 wt%, oxygen The content of is 26 to 27 wt%, and the content of the ceramic material is 65 to 68 wt%.

本発明の一実施例において、セラミック材料の硬度は、アルミニウムの硬度よりも大きい。   In one embodiment of the invention, the hardness of the ceramic material is greater than the hardness of aluminum.

本発明の一実施例において、セラミック材料は、炭化シリコン(Silicon carbide)、タングステンカーバイド(Tungsten carbide)、炭化ホウ素(Boron carbide)、炭化ジルコニウム(Zirconium carbide)、炭化チタン(Titanium carbide)、炭化ベリリウム(Beryllium carbide)、ホウ化ジルコニウム(Zirconium boride)、二ホウ化チタン(Titanium diboride)、二ホウ化レニウム(Rhenium diboride)、ホウ化アルミニウム(Aluminum boride)、酸化アルミニウム(Aluminium oxide)、窒化ホウ素(Boron nitride)、ダイヤモンド、及びこれらの組合せからなる群から選ばれる。   In one embodiment of the present invention, the ceramic material may be silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide ( Beryllium carbide), Zirconium boride, Titanium diboride, Rhenium diboride, Aluminum boride, Aluminum oxide, Boron nitride ), Diamond, and combinations thereof.

本発明の一実施例の光学顕微鏡による写真である。It is the photograph by the optical microscope of one Example of this invention.

本発明のアルミニウム基金属の処理方法で処理されたアルミニウムの横断面の光学顕微鏡による写真である。It is the photograph by the optical microscope of the cross section of the aluminum processed with the processing method of the aluminum base metal of this invention.

本発明の一実施例の走査型電子顕微鏡による画像である。It is an image by the scanning electron microscope of one Example of this invention.

本発明の一実施例におけるアルミニウム元素の分析結果図である。It is an analysis result figure of the aluminum element in one example of the present invention.

本発明の一実施例におけるナトリウム元素の分析結果図である。It is an analysis result figure of the sodium element in one example of the present invention.

本発明の一実施例における酸素元素の分析結果図である。It is an analysis result figure of the oxygen element in one example of the present invention.

本発明の一実施例の走査型電子顕微鏡による画像である。It is an image by the scanning electron microscope of one Example of this invention.

本発明の一実施例におけるナトリウム元素の分析結果図である。It is an analysis result figure of the sodium element in one example of the present invention.

本発明の一実施例におけるマグネシウム元素の分析結果図である。It is an analysis result figure of magnesium element in one example of the present invention.

本発明の一実施例におけるアルミニウム元素の分析結果図である。It is an analysis result figure of the aluminum element in one example of the present invention.

本発明の一実施例における酸素ないし5F元素の分析結果図である。It is an analysis result figure of oxygen thru / or 5F element in one example of the present invention.

本発明の一実施例の光学顕微鏡による写真である。It is the photograph by the optical microscope of one Example of this invention.

本発明の別の実施例の光学顕微鏡による写真である。It is a photograph by the optical microscope of another Example of this invention. 本発明の別の実施例の光学顕微鏡による写真である。It is a photograph by the optical microscope of another Example of this invention. 本発明の別の実施例の光学顕微鏡による写真である。It is a photograph by the optical microscope of another Example of this invention. 本発明の別の実施例の光学顕微鏡による写真である。It is a photograph by the optical microscope of another Example of this invention. 本発明の別の実施例の光学顕微鏡による写真である。It is a photograph by the optical microscope of another Example of this invention.

本発明の単層のアルミニウム基複合材料を有するアルミニウム基構造の実施例の写真である。2 is a photograph of an example of an aluminum based structure having a single layer aluminum based composite material of the present invention.

アルミニウム金属、本発明の単層のアルミニウム基複合材料を有するアルミニウム基構造、及び本発明の4層のアルミニウム基複合材料を有するアルミニウム基構造の曲げ強度の測定結果である。It is a measurement result of the bending strength of the aluminum base structure which has an aluminum metal, the aluminum base composite material of the single layer of this invention, and the aluminum base composite material of 4 layers of this invention.

本発明のアルミニウム基複合材料の製造方法は、ホウ砂でアルミニウム基金属の表面を覆い、アルミニウム基金属をホウ砂の融点を超えるように加熱することである。そのうち、ホウ砂の融点は743℃である。そのうち、アルミニウム基金属は、アルミニウム金属、あるいはアルミ合金であってよい。   The manufacturing method of the aluminum-based composite material of the present invention is to cover the surface of the aluminum base metal with borax and to heat the aluminum base metal so as to exceed the melting point of borax. Among them, the melting point of borax is 743 ° C. Among them, the aluminum base metal may be an aluminum metal or an aluminum alloy.

