JP2018090868A - Film deposition apparatus, and film deposition method - Google Patents

Film deposition apparatus, and film deposition method Download PDF

Info

Publication number
JP2018090868A
JP2018090868A JP2016236514A JP2016236514A JP2018090868A JP 2018090868 A JP2018090868 A JP 2018090868A JP 2016236514 A JP2016236514 A JP 2016236514A JP 2016236514 A JP2016236514 A JP 2016236514A JP 2018090868 A JP2018090868 A JP 2018090868A
Authority
JP
Japan
Prior art keywords
film
plasma
film formation
formation target
concave hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016236514A
Other languages
Japanese (ja)
Other versions
JP6532450B2 (en
Inventor
竜蔵 山田
Ryuzo Yamada
竜蔵 山田
太田 淳
Atsushi Ota
淳 太田
伸 浅利
Shin Asari
伸 浅利
一也 斎藤
Kazuya Saito
斎藤  一也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2016236514A priority Critical patent/JP6532450B2/en
Priority to CN201711278236.1A priority patent/CN108149226B/en
Publication of JP2018090868A publication Critical patent/JP2018090868A/en
Application granted granted Critical
Publication of JP6532450B2 publication Critical patent/JP6532450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film deposition apparatus of a simple structure and a film deposition method capable of depositing a polymer film on an inner surface of a dent of a deposition object at a high deposition rate.SOLUTION: A film deposition apparatus FM deposits a polymer film on an inner surface of a dent Wa extending in one direction on an outer surface of a deposition object W. The apparatus includes raw material monomer introducing means 11, 12, 13 to a vacuum chamber 1 where the deposition object W is arranged, plasma generation means having an electrode 2 and an AC power source E for generating plasma P in the vacuum chamber 1 by supplying AC power to the electrode 2. A raw material monomer is decomposed and polymerized by the plasma P to deposit the polymer film. The electrode 2 is composed of a cylindrical body with a bottom wall. Th axis of the dent Wa is orthogonal to the bottom wall 21 of the cylindrical body. While the deposition object W is supported by the bottom wall 21 and housed in the cylindrical body 22, the plasma P is generated to form an ion sheath layer L between the plasma P and the inner surface of the dent Wa.SELECTED DRAWING: Figure 1

Description

本発明は、成膜対象物を、立体形状を持つと共にその外表面に一方向にのびる凹孔が凹設されたものとし、この成膜対象物の少なくとも凹孔の内表面にポリマー膜を成膜する成膜装置及び成膜方法に関し、より詳しくは、例えば自動車用ヘッドライトのリフレクタ用のポリマー膜を成膜するのに適したものに関する。   The present invention assumes that a film formation object has a three-dimensional shape and has a concave hole extending in one direction on its outer surface, and a polymer film is formed on at least the inner surface of the film formation object. More particularly, the present invention relates to an apparatus suitable for forming a polymer film for a reflector of, for example, an automobile headlight.

従来、この種の成膜装置は例えば特許文献1で知られている。このものは、真空チャンバに原料モノマーを導入する原料モノマー導入手段と、電極と交流電源とを有して当該電極への交流電力の投入によりプラズマを発生させるプラズマ発生源(手段)とを備える。そして、真空チャンバ内でプラズマ発生源のプラズマ放射面から離間させ、且つ、凹孔がプラズマ放射面に対向するように成膜対象物を保持させ、原料モノマーをプラズマ放射面と成膜対象物との間に導入し、プラズマ発生源を作動させて真空チャンバ内にプラズマを形成し、プラズマで原料モノマーを分解、重合させて生成したイオン及びラジカルを付着、堆積させて凹孔の内表面にポリマー膜を成膜している。   Conventionally, this type of film forming apparatus is known, for example, from Patent Document 1. This includes a raw material monomer introducing means for introducing a raw material monomer into a vacuum chamber, and a plasma generation source (means) that has an electrode and an AC power source and generates plasma by supplying AC power to the electrode. Then, the deposition target is held so that it is separated from the plasma radiation surface of the plasma generation source in the vacuum chamber and the concave hole faces the plasma radiation surface, and the raw material monomer is separated from the plasma radiation surface and the film deposition target. The plasma source is activated to form a plasma in the vacuum chamber, the raw material monomer is decomposed and polymerized by the plasma, and ions and radicals generated and deposited are deposited and deposited on the inner surface of the concave hole. A film is formed.

然しながら、上記従来例のものでは、プラズマ発生源と成膜対象物とが離間配置されているため、プラズマで分解、重合させて生成されたイオン及びラジカルが成膜対象物の凹孔内にその全面に亘って効率良く取り込まれず、成膜レートが低く、これでは、量産性良く成膜できないという問題がある。この場合、凹孔内に効率良くイオンを取り込むために、成膜対象物にバイアス電力を投入することも考えられるが、これでは、コストアップや装置構成の複雑化を招来する。   However, in the above conventional example, since the plasma generation source and the film formation target are spaced apart from each other, ions and radicals generated by decomposition and polymerization with plasma are placed in the concave holes of the film formation target. There is a problem in that the film cannot be efficiently taken in over the entire surface and the film formation rate is low, which makes it impossible to form a film with high productivity. In this case, in order to efficiently take ions into the concave hole, it may be possible to apply a bias power to the film formation target. However, this increases the cost and complicates the apparatus configuration.

