JP2018083733A - SiC SINGLE CRYSTAL GROWING METHOD, SiC SINGLE CRYSTAL GROWING APPARATUS, AND SiC SINGLE CRYSTAL INGOT - Google Patents

SiC SINGLE CRYSTAL GROWING METHOD, SiC SINGLE CRYSTAL GROWING APPARATUS, AND SiC SINGLE CRYSTAL INGOT Download PDF

Info

Publication number
JP2018083733A
JP2018083733A JP2016227172A JP2016227172A JP2018083733A JP 2018083733 A JP2018083733 A JP 2018083733A JP 2016227172 A JP2016227172 A JP 2016227172A JP 2016227172 A JP2016227172 A JP 2016227172A JP 2018083733 A JP2018083733 A JP 2018083733A
Authority
JP
Japan
Prior art keywords
single crystal
sic single
heat transfer
sic
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016227172A
Other languages
Japanese (ja)
Other versions
JP6883409B2 (en
Inventor
優貴 古谷
Yuki Furuya
優貴 古谷
山田 正徳
Masanori Yamada
正徳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Denso Corp filed Critical Showa Denko KK
Priority to JP2016227172A priority Critical patent/JP6883409B2/en
Publication of JP2018083733A publication Critical patent/JP2018083733A/en
Application granted granted Critical
Publication of JP6883409B2 publication Critical patent/JP6883409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a SiC single crystal growing method and growing apparatus capable of preventing a defect occurrence due to the fact that a gas atmosphere at an initial stage of a crystal growth is not stable.SOLUTION: In a SiC single crystal growing apparatus growing apparatus, a heat transfer is suppressed by a non-contact state, in which a heat transfer portion 3 containing a heat transfer substance and a back face Sb on the side opposed to a crystal growing face Sa of a single crystal S do not contact, and a portion of the crystal growing face Sa of the single crystal S are sublimated, i.e., etched to eliminate the defect which occurs at the initial stage of the crystal growth. After the etching, a heat transfer portion 3 is slid toward the single crystal S thereby to the back face Sb of the single crystal S and the heat transfer portion 3 into contact. The single crystal S is cooled to such an extent that a material gas g can be re-crystalized to grow the single crystal crystally.SELECTED DRAWING: Figure 2

Description

本発明は、SiC単結晶成長方法、SiC単結晶成長装置及びSiC単結晶インゴットに関する。   The present invention relates to a SiC single crystal growth method, a SiC single crystal growth apparatus, and a SiC single crystal ingot.

炭化珪素(SiC)は、特徴的な特性を有する。例えば、シリコン(Si)と比べて、絶縁破壊電界は1桁大きく、バンドギャップは3倍大きく、熱伝導率は3倍程度高い。そのため炭化珪素(SiC)は、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。   Silicon carbide (SiC) has characteristic properties. For example, compared to silicon (Si), the breakdown electric field is an order of magnitude larger, the band gap is three times larger, and the thermal conductivity is about three times higher. Therefore, silicon carbide (SiC) is expected to be applied to power devices, high frequency devices, high temperature operation devices, and the like.

近年、SiCエピタキシャルウェハの高品質化に伴い、SiC単結晶インゴットの高品質化が求められている。SiC単結晶インゴットは、SiC単結晶を結晶成長させて得られる。結晶成長過程で、欠陥が混入しないようにする試みが検討されている。   In recent years, with the improvement in quality of SiC epitaxial wafers, there has been a demand for higher quality of SiC single crystal ingots. The SiC single crystal ingot is obtained by growing a SiC single crystal. Attempts have been made to prevent defects from entering during the crystal growth process.

欠陥は、結晶成長の初期に発生しやすい。炭素や不純物はシリコンより昇華しやすく、結晶成長初期においてガス雰囲気が安定しないためである。例えば、カーボン等が、局所的に析出すると、欠陥の原因となる。   Defects are likely to occur early in crystal growth. This is because carbon and impurities are more easily sublimated than silicon, and the gas atmosphere is not stable in the early stage of crystal growth. For example, when carbon or the like is locally deposited, it causes a defect.

そこで、特許文献1及び特許文献2には、結晶成長面を水素ガスでエッチングし、清浄化することで、高品質な炭化ケイ素単結晶を製造できることが記載されている。   Therefore, Patent Document 1 and Patent Document 2 describe that a high-quality silicon carbide single crystal can be manufactured by etching and cleaning the crystal growth surface with hydrogen gas.

また特許文献3には、坩堝内における種結晶の位置を変化させることで、種結晶の成長面をエッチングする方法が記載されている。   Patent Document 3 describes a method of etching a growth surface of a seed crystal by changing the position of the seed crystal in the crucible.

特開2006−111510号公報JP 2006-111510 A 特開2010−76954号公報JP 2010-76954 A 特許第4391047号公報Japanese Patent No. 4391747

しかしながら、特許文献1及び2の方法では、坩堝内に水素ガスを導入する必要がある。そのため、水素ガスを導入するための配管を設ける等の必要があり、設備が大掛かりになる。また過剰な水素ガスは、炭素等で構成される坩堝の劣化の原因となりうる。   However, in the methods of Patent Documents 1 and 2, it is necessary to introduce hydrogen gas into the crucible. Therefore, it is necessary to provide piping for introducing hydrogen gas, and the facility becomes large. Excessive hydrogen gas can cause deterioration of a crucible made of carbon or the like.

また特許文献3の方法は、種結晶を大きく移動させる。そのため、坩堝内の原料ガスの流れが乱され、欠陥が混入する原因となりうる。また単結晶を大きく動かす必要や、温度を精密に制御する必要があり、実用的ではない。   Moreover, the method of patent document 3 moves a seed crystal largely. Therefore, the flow of the raw material gas in the crucible is disturbed, which can cause defects to be mixed. In addition, it is not practical because the single crystal needs to be moved greatly and the temperature must be precisely controlled.