より具体的には、ホウ砂を、アルミニウム、アルミ合金又は/及びこれらの組合せで構成されるアルミニウム基金属に平坦に敷き、例えば高温炉内の高温環境に置いて743℃を超えるように加熱することにより、ホウ砂とアルミニウムを反応させて強化相を形成する。反応の過程において、不活性ガス(例えばアルゴン)による保護の有無にかかわらず、反応が進行できる。換言すれば、以上の本発明のアルミニウム基金属の処理方法は、酸素が存在する環境下で行うことができる。   More specifically, borax is laid flat on an aluminum base metal composed of aluminum, an aluminum alloy, and / or a combination thereof, and heated, for example, in a high temperature environment in a high temperature furnace to exceed 743 ° C. As a result, borax and aluminum are reacted to form a strengthening phase. In the course of the reaction, the reaction can proceed with or without protection by an inert gas (eg, argon). In other words, the above-described method for treating an aluminum-based metal according to the present invention can be performed in an environment where oxygen is present.

別の角度から見れば、上記のアルミニウム基複合材料の製造方法は、実質的にアルミニウム基金属の処理方法である。図1に示す光学顕微鏡による写真(VHX-5000、Keyence社、アメリカ)において、明るい領域は本発明の方法で処理されていないアルミニウムであり、暗い領域は本発明の方法で処理されたアルミニウムである。そのうち、図面における明るい領域のうちの数字1、2、3、4で示す箇所及び暗い領域のうちの数字5、6、7、8で示す箇所について、ナノインデンター(Nanoindenters)(Nanoindenter XP、MTS社、アメリカ)を使用して、硬度及びヤング率の測定を行い、結果は下記の表1のとおりである。   Viewed from another angle, the above-described method for producing an aluminum-based composite material is substantially a method for treating an aluminum-based metal. In the photo by the optical microscope shown in FIG. 1 (VHX-5000, Keyence, USA), the bright area is aluminum that has not been treated by the method of the present invention, and the dark area is aluminum that has been treated by the method of the present invention. . Among them, the nanoindenters (Nanoindenter XP, MTS) for the locations indicated by the numbers 1, 2, 3, and 4 in the bright region and the locations indicated by the numbers 5, 6, 7, and 8 in the dark region Co., USA) was used to measure hardness and Young's modulus, and the results are shown in Table 1 below.

表1から分かるように、本発明の方法で処理されたアルミニウムの機械的強度は、明らかに本発明の方法で処理されていないアルミニウムよりも優れた。より具体的には、本発明の方法で処理されたアルミニウムでは、数字5、6、7、8で示す箇所におけるベルコヴィッチ硬度の平均値が4.59Gpa((4.13+4.33+5.01+4.89)/4=4.59)であり、ヤング率の平均値が126.98Gpa((124.4+122.2+132.8+128.5)/4=126.98)である。それに対して、本発明の方法で処理されていないアルミニウムでは、数字1、2、3、4で示す箇所におけるベルコヴィッチ硬度の平均値が0.6Gpa((0.534+0.677+0.655+0.534)/4=0.6)であり、ヤング率の平均値が75.2Gpa((71.42+79.19+73.35+76.84)/4=75.2)である。即ち、本発明の方法で処理された後に、アルミニウムのベルコヴィッチ硬度及びヤング率は、それぞれ元の値の7.65倍及び1.68倍まで向上した。   As can be seen from Table 1, the mechanical strength of the aluminum treated with the method of the present invention was clearly superior to the aluminum not treated with the method of the present invention. More specifically, in the aluminum treated by the method of the present invention, the average value of the Belkovic hardness at locations indicated by the numbers 5, 6, 7, and 8 is 4.59 Gpa ((4.13 + 4.33 + 5.01 + 4.89) / 4 = 4.59), and the average Young's modulus is 126.98 Gpa ((124.4 + 122.2 + 132.8 + 128.5) /4=126.98). On the other hand, in the case of aluminum that has not been treated by the method of the present invention, the average value of the Belkovic hardness at the locations indicated by the numbers 1, 2, 3, and 4 is 0.6 Gpa ((0.534 + 0.677 + 0.655 + 0.534) / 4 = 0.6), and the average Young's modulus is 75.2 Gpa ((71.42 + 79.19 + 73.35 + 76.84) /4=75.2). That is, after being processed by the method of the present invention, the Belkovic hardness and Young's modulus of aluminum were improved to 7.65 times and 1.68 times the original values, respectively.

5083アルミ合金についても、前記ベルコヴィッチ硬度及びヤング率の測定を行い、その結果を表2に示す。   The 5083 aluminum alloy was also measured for the Belkovic hardness and Young's modulus, and the results are shown in Table 2.