国際公開第2009/131036号International Publication No. 2009/131036

本発明は、以上の点に鑑み、成膜対象物の凹孔の内表面に高い成膜レートでポリマー膜を成膜することができる簡単な構成の成膜装置及び成膜方法を提供することをその課題とするものである。   In view of the above points, the present invention provides a film forming apparatus and a film forming method having a simple configuration capable of forming a polymer film on the inner surface of a concave hole of a film forming object at a high film forming rate. Is the issue.

上記課題を解決するために、成膜対象物を、立体形状を持つと共にその外表面に一方向にのびる凹孔が凹設されたものとし、この成膜対象物の少なくとも凹孔の内表面にポリマー膜を成膜する本発明の成膜装置は、成膜対象物が配置される真空チャンバに原料モノマーを導入する原料モノマー導入手段と、電極と交流電源とを有して当該電極への交流電力の投入により真空チャンバ内にプラズマを発生させるプラズマ発生手段とを備え、プラズマで原料モノマーを分解、重合させて生成したイオン及びラジカルを付着、堆積させてポリマー膜を成膜するものにおいて、前記電極は、有底の筒状体で構成され、凹孔の孔軸が有底筒状体の底壁に直交する姿勢にし、成膜対象物を当該底壁で支持させて筒状体内に収容した状態でプラズマを発生させると、プラズマと凹孔の内表面との間にイオンシース層が形成されるようにしたことを特徴とする。   In order to solve the above-described problems, the film formation target is assumed to have a three-dimensional shape and a concave hole extending in one direction on the outer surface thereof, and at least the inner surface of the concave hole of the film formation target. The film forming apparatus of the present invention for forming a polymer film has a raw material monomer introduction means for introducing a raw material monomer into a vacuum chamber in which a film formation target is disposed, an electrode, and an AC power source. Comprising a plasma generating means for generating plasma in a vacuum chamber by applying electric power, and depositing and depositing ions and radicals generated by decomposing and polymerizing raw material monomers with plasma to form a polymer film, The electrode is composed of a cylindrical body with a bottom, and the hole axis of the concave hole is orthogonal to the bottom wall of the bottomed cylindrical body, and the film formation target is supported by the bottom wall and accommodated in the cylindrical body. Plasma is generated in the If that is characterized in that as the ion sheath layer is formed between the inner surface of the plasma and concavity.

本発明によれば、電極に交流電力を投入すると、成膜対象物の凹孔内まで入り込むように真空チャンバ内にプラズマが発生する。このとき、例えば電極から凹孔の内表面までの距離を適宜設定することで、プラズマと凹孔の内表面との間にイオンシース層が形成されるようにしたため、特に、プラズマ中で生成したイオンが凹孔の内表面に向けて加速されて付着、堆積する。結果として、成膜対象物の凹孔の内表面にポリマー膜を成膜するときの成膜レートを上記従来例と比較して著しく向上させることができる。   According to the present invention, when AC power is applied to the electrode, plasma is generated in the vacuum chamber so as to enter the concave hole of the film formation target. At this time, for example, an ion sheath layer is formed between the plasma and the inner surface of the concave hole by appropriately setting the distance from the electrode to the inner surface of the concave hole. Ions are accelerated toward the inner surface of the concave hole to adhere and deposit. As a result, the film formation rate when forming the polymer film on the inner surface of the concave hole of the film formation target can be significantly improved as compared with the conventional example.

ところで、上記従来例のものでは、凹孔の内表面にその全面に亘って付き回り良く成膜するために、成膜中、成膜対象物を回転させている。それに対して、本発明では、プラズマと凹孔の内表面との間にイオンシース層を形成しているため、凹孔の内表面全面に亘ってイオンが引き込まれることで、成膜対象物を回転させることなしに、凹孔の内表面にポリマー膜を付き回り良く成膜でき、有利である。尚、電極から凹孔の内表面までの距離が3mm以内であれば、イオンシース層が形成され、高い成膜レートで成膜できることが確認された。   By the way, in the above-mentioned conventional example, the film formation target is rotated during film formation in order to form a film with good coverage over the entire inner surface of the concave hole. On the other hand, in the present invention, since the ion sheath layer is formed between the plasma and the inner surface of the concave hole, ions are drawn over the entire inner surface of the concave hole, so Without rotation, it is advantageous that a polymer film can be attached to the inner surface of the concave hole and formed well. It was confirmed that when the distance from the electrode to the inner surface of the concave hole was within 3 mm, an ion sheath layer was formed and film formation was possible at a high film formation rate.

