JP2018087106A - Porous member - Google Patents

Porous member Download PDF

Info

Publication number
JP2018087106A
JP2018087106A JP2016231461A JP2016231461A JP2018087106A JP 2018087106 A JP2018087106 A JP 2018087106A JP 2016231461 A JP2016231461 A JP 2016231461A JP 2016231461 A JP2016231461 A JP 2016231461A JP 2018087106 A JP2018087106 A JP 2018087106A
Authority
JP
Japan
Prior art keywords
alumina
porous member
crystal
crystal grain
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016231461A
Other languages
Japanese (ja)
Inventor
義裕 西村
Yoshihiro Nishimura
義裕 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016231461A priority Critical patent/JP2018087106A/en
Publication of JP2018087106A publication Critical patent/JP2018087106A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a porous member having excellent filter performance and mechanical strength in combination.SOLUTION: A porous member of the present invention is made of alumina-based ceramic of which main phase is alumina crystal and has the porosity of 16% or larger and 27% or smaller, in which the alumina crystal has an average crystal grain diameter of 0.30 μm or larger and 0.42 μm or smaller. By satisfying the structure like this, the porous member has not only excellent filter performance such as deodorizing or moisture uptake but also strong mechanical strength. As a result, the porous member of the present invention has excellent filter performance and the mechanical strength in combination.SELECTED DRAWING: None

Description

本開示は、多孔質部材に関する。   The present disclosure relates to a porous member.

近年、脱臭や吸湿等の各種フィルタに使用する部材として、セラミックスからなる多孔質部材が注目されている。   In recent years, porous members made of ceramics have attracted attention as members used for various filters such as deodorization and moisture absorption.

例えば、特許文献1には、真空デバイス用の粒子状吸着材が開示されているが、この粒子状吸着剤に使用される水分吸着剤として、アルミナが提案されている。   For example, Patent Document 1 discloses a particulate adsorbent for a vacuum device, and alumina has been proposed as a moisture adsorbent used for the particulate adsorbent.

特開2015−104704号公報JP2015-104704A

セラミックスからなる多孔質部材は、緻密質セラミックスよりも、脱臭や吸湿等のフィルタ性能が優れているものの、機械的強度が低いものであった。そこで、今般においては、フィルタ性能に優れているだけでなく、優れた機械的強度を有する多孔質部材が求められている。   The porous member made of ceramics has a lower mechanical strength than the dense ceramics although it has better filter performance such as deodorization and moisture absorption. Therefore, in recent years, there is a demand for a porous member that has not only excellent filter performance but also excellent mechanical strength.

本開示は、上記要求を満たすべく案出されたものであり、優れたフィルタ性能と機械的強度とを兼ね備えた多孔質部材を提供することを目的とするものである。   The present disclosure has been devised to satisfy the above requirements, and an object of the present disclosure is to provide a porous member having both excellent filter performance and mechanical strength.

本開示の多孔質部材は、アルミナ結晶が主相であるアルミナ質セラミックスからなり、気孔率が16%以上27%以下であり、前記アルミナ結晶の平均結晶粒径が0.30μm以上0.42μm以下である。   The porous member of the present disclosure is made of an alumina ceramic whose main phase is alumina crystals, has a porosity of 16% or more and 27% or less, and an average crystal grain size of the alumina crystals is 0.30 μm or more and 0.42 μm or less. It is.

本開示の多孔質部材は、優れたフィルタ性能と機械的強度とを兼ね備えたものである。   The porous member of the present disclosure has excellent filter performance and mechanical strength.