本発明は上記問題に鑑みてなされたものであり、欠陥の少ないSiC単結晶を得ることができるSiC単結晶成長方法及びSiC単結晶成長装置を提供することを目的とする。またSiC単結晶成長装置及びSiC単結晶成長方法によって得られる特徴あるSiC単結晶インゴットを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an SiC single crystal growth method and an SiC single crystal growth apparatus capable of obtaining an SiC single crystal with few defects. It is another object of the present invention to provide a characteristic SiC single crystal ingot obtained by a SiC single crystal growth apparatus and a SiC single crystal growth method.

本発明者らは、鋭意検討の結果、加熱時の単結晶の温度を、結晶成長面と反対の裏面側で制御するという新たな方法を見出した。
すなわち、上記課題を解決するため、以下の手段を提供する。
As a result of intensive studies, the present inventors have found a new method in which the temperature of the single crystal during heating is controlled on the back side opposite to the crystal growth surface.
That is, in order to solve the above problems, the following means are provided.

(1)本発明の一態様にかかるSiC単結晶成長方法は、SiC単結晶が結晶成長する成長面に対する裏面における、Arより熱伝達性の高い熱伝達物質の接触状態を、結晶成長の過程において変化させる。 (1) In the SiC single crystal growth method according to one aspect of the present invention, a contact state of a heat transfer material having a higher heat transfer property than Ar on the back surface with respect to a growth surface on which the SiC single crystal grows is obtained in the process of crystal growth. Change.

(2)上記態様にかかるSiC単結晶成長方法において、前記SiC単結晶の裏面と前記熱伝達物質との間に空間を形成し、前記SiC単結晶と前記熱伝達物質とを非接触にする工程と、昇温中又は昇温後において、前記SiC単結晶と前記熱伝達物質とを接触させる工程と、を有してもよい。 (2) In the SiC single crystal growth method according to the above aspect, a step of forming a space between the back surface of the SiC single crystal and the heat transfer material so that the SiC single crystal and the heat transfer material are not in contact with each other. And a step of bringing the SiC single crystal into contact with the heat transfer substance during or after the temperature rise.

(3)上記態様にかかるSiC単結晶成長方法において、前記非接触にする工程において、前記熱伝達物質と前記単結晶とを0.5mm以上離してもよい。 (3) In the SiC single crystal growth method according to the above aspect, in the non-contacting step, the heat transfer substance and the single crystal may be separated by 0.5 mm or more.

(4)本発明の一態様にかかるSiC単結晶成長装置は、原料を収納できる坩堝と、前記坩堝内において前記原料が設置される原料設置部と対向して配置され、内部に空間を有する単結晶設置部と、前記空間内を摺動できる熱伝達部と、を備え、前記熱伝達部は、前記単結晶設置部に設置される単結晶と接触する接触状態と、前記単結晶と非接触の非接触状態とを、前記空間内を摺動することにより切り替え可能である。 (4) An SiC single crystal growth apparatus according to an aspect of the present invention includes a crucible that can store a raw material, a raw material installation part in which the raw material is installed in the crucible, and a single unit having a space inside. A crystal installation part; and a heat transfer part that can slide in the space, wherein the heat transfer part is in contact with the single crystal installed in the single crystal installation part, and is not in contact with the single crystal. The non-contact state can be switched by sliding in the space.

(5)本発明の一態様にかかるSiC単結晶インゴットは、SiC単結晶と、前記SiC単結晶上に結晶成長した結晶成長領域とを有し、前記SiC単結晶の中央部が、端部よりも凹んでいる。 (5) An SiC single crystal ingot according to an aspect of the present invention includes an SiC single crystal and a crystal growth region grown on the SiC single crystal, and a center portion of the SiC single crystal is formed from an end portion. Is also recessed.

本実施形態にかかるSiC単結晶成長装置及びSiC単結晶成長方法によれば、高品質なSiC単結晶インゴットを容易にえることができる。   According to the SiC single crystal growth apparatus and the SiC single crystal growth method according to the present embodiment, a high-quality SiC single crystal ingot can be easily obtained.

本実施形態にかかるSiC単結晶成長装置の断面模式図である。It is a cross-sectional schematic diagram of the SiC single crystal growth apparatus concerning this embodiment. 本実施形態にかかるSiC単結晶成長方法における結晶成長状態を模式的に示した図である。It is the figure which showed typically the crystal growth state in the SiC single crystal growth method concerning this embodiment. 本実施形態にかかるSiC単結晶成長方法における結晶成長状態の別の態様を模式的に示した図である。It is the figure which showed typically another aspect of the crystal growth state in the SiC single crystal growth method concerning this embodiment. 本実施形態にかかるSiC単結晶インゴットの断面図である。It is sectional drawing of the SiC single crystal ingot concerning this embodiment.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本実施形態の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本実施形態はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。   Hereinafter, the present embodiment will be described in detail with appropriate reference to the drawings. In the drawings used in the following description, in order to make the features of the present embodiment easier to understand, the features may be enlarged for the sake of convenience, and the dimensional ratios of the components are different from actual ones. There is. The materials, dimensions, and the like exemplified in the following description are merely examples, and the present embodiment is not limited to these, and can be appropriately modified and implemented without changing the gist thereof.

「SiC単結晶成長装置」
図1は、本実施形態にかかるSiC単結晶成長装置の断面模式図である。図1に示すSiC単結晶成長装置10は、坩堝1と、単結晶設置部2と、熱伝達部3と、を備える。図1では、理解を容易にするために、単結晶設置部2に単結晶Sを設置し、坩堝1内に原料Gを収納した状態を図示している。また単結晶設置部2と設置された原料Gとの間には、単結晶設置部2から設置された原料Gに向かって拡径する公知のテーパーガイド4を有してもよい。
"SiC single crystal growth equipment"
FIG. 1 is a schematic cross-sectional view of the SiC single crystal growth apparatus according to the present embodiment. An SiC single crystal growth apparatus 10 shown in FIG. 1 includes a crucible 1, a single crystal installation unit 2, and a heat transfer unit 3. In FIG. 1, for easy understanding, a state where the single crystal S is installed in the single crystal installation unit 2 and the raw material G is stored in the crucible 1 is illustrated. Further, a known taper guide 4 that increases in diameter toward the raw material G installed from the single crystal installation unit 2 may be provided between the single crystal installation unit 2 and the installed raw material G.