また、本発明においては、前記電極が、前記底壁を構成する支持板部と、支持板部の一方の面に設置されて前記筒状体を構成する周壁部とを有し、成膜対象物をその外表面に金属膜が成膜されたものとし、成膜対象物を前記支持板部の一方の面で支持させたときに、前記周壁部が成膜対象物の金属膜で構成されるようにしてもよい。これによれば、成膜対象物自体で電極の一部が構成されるようになり、電極構造を簡素化でき、有利である。この場合、前記支持板部の一方の面に前記成膜対象物の複数個が間隔を存して設置されるように構成すれば、これら複数個の成膜対象物に対するポリマー膜の成膜を同時に行うことができ、量産性を著しく向上できる。   Further, in the present invention, the electrode includes a support plate portion that forms the bottom wall, and a peripheral wall portion that is installed on one surface of the support plate portion and forms the cylindrical body, and is a film formation target. It is assumed that a metal film is formed on the outer surface of the object, and when the object to be formed is supported by one surface of the support plate part, the peripheral wall part is configured by the metal film of the object to be formed. You may make it do. According to this, a part of electrode is comprised by the film-forming target object itself, and an electrode structure can be simplified and is advantageous. In this case, if a plurality of the film formation objects are installed on one surface of the support plate portion with a space, a polymer film is formed on the plurality of film formation objects. It can be performed at the same time, and the mass productivity can be remarkably improved.

また、上記成膜装置を用い、成膜対象物を、立体形状を持つと共にその外表面に一方向にのびる凹孔が凹設されたものとし、この成膜対象物の少なくとも凹孔の内表面にポリマー膜を成膜する本発明の成膜方法は、真空チャンバ内に成膜対象物を配置し、真空チャンバ内に原料モノマーを導入し、電極に交流電力を投入して真空チャンバ内にプラズマを発生させ、プラズマで原料モノマーを分解、重合させて形成したイオン及びラジカルを付着、堆積させてポリマー膜を成膜する工程を含み、前記ポリマー膜の成膜中、成膜対象物を電極の底壁で支持させて筒体内に収容した状態でプラズマを発生させることにより、プラズマと凹孔の内表面との間にイオンシース層を形成することを特徴とする。   Further, using the film forming apparatus, the film formation target has a three-dimensional shape and has a concave hole extending in one direction on the outer surface thereof, and at least the inner surface of the concave hole of the film formation target In the film forming method of the present invention for forming a polymer film on the substrate, an object to be formed is placed in a vacuum chamber, a raw material monomer is introduced into the vacuum chamber, AC power is applied to the electrodes, and plasma is generated in the vacuum chamber. A polymer film is formed by depositing and depositing ions and radicals formed by decomposing and polymerizing the raw material monomer with plasma and depositing, and depositing the polymer film during the formation of the polymer film. An ion sheath layer is formed between the plasma and the inner surface of the concave hole by generating plasma while being supported by the bottom wall and accommodated in the cylinder.

本発明の実施形態の成膜装置の模式図。The schematic diagram of the film-forming apparatus of embodiment of this invention. 本発明の効果を確認する実験結果を示すグラフ。The graph which shows the experimental result which confirms the effect of this invention. 電極の変形例を模式的に示す断面図。Sectional drawing which shows the modification of an electrode typically. (a)は電極の他の変形例を模式的に示す平面図であり、(b)は(a)のb−b線に沿う断面図。(A) is a top view which shows the other modification of an electrode typically, (b) is sectional drawing which follows the bb line of (a).

以下、図面を参照して、成膜対象物を、立体形状を持つと共にその外表面に一方向にのびる凹孔が凹設されたものとし、この成膜対象物の少なくとも凹孔の内表面にポリマー膜を成膜する場合を例に、本発明の実施形態の成膜装置について説明する。   Hereinafter, with reference to the drawings, it is assumed that a film formation object has a three-dimensional shape and a concave hole extending in one direction is formed in the outer surface of the film formation object. A film forming apparatus according to an embodiment of the present invention will be described by taking as an example the case of forming a polymer film.

図1を参照して、FMは、本実施形態の成膜装置である。成膜装置FMは、処理室10を画成する真空チャンバ1を備える。真空チャンバ1の側壁には、原料モノマーを貯留するタンク11に通じる、マスフローコントローラ12が介設された導入管13が接続され、処理室10に原料モノマーを所定流量で導入できるようになっている。原料モノマーとしては、例えば、ヘキサメチルジシロキサンのような公知のものを用いることができるため、ここでは詳細な説明を省略する。これらタンク11、マスフローコントローラ12及びガス管13が、特許請求の範囲の原料モノマー導入手段を構成する。また、真空チャンバ1の底壁には、公知の真空ポンプ等で構成される真空排気手段14に通じる排気管15が接続され、真空チャンバ1内を真空引きできるようになっている。   With reference to FIG. 1, FM is the film-forming apparatus of this embodiment. The film forming apparatus FM includes a vacuum chamber 1 that defines a processing chamber 10. The side wall of the vacuum chamber 1 is connected to an introduction pipe 13 having a mass flow controller 12 connected to a tank 11 for storing the raw material monomer, so that the raw material monomer can be introduced into the processing chamber 10 at a predetermined flow rate. . As a raw material monomer, since well-known things like hexamethyldisiloxane can be used, for example, detailed description is abbreviate | omitted here. The tank 11, the mass flow controller 12 and the gas pipe 13 constitute the raw material monomer introduction means in the claims. Further, an exhaust pipe 15 communicating with an evacuation means 14 constituted by a known vacuum pump or the like is connected to the bottom wall of the vacuum chamber 1 so that the inside of the vacuum chamber 1 can be evacuated.