本開示の多孔質部材は、アルミナ結晶が主相であるアルミナ質セラミックスからなる。ここで、酸化アルミニウム質セラミックスとは、セラミックスを構成する全成分100質量%のうち、アルミナが90質量%以上を占めるものである。そして、アルミナ質セラミックスであるか否かは、以下の方法により確認することができる。まず、X線回折装置(XRD)を用いて測定し、得られた2θ(2θは、回折角度である。)の値よりJCPDSカードを用いて同定することにより、アルミナの存在を確認する。次に、ICP発光分光分析装置(ICP)を用いて、アルミニウム(Al)の定量分析を行なう。そして、ICPで測定したアルミニウムの含有量からアルミナ(Al)に換算した含有量が90質量%以上であれば、アルミナ質セラミックスである。 The porous member of the present disclosure is made of alumina ceramics whose main phase is alumina crystals. Here, the aluminum oxide ceramics are those in which alumina accounts for 90% by mass or more out of 100% by mass of all components constituting the ceramics. And whether it is alumina ceramics can be confirmed by the following method. First, measurement is performed using an X-ray diffractometer (XRD), and the presence of alumina is confirmed by identifying the obtained 2θ (2θ is a diffraction angle) using a JCPDS card. Next, quantitative analysis of aluminum (Al) is performed using an ICP emission spectroscopic analyzer (ICP). Then, the content in terms of alumina (Al 2 O 3) from the aluminum content was determined by ICP is not more 90 wt% or more, and alumina ceramics.

なお、本開示の多孔質部材は、アルミナの含有量が高いものであることから、アルミナ以外の成分の含有量の測定を行ない、アルミナ以外の成分の含有量を100質量%から差し引いた方が、アルミナの含有量を精度高く算出することができる。   Since the porous member of the present disclosure has a high content of alumina, it is preferable to measure the content of components other than alumina and subtract the content of components other than alumina from 100% by mass. The content of alumina can be calculated with high accuracy.

そして、本開示の多孔質部材は、気孔率が16%以上27%以下であり、アルミナ結晶の平均結晶粒径が0.30μm以上0.42μm以下である。   The porous member of the present disclosure has a porosity of 16% or more and 27% or less, and an average crystal grain size of alumina crystals is 0.30 μm or more and 0.42 μm or less.

本開示の多孔質部材は、このような構成を満足していることにより、優れたフィルタ性能と機械的強度とを兼ね備える。ここで、優れた機械的強度とは、JIS R 1601−2008に準拠した3点曲げ強度の値が150MPa以上のことである。   Since the porous member of the present disclosure satisfies such a configuration, it has excellent filter performance and mechanical strength. Here, the excellent mechanical strength is that the value of the three-point bending strength based on JIS R 1601-2008 is 150 MPa or more.

これに対し、気孔率が16%未満であるならば、脱臭や吸湿等をするための気孔が少ないことから、優れたフィルタ性能を有するものとならない。一方、気孔率が27%より大きければ、クラックの起点となる気孔が多いことから、優れた機械的強度を有するものとならない。   On the other hand, if the porosity is less than 16%, since there are few pores for deodorizing or absorbing moisture, the filter performance is not excellent. On the other hand, if the porosity is higher than 27%, since there are many pores as starting points of cracks, the mechanical strength is not excellent.

また、アルミナ結晶の平均結晶粒径が0.30μm未満であるならば、アルミナ結晶の脱落が発生しやすいことから、優れた機械的強度を有するものとならない。一方、アルミナ結晶の平均結晶粒径が0.42μmより大きければ、全体として、脱臭や吸湿等をするアルミナ結晶の表面積が減ることから、優れたフィルタ性能を有するものとならない。   Further, if the average crystal grain size of the alumina crystal is less than 0.30 μm, the alumina crystal is likely to fall off, so that it does not have excellent mechanical strength. On the other hand, if the average crystal grain size of the alumina crystal is larger than 0.42 μm, the surface area of the alumina crystal that deodorizes and absorbs moisture is reduced as a whole, so that it does not have excellent filter performance.