以下、坩堝1内において原料設置部と単結晶設置部2とを結ぶ方向であって、原料Gから単結晶Sに向かって原料ガスが昇華する方向をz方向と言うことがある。   Hereinafter, the direction in which the raw material installation part and the single crystal installation part 2 are connected in the crucible 1 and the raw material gas is sublimated from the raw material G toward the single crystal S may be referred to as the z direction.

坩堝1は、原料Gを収納する。原料Gを収納できれば、その形状は特に問わない。図1において、坩堝1の底部は原料設置部であり、原料Gを収納する。
坩堝1を構成する材料は、SiC単結晶を作製する際に使用される公知のものを用いることができる。例えば、耐熱性を有するカーボン、炭化タンタル(TaC)等を用いる。
The crucible 1 stores the raw material G. The shape is not particularly limited as long as the raw material G can be stored. In FIG. 1, the bottom part of the crucible 1 is a raw material installation part for storing the raw material G.
As the material constituting the crucible 1, a known material used when producing a SiC single crystal can be used. For example, carbon having heat resistance, tantalum carbide (TaC), or the like is used.

単結晶設置部2は、坩堝1内で、設置される原料Gと対向する位置に配置される。原料Gと対向する位置に単結晶設置部2が設置されていることで、原料Gから昇華した原料ガスを効率的に単結晶設置部2に設置される単結晶Sへ供給できる。   The single crystal installation part 2 is arrange | positioned in the crucible 1 in the position facing the raw material G installed. Since the single crystal installation unit 2 is installed at a position facing the raw material G, the source gas sublimated from the raw material G can be efficiently supplied to the single crystal S installed in the single crystal installation unit 2.

また単結晶設置部2は、内部に空間を有する。「内部に空間を有する」とは、単結晶設置部2自体の内部に空洞を有していてもよいし、図1に示すように筒状の単結晶設置部2と坩堝1の内壁と、設置される単結晶Sとで空間を形成してもよい。   Moreover, the single crystal installation part 2 has a space inside. “Having a space inside” may have a cavity inside the single crystal installation part 2 itself, as shown in FIG. 1, a cylindrical single crystal installation part 2 and the inner wall of the crucible 1, A space may be formed with the single crystal S to be installed.

熱伝達部3は、単結晶設置部2内に形成された空間内を摺動する。摺動方向は、z方向である。熱伝達部3の摺動方法は特に問わない。図1に示すように、熱伝達部3の一部を坩堝1から突出させ、その部分を利用して機械的に摺動させてもよい。
熱伝達部3は、空間内をz方向に摺動し、単結晶Sに対して熱伝達部3が接触した接触状態と、単結晶Sに対して熱伝達部3が非接触の非接触状態と、を切り替える。
The heat transfer unit 3 slides in a space formed in the single crystal installation unit 2. The sliding direction is the z direction. The sliding method of the heat transfer part 3 is not particularly limited. As shown in FIG. 1, a part of the heat transfer part 3 may be protruded from the crucible 1 and mechanically slid using the part.
The heat transfer unit 3 slides in the space in the z direction, and a contact state in which the heat transfer unit 3 is in contact with the single crystal S and a non-contact state in which the heat transfer unit 3 is not in contact with the single crystal S And switch.

熱伝達部3は、アルゴン(Ar)より熱伝達性の高い熱伝達物質を含む。また熱伝達部3は、SiC単結晶を製造する際の高温に対して耐熱性を有する必要がある。そのため、熱伝達物質として、例えば、炭化ケイ素(SiC)、カーボン、炭化タンタル(TaC)等を用いることができる。   The heat transfer unit 3 includes a heat transfer material having a higher heat transfer property than argon (Ar). Moreover, the heat transfer part 3 needs to have heat resistance with respect to the high temperature at the time of manufacturing a SiC single crystal. Therefore, for example, silicon carbide (SiC), carbon, tantalum carbide (TaC), or the like can be used as the heat transfer substance.

「SiC単結晶成長方法」
本実施形態にかかるSiC単結晶成長方法は、SiC単結晶が結晶成長する成長面に対する裏面における、Arより熱伝達性の高い熱伝達物質の接触状態を、結晶成長の過程において変化させながら行う方法である。
"SiC single crystal growth method"
The SiC single crystal growth method according to the present embodiment is a method in which the contact state of a heat transfer material having a higher heat transfer property than Ar is changed in the course of crystal growth on the back surface with respect to the growth surface on which the SiC single crystal grows. It is.

以下、上述のSiC単結晶成長装置10の動作を説明すると共に、本実施形態にかかるSiC単結晶成長方法について具体的に説明する。   Hereinafter, the operation of the above-described SiC single crystal growth apparatus 10 will be described, and the SiC single crystal growth method according to the present embodiment will be specifically described.

まず、坩堝1内の原料設置部に原料Gを設置し、単結晶設置部2に結晶成長の核となる単結晶(種結晶)を設置する。原料Gは、焼結したSiC粉末原料を用いることができ、単結晶はSiC単結晶である。坩堝内に充填する雰囲気ガスとしては不活性ガスであるArを用いることができる。   First, the raw material G is installed in the raw material installation part in the crucible 1, and the single crystal (seed crystal) serving as the nucleus of crystal growth is installed in the single crystal installation part 2. As the raw material G, a sintered SiC powder raw material can be used, and the single crystal is a SiC single crystal. Ar, which is an inert gas, can be used as the atmosphere gas filled in the crucible.

坩堝1を加熱すると、原料Gから原料ガスが昇華する。昇華した原料ガスは、テーパーガイド4に沿って、単結晶Sへ供給される。   When the crucible 1 is heated, the source gas is sublimated from the source G. The sublimated source gas is supplied to the single crystal S along the taper guide 4.