真空チャンバ1内の底部には、有底の筒状体で構成される電極2が配置されている。電極2は、底壁を構成する支持板部21と、支持板部21の一方の面21aに立設されて前記筒状体を構成する周壁部22とを有し、成膜対象物Wの凹孔Waの孔軸が底壁21に直交する姿勢にし、成膜対象物Wを底壁で支持させて筒状体内に収容できるようになっている。支持板部21の他方の面21bには、図示省略する真空シール手段を介して真空チャンバ1の底壁を貫通する支持軸23が接続されている。支持軸23と支持板部21及び周壁部22とは導通しており、支持軸23には交流電源Eの出力が接続され、電極2に交流電力を投入できるようになっている。尚、支持板部21及び周壁部22並びに支持軸23は一体に形成されてもよい。また、電極2の外周面は、プラズマPから周壁部22を保護するための保護部材24で覆われている。保護部材24は、ポリテトラフルオロエチレン(PTFE)等の樹脂で形成することができる。導入管13から真空チャンバ1内に原料モノマーを導入し、電極2に交流電力を投入することで、真空チャンバ1内にプラズマPを発生させることができる。これら電極2及び交流電源Eは、特許請求の範囲のプラズマ発生手段を構成する。   An electrode 2 composed of a bottomed cylindrical body is disposed at the bottom of the vacuum chamber 1. The electrode 2 includes a support plate portion 21 that constitutes a bottom wall, and a peripheral wall portion 22 that stands on one surface 21a of the support plate portion 21 and constitutes the cylindrical body. The hole axis of the concave hole Wa is orthogonal to the bottom wall 21 so that the film formation target W is supported by the bottom wall and can be accommodated in the cylindrical body. A support shaft 23 penetrating the bottom wall of the vacuum chamber 1 is connected to the other surface 21b of the support plate portion 21 through vacuum seal means (not shown). The support shaft 23 is electrically connected to the support plate portion 21 and the peripheral wall portion 22, and the output of the AC power source E is connected to the support shaft 23 so that AC power can be supplied to the electrode 2. In addition, the support plate part 21, the peripheral wall part 22, and the support shaft 23 may be integrally formed. The outer peripheral surface of the electrode 2 is covered with a protective member 24 for protecting the peripheral wall portion 22 from the plasma P. The protective member 24 can be formed of a resin such as polytetrafluoroethylene (PTFE). By introducing the raw material monomer into the vacuum chamber 1 from the introduction tube 13 and supplying AC power to the electrode 2, the plasma P can be generated in the vacuum chamber 1. The electrode 2 and the AC power supply E constitute plasma generating means in the scope of claims.

上記成膜装置FMは、公知のマイクロコンピュータやシーケンサ等を備えた制御手段(図示省略)を有し、制御手段により交流電源Eの稼働、マスフローコントローラ12の稼働や真空排気手段14の稼働等を統括管理するようになっている。以下、上記成膜装置FMを用いて、処理対象物Wを樹脂製のものとし、原料モノマーとしてヘキサメチルジシロキサンを用い、処理対象物Wの凹孔Waの内表面にポリマー膜を成膜する場合を例に、本発明の成膜方法について説明する。   The film forming apparatus FM has a control means (not shown) provided with a known microcomputer, sequencer, etc., and the control means operates the AC power source E, the mass flow controller 12 and the vacuum exhaust means 14. It has come to be managed in an integrated manner. Hereinafter, using the film forming apparatus FM, the processing object W is made of resin, hexamethyldisiloxane is used as a raw material monomer, and a polymer film is formed on the inner surface of the concave hole Wa of the processing object W. Taking the case as an example, the film forming method of the present invention will be described.

先ず、真空チャンバ1内の電極2に成膜対象物Wをセットする。ここで、成膜対象物Wの凹孔の孔軸が支持板部21に直交する姿勢とし、成膜対象物Wを支持板部21で支持させて周壁部22で構成される筒状体内に収容する。   First, the film formation target W is set on the electrode 2 in the vacuum chamber 1. Here, the hole axis of the concave hole of the film formation target W is set to a posture orthogonal to the support plate part 21, and the film formation target object W is supported by the support plate part 21 and is formed in the cylindrical body constituted by the peripheral wall part 22. Accommodate.

次に、真空排気手段14を作動させて真空チャンバ1内(処理室10)を真空引きする。真空チャンバ1内の圧力が所定圧力に達すると、導入管13から真空チャンバ1内にヘキサメチルジシロキサンを所定流量で導入し(このとき、真空チャンバ1内の圧力が0.1〜200Paの範囲となる)、電極2に交流電力(例えば、5〜300W)を投入することでプラズマPが発生する。プラズマPによりヘキサメチルジシロキサンが分解、重合されてイオン及びラジカルが生成する。   Next, the vacuum exhaust means 14 is operated to evacuate the inside of the vacuum chamber 1 (processing chamber 10). When the pressure in the vacuum chamber 1 reaches a predetermined pressure, hexamethyldisiloxane is introduced into the vacuum chamber 1 from the introduction pipe 13 at a predetermined flow rate (at this time, the pressure in the vacuum chamber 1 is in the range of 0.1 to 200 Pa). The plasma P is generated by applying AC power (for example, 5 to 300 W) to the electrode 2. Hexamethyldisiloxane is decomposed and polymerized by the plasma P to generate ions and radicals.