ここで、気孔率は、水銀圧入法により求めればよい。具体的には、まず、本開示の多孔質部材を2g以上用意し、これを試料とする。次に、水銀圧入型ポロシメータを用いて、試料の表面に存在する気孔に水銀を圧入する。そして、水銀に加えられた圧力と、気孔内に浸入した水銀の体積との関係から、気孔率を算出すればよい。   Here, the porosity may be obtained by a mercury intrusion method. Specifically, first, 2 g or more of the porous member of the present disclosure is prepared and used as a sample. Next, mercury is injected into pores existing on the surface of the sample using a mercury intrusion porosimeter. Then, the porosity may be calculated from the relationship between the pressure applied to mercury and the volume of mercury that has entered the pores.

また、アルミナ結晶の平均結晶粒径は以下の方法で測定すればよい。まず、本開示の多孔質部材の表面を観察面とし、走査型電子顕微鏡(SEM)を用いて1万倍以上2万倍以下程度の倍率の写真を撮影する。次に、撮影した写真を用いて、コード法によりアルミナ結晶の結晶粒径の平均値を算出する。具体的には、撮影した写真に対し、一定長さの直線上にあるアルミナ結晶の個数からアルミナ結晶の結晶粒径を測定し、これを少なくとも3ヵ所以上行ない、その平均値を求めればよい。   Moreover, what is necessary is just to measure the average crystal grain diameter of an alumina crystal with the following method. First, the surface of the porous member of the present disclosure is used as an observation surface, and a photograph with a magnification of about 10,000 times to 20,000 times is taken using a scanning electron microscope (SEM). Next, using the photograph taken, the average value of the crystal grain size of the alumina crystal is calculated by the code method. Specifically, for the photograph taken, the crystal grain size of the alumina crystals is measured from the number of alumina crystals on a straight line of a certain length, and this is performed at least at three places, and the average value may be obtained.

また、本開示の多孔質部材において、アルミナ結晶の結晶粒径の最大値は1.0μm以下であってもよい。このような構成を満足するならば、全体として、脱臭や吸湿等が行なわれるアルミナ結晶の表面積が大きくなり、本開示の多孔質部材は、さらにフィルタ性能に優れたものとなる。   In the porous member of the present disclosure, the maximum value of the crystal grain size of the alumina crystal may be 1.0 μm or less. If such a configuration is satisfied, the surface area of the alumina crystal on which deodorization and moisture absorption are performed as a whole increases, and the porous member of the present disclosure is further excellent in filter performance.

ここで、アルミナ結晶の結晶粒径の最大値は、以下の方法で求めればよい。まず、上述した観察面を撮影した写真において、肉眼で最も結晶粒径が大きいと思われるアルミナ結晶を少なくとも5個以上選定する。そして、選定したアルミナ結晶のそれぞれにおいて最も長い長さを測定し、その中での最大値を、アルミナ結晶の結晶粒径の最大値とみなせばよい。   Here, the maximum value of the crystal grain size of the alumina crystal may be obtained by the following method. First, in the photograph obtained by photographing the observation surface described above, at least five alumina crystals that are considered to have the largest crystal grain size with the naked eye are selected. Then, the longest length of each of the selected alumina crystals is measured, and the maximum value among them may be regarded as the maximum value of the crystal grain size of the alumina crystals.

また、本開示の多孔質部材は、気孔の中央細孔径が0.097μm以上0.111μm以下であってもよい。ここで、中央細孔径とは、水銀圧入法によって得られた気孔の直径を小さい順に並べたとき、中央に位置する気孔の直径の値のことである。   Further, the porous member of the present disclosure may have a central pore diameter of 0.097 μm or more and 0.111 μm or less. Here, the central pore diameter is the value of the diameter of the pore located in the center when the pore diameters obtained by the mercury intrusion method are arranged in ascending order.

このような構成を満足するならば、フィルタ性能を維持しつつ、全体的に気孔が小さいことから、機械的強度がさらに向上したものとなる。   If such a configuration is satisfied, since the pores are generally small while maintaining the filter performance, the mechanical strength is further improved.

次に、本開示の多孔質部材の製造方法の一例について説明する。   Next, an example of the manufacturing method of the porous member of this indication is explained.