表2から分かるように、本発明の方法で処理された5083アルミ合金の機械的強度は、明らかに本発明の方法で処理されていない5083アルミ合金よりも優れた。より具体的には、本発明の方法で処理された5083アルミ合金では、数字5、6、7、8で示す箇所におけるベルコヴィッチ硬度の平均値が5.02Gpa((4.87+5.22+4.98+5.01)/4=5.02)であり、ヤング率の平均値が126.2Gpa((125.8+131.4+121.5+126.1)/4=126.2)である。それに対して、本発明の方法で処理されていないアルミニウムでは、数字1、2、3、4で示す箇所におけるベルコヴィッチ硬度の平均値が1.08Gpa((1.081+1.121+0.983+1.122)/4=1.08)であり、ヤング率の平均値が71.96Gpa((72.33+71.88+73.54+70.09)/4=71.95)である。即ち、本発明の方法で処理された後に、5083アルミ合金のベルコヴィッチ硬度及びヤング率は、それぞれ元の値の4.65倍及び1.37倍まで向上した。   As can be seen from Table 2, the mechanical strength of the 5083 aluminum alloy treated by the method of the present invention was clearly superior to the 5083 aluminum alloy not treated by the method of the present invention. More specifically, in the 5083 aluminum alloy processed by the method of the present invention, the average value of the Belkovic hardness at the locations indicated by the numbers 5, 6, 7, and 8 is 5.02 Gpa ((4.87 + 5.22 + 4.98 + 5.01). ) /4=5.02), and the average Young's modulus is 126.2 GPa ((125.8 + 131.4 + 121.5 + 126.1) /4=126.2). On the other hand, in the case of aluminum that has not been treated by the method of the present invention, the average value of the Belkovic hardness at the locations indicated by the numbers 1, 2, 3, and 4 is 1.08 Gpa ((1.081 + 1.121 + 0.983 + 1.122) / 4 = 1.08), and the average Young's modulus is 71.96 Gpa ((72.33 + 71.88 + 73.54 + 70.09) /4=71.95). That is, after being processed by the method of the present invention, the Berkovich hardness and Young's modulus of the 5083 aluminum alloy were improved to 4.65 times and 1.37 times the original values, respectively.

これによって、本発明の方法によれば、アルミニウム基金属を、高い機械的強度を有するアルミニウム基複合材料に製造することができる。あるいは、別の角度から見れば、アルミニウム基金属の機械的強度を向上させることができる。   Thus, according to the method of the present invention, the aluminum-based metal can be produced into an aluminum-based composite material having high mechanical strength. Alternatively, when viewed from another angle, the mechanical strength of the aluminum base metal can be improved.

他方、本発明の方法で処理されたアルミニウム基金属と本発明の方法で処理されていないアルミニウム基金属との間は、良好な相溶性を有する。さらには、図2に示す光学顕微鏡による写真図には、本発明の方法で処理されたアルミニウムの横断面を示す。この図から、本発明の方法で処理されたアルミニウムと本発明の方法で処理されていないアルミニウムは互いに隙間なく接続することが見られ、それらは、良好な相溶性を有し、かつ界面結合が良好であることが分かる。   On the other hand, the aluminum base metal treated by the method of the present invention and the aluminum base metal not treated by the method of the present invention have good compatibility. Furthermore, the photograph taken with the optical microscope shown in FIG. 2 shows a cross section of aluminum treated by the method of the present invention. From this figure, it can be seen that the aluminum treated by the method of the present invention and the aluminum not treated by the method of the present invention are connected to each other without gaps, and they have good compatibility and interface bonding. It turns out that it is favorable.

図3に示すような走査型電子顕微鏡による画像(Nova 230 Variable Pressure SEM (VP-SEM) (at 10 kV accelerating voltage)、FEI社、アメリカ)において、暗い領域は本発明の方法で処理されていないアルミニウムであり、明るい領域は本発明の方法で処理されたアルミニウムである。明るい領域に対して元素分析を行ったところ、図4A〜4Cに示す結果が得られた。そのうち、それぞれ図4A、4B及び4Cから、明るい領域は約8atomic%のアルミニウムと、約12atomic%のナトリウムと、約80atomic%の酸素とを含むことが分かる。さらには、本発明の方法で処理されたアルミニウム基金属は、好ましい機械的強度を有するアルミニウム基複合材料である。そのうち、アルミニウム基複合材料は、7〜9atomic%のアルミニウムと、11〜13atomic%のナトリウムと、79〜81atomic%の酸素とを含み、好ましくは、約8atomic%のアルミニウムと、約12atomic%のナトリウムと、約80atomic%の酸素とを含む。   In a scanning electron microscope image as shown in FIG. 3 (Nova 230 Variable Pressure SEM (VP-SEM) (at 10 kV accelerating voltage), FEI, USA), dark areas are not processed by the method of the present invention. The bright areas are aluminum which has been treated with the method of the present invention. When elemental analysis was performed on the bright region, the results shown in FIGS. 4A, 4B and 4C respectively, it can be seen that the bright region contains about 8 atomic% aluminum, about 12 atomic% sodium, and about 80 atomic% oxygen. Furthermore, the aluminum-based metal treated by the method of the present invention is an aluminum-based composite material having favorable mechanical strength. Among them, the aluminum-based composite material includes 7-9 atomic% aluminum, 11-13 atomic% sodium, and 79-81 atomic% oxygen, and preferably about 8 atomic% aluminum and about 12 atomic% sodium. About 80 atomic% oxygen.

図4Dに示すような走査型電子顕微鏡による画像(Nova 230 Variable Pressure SEM (VP-SEM) (at 10 kV accelerating voltage)、FEI社、アメリカ)において、暗い領域は本発明の方法で処理されていない5083アルミ合金であり、明るい領域は本発明の方法で処理された5083アルミ合金である。明るい領域に対して元素分析を行ったところ、図4E〜4Hに示すような結果が得られた。そのうち、それぞれ図4E、4F、4G及び4Hから、明るい領域は約12atomic%のナトリウムと、約8atomic%のマグネシウムと、約7atomic%のアルミニウムと、約73atomic%の酸素とを含むことが分かる。   In a scanning electron microscope image (Nova 230 Variable Pressure SEM (VP-SEM) (at 10 kV accelerating voltage), FEI, USA) as shown in FIG. 4D, dark areas are not treated with the method of the present invention. 5083 aluminum alloy, bright areas are 5083 aluminum alloy treated by the method of the present invention. When elemental analysis was performed on a bright region, results as shown in FIGS. 4E, 4F, 4G, and 4H respectively, it can be seen that the bright region contains about 12 atomic% sodium, about 8 atomic% magnesium, about 7 atomic% aluminum, and about 73 atomic% oxygen.