このとき、成膜対象物Wの凹孔Wa内まで入り込むようにプラズマPが発生する。例えば、電極2から凹孔Waの内表面までの距離を適宜設定することで、プラズマPと成膜対象物Wの凹孔Waの内表面との間にイオンシース層Lが形成される。これにより、特に、プラズマP中で生成したイオンが凹孔Waの内表面に向けて加速されて付着、堆積する。結果として、成膜対象物Wの凹孔Waの内表面にポリマー膜を成膜するときの成膜レートを上記従来例と比較して著しく向上させることができる。また、本発明では、均一な成膜レートが得られるような分布を持つイオンシース層Lを形成しているため、凹孔Waの内表面全面に亘ってイオンが引き込まれることで、成膜対象物を回転させることなしに、凹孔Waの内表面にポリマー膜を付き回り良く成膜でき、有利である。尚、電極2から凹孔Waの周壁部22の内表面までの距離が3mm以下であれば、イオンシース層Lが形成され、高い成膜レートで成膜できることが確認された。   At this time, the plasma P is generated so as to enter the concave hole Wa of the film formation target W. For example, the ion sheath layer L is formed between the plasma P and the inner surface of the concave hole Wa of the film formation target W by appropriately setting the distance from the electrode 2 to the inner surface of the concave hole Wa. Thereby, in particular, ions generated in the plasma P are accelerated toward the inner surface of the concave hole Wa, and are attached and deposited. As a result, the film formation rate when forming a polymer film on the inner surface of the concave hole Wa of the film formation target W can be significantly improved as compared with the conventional example. Further, in the present invention, since the ion sheath layer L having a distribution capable of obtaining a uniform film formation rate is formed, ions are drawn over the entire inner surface of the concave hole Wa, so that a film formation target is obtained. Without rotating the object, it is advantageous that the polymer film can be attached to the inner surface of the concave hole Wa and formed well. In addition, if the distance from the electrode 2 to the inner surface of the peripheral wall part 22 of the concave hole Wa is 3 mm or less, it was confirmed that the ion sheath layer L was formed and the film could be formed at a high film formation rate.

次に、上記効果を確認するために、上記成膜装置FMを用いて次の実験を行った。本実験では、処理対象物Wとして開口部がΦ72.5mm、底部がΦ51.8mm、凹孔Waの深さが83mmである樹脂製のカップとし、真空チャンバ1内にヘキサメチルジシロキサンを導入し(このときの真空チャンバ1内の圧力は6Pa)、電極2に13.56MHzの高周波電力を50W投入してプラズマPを発生させ、30秒間成膜した。成膜終了後、処理対象物Wを取り出し、その凹孔Waの開口部から底部に亘る内表面に成膜されたポリマー膜の膜厚をエリプソメータにより測定し、その測定結果から求めた成膜レートを図2に示す。尚、図2の横軸は、凹孔Waの開口部からの深さ位置を表したものであり、開口部の位置を0.0、底部の位置を1.0として数値化したもので示している。本実験によれば、1点を除いて2000Å/min以上の高い成膜レートでポリマー膜を成膜できることが確認され、また、成膜対象物Wの凹孔Waの内表面全面に亘って付き回り良くポリマー膜を成膜できることが確認された。これより、プラズマと凹孔の内表面との間に、成膜レートが均一になるような分布を持つイオンシース層Lを形成できることが判った。   Next, in order to confirm the above effect, the following experiment was performed using the film forming apparatus FM. In this experiment, the processing object W is a resin cup having an opening of Φ72.5 mm, a bottom of Φ51.8 mm, and a depth of the concave hole Wa of 83 mm, and hexamethyldisiloxane is introduced into the vacuum chamber 1. (At this time, the pressure in the vacuum chamber 1 was 6 Pa), 50 W of high frequency power of 13.56 MHz was applied to the electrode 2 to generate plasma P, and a film was formed for 30 seconds. After completion of the film formation, the processing object W is taken out, the film thickness of the polymer film formed on the inner surface from the opening to the bottom of the concave hole Wa is measured with an ellipsometer, and the film formation rate obtained from the measurement result Is shown in FIG. The horizontal axis in FIG. 2 represents the depth position from the opening of the concave hole Wa, and is expressed numerically with the position of the opening being 0.0 and the position of the bottom being 1.0. ing. According to this experiment, it was confirmed that a polymer film can be formed at a high film formation rate of 2000 Å / min or more except for one point, and the entire inner surface of the concave hole Wa of the film formation target W is attached. It was confirmed that a polymer film can be formed easily. From this, it was found that the ion sheath layer L having a distribution such that the film formation rate becomes uniform can be formed between the plasma and the inner surface of the concave hole.