まず、主原料であるアルミナ粉末と、焼結助剤とを準備する。ここで、アルミナ粉末の
平均粒径が小さいと、焼成活性が高く、焼成後のアルミナ結晶の結晶粒径が大きくなりやすい。一方、アルミナ粉末の平均粒径が大きいと、焼成活性が低く、焼成後のアルミナ結晶の結晶粒径が大きくなりにくい。そこで、後述する成形体の密度および焼成温度で、焼成後のアルミナ結晶の結晶粒径を制御するために、平均粒径が0.2〜0.3μmのアルミナ粉末を用いる。
First, an alumina powder as a main raw material and a sintering aid are prepared. Here, when the average particle diameter of the alumina powder is small, the firing activity is high, and the crystal grain diameter of the alumina crystal after firing tends to be large. On the other hand, when the average particle size of the alumina powder is large, the firing activity is low, and the crystal grain size of the alumina crystal after firing is difficult to increase. Therefore, alumina powder having an average particle diameter of 0.2 to 0.3 μm is used in order to control the crystal grain diameter of the alumina crystals after firing at the density and firing temperature of the compact to be described later.

また、焼結助剤としては、酸化マグネシウム粉末、酸化カルシウム粉末、酸化硅素粉末の組み合わせを用いればよい。   In addition, as a sintering aid, a combination of magnesium oxide powder, calcium oxide powder, and silicon oxide powder may be used.

そして、アルミナ質セラミックスを構成する全成分100質量%のうち、アルミナに換算して90質量%以上、残部が焼結助剤となるように、アルミナ粉末および焼結助剤を秤量する。   Then, the alumina powder and the sintering aid are weighed out so that 90% by mass or more of the total amount of components constituting the alumina ceramic is 90% by mass in terms of alumina and the balance becomes the sintering aid.

次に、アルミナ粉末および焼結助剤の合計100質量部に対し、2質量部以上10質量部以下の水溶性アクリル樹脂等のバインダと、100質量部の溶媒とを攪拌機内に入れて混合・攪拌してスラリーを得る。   Next, 2 parts by mass or more and 10 parts by mass or less of a binder such as a water-soluble acrylic resin and 100 parts by mass of a solvent are mixed in an agitator with respect to 100 parts by mass of the alumina powder and the sintering aid. Stir to obtain a slurry.

次に、このスラリーを噴霧乾燥した造粒粉を、任意形状の金型に入れ、粉末プレス成形を行なうことによって成形体を得る。ここで、成形圧を調整して、粉末プレス成形を行なうことで、成形体の密度が2.30〜2.40g/cmとなるようにする。 Next, the granulated powder obtained by spray-drying the slurry is placed in a mold having an arbitrary shape, and a powder press molding is performed to obtain a compact. Here, by adjusting the molding pressure and performing powder press molding, the density of the molded body is set to 2.30 to 2.40 g / cm 3 .

次に、大気雰囲気中で最高温度を1240〜1350℃とし、この最高温度での保持時間を1.5〜4.0時間として焼成することで、本開示の多孔質部材を得る。   Next, the porous member of the present disclosure is obtained by firing at a maximum temperature of 1240 to 1350 ° C. in an air atmosphere and holding time at the maximum temperature of 1.5 to 4.0 hours.

なお、アルミナ結晶の結晶粒径の最大値を1.0μm以下とするには、最高温度での保持時間を3.0時間以下とすればよい。   In order to set the maximum value of the crystal grain size of the alumina crystal to 1.0 μm or less, the holding time at the maximum temperature may be set to 3.0 hours or less.

以下、本開示の実施例を具体的に説明するが、本開示はこれらの実施例に限定されるものではない。   Examples of the present disclosure will be specifically described below, but the present disclosure is not limited to these examples.

気孔率およびアルミナ結晶の結晶粒径の平均値が異なる試料を作製し、3点曲げ強度および吸水率の評価を行なった。   Samples having different porosity and average crystal grain size of alumina crystals were prepared, and three-point bending strength and water absorption were evaluated.