単結晶Sは、原料ガスが再結晶化することで成長する。結晶成長初期は、欠陥が生じやすい。例えば、SiC粉末原料に含まれる不純物は、シリコンより昇華しやすい。結晶成長初期における原料ガスは、カーボンリッチな状態であり、成長表面からシリコンが抜けて、表面が炭化することがある。成長表面のカーボンは、SiC単結晶の成長の様相を変え、欠陥を生み出す。そのため、結晶成長初期における欠陥の発生を制御することが求められる。   The single crystal S grows when the source gas is recrystallized. At the initial stage of crystal growth, defects are likely to occur. For example, impurities contained in the SiC powder raw material are more easily sublimated than silicon. The source gas at the initial stage of crystal growth is in a carbon-rich state, and silicon may escape from the growth surface and carbonize the surface. The carbon on the growth surface changes the growth of the SiC single crystal and creates defects. Therefore, it is required to control the generation of defects at the initial stage of crystal growth.

本実施形態では、結晶成長初期に発生する欠陥を単結晶Sの結晶成長面と反対側の裏面側から制御する。以下、図2を基に具体的に説明する。   In the present embodiment, defects occurring at the initial stage of crystal growth are controlled from the back side opposite to the crystal growth surface of the single crystal S. Hereinafter, a specific description will be given based on FIG.

図2は、本実施形態にかかるSiC単結晶成長方法における結晶成長状態を模式的に示した図である。図2(a)は、熱伝達物質を含む熱伝達部3と、単結晶Sの結晶成長面Saと反対側の裏面Sbと、が接触していない非接触状態であり、図2(b)は、熱伝達物質を含む熱伝達部3と、単結晶Sの結晶成長面Saと反対側の裏面Sbと、が接触した接触状態である。図2において、原料ガスgの流れと、熱の流れt1、t2、t3を矢印で図示する。   FIG. 2 is a diagram schematically showing a crystal growth state in the SiC single crystal growth method according to the present embodiment. FIG. 2A shows a non-contact state in which the heat transfer portion 3 containing the heat transfer material and the back surface Sb opposite to the crystal growth surface Sa of the single crystal S are not in contact with each other, and FIG. Is a contact state in which the heat transfer part 3 containing the heat transfer material and the back surface Sb opposite to the crystal growth surface Sa of the single crystal S are in contact with each other. In FIG. 2, the flow of the source gas g and the heat flows t1, t2, and t3 are shown by arrows.

図2(a)に示す非接触状態は、熱伝達部3と単結晶Sとの間に空間Kが形成されている。空間K内は、原料ガスを含むArが充満しているため、熱伝達部3が接触している場合と比較して熱伝達率が低い。そのため、単結晶Sに蓄積された熱を効率的に逃がすことができず、単結晶Sは高温になる。単結晶Sが高温になると、単結晶Sの結晶成長面Saにおいて原料ガスgが再結晶化することができなくなると共に、その一部が昇華する。   In the non-contact state illustrated in FIG. 2A, a space K is formed between the heat transfer unit 3 and the single crystal S. Since the space K is filled with Ar containing the source gas, the heat transfer coefficient is lower than that in the case where the heat transfer unit 3 is in contact. Therefore, the heat accumulated in the single crystal S cannot be efficiently released, and the single crystal S becomes high temperature. When the single crystal S reaches a high temperature, the source gas g cannot be recrystallized on the crystal growth surface Sa of the single crystal S, and part of the gas sublimates.

これは単結晶S側の視点から見ると、単結晶Sの結晶成長面Saがエッチングされたと換言できる。結晶成長初期の結晶成長面Saをエッチングすると、結晶成長初期に発生する欠陥を除去することができ、得られる単結晶が高品質化する。このことは、例えば、先行文献1及び2等の水素を用いたエッチングにおいても確認されている。   From the viewpoint of the single crystal S side, this can be said that the crystal growth surface Sa of the single crystal S is etched. When the crystal growth surface Sa in the initial stage of crystal growth is etched, defects generated in the initial stage of crystal growth can be removed, and the resulting single crystal is improved in quality. This has also been confirmed, for example, in etching using hydrogen as described in Prior Documents 1 and 2.

非接触状態において、単結晶Sの裏面Sbと熱伝達部3との距離は、0.5mm以上離すことが好ましい。0.5mm以上離すことで、熱の流れt2を十分抑制し、結晶成長面Saをエッチングすることができる。0.1mm程度の距離の場合、熱の流れt2が十分抑制されず、中央付近のエッチングが不十分になる場合がある。単結晶Sの裏面Sbと熱伝達部3との距離の上限は装置の構成により決めることができるが、駆動しやすい構造とするために100mm以下とすることが好ましい。さらに単結晶Sの裏面Sbと熱伝達部3との距離は、摺動距離を短くするために、10mm以下とすることがより好ましい。   In the non-contact state, it is preferable that the distance between the back surface Sb of the single crystal S and the heat transfer unit 3 is 0.5 mm or more. By separating by 0.5 mm or more, the heat flow t2 can be sufficiently suppressed and the crystal growth surface Sa can be etched. When the distance is about 0.1 mm, the heat flow t2 may not be sufficiently suppressed, and etching near the center may be insufficient. The upper limit of the distance between the back surface Sb of the single crystal S and the heat transfer unit 3 can be determined by the configuration of the apparatus, but is preferably 100 mm or less in order to make the structure easy to drive. Furthermore, the distance between the back surface Sb of the single crystal S and the heat transfer part 3 is more preferably 10 mm or less in order to shorten the sliding distance.