これに対する比較実験として、上記従来例の成膜装置を用い、原料モノマーをプラズマ放射面と成膜対象物Wとの間に40sccmの流量で導入し、プラズマ発生源に電力を800W投入してプラズマを形成し、成膜対象物Wの凹孔Waの内表面にポリマー膜を成膜し、成膜レートを測定した。その結果を図2に比較例として示す。これによれば、成膜レートが300Å/min以下であり、本発明と比較して著しく低いことが確認された。   As a comparative experiment for this, using the conventional film forming apparatus, the raw material monomer is introduced at a flow rate of 40 sccm between the plasma radiation surface and the film formation target W, and the power is supplied to the plasma generation source by applying 800 W to the plasma. Then, a polymer film was formed on the inner surface of the concave hole Wa of the film formation target W, and the film formation rate was measured. The result is shown in FIG. 2 as a comparative example. According to this, it was confirmed that the film formation rate is 300 Å / min or less, which is significantly lower than that of the present invention.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態では、電極2として支持板部21と周壁部22とを有するものを例に説明したが、図3に示すように、成膜対象物Wとしてその外表面に金属膜Wmが成膜されたものを用い、この成膜対象物Wを電極2の支持板部21の一方の面で支持させたときに、周壁部が成膜対象物Wの金属膜Wmで構成されるようにしてもよい。これによれば、成膜対象物自体で電極の一部が構成されるようになり、図1に示すバルクの周壁部22を立設する必要はないため、電極構造を簡素化でき、有利である。このように周壁部22を立設しない場合、成膜対象物Wを確実に保持できなくなる虞があるが、成膜対象物Wの側面部が底面部よりも下方に伸びるように定寸してこの底面部の下方に凹部Wbを形成し、当該凹部Wbを上記電極2の支持板部21に外挿すれば、成膜対象物Wを確実に保持でき、有利である。本変形例によれば、成膜対象物Wの凹孔Waの内表面だけでなく、成膜対象物Wの外表面にもポリマー膜が形成されるため、成膜対象物Wの外表面にもポリマー膜を成膜する場合に適している。但し、本変形例では、上記実施形態のようにバルクの周壁部22を立設するものと比べてプラズマ密度が小さくなるため、所望のプラズマ密度に応じて、図1に示す電極2を用いるようにしてもよい。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. In the above embodiment, the electrode 2 has the support plate portion 21 and the peripheral wall portion 22 as an example. However, as shown in FIG. 3, a metal film Wm is formed on the outer surface of the film formation target W. When the film formation target W is supported by one surface of the support plate portion 21 of the electrode 2, the peripheral wall portion is configured by the metal film Wm of the film formation target W. Also good. According to this, a part of the electrode is formed by the film formation target itself, and it is not necessary to stand the bulky peripheral wall portion 22 shown in FIG. is there. When the peripheral wall portion 22 is not erected in this way, there is a possibility that the film-forming target W cannot be reliably held, but the dimension is set so that the side surface portion of the film-forming target W extends below the bottom surface portion. Forming the concave portion Wb below the bottom surface portion and extrapolating the concave portion Wb to the support plate portion 21 of the electrode 2 is advantageous in that the deposition target W can be reliably held. According to this modification, since the polymer film is formed not only on the inner surface of the concave hole Wa of the film formation target W but also on the outer surface of the film formation target W, the polymer film is formed on the outer surface of the film formation target W. Is also suitable when a polymer film is formed. However, in this modification, since the plasma density is smaller than that in which the bulk peripheral wall portion 22 is erected as in the above embodiment, the electrode 2 shown in FIG. 1 is used according to the desired plasma density. It may be.

また、図4に示すように、支持板部21の一方の面21aに成膜対象物Wの複数個(本変形例では16個)を間隔を存して設置してもよい。この場合、支持板部21の上部に複数の凸部21cを形成し、各凸部21cに成膜対象物Wの凹部Wbを夫々外挿すれば、複数個の成膜対象物Wに対するポリマー膜の成膜を同時に行うことができ、量産性を著しく向上できる。尚、隣接する成膜対象物Wの間に絶縁壁を設けて、成膜対象物W相互間でプラズマPを分離してもよい。また、支持板部21の上部に複数の凹部を形成し、各凹部に成膜対象物Wの下部を夫々内挿することで、成膜対象物Wが確実に保持されるようにしてもよい。   As shown in FIG. 4, a plurality (16 in the present modification example) of film formation targets W may be provided on one surface 21 a of the support plate portion 21 with a space therebetween. In this case, if a plurality of convex portions 21c are formed on the upper portion of the support plate portion 21, and the concave portions Wb of the film formation target object W are extrapolated to the respective convex portions 21c, a polymer film for the plurality of film formation target objects W is obtained. These films can be formed simultaneously, and the mass productivity can be remarkably improved. It should be noted that an insulating wall may be provided between adjacent film formation objects W to separate the plasma P between the film formation objects W. Alternatively, a plurality of recesses may be formed in the upper part of the support plate 21 and the lower part of the film formation target W may be inserted into each of the recesses so that the film formation target W is securely held. .

また、上記実施形態では、原料モノマーとしてヘキサメチルジシロキサンを用いる場合を例に説明したが、プラズマにより原料モノマーを分解、重合して形成されるイオン及びラジカルを成膜対象物Wの凹孔Waの内表面に付着させるものであれば、本発明を適用することができる。   In the above-described embodiment, the case where hexamethyldisiloxane is used as the raw material monomer has been described as an example. However, ions and radicals formed by decomposing and polymerizing the raw material monomer by plasma are converted into the concave holes Wa of the film formation target W. The present invention can be applied as long as it adheres to the inner surface.