別の実施例において、ホウ砂をセラミック材料と混合してから、アルミニウム基金属の表面を覆い、743℃を超えるように加熱する。より具体的には、例えば硬度及びヤング率などの機械的強度をさらに向上させるために、ホウ砂に強度のより高い(例えば硬度がアルミニウムよりも高い)セラミック材料を混合することができる。そのうち、セラミック材料は、炭化シリコン(Silicon carbide)、タングステンカーバイド(Tungsten carbide)、炭化ホウ素(Boron carbide)、炭化ジルコニウム(Zirconium carbide)、炭化チタン(Titanium carbide)、炭化ベリリウム(Beryllium carbide)、ホウ化ジルコニウム(Zirconium boride)、二ホウ化チタン(Titanium diboride)、二ホウ化レニウム(Rhenium diboride)、ホウ化アルミニウム(Aluminum boride)、酸化アルミニウム(Aluminium oxide)、窒化ホウ素(Boron nitride)、ダイヤモンド、及びこれらの組合せからなる群から選ばれることが好ましい。セラミック材料の含有量は、ホウ砂に対して0.01〜90wt%であり、好ましくは、66wt%のセラミック材料:33%のホウ砂である。   In another embodiment, borax is mixed with the ceramic material and then the aluminum base metal surface is covered and heated to above 743 ° C. More specifically, in order to further improve mechanical strength such as hardness and Young's modulus, ceramic materials having higher strength (for example, hardness higher than aluminum) can be mixed with borax. Among them, ceramic materials include silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide, and boride. Zirconium boride, titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, boron nitride, diamond, and these It is preferably selected from the group consisting of: The content of the ceramic material is 0.01 to 90 wt% with respect to the borax, and preferably 66 wt% ceramic material: 33% borax.

一実施例において、ホウ砂をまず炭化シリコンと混合し、比率は、66wt%の炭化シリコン:33%のホウ砂である。その後、その混合物でアルミ合金の表面を覆い、743℃を超えるように加熱する。図5Aに示すような光学顕微鏡による写真(VHX-5000、Keyence社、アメリカ)において、明るい領域は炭化シリコンであり、暗い領域はホウ砂とアルミニウムとが反応して生成した強化相である。全体に対して機械的強度の測定を行ったところ、その硬度は9.7GPaであり、ヤング率は140GPaであることが分かる。上述したことから分かるように、本発明の方法により、例えば炭化シリコンなどの高強度のセラミック材料をアルミニウム相に侵入させることで、アルミニウム基金属を強化する効果に達することができる。別の実施例における、炭化シリコンが5083アルミ合金複合材料内にある場合、タングステンカーバイドがアルミニウム複合材料内にある場合、炭化チタンが5083アルミ合金複合材料内にある場合、酸化チタンがアルミニウム複合材料内にある場合、及び酸化チタンが5083アルミ合金複合材料内にある場合の光学顕微鏡による写真は、それぞれ図5B〜5Fに示す。   In one embodiment, borax is first mixed with silicon carbide, the ratio being 66 wt% silicon carbide: 33% borax. Thereafter, the surface of the aluminum alloy is covered with the mixture and heated to exceed 743 ° C. In a photograph taken with an optical microscope as shown in FIG. 5A (VHX-5000, Keyence, USA), the bright region is silicon carbide, and the dark region is a strengthened phase formed by the reaction of borax and aluminum. When the mechanical strength of the whole was measured, it was found that its hardness was 9.7 GPa and Young's modulus was 140 GPa. As can be seen from the above, the method of the present invention can reach the effect of strengthening the aluminum-based metal by allowing a high-strength ceramic material such as silicon carbide to enter the aluminum phase. In another embodiment, when silicon carbide is in a 5083 aluminum alloy composite, tungsten carbide is in an aluminum composite, titanium carbide is in a 5083 aluminum alloy composite, titanium oxide is in an aluminum composite. 5B to 5F, respectively, are photographs taken with an optical microscope in the case of the above and in the case where the titanium oxide is in the 5083 aluminum alloy composite material.