まず、主原料である、平均粒径が0.24μmであるアルミナ粉末と、焼結助剤とを準備した。ここで、焼結助剤としては、酸化マグネシウム粉末、酸化カルシウム粉末、酸化硅素粉末を用い、焼成後の各試料においてMgO、CaO、SiOに換算した値が、2:3:5となるように秤量した。 First, an alumina powder having an average particle size of 0.24 μm, which is a main raw material, and a sintering aid were prepared. Here, as the sintering aid, magnesium oxide powder, calcium oxide powder, and silicon oxide powder are used, and the values converted into MgO, CaO, and SiO 2 in each sample after firing are 2: 3: 5. Weighed out.

そして、アルミナ質セラミックスを構成する全成分100質量%のうち、アルミナに換算して99.5質量%、残部が焼結助剤となるように、アルミナ粉末および焼結助剤粉末を秤量した。   Then, the alumina powder and the sintering aid powder were weighed out of 100% by mass of the total components constituting the alumina ceramic so that 99.5% by mass in terms of alumina and the balance became the sintering aid.

次に、アルミナ粉末および焼結助剤の合計100質量部に対し、4質量部の水溶性アクリル樹脂のバインダと、100質量部の溶媒とを攪拌機内に入れて混合・攪拌してスラリーを得た。   Next, 4 parts by mass of a water-soluble acrylic resin binder and 100 parts by mass of a solvent are mixed in and stirred in a stirrer with respect to a total of 100 parts by mass of the alumina powder and the sintering aid. It was.

そして、このスラリーを噴霧乾燥した造粒粉を金型に入れ、粉末プレス成形を行なうことによって成形体を得た。なお、この粉末プレス成形においては、成形体の密度が表1に示す値となるように、成形圧を調整した。   And the granulated powder which spray-dried this slurry was put into the metal mold | die, and the molded object was obtained by performing powder press molding. In this powder press molding, the molding pressure was adjusted so that the density of the molded body was the value shown in Table 1.

次に、大気雰囲気中で最高温度を表1に示す値とし、この最高温度での保持時間を2.5時間として焼成することで、各試料を得た。なお、各試料においては、幅が4mm、厚みが3mm、長さが30mmの3点曲げ強度測定用試料と、直径2cmの円柱形状の吸水率測定用試料とを得た。   Next, each sample was obtained by baking the maximum temperature in the air atmosphere with the value shown in Table 1 and the holding time at this maximum temperature being 2.5 hours. In each sample, a three-point bending strength measurement sample having a width of 4 mm, a thickness of 3 mm, and a length of 30 mm and a cylindrical water absorption measurement sample having a diameter of 2 cm were obtained.

次に、各試料の気孔率を、水銀圧入法により求めた。さらに、各試料のアルミナ結晶の平均結晶粒径を以下の方法で測定した。まず、各試料の表面を観察面とし、SEMを用いて1.5万倍程度の倍率の写真を撮影した。次に、撮影した写真を用いて、コード法によりアルミナ結晶の結晶粒径の平均値を算出した。具体的には、撮影した写真に対し、一定長さの直線上にあるアルミナ結晶の個数からアルミナ結晶の結晶粒径を測定し、これを3ヵ所行ない、その平均値を求めた。   Next, the porosity of each sample was determined by a mercury intrusion method. Furthermore, the average crystal grain size of alumina crystals of each sample was measured by the following method. First, the surface of each sample was used as an observation surface, and a photograph with a magnification of about 15,000 times was taken using an SEM. Next, the average value of the crystal grain size of the alumina crystal was calculated by the code method using the photographed photo. Specifically, for the photograph taken, the crystal grain size of the alumina crystal was measured from the number of alumina crystals on a straight line of a certain length, and this was performed at three places to determine the average value.