また、上記実施形態では、カップ状の成膜対象物Wに成膜する場合を例に説明したが、成膜対象物Wの形状はカップ状に限定されず、立体形状を持つと共にその外表面に一方向にのびる凹孔が凹設された成膜対象物あればよい。   Moreover, although the said embodiment demonstrated to the case where it formed into a film on the cup-shaped film-forming target W as an example, the shape of the film-forming target W is not limited to the cup shape, and has a three-dimensional shape and its outer surface. It is sufficient that the film formation target object has a concave hole extending in one direction.

FM…成膜装置、L…イオンシース層、P…プラズマ、W…成膜対象物、Wa…凹孔、Wm…金属膜、1…真空チャンバ、12…マスフローコントローラ(原料モノマー導入手段)、13…導入管(原料モノマー導入手段)、2…電極、21…支持板部(底壁)、22…周壁部(筒状体)。   FM ... film forming apparatus, L ... ion sheath layer, P ... plasma, W ... film forming object, Wa ... concave hole, Wm ... metal film, 1 ... vacuum chamber, 12 ... mass flow controller (raw material monomer introduction means), 13 ... introducing pipe (raw material monomer introducing means), 2 ... electrode, 21 ... support plate part (bottom wall), 22 ... peripheral wall part (tubular body).

Claims (4)

成膜対象物を、立体形状を持つと共にその外表面に一方向にのびる凹孔が凹設されたものとし、この成膜対象物の少なくとも凹孔の内表面にポリマー膜を成膜する成膜装置であって、
成膜対象物が配置される真空チャンバに原料モノマーを導入する原料モノマー導入手段と、電極と交流電源とを有して当該電極への交流電力の投入により真空チャンバ内にプラズマを発生させるプラズマ発生手段とを備え、プラズマで原料モノマーを分解、重合させて生成したイオン及びラジカルを付着、堆積させてポリマー膜を成膜するものにおいて、
前記電極は、有底の筒状体で構成され、凹孔の孔軸が有底筒状体の底壁に直交する姿勢にし、成膜対象物を当該底壁で支持させて筒状体内に収容した状態でプラズマを発生させると、プラズマと凹孔の内表面との間にイオンシース層が形成されるようにしたことを特徴とする成膜装置。
The film formation target is assumed to have a three-dimensional shape and a concave hole extending in one direction on the outer surface thereof, and a polymer film is formed on at least the inner surface of the concave hole of the film formation target. A device,
Plasma generation that has a raw material monomer introduction means for introducing a raw material monomer into a vacuum chamber in which a film formation target is placed, an electrode and an AC power source, and generates AC in the vacuum chamber by applying AC power to the electrode. A polymer film is formed by attaching and depositing ions and radicals generated by decomposing and polymerizing raw material monomers with plasma,
The electrode is composed of a bottomed cylindrical body, the hole axis of the concave hole is in a posture orthogonal to the bottom wall of the bottomed cylindrical body, and the film formation target is supported by the bottom wall in the cylindrical body. An ion sheath layer is formed between the plasma and the inner surface of the concave hole when plasma is generated in the accommodated state.
請求項1記載の成膜装置であって、前記電極が、前記底壁を構成する支持板部と、支持板部の一方の面に設置されて前記筒状体を構成する周壁部とを有するものにおいて、
成膜対象物をその外表面に金属膜が成膜されたものとし、成膜対象物を前記支持板部の一方の面に設置したときに、前記周壁部が成膜対象物の金属膜で構成されるようにしたことを特徴とする成膜装置。
2. The film forming apparatus according to claim 1, wherein the electrode includes a support plate portion that forms the bottom wall, and a peripheral wall portion that is installed on one surface of the support plate portion and forms the cylindrical body. In things,
Assume that a metal film is formed on the outer surface of the film formation target, and the peripheral wall is a metal film of the film formation target when the film formation target is installed on one surface of the support plate. A film forming apparatus characterized by being configured.
請求項2記載の成膜装置において、前記支持板部の一方の面に前記成膜対象物の複数個が間隔を存して設置されることを特徴とする成膜装置。   The film forming apparatus according to claim 2, wherein a plurality of the film forming objects are placed on one surface of the support plate portion with a space therebetween. 請求項1〜3のいずれか1項記載の成膜装置を用い、成膜対象物を、立体形状を持つと共にその外表面に一方向にのびる凹孔が凹設されたものとし、この成膜対象物の少なくとも凹孔の内表面にポリマー膜を成膜する成膜方法であって、
真空チャンバ内に成膜対象物を配置し、真空チャンバ内に原料モノマーを導入し、電極に交流電力を投入して真空チャンバ内にプラズマを発生させ、プラズマで原料モノマーを分解、重合させて形成したイオン及びラジカルを付着、堆積させてポリマー膜を成膜する工程を含み、
前記ポリマー膜の成膜中、前記成膜対象物を電極の底壁で支持させて筒体内に収容した状態でプラズマを発生させることにより、プラズマと凹孔の内表面との間にイオンシース層を形成することを特徴とする成膜方法。
The film forming apparatus according to any one of claims 1 to 3, wherein a film formation target has a three-dimensional shape and a concave hole extending in one direction on the outer surface thereof. A film forming method for forming a polymer film on at least an inner surface of a concave hole of an object,
Formed by placing the film formation target in the vacuum chamber, introducing the raw material monomer into the vacuum chamber, applying AC power to the electrodes to generate plasma in the vacuum chamber, and decomposing and polymerizing the raw material monomer with the plasma Including depositing and depositing ions and radicals to form a polymer film,
During the formation of the polymer film, an ion sheath layer is formed between the plasma and the inner surface of the concave hole by generating plasma while the film formation target is supported by the bottom wall of the electrode and accommodated in the cylindrical body. Forming a film.
JP2016236514A 2016-12-06 2016-12-06 Deposition method Active JP6532450B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016236514A JP6532450B2 (en) 2016-12-06 2016-12-06 Deposition method
CN201711278236.1A CN108149226B (en) 2016-12-06 2017-12-06 Film forming apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236514A JP6532450B2 (en) 2016-12-06 2016-12-06 Deposition method