さらには、ホウ砂を、セラミック材料と混合してから、アルミニウム基金属の表面を覆い、743℃を超えるように加熱することで、好ましい機械的強度を有する、セラミック材料を含むアルミニウム基複合材料を得ることができる。そのうち、セラミック材料は、炭化シリコン(Silicon carbide)、タングステンカーバイド(Tungsten carbide)、炭化ホウ素(Boron carbide)、炭化ジルコニウム(Zirconium carbide)、炭化チタン(Titanium carbide)、炭化ベリリウム(Beryllium carbide)、ホウ化ジルコニウム(Zirconium boride)、二ホウ化チタン(Titanium diboride)、二ホウ化レニウム(Rhenium diboride)、ホウ化アルミニウム(Aluminum boride)、酸化アルミニウム(Aluminium oxide)、酸化チタン(Titanium oxide)、窒化ホウ素(Boron nitride)、ダイヤモンド、及びこれらの組合せからなる群から選ばれることが好ましい。セラミック材料の含有量は、ホウ砂に対して0.01〜90wt%であり、好ましくは、66wt%のセラミック材料:33%のホウ砂である。   Furthermore, the borax is mixed with the ceramic material, and then the surface of the aluminum base metal is covered and heated to exceed 743 ° C., whereby an aluminum base composite material including the ceramic material having a preferable mechanical strength is obtained. Can be obtained. Among them, ceramic materials include silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide, and boride. Zirconium boride, Titanium diboride, Rhenium diboride, Aluminum boride, Aluminum oxide, Titanium oxide, Boron nitride nitride), diamond, and combinations thereof. The content of the ceramic material is 0.01 to 90 wt% with respect to the borax, and preferably 66 wt% ceramic material: 33% borax.

前記アルミニウム基複合材料は、アルミニウム基基材に埋め込まれてアルミニウム基構造を形成することができる。より具体的には、アルミニウム基構造は、アルミニウム基金属で構成されるアルミニウム基基材と、アルミニウム基基材内に設けられているアルミニウム基複合材料とを含む。換言すれば、アルミニウム基金属で構成されるアルミニウム基基材が多層式強化構造を挟んでいる。図6に示す実施例において、アルミニウム基構造は、単層のアルミニウム基複合材料を有し、アルミニウム基複合材料が、二つのアルミニウム金属層の間に挟設されている。しかしながら、別の実施例において、アルミニウム基構造は、単層のアルミニウム基複合材料のみを有することに限らず、アルミニウム基複合材料は、二つのアルミニウム金属層の間に挟設されていることに限らない。   The aluminum matrix composite can be embedded in an aluminum matrix substrate to form an aluminum matrix structure. More specifically, the aluminum-based structure includes an aluminum-based substrate composed of an aluminum-based metal and an aluminum-based composite material provided in the aluminum-based substrate. In other words, an aluminum-based substrate composed of an aluminum-based metal sandwiches the multilayer reinforced structure. In the embodiment shown in FIG. 6, the aluminum base structure has a single layer aluminum base composite material, and the aluminum base composite material is sandwiched between two aluminum metal layers. However, in another embodiment, the aluminum-based structure is not limited to having only a single layer of aluminum-based composite material, and the aluminum-based composite material is not limited to being sandwiched between two aluminum metal layers. Absent.

アルミニウム金属(No layer)、単層のアルミニウム基複合材料を有するアルミニウム基構造(1 layer)及び4層のアルミニウム基複合材料を有するアルミニウム基構造(4 layers)に対して3点曲げ試験を行ってその曲げ強度を評価する。そのうち、曲げ試験は、曲げ強度試験機(Instron 5900、Instron社、アメリカ)を使用して行われ、条件は、押し下げ速度が3×10-4in/秒であり、両点の間隔が6mmである。結果は図7に示すとおりである。図7から分かるように、4層のアルミニウム基複合材料を有するアルミニウム基構造の曲げ強度は、明らかにアルミニウム金属の曲げ強度よりも大きく、単層のアルミニウム基複合材料を有するアルミニウム基構造の曲げ強度も、アルミニウム金属の曲げ強度よりも僅かに大きい。これによって、本発明のアルミニウム基構造は、アルミニウム金属に比べ、好ましい強度を有する。 Three-point bending test was carried out on aluminum metal (No layer), aluminum base structure (1 layer) with single layer aluminum base composite and aluminum base structure (4 layers) with 4 layers of aluminum base composite The bending strength is evaluated. Among them, the bending test is performed using a bending strength tester (Instron 5900, Instron, USA). The condition is that the push-down speed is 3 × 10 −4 in / sec and the distance between both points is 6 mm. is there. The results are as shown in FIG. As can be seen from FIG. 7, the bending strength of the aluminum-based structure with the four-layered aluminum-based composite material is clearly greater than the bending strength of the aluminum metal, and the bending strength of the aluminum-based structure with the single-layered aluminum-based composite material Is slightly larger than the bending strength of aluminum metal. As a result, the aluminum-based structure of the present invention has a preferred strength compared to aluminum metal.

前記の説明及び図面により既に本発明の好ましい実施例を開示したが、各種の追加、多くの修正及び置換が本発明の好ましい実施例に使用可能であり、添付の特許請求の範囲によって限定されるような本発明の原理の趣旨及び範囲を逸脱することがないことを理解しなければならない。本発明の属する技術の分野における通常の知識を有する者は、本発明が多くの形式、構造、配置、割合、材料、部品及びパッケージの修正に使用可能であることが分かる。したがって、本明細書に開示した実施例は、本発明を限定するためのものではなく、本発明を説明するためのものと見なされるべきである。本発明の範囲は以下の添付の特許請求の範囲によって限定されるべきであり、その合法的な均等物を含み、以上の説明に限らない。
Although the foregoing description and drawings have already disclosed preferred embodiments of the invention, various additions, many modifications and substitutions may be used in the preferred embodiments of the invention and are limited by the scope of the appended claims. It should be understood that no departure from the spirit and scope of such principles of the invention may be made. Those having ordinary skill in the art of the present invention will find that the present invention can be used to modify many forms, structures, arrangements, proportions, materials, parts and packages. Accordingly, the embodiments disclosed herein are not to be construed as limiting the invention, but are to be construed as illustrative of the invention. The scope of the present invention should be limited by the following appended claims, including their legal equivalents, and not limited to the above description.