エッチングされたエッチング面Sa’の形状は、対向する原料Gに対して中央部が凹んだ凹面となる。単結晶Sは、単結晶設置部2と外周側で接触している。接触面を介して熱が流れるため、単結晶S内において中央側から外周側に向けた熱の流れt1が生まれる。一方で、単結晶Sの中央部において熱伝達部3に向けた熱の流れt2は抑制されている。その結果、単結晶S内で比較すると、中央部が高温で外周部が低温になる。つまり、単結晶Sの中央部のエッチングが進み、エッチング面Sa’は凹面となる。   The shape of the etched etching surface Sa 'is a concave surface in which the central portion is recessed with respect to the opposite raw material G. The single crystal S is in contact with the single crystal installation part 2 on the outer peripheral side. Since heat flows through the contact surface, in the single crystal S, a heat flow t1 from the central side toward the outer peripheral side is generated. On the other hand, the heat flow t2 toward the heat transfer unit 3 is suppressed at the center of the single crystal S. As a result, when compared in the single crystal S, the central portion is hot and the outer peripheral portion is cold. That is, the etching of the central portion of the single crystal S proceeds and the etching surface Sa ′ becomes a concave surface.

一方で、非接触状態が続くと単結晶Sは結晶成長が進まない。そこで、図2(b)に示すように、熱伝達部3を単結晶Sに向けて摺動し、単結晶Sの裏面Sbと熱伝達部3とを接触させる。   On the other hand, if the non-contact state continues, the crystal growth of the single crystal S does not proceed. Therefore, as shown in FIG. 2B, the heat transfer unit 3 is slid toward the single crystal S, and the back surface Sb of the single crystal S and the heat transfer unit 3 are brought into contact with each other.

単結晶Sと熱伝達部3とが接触すると、単結晶Sから熱伝達部3へ向けた熱の流れt3が生まれる。熱が熱伝達部3に流れることにより、単結晶Sは原料ガスgが再結晶化できる程度に冷却される。そして、単結晶Sのエッチング面Sa’に単結晶が結晶成長する。   When the single crystal S and the heat transfer unit 3 come into contact, a heat flow t3 from the single crystal S to the heat transfer unit 3 is generated. When the heat flows to the heat transfer section 3, the single crystal S is cooled to such an extent that the source gas g can be recrystallized. Then, the single crystal grows on the etching surface Sa ′ of the single crystal S.

単結晶Sに供給される原料ガスgの一部は、単結晶Sとテーパーガイド4との間を介して、対向する原料Gと反対側の後方側に流れる。そのため、単結晶Sの結晶成長は、単結晶Sの中央部が外周部よりも早くなる。このことは、通常単結晶Sを結晶成長させると、原料Gに向けて凸な結晶が得られることからも分かる。   Part of the raw material gas g supplied to the single crystal S flows to the rear side opposite to the facing raw material G through the space between the single crystal S and the taper guide 4. Therefore, the crystal growth of the single crystal S is faster at the central portion of the single crystal S than at the outer peripheral portion. This can also be seen from the fact that when the single crystal S is grown normally, a convex crystal toward the raw material G is obtained.

上述のように、非接触状態でエッチングされたエッチング面Sa’は、対向する原料Gに対して凹面である。単結晶Sの結晶成長は、単結晶Sの中央部が外周部よりも早いため、エッチング面Sa’の凹面形状を緩和するように結晶成長が進む。その結果、結晶成長を進めた後に得られる最終的な外周面Scが過剰に凸になることが抑制される。すなわち、単結晶S内に生じる歪を緩和し、欠陥等の発生を抑制できる。   As described above, the etching surface Sa ′ etched in the non-contact state is a concave surface with respect to the facing material G. Crystal growth of the single crystal S progresses so as to relax the concave shape of the etching surface Sa ′ because the central portion of the single crystal S is faster than the outer peripheral portion. As a result, the final outer peripheral surface Sc obtained after the crystal growth is prevented from being excessively convex. That is, the strain generated in the single crystal S can be relaxed and the occurrence of defects and the like can be suppressed.

上述のように、本実施形態にかかるSiC単結晶成長方法によれば、単結晶の結晶成長面をエッチングするか、単結晶の結晶成長面に結晶を成長させるかを自由に制御することができる。また、本実施形態にかかるSiC単結晶成長方法は、結晶成長の制御をSiC単結晶の結晶成長面に対する裏面側で制御するという新たな方法である。裏面側で制御するため、SiC単結晶の結晶成長への影響も少ない。   As described above, according to the SiC single crystal growth method according to the present embodiment, it is possible to freely control whether the crystal growth surface of the single crystal is etched or the crystal is grown on the crystal growth surface of the single crystal. . The SiC single crystal growth method according to the present embodiment is a new method in which the crystal growth is controlled on the back side with respect to the crystal growth surface of the SiC single crystal. Since the control is performed on the back side, the influence on the crystal growth of the SiC single crystal is small.

また、本実施形態にかかるSiC単結晶成長装置は、水素等を導入するための配管設備等を整える必要が無い。そのため、本実施形態にかかるSiC単結晶成長装置によれば、簡便な設備で結晶成長状態を制御することができる。さらに、熱伝達部を摺動させるだけで、エッチング状態と結晶成長状態をスイッチングさせることができ、SiC単結晶の結晶成長状態をより精密に制御できる。   In addition, the SiC single crystal growth apparatus according to the present embodiment does not need to prepare piping facilities or the like for introducing hydrogen or the like. Therefore, according to the SiC single crystal growth apparatus concerning this embodiment, a crystal growth state can be controlled with simple equipment. Furthermore, the etching state and the crystal growth state can be switched only by sliding the heat transfer part, and the crystal growth state of the SiC single crystal can be controlled more precisely.

ここまで、図1に示すように、熱伝達部3を単結晶Sに対して摺動させることで、単結晶Sと熱伝達部3(熱伝達物質)の接触状態を変化させる場合を例に説明した。SiC単結晶成長方法は、当該方法に限られず、単結晶Sと熱伝達物質との接触、非接触の状態を別の手段で制御してもよい。   Up to this point, as shown in FIG. 1, the case where the contact state between the single crystal S and the heat transfer unit 3 (heat transfer material) is changed by sliding the heat transfer unit 3 with respect to the single crystal S is taken as an example. explained. The SiC single crystal growth method is not limited to this method, and the contact / non-contact state between the single crystal S and the heat transfer material may be controlled by another means.