次に、3点曲げ強度測定用試料に対して、JIS R 1601−2008に準拠して3点曲げ強度を求めた。   Next, the three-point bending strength was determined for the three-point bending strength measurement sample in accordance with JIS R 1601-2008.

次に、各試料に対して、JIS A 1509−3に準拠して、アルキメデス法により吸水率を測定した。そして、吸水率が高いものから順に、各試料に順位を付けた。つまり、最も吸水率が高い試料を1位とし、最も吸水率が低い試料を最下位とした。なお、吸水率が優れていれば、フィルタ性能に優れていると言える。   Next, the water absorption rate was measured for each sample by Archimedes method in accordance with JIS A 1509-3. Then, the samples were ranked in order from the highest water absorption rate. That is, the sample with the highest water absorption was ranked first and the sample with the lowest water absorption was ranked lowest. In addition, if the water absorption rate is excellent, it can be said that the filter performance is excellent.

結果を表1に示す。   The results are shown in Table 1.

Figure 2018087106
Figure 2018087106

表1に示すように、試料No.1〜15のうち、試料Nо.1〜3は、吸水率に優れているものの、機械的強度が低かった。また、試料No.12〜15は、機械的強度に優れているものの、吸水率が低かった。これに対して、試料No.4〜11は、試料Nо.1〜3よりも機械的強度が高く、試料No.12〜15よりも吸水率が高かった。よって、気孔率が16%以上27%以下であり、アルミナ結晶の平均結晶粒径が0.30μm以上0.42μm以下であることにより、優れたフィルタ性能と機械的強度とを兼ね備えることが分かった。   As shown in Table 1, sample no. 1-15, sample Nо. Although 1-3 were excellent in the water absorption rate, the mechanical strength was low. Sample No. Although 12-15 was excellent in mechanical strength, the water absorption was low. In contrast, sample no. 4 to 11 are samples Nо. No. 1 to 3 have higher mechanical strength. The water absorption was higher than 12-15. Therefore, it was found that when the porosity is 16% or more and 27% or less and the average crystal grain size of the alumina crystal is 0.30 μm or more and 0.42 μm or less, it has excellent filter performance and mechanical strength. .

次に、アルミナ結晶の結晶粒径の最大値が異なる試料を作製し、3点曲げ強度および吸水率の評価を行なった。   Next, samples having different maximum crystal grain sizes of alumina crystals were prepared, and three-point bending strength and water absorption were evaluated.

なお、作製方法としては、焼成時の最高温度での保持時間を表2に示す値となるようにしたこと以外は実施例1の試料Nо.6の作製方法と同様とした。なお、試料No.18
は、実施例1の試料No.6と同じである。
In addition, as a manufacturing method, the sample No. 1 in Example 1 except that the holding time at the maximum temperature during firing was set to the value shown in Table 2. 6 was the same as the manufacturing method. Sample No. 18
Is the sample No. of Example 1. Same as 6.

そして、各試料における、アルミナ結晶の結晶粒径の最大値を、以下の方法で求めた。まず、各試料の表面を観察面とし、SEMを用いて1.5万倍程度の倍率の写真を撮影した。次に、撮影した写真において、肉眼で最も結晶粒径が大きいと思われるアルミナ結晶を5個選定した。そして、選定したアルミナ結晶の結晶粒径を実際に測定し、最も大きいアルミナ結晶の結晶粒径の値を、アルミナ結晶の結晶粒径の最大値とした。   And the maximum value of the crystal grain diameter of the alumina crystal in each sample was calculated | required with the following method. First, the surface of each sample was used as an observation surface, and a photograph with a magnification of about 15,000 times was taken using an SEM. Next, in the photograph taken, five alumina crystals that were considered to have the largest crystal grain size with the naked eye were selected. Then, the crystal grain size of the selected alumina crystal was actually measured, and the crystal grain size value of the largest alumina crystal was set as the maximum crystal grain size of the alumina crystal.