Claims (16)

ホウ砂でアルミニウム基金属の表面を覆い、当該アルミニウム基金属を当該ホウ砂の融点を超えるように加熱するアルミニウム基複合材料の製造方法。   A method for producing an aluminum-based composite material, wherein the surface of an aluminum-based metal is covered with borax, and the aluminum-based metal is heated to exceed the melting point of the borax. 当該アルミニウム基金属は、アルミニウム金属である請求項1に記載のアルミニウム基複合材料の製造方法。   2. The method for producing an aluminum-based composite material according to claim 1, wherein the aluminum-based metal is an aluminum metal. 当該アルミニウム基金属は、アルミ合金である請求項1に記載のアルミニウム基複合材料の製造方法。   2. The method for producing an aluminum-based composite material according to claim 1, wherein the aluminum-based metal is an aluminum alloy. 当該ホウ砂をセラミック材料と混合してから、当該アルミニウム基金属の表面を覆い、当該ホウ砂の融点を超えるように加熱し、当該ホウ砂に対する当該セラミック材料の含有量は、0.01〜90wt%である請求項1に記載のアルミニウム基複合材料の製造方法。   After the borax is mixed with the ceramic material, the surface of the aluminum-based metal is covered and heated to exceed the melting point of the borax, and the content of the ceramic material with respect to the borax is 0.01 to 90 wt%. 2. The method for producing an aluminum-based composite material according to claim 1. 当該セラミック材料の硬度は、アルミニウムの硬度よりも大きい請求項4に記載のアルミニウム基複合材料の製造方法。   5. The method for producing an aluminum-based composite material according to claim 4, wherein the hardness of the ceramic material is greater than the hardness of aluminum. 当該セラミック材料は、炭化シリコン(Silicon carbide)、タングステンカーバイド(Tungsten carbide)、炭化ホウ素(Boron carbide)、炭化ジルコニウム(Zirconium carbide)、炭化チタン(Titanium carbide)、炭化ベリリウム(Beryllium carbide)、ホウ化ジルコニウム(Zirconium boride)、二ホウ化チタン(Titanium diboride)、二ホウ化レニウム(Rhenium diboride)、ホウ化アルミニウム(Aluminum boride)、酸化アルミニウム(Aluminium oxide)、窒化ホウ素(Boron nitride)、ダイヤモンド、及びこれらの組合せからなる群から選ばれる請求項4に記載のアルミニウム基複合材料の製造方法。   The ceramic materials are Silicon carbide, Tungsten carbide, Boron carbide, Zirconium carbide, Titanium carbide, Beryllium carbide, Zirconium boride (Zirconium boride), titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, boron nitride, diamond, and these 5. The method for producing an aluminum-based composite material according to claim 4, selected from the group consisting of combinations. 7〜9atomic%のアルミニウムと、
11〜13atomic%のナトリウムと、
79〜81atomic%の酸素と、
を含むアルミニウム基複合材料。
With 7-9 atomic% aluminum,
11-13 atomic% sodium,
79-81 atomic% oxygen,
Aluminum based composite material containing
8atomic%のアルミニウムと、12atomic%のナトリウムと、80atomic%の酸素とを含む請求項7に記載のアルミニウム基複合材料。   8. The aluminum-based composite material according to claim 7, comprising 8 atomic% aluminum, 12 atomic% sodium, and 80 atomic% oxygen. セラミック材料をさらに含み、
アルミニウムの含有量が2〜3wt%であり、
ナトリウムの含有量が3.5〜5wt%であり、
酸素の含有量が26〜27wt%であり、
セラミック材料の含有量が65〜68wt%である請求項7に記載のアルミニウム基複合材料。
Further comprising a ceramic material,
The aluminum content is 2-3 wt%,
The content of sodium is 3.5-5 wt%,
The oxygen content is 26-27 wt%,
8. The aluminum-based composite material according to claim 7, wherein the content of the ceramic material is 65 to 68 wt%.
当該セラミック材料の硬度は、アルミニウムの硬度よりも大きい請求項9に記載のアルミニウム基複合材料。   10. The aluminum-based composite material according to claim 9, wherein the hardness of the ceramic material is larger than the hardness of aluminum. 当該セラミック材料は、炭化シリコン(Silicon carbide)、タングステンカーバイド(Tungsten carbide)、炭化ホウ素(Boron carbide)、炭化ジルコニウム(Zirconium carbide)、炭化チタン(Titanium carbide)、炭化ベリリウム(Beryllium carbide)、ホウ化ジルコニウム(Zirconium boride)、二ホウ化チタン(Titanium diboride)、二ホウ化レニウム(Rhenium diboride)、ホウ化アルミニウム(Aluminum boride)、酸化アルミニウム(Aluminium oxide)、窒化ホウ素(Boron nitride)、ダイヤモンド、及びこれらの組合せからなる群から選ばれる請求項9に記載のアルミニウム基複合材料。   The ceramic materials are Silicon carbide, Tungsten carbide, Boron carbide, Zirconium carbide, Titanium carbide, Beryllium carbide, Zirconium boride (Zirconium boride), titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, boron nitride, diamond, and these 10. The aluminum matrix composite material according to claim 9, selected from the group consisting of combinations. アルミニウム基金属で構成されるアルミニウム基基材と、
当該アルミニウム基基材内に設けられているアルミニウム基複合材料と、を含み、
当該アルミニウム基複合材料は、
7〜9atomic%のアルミニウムと、
11〜13atomic%のナトリウムと、
79〜81atomic%の酸素とを含むアルミニウム基構造。
An aluminum-based substrate composed of an aluminum-based metal;
An aluminum-based composite material provided in the aluminum-based substrate,
The aluminum matrix composite is
With 7-9 atomic% aluminum,
11-13 atomic% sodium,
Aluminum-based structure containing 79-81 atomic% oxygen.
アルミニウム基複合材料は、8atomic%のアルミニウムと、12atomic%のナトリウムと、80atomic%の酸素とを含む請求項12に記載のアルミニウム基構造。   13. The aluminum-based structure according to claim 12, wherein the aluminum-based composite material contains 8 atomic% aluminum, 12 atomic% sodium, and 80 atomic% oxygen. アルミニウム基複合材料は、セラミック材料をさらに含み、アルミニウム基複合材料において、
アルミニウムの含有量が2〜3wt%であり、
ナトリウムの含有量が3.5〜5wt%であり、
酸素の含有量が26〜27wt%であり、
セラミック材料の含有量が65〜68wt%である請求項12に記載のアルミニウム基構造。
The aluminum matrix composite further includes a ceramic material, wherein in the aluminum matrix composite:
The aluminum content is 2-3 wt%,
The content of sodium is 3.5-5 wt%,
The oxygen content is 26-27 wt%,
13. The aluminum base structure according to claim 12, wherein the content of the ceramic material is 65 to 68 wt%.
当該セラミック材料の硬度は、アルミニウムの硬度よりも大きい請求項14に記載のアルミニウム基構造。   15. The aluminum-based structure according to claim 14, wherein the ceramic material has a hardness greater than that of aluminum. 当該セラミック材料は、炭化シリコン(Silicon carbide)、タングステンカーバイド(Tungsten carbide)、炭化ホウ素(Boron carbide)、炭化ジルコニウム(Zirconium carbide)、炭化チタン(Titanium carbide)、炭化ベリリウム(Beryllium carbide)、ホウ化ジルコニウム(Zirconium boride)、二ホウ化チタン(Titanium diboride)、二ホウ化レニウム(Rhenium diboride)、ホウ化アルミニウム(Aluminum boride)、酸化アルミニウム(Aluminium oxide)、窒化ホウ素(Boron nitride)、ダイヤモンド、及びこれらの組合せからなる群から選ばれる請求項14に記載のアルミニウム基構造。
The ceramic materials are Silicon carbide, Tungsten carbide, Boron carbide, Zirconium carbide, Titanium carbide, Beryllium carbide, Zirconium boride (Zirconium boride), titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, boron nitride, diamond, and these 15. The aluminum-based structure according to claim 14, selected from the group consisting of combinations.
JP2017215334A 2016-11-10 2017-11-08 Method of manufacturing aluminum-based composite material, aluminum-based composite material manufactured by the method, and aluminum-based structure including aluminum-based composite material Active JP6655588B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/348,367 US20180127881A1 (en) 2016-11-10 2016-11-10 Process for producing aluminum-based metal composite, aluminum-based composite obtained by using the same, and aluminum-based structure having the aluminum-based composite
US15/348,367 2016-11-10