図3は、本実施形態にかかるSiC単結晶成長方法における結晶成長状態の別の態様を模式的に示した図である。図3において、図2と同一の構成については、同一の符号を付している。   FIG. 3 is a diagram schematically showing another aspect of the crystal growth state in the SiC single crystal growth method according to the present embodiment. 3, the same components as those in FIG. 2 are denoted by the same reference numerals.

例えば、図3に示すように、単結晶設置部2の一部に開口部2Aを設け、開口部2Aを介して原料ガスgが空間K内に流入できるようにする(図3(a)参照)。開口部2Aを介して空間Kに流入した原料ガスgは、空間K内に多結晶Aを成長させる。その結果、空間Kが徐々に埋まっていき、多結晶Aを介して、熱伝達状態を変化させることができる。   For example, as shown in FIG. 3, an opening 2A is provided in a part of the single crystal installation part 2 so that the source gas g can flow into the space K through the opening 2A (see FIG. 3A). ). The source gas g flowing into the space K through the opening 2 </ b> A causes the polycrystalline A to grow in the space K. As a result, the space K is gradually filled, and the heat transfer state can be changed through the polycrystal A.

なお、図3に示す場合は、接触状態と非接触状態をスイッチングすることは難しく、状態変化は1回のみとなる。しかしながら、状態変化が1回のみであっても、結晶成長初期のエッチングは可能であり、SiC単結晶内の高品質化に寄与する。   In the case shown in FIG. 3, it is difficult to switch between a contact state and a non-contact state, and the state change is only once. However, even when the state changes only once, etching at the initial stage of crystal growth is possible, which contributes to high quality in the SiC single crystal.

(SiC単結晶インゴット)
図4は、本実施形態にかかるSiC単結晶インゴットの断面図である。図4に示すSiCインゴットIは、SiC単結晶(単結晶)Sと、SiC単結晶(単結晶)S上に結晶成長した結晶成長領域Sgとを有する。
(SiC single crystal ingot)
FIG. 4 is a cross-sectional view of the SiC single crystal ingot according to the present embodiment. The SiC ingot I shown in FIG. 4 has a SiC single crystal (single crystal) S and a crystal growth region Sg grown on the SiC single crystal (single crystal) S.

図4におけるSiCインゴットIにおいて、SiC単結晶Sと、結晶成長領域Sgとは窒素濃度が異なり、明確な界面が確認できる。またSiC単結晶Sと結晶成長領域Sgとの窒素濃度等が近似している場合も、UV照射しながらSiCインゴットの断面を見ることで、わずかな濃度差を強調してSiC単結晶Sの形状を確認できる。   In the SiC ingot I in FIG. 4, the SiC single crystal S and the crystal growth region Sg have different nitrogen concentrations, and a clear interface can be confirmed. In addition, even when the nitrogen concentration of the SiC single crystal S and the crystal growth region Sg is approximate, by looking at the cross section of the SiC ingot while irradiating with UV, a slight concentration difference is emphasized and the shape of the SiC single crystal S Can be confirmed.

図4に示すように、単結晶Sの中央部は、端部よりも凹んでいる。これは、本来の単結晶Sの結晶成長面Saがエッチングにより後退し、エッチング面Sa’となったためである。   As shown in FIG. 4, the center part of the single crystal S is dented rather than the edge part. This is because the crystal growth surface Sa of the original single crystal S is retreated by etching to become an etching surface Sa ′.

上述のように、中央部が端部よりも凹んだ単結晶Sの形状は、上述のSiC単結晶成長方法におけるエッチングによる独特のものである。   As described above, the shape of the single crystal S in which the central portion is recessed from the end portion is unique by etching in the above-described SiC single crystal growth method.

例えば、水素ガスエッチングの場合、単結晶Sに対して水素ガスが均一に供給されるため、結晶成長面Saにおけるエッチング速度はほぼ均一である。すなわち、中央部が窪んだ形状にはならない。またエッチングを行わずに得られた種結晶も、フラット形状か、上述のように中央部が端部より突出した形状となる。さらに、加工により当該形状を得ようとしても、中央部が凹むように加工することは極めて難しい。
そのため、当該特徴を有する単結晶は、上述の単結晶成長装置又は単結晶成長方法によって作製されたものと推定される。
For example, in the case of hydrogen gas etching, since the hydrogen gas is uniformly supplied to the single crystal S, the etching rate on the crystal growth surface Sa is substantially uniform. That is, it does not become a shape in which the central part is depressed. Moreover, the seed crystal obtained without performing etching also has a flat shape or a shape in which the central portion protrudes from the end portion as described above. Furthermore, even if it is going to obtain the said shape by a process, it is very difficult to process so that a center part may be dented.
Therefore, it is presumed that the single crystal having the characteristics is manufactured by the above-described single crystal growth apparatus or single crystal growth method.

本実施形態にかかるSiCインゴットIは、結晶成長を進めた後に得られる最終的な外周面Scが過剰に凸になりにくい。すなわち、歪が少なく、高品質なSiCインゴットとなる。また過剰に凸になっていないため、ウェハ上に加工した際の取れ効率が高くすることができる。   In the SiC ingot I according to the present embodiment, the final outer peripheral surface Sc obtained after the crystal growth proceeds is not likely to be excessively convex. That is, it becomes a high quality SiC ingot with little distortion. Moreover, since it is not excessively convex, it is possible to increase the removal efficiency when processed on a wafer.

また、図4では、成長中にドーピング量を調整することにより、結晶成長中の表面形状に対応するコントラストが見えている。結晶成長開始時は、非接触状態でエッチングされたため表面が凹面になっているが、結晶成長開始後は、凹面形状を緩和するように結晶成長が進み、徐々に凸形状に移行しているが、最終的な外周面の形状は過剰に凸になることが抑制されている。   In FIG. 4, the contrast corresponding to the surface shape during crystal growth can be seen by adjusting the doping amount during the growth. At the beginning of crystal growth, the surface is concave because it was etched in a non-contact state, but after crystal growth started, crystal growth progressed to relax the concave shape, and gradually shifted to a convex shape. The final shape of the outer peripheral surface is suppressed from being excessively convex.