また、実施例1と同様に、3点曲げ強度および吸水率を測定した。   Further, in the same manner as in Example 1, the three-point bending strength and water absorption were measured.

結果を表2に示す。なお、吸水率の順位付けは、表2に示す試料のみを比較して付けている。   The results are shown in Table 2. In addition, the ranking of the water absorption rate is given by comparing only the samples shown in Table 2.

Figure 2018087106
Figure 2018087106

表2に示すように、試料No.20に比べて試料No.16〜19の吸水率が高かった。この結果から、アルミナ結晶の結晶粒径の最大値が1.0μm以下であることにより、フィルタ性能が向上することが分かった。   As shown in Table 2, sample no. Compared to sample No. 20, sample no. The water absorption of 16-19 was high. From this result, it was found that the filter performance is improved when the maximum value of the crystal grain size of the alumina crystal is 1.0 μm or less.

Claims (2)

アルミナ結晶が主相であるアルミナ質セラミックスからなり、気孔率が16%以上27%以下であり、前記アルミナ結晶の平均結晶粒径が0.30μm以上0.42μm以下である多孔質部材。   A porous member comprising alumina ceramics in which an alumina crystal is a main phase, a porosity of 16% or more and 27% or less, and an average crystal grain size of the alumina crystal of 0.30 μm or more and 0.42 μm or less. 前記アルミナ結晶の結晶粒径の最大値が1.0μm以下である請求項1に記載の多孔質部材。   The porous member according to claim 1, wherein a maximum value of a crystal grain size of the alumina crystal is 1.0 μm or less.
JP2016231461A 2016-11-29 2016-11-29 Porous member Pending JP2018087106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231461A JP2018087106A (en) 2016-11-29 2016-11-29 Porous member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231461A JP2018087106A (en) 2016-11-29 2016-11-29 Porous member

Publications (1)

Publication Number Publication Date
JP2018087106A true JP2018087106A (en) 2018-06-07

Family

ID=62493814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231461A Pending JP2018087106A (en) 2016-11-29 2016-11-29 Porous member

Country Status (1)

Country Link
JP (1) JP2018087106A (en)

Similar Documents

Publication Publication Date Title
JP6125869B2 (en) Porous material, honeycomb structure, and method for producing porous material
JP6043340B2 (en) Porous material, honeycomb structure, and method for producing porous material
KR101843215B1 (en) Chromium oxide refractory material
JPWO2013146954A1 (en) Porous material and honeycomb structure
JP2013209278A (en) Porous ceramic
JP2007091525A (en) Magnesium oxide powder, precursor for magnesium oxide molded body, method for producing them, magnesium oxide molded body, and magnesium oxide sintered pellet
JP5762522B2 (en) Cordierite sintered body and member for semiconductor manufacturing equipment comprising this cordierite sintered body
JP2016176988A (en) Low reflection member
JP2017137238A (en) Manufacturing method of porous material
JP5773899B2 (en) Cordierite sintered body and exposure apparatus member comprising the cordierite sintered body
JP2018087106A (en) Porous member
JP5812035B2 (en) Dielectric ceramic composition, dielectric ceramic and electronic component
JP2007153644A (en) Method for manufacturing refractory material and refractory material obtained thereby
JP5341597B2 (en) Manufacturing method of silicon nitride filter and silicon nitride filter
JP6402131B2 (en) Manufacturing method of firing jig
JP2003246676A (en) Sialon ceramic porous body and manufacturing method thereof
JP6204149B2 (en) Sintered silicon nitride and decorative parts for watches
JP2006327927A (en) Alumina porous body
JP6292774B2 (en) Ceramic porous body
JP6320872B2 (en) Hollow particles and thermal insulation containing hollow particles
JP2017030988A (en) Silicon nitride ceramic and impact wear resistant member using the same
JP6280004B2 (en) Fishing line guide member
JP2008195591A (en) Alumina-based sintered compact and its production method
JP4906228B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
JP6336889B2 (en) Fishing line guide member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201104