Publications (2)

Publication Number Publication Date
JP2018090907A true JP2018090907A (en) 2018-06-14
JP6655588B2 JP6655588B2 (en) 2020-02-26

Family

ID=62065482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215334A Active JP6655588B2 (en) 2016-11-10 2017-11-08 Method of manufacturing aluminum-based composite material, aluminum-based composite material manufactured by the method, and aluminum-based structure including aluminum-based composite material

Country Status (4)

Country Link
US (1) US20180127881A1 (en)
JP (1) JP6655588B2 (en)
CN (1) CN108070822A (en)
TW (1) TWI680208B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234562A (en) * 2018-10-31 2019-01-18 江苏大学 A method of regulation prepares binary nanoparticles reinforced aluminum matrix composites in situ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254588A (en) * 1985-08-30 1987-03-10 Toyota Motor Corp Formation of composite aluminum alloy layer dispersed with ceramic particles
JPS62250162A (en) * 1986-04-22 1987-10-31 Mitsubishi Electric Corp Noble metal coating method
JPH02118083A (en) * 1988-10-27 1990-05-02 Toshiba Corp Formation of ceramic layer on surface of metallic material
JP2009299167A (en) * 2008-06-17 2009-12-24 Honda Motor Co Ltd Forming method of aluminum-based composite layer, and manufacturing method of brake rotor
EP3321383A1 (en) * 2016-11-11 2018-05-16 Yung-Ching Chang Process for producing aluminum-based metal composite, aluminum-based composite obtained by using the same, and aluminum-based structure having the aluminum-based composite