以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims. Can be modified or changed.

(実施例1)
オフセット角が4°のSiC単結晶を坩堝内の単結晶設置部に設置した。この際、単結晶設置部と設置された単結晶との間には、空隙が形成されていた。単結晶設置部と単結晶の間の空隙の幅は、1mmであった。
Example 1
A SiC single crystal having an offset angle of 4 ° was placed in the single crystal placement section in the crucible. At this time, voids were formed between the single crystal installation part and the installed single crystal. The width of the gap between the single crystal installation part and the single crystal was 1 mm.

そして、SiC単結晶原料を坩堝内に封入し、坩堝の外周を2350℃まで加熱し、SiC単結晶原料を昇華させた。そして、100時間昇華を続け、SiC単結晶を2cm結晶成長させ、SiCインゴットを作製した。   And the SiC single crystal raw material was enclosed in the crucible, the outer periphery of the crucible was heated to 2350 degreeC, and the SiC single crystal raw material was sublimated. Then, sublimation was continued for 100 hours, and a SiC single crystal was grown by 2 cm to produce a SiC ingot.

得られたSiCインゴットを切断し、その断面を目視で確認した。その結果、単結晶設置部と単結晶の間の空隙が埋まっていることが確認できた。   The obtained SiC ingot was cut and the cross section was visually confirmed. As a result, it was confirmed that the gap between the single crystal installation part and the single crystal was filled.

また、得られたSiCインゴットの貫通欠陥密度(個/cm)は、エッチングにより強調された欠陥として顕微鏡を用いて測定した。測定した結果を表1に示す。 Moreover, the penetration defect density (pieces / cm 2 ) of the obtained SiC ingot was measured using a microscope as a defect emphasized by etching. The measured results are shown in Table 1.

(比較例1)
比較例1は、単結晶設置部と単結晶の間に空隙を設けなかった点が実施例1と異なる。その他の条件は、実施例1と同じとした。
そして、SiC単結晶を2cm結晶成長させ、SiCインゴットを作製した。また、得られたSiCインゴットの貫通欠陥密度(個/cm)は、エッチングにより強調された欠陥として顕微鏡を用いて測定した。測定した結果を表1に示す。
(Comparative Example 1)
Comparative Example 1 is different from Example 1 in that no gap was provided between the single crystal installation part and the single crystal. Other conditions were the same as in Example 1.
Then, a SiC single crystal was grown by 2 cm to produce a SiC ingot. Moreover, the penetration defect density (pieces / cm 2 ) of the obtained SiC ingot was measured using a microscope as a defect emphasized by etching. The measured results are shown in Table 1.

表1に示すように、実施例1は、貫通欠陥密度の値が比較例1と比較して大幅に低減された。単結晶設置部と設置された単結晶との間に空隙を設けることにより、結晶成長の初期にSiC単結晶の結晶成長面がエッチングされ、清浄化されたためと考えられる。   As shown in Table 1, in Example 1, the value of the penetration defect density was significantly reduced as compared with Comparative Example 1. This is probably because the crystal growth surface of the SiC single crystal was etched and cleaned at the initial stage of crystal growth by providing a gap between the single crystal installation part and the installed single crystal.

10…SiC単結晶成長装置、1…坩堝、2…単結晶設置部、2A…開口部、3…熱伝達部、4…テーパーガイド、S…単結晶、Sa…結晶成長面、Sa’…エッチング面、Sb…裏面、Sc…外周面、G…原料、g…原料ガス、K…空間、t1,t2,t3…熱の流れ、A…多結晶、I…SiCインゴット DESCRIPTION OF SYMBOLS 10 ... SiC single crystal growth apparatus, 1 ... Crucible, 2 ... Single crystal installation part, 2A ... Opening part, 3 ... Heat transfer part, 4 ... Taper guide, S ... Single crystal, Sa ... Crystal growth surface, Sa '... Etching Surface, Sb ... Back surface, Sc ... Outer peripheral surface, G ... Raw material, g ... Raw material gas, K ... Space, t1, t2, t3 ... Heat flow, A ... Polycrystalline, I ... SiC ingot

Claims (5)

SiC単結晶が結晶成長する成長面に対する裏面におけるArより熱伝達性の高い熱伝達物質の接触状態を、結晶成長の過程において変化させるSiC単結晶成長方法。   A SiC single crystal growth method in which a contact state of a heat transfer material having a higher heat transfer property than Ar on a back surface with respect to a growth surface on which a SiC single crystal grows is changed in the course of crystal growth. 前記SiC単結晶の裏面と前記熱伝達物質との間に空間を形成し、前記SiC単結晶と前記熱伝達物質とを非接触にする工程と、
昇温中又は昇温後において、前記SiC単結晶と前記熱伝達物質とを接触させる工程と、を有する請求項1に記載のSiC単結晶成長方法。
Forming a space between the back surface of the SiC single crystal and the heat transfer material, and making the SiC single crystal and the heat transfer material non-contact;
The SiC single crystal growth method according to claim 1, further comprising a step of bringing the SiC single crystal into contact with the heat transfer material during or after the temperature increase.
前記非接触にする工程において、前記熱伝達物質と前記単結晶とを0.5mm以上離す請求項1又は2のいずれかに記載のSiC単結晶成長方法。   The SiC single crystal growth method according to claim 1 or 2, wherein in the non-contacting step, the heat transfer material and the single crystal are separated by 0.5 mm or more. 原料を収納できる坩堝と、
前記坩堝内において前記原料が設置される原料設置部と対向して配置され、内部に空間を有する単結晶設置部と、
前記空間内を摺動できる熱伝達部と、を備え、
前記熱伝達部は、前記単結晶設置部に設置される単結晶と接触する接触状態と、前記単結晶と非接触の非接触状態とを、前記空間内を摺動することにより切り替え可能である、SiC単結晶成長装置。
A crucible capable of storing raw materials;
In the crucible, disposed opposite to the raw material installation part where the raw material is installed, a single crystal installation part having a space inside,
A heat transfer part capable of sliding in the space,
The heat transfer unit can switch between a contact state in contact with the single crystal installed in the single crystal installation unit and a non-contact state in non-contact with the single crystal by sliding in the space. SiC single crystal growth equipment.
SiC単結晶と、前記SiC単結晶上に結晶成長した結晶成長領域とを有し、
前記SiC単結晶の中央部が、端部よりも凹んでいるSiC単結晶インゴット。
Having a SiC single crystal and a crystal growth region grown on the SiC single crystal;
A SiC single crystal ingot in which a central portion of the SiC single crystal is recessed from an end portion.
JP2016227172A 2016-11-22 2016-11-22 SiC single crystal growth method, SiC single crystal growth device and SiC single crystal ingot Active JP6883409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016227172A JP6883409B2 (en) 2016-11-22 2016-11-22 SiC single crystal growth method, SiC single crystal growth device and SiC single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016227172A JP6883409B2 (en) 2016-11-22 2016-11-22 SiC single crystal growth method, SiC single crystal growth device and SiC single crystal ingot