Publications (2)

Publication Number Publication Date
JP2018090868A true JP2018090868A (en) 2018-06-14
JP6532450B2 JP6532450B2 (en) 2019-06-19

Family

ID=62466105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236514A Active JP6532450B2 (en) 2016-12-06 2016-12-06 Deposition method

Country Status (2)

Country Link
JP (1) JP6532450B2 (en)
CN (1) CN108149226B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044053A1 (en) * 2018-08-31 2020-03-05 University Of Surrey Apparatus and method for depositing a poly(p-xylylene) film on a component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270059A (en) * 1987-12-02 1990-03-08 Idemitsu Petrochem Co Ltd Appliance and its production
JP2003285844A (en) * 2002-03-28 2003-10-07 Toppan Printing Co Ltd Plastic container
JP2008544011A (en) * 2005-06-16 2008-12-04 イノベイティブ システムズ アンド テクノロジーズ Polymer product having a thin film coating formed by plasma on at least one of its sides and a method for producing such a product
JP2009035819A (en) * 2007-07-09 2009-02-19 Fukuwauchi Technologies Inc Method and apparatus for forming dlc film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007395A1 (en) * 2005-07-12 2007-01-18 Mitsubishi Heavy Industries Food & Packaging Machinery Co., Ltd. Device for forming coating film on inner surface of container and method for producing container having coated inner surface
JP2007291439A (en) * 2006-04-24 2007-11-08 Tokyo Electron Ltd Film deposition method, plasma film deposition apparatus, and storage medium
JP5202623B2 (en) * 2008-04-25 2013-06-05 株式会社アルバック Deposition method
JP5392215B2 (en) * 2010-09-28 2014-01-22 東京エレクトロン株式会社 Film forming method and film forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270059A (en) * 1987-12-02 1990-03-08 Idemitsu Petrochem Co Ltd Appliance and its production
JP2003285844A (en) * 2002-03-28 2003-10-07 Toppan Printing Co Ltd Plastic container
JP2008544011A (en) * 2005-06-16 2008-12-04 イノベイティブ システムズ アンド テクノロジーズ Polymer product having a thin film coating formed by plasma on at least one of its sides and a method for producing such a product
JP2009035819A (en) * 2007-07-09 2009-02-19 Fukuwauchi Technologies Inc Method and apparatus for forming dlc film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044053A1 (en) * 2018-08-31 2020-03-05 University Of Surrey Apparatus and method for depositing a poly(p-xylylene) film on a component

Also Published As

Publication number Publication date
CN108149226A (en) 2018-06-12
CN108149226B (en) 2021-05-04
JP6532450B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
EP0834597B1 (en) Process for depositing barrier film on three-dimensional articles
US5766362A (en) Apparatus for depositing barrier film on three-dimensional articles
US10424465B2 (en) Plasma polymerization coating apparatus
US20080196666A1 (en) Shower head and cvd apparatus using the same
NZ197232A (en) Vacuum plating a substrate using rf field and dc ion accelerating potential
JP2748213B2 (en) Plasma film forming equipment
JP2006148074A5 (en) Sputter deposition method and plasma sputtering deposition apparatus
US20140199561A1 (en) Coated article and method for manufacturing same
JP6532450B2 (en) Deposition method
JP2020534692A (en) High aspect ratio deposition
JPH0610132A (en) Production of thin film of organosilicon compound
WO2018106502A1 (en) Particle reduction in a physical vapor deposition chamber
US20090286012A1 (en) Method and Apparatus for High Rate, Uniform Plasma Processing of Three-dimensional Objects
US9947516B2 (en) Top dielectric quartz plate and slot antenna concept
KR101993725B1 (en) Method of fabricating thin film using plasma enhanced atomic layer deposition
EP3774077B1 (en) Apparatus and method for depositing a poly(p-xylylene) film on a component
KR20140131916A (en) Method for depositing a lipon layer on a substrate
JP2017218624A (en) Film deposition method of hard film
JP3839587B2 (en) Organic thin film material container, vapor deposition apparatus, organic thin film manufacturing method
US11380528B2 (en) Plasma processing apparatus
CN109207943A (en) A kind of magnetron, reaction chamber and semiconductor processing equipment
KR20120061013A (en) Metal thin film forming apparatus and forming method of three-dimensional polymer using linear CD source and electron beam sputter
CN209065995U (en) Film formation device
JP6543982B2 (en) Deposition apparatus and deposition method
CN104947049A (en) Coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180328

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180723

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190521

R150 Certificate of patent or registration of utility model

Ref document number: 6532450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250