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1817888A (en) * 1927-09-15 1931-08-04 Doherty Res Co Protective coating (alborizing)
DE10314700A1 (en) * 2003-03-31 2004-10-14 Behr Gmbh & Co. Kg Method for producing surface-modified workpieces
CN1293227C (en) * 2004-10-29 2007-01-03 武汉理工大学 Quick preparation method of metal surface boronizing layer
EP2058418A1 (en) * 2007-11-09 2009-05-13 Mustafa K. Ürgen Method for boriding of coatings using high speed electrolytic process
US20150336219A1 (en) * 2011-01-13 2015-11-26 Siemens Energy, Inc. Composite materials and methods for laser manufacturing and repair of metals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254588A (en) * 1985-08-30 1987-03-10 Toyota Motor Corp Formation of composite aluminum alloy layer dispersed with ceramic particles
JPS62250162A (en) * 1986-04-22 1987-10-31 Mitsubishi Electric Corp Noble metal coating method
JPH02118083A (en) * 1988-10-27 1990-05-02 Toshiba Corp Formation of ceramic layer on surface of metallic material
JP2009299167A (en) * 2008-06-17 2009-12-24 Honda Motor Co Ltd Forming method of aluminum-based composite layer, and manufacturing method of brake rotor
EP3321383A1 (en) * 2016-11-11 2018-05-16 Yung-Ching Chang Process for producing aluminum-based metal composite, aluminum-based composite obtained by using the same, and aluminum-based structure having the aluminum-based composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234562A (en) * 2018-10-31 2019-01-18 江苏大学 A method of regulation prepares binary nanoparticles reinforced aluminum matrix composites in situ
CN109234562B (en) * 2018-10-31 2020-12-18 江苏大学 Method for preparing in-situ binary nanoparticle reinforced aluminum matrix composite material through regulation and control

Also Published As

Publication number Publication date
TW201817916A (en) 2018-05-16
TWI680208B (en) 2019-12-21
US20180127881A1 (en) 2018-05-10
JP6655588B2 (en) 2020-02-26
CN108070822A (en) 2018-05-25

Similar Documents

Publication Publication Date Title
Zhang et al. Microstructure and brazing mechanism of porous Si3N4/Invar joint brazed with Ag-Cu-Ti/Cu/Ag-Cu multi-layered filler
JP5078615B2 (en) Al2O3 ceramic tool with diffusion bonding enhancement layer
JP2528217B2 (en) Composite ceramic body
Guo et al. Microstructure and mechanical properties of C/C composite/TC4 joint with inactive AgCu filler metal
Ren et al. Influence of MoSi 2 on oxidation protective ability of TaB 2-SiC coating in oxygen-containing environments within a broad temperature range
Kütemeyer et al. Fabrication of ultra high temperature ceramic matrix composites using a reactive melt infiltration process
Potanin et al. High-temperature oxidation and plasma torch testing of MoSi2–HfB2–MoB ceramics with single-level and two-level structure
WO2012029816A1 (en) Boron carbide-containing ceramic bonded body and method for producing the bonded body
Li et al. The effect of high temperature heat-treatment on the strength of C/C to C/C–SiC joints
Wang et al. Oxidation and ablation resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites
JP2014047127A (en) Metal-carbon composite material, manufacturing method of metal-carbon composite material, and sliding member
JP2016113696A (en) Manufacturing method of aluminum matrix composite material and aluminum matrix composite material manufactured by the same
Passerone et al. Wetting of Group IV diborides by liquid metals
JP2018090907A (en) Method for manufacturing aluminum-base composite material, aluminum-base composite material manufactured thereby and aluminum-base structure including aluminum-base composite material
WO2005066098A1 (en) Composite material and method for producing same
Sung et al. Joining of reaction bonded silicon carbide using self-infiltration of residual Si present in the RBSC
JPH1059780A (en) Ceramic-base fiber composite material and its production
JP6824601B2 (en) Reinforcing fiber material and its manufacturing method, and fiber reinforced ceramic composite material
Xiong et al. V-containing-active high-temperature brazes for ceramic joining
Leon-Patiño et al. Microstructure and shear strength of sintered Cu–Al2O3 composite joined to Cu using Ag–Cu and Cu–Zn filler alloys
Xiong et al. Joining of C f/SiC Composite and TC4 Using Ag-Al-Ti Active Brazing Alloy
Chen et al. The effect of high-temperature heat-treatment on the strength of C/C–SiC joints
EP3321383B1 (en) Process for producing aluminum-based metal composite, aluminum-based composite obtained by using the same, and aluminum-based structure having the aluminum-based composite
Liu et al. Strong and tough magnesium-MAX phase composites with nacre-like lamellar and brick-and-mortar architectures
Fukai et al. Bonding and interfacial strucures of SiC–Zr joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6655588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250