Publications (2)

Publication Number Publication Date
JP2018083733A true JP2018083733A (en) 2018-05-31
JP6883409B2 JP6883409B2 (en) 2021-06-09

Family

ID=62238028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227172A Active JP6883409B2 (en) 2016-11-22 2016-11-22 SiC single crystal growth method, SiC single crystal growth device and SiC single crystal ingot

Country Status (1)

Country Link
JP (1) JP6883409B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090844A (en) * 2018-12-05 2020-06-11 株式会社北洋 Snow cornice formation prevention body for snowslide prevention fence and snow cornice formation prevention method
WO2023282000A1 (en) * 2021-07-08 2023-01-12 住友電気工業株式会社 Silicon carbide single crystal and silicon carbide substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154190A (en) * 2003-11-25 2005-06-16 Toyota Motor Corp Method for producing silicon carbide single crystal
JP2011020860A (en) * 2009-07-13 2011-02-03 Nippon Steel Corp Crucible for producing silicon carbide single crystal and method for producing silicon carbide single crystal
JP2011219294A (en) * 2010-04-07 2011-11-04 Denso Corp Method for producing silicon carbide single crystal
JP2012171800A (en) * 2011-02-17 2012-09-10 Bridgestone Corp Method and apparatus for producing silicon carbide single crystal
JP2013136494A (en) * 2011-12-28 2013-07-11 Toyota Central R&D Labs Inc SINGLE CRYSTAL PRODUCTION APPARATUS, SiC SINGLE CRYSTAL, WAFER AND SEMICONDUCTOR DEVICE
JP2016508948A (en) * 2013-02-05 2016-03-24 ダウ コーニング コーポレーションDow Corning Corporation SIC crystal with low dislocation density

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154190A (en) * 2003-11-25 2005-06-16 Toyota Motor Corp Method for producing silicon carbide single crystal
JP2011020860A (en) * 2009-07-13 2011-02-03 Nippon Steel Corp Crucible for producing silicon carbide single crystal and method for producing silicon carbide single crystal
JP2011219294A (en) * 2010-04-07 2011-11-04 Denso Corp Method for producing silicon carbide single crystal
JP2012171800A (en) * 2011-02-17 2012-09-10 Bridgestone Corp Method and apparatus for producing silicon carbide single crystal
JP2013136494A (en) * 2011-12-28 2013-07-11 Toyota Central R&D Labs Inc SINGLE CRYSTAL PRODUCTION APPARATUS, SiC SINGLE CRYSTAL, WAFER AND SEMICONDUCTOR DEVICE
JP2016508948A (en) * 2013-02-05 2016-03-24 ダウ コーニング コーポレーションDow Corning Corporation SIC crystal with low dislocation density

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090844A (en) * 2018-12-05 2020-06-11 株式会社北洋 Snow cornice formation prevention body for snowslide prevention fence and snow cornice formation prevention method
WO2023282000A1 (en) * 2021-07-08 2023-01-12 住友電気工業株式会社 Silicon carbide single crystal and silicon carbide substrate

Also Published As

Publication number Publication date
JP6883409B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
JP6584428B2 (en) Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
CN107208311B (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP6949358B2 (en) Method for manufacturing single crystal SiC, method for manufacturing SiC ingot, and method for manufacturing SiC wafer
KR20130137247A (en) Silicon carbide single crystal wafer and manufacturing method for same
JP2021070623A (en) Silicon carbide wafer, method of manufacturing silicon carbide ingot, and method of manufacturing silicon carbide wafer
JP2010514648A (en) Micropipe-free silicon carbide and method for producing the same
JP5402701B2 (en) Method for producing silicon carbide crystal
JP6594146B2 (en) Method for producing silicon carbide single crystal ingot
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
WO2019171901A1 (en) Production method for silicon carbide single crystal
JP2014234331A (en) Manufacturing method of silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2021050112A (en) Manufacturing method of silicon carbide single crystal wafer and silicon carbide single crystal ingot
JP2017065986A (en) Method for manufacturing silicon carbide single crystal substrate having low resistivity
JP2021102533A (en) MANUFACTURING METHOD OF SiC SINGLE CRYSTAL
JP6883409B2 (en) SiC single crystal growth method, SiC single crystal growth device and SiC single crystal ingot
WO2009107188A1 (en) METHOD FOR GROWING SINGLE CRYSTAL SiC
JP5761264B2 (en) Method for manufacturing SiC substrate
JP5375783B2 (en) Method for producing silicon carbide single crystal
JP2016172674A (en) Silicon carbide single crystal and power-controlling device substrate
JP4661039B2 (en) Method for manufacturing silicon carbide substrate
JP6335716B2 (en) Method for producing silicon carbide single crystal ingot
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
JP6839526B2 (en) SiC single crystal growth device, SiC single crystal growth method and SiC single crystal
JP2015071527A (en) Silicon carbide single crystal and manufacturing method of silicon carbide single crystal
KR20200130284A (en) Silicon carbide single crystal manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6883409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250