JP2018083062A - Silver particle supporting method and apparatus - Google Patents

Silver particle supporting method and apparatus Download PDF

Info

Publication number
JP2018083062A
JP2018083062A JP2017162936A JP2017162936A JP2018083062A JP 2018083062 A JP2018083062 A JP 2018083062A JP 2017162936 A JP2017162936 A JP 2017162936A JP 2017162936 A JP2017162936 A JP 2017162936A JP 2018083062 A JP2018083062 A JP 2018083062A
Authority
JP
Japan
Prior art keywords
target object
induction heating
denture
silver
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017162936A
Other languages
Japanese (ja)
Inventor
昌平 高橋
Shohei Takahashi
昌平 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CASTING IN KK
Original Assignee
CASTING IN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CASTING IN KK filed Critical CASTING IN KK
Priority to JP2017162936A priority Critical patent/JP2018083062A/en
Publication of JP2018083062A publication Critical patent/JP2018083062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)
  • Dental Prosthetics (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep a fixed temperature for support without depending on a surface area of a target objet when silver particles are discretely supported on the target object by IH, and perform uniform heating without depending on a volume of the target object within a range of arrival of IH electromagnetic waves.SOLUTION: A silver particle supporting method for induction-heating a target object in an immersed state and causing the target object to discretely support silver particles, includes: disposing the target object on an induction-heating diffusion metal; putting the induction-heating diffusion metal in a prescribed container; immersing the induction-heating diffusion metal in aqueous silver solution; and induction-heating the prescribed container.SELECTED DRAWING: Figure 3

Description

本発明は、ターゲット物体に、誘導加熱(以下、IH(インダクションヒーティング)と称す)によって、銀粒子を担持させる銀粒子担持方法、装置に関する。   The present invention relates to a silver particle supporting method and apparatus for supporting silver particles on a target object by induction heating (hereinafter referred to as IH (induction heating)).

従来、義歯床(歯肉)の部分になる床用レジンの材料の素材はアクリル樹脂であり、粉材と液材を規定の分量に計量して混ぜ合わせたものに熱を加えると硬化する性質を持った材料である。   Conventionally, the material of the resin for floors that becomes the part of denture base (gingiva) is acrylic resin, and it has the property of curing when heat is applied to a mixture of powder and liquid materials measured to a specified amount. Material.

近年、歯科技工用の義歯を作成するための床用レジンに対して、抗菌性、防汚性、防臭性が持続する技術が知られている。すなわち、抗菌コーティングのために、マイクロ波照射によってターゲット物体にナノ銀粒子を担持させる技術が知られている。   In recent years, a technique in which antibacterial properties, antifouling properties, and deodorizing properties have been sustained is known for flooring resins for creating dentures for dental technicians. That is, a technique for supporting nano silver particles on a target object by microwave irradiation for antibacterial coating is known.

すなわち、この技術によれば、マイクロ波照射によって、義歯に、ナノ銀粒子を離散して担持することにより、優れた抗菌効果を有し、また、咀嚼行為が連続しても、抗菌効果を持続することができるものである。そこで、本件出願人は、先の出願で既に登録となった特許文献1に開示されているように、義歯、あるいは義歯床(歯肉)の部分になる床用レジンを採用し、これらを、例えば透磁率の比較的大きな耐熱性のデンチャーボックス内に入れ、当該義歯を約150mlの銀水溶液で浸漬する。そして、デンチャーボックス下部より電源約10Vで一定時間IHを照射して誘導加熱を行うことにより、ナノ銀粒子を離散して義歯に担持させるナノ銀粒子担持方法を提案した。   In other words, according to this technology, the nano-silver particles are carried discretely on the dentures by microwave irradiation, thereby providing an excellent antibacterial effect and maintaining the antibacterial effect even if chewing is continued. Is something that can be done. Therefore, as disclosed in Patent Document 1 already registered in the previous application, the present applicant employs a denture or a denture base resin (gingival) part resin, The denture is immersed in about 150 ml of an aqueous silver solution in a heat-resistant denture box having a relatively high magnetic permeability. And the nano silver particle carrying | support method which carries out the induction heating by irradiating IH with the power supply about 10V for a fixed time from the lower part of a denture box, and carrying | supporting a nano silver particle on a denture was proposed.

特許第5887448号公報Japanese Patent No. 5887448

しかしながら、上記した特許文献1において、金属床を含む義歯をIHにより加熱し、ナノ銀粒子を離散して義歯に担持させる場合、この金属床の大小によって、IHによる温度の上がり方が一様ではなく(図7参照)、金属床の各部分にバラツキが生じ、担持のための一定の温度を保持できず、均一な加熱ができなくなる虞があり、それを改善する必要があった。   However, in Patent Document 1 described above, when a denture including a metal bed is heated by IH and nano silver particles are discretely carried on the denture, the temperature rise by IH is not uniform depending on the size of the metal bed. No (see FIG. 7), there was a variation in each part of the metal floor, a constant temperature for supporting could not be maintained, and there was a possibility that uniform heating could not be performed, and it was necessary to improve it.

そこで、本発明は叙上のような従来存した諸事情に鑑み創出されたもので、IHによる加熱により、ターゲット物体に、銀粒子を離散して担持する際に、各種義歯の金属床の表面積に依存せずに、担持のための一定の温度を保持可能とし、IHの電磁波到達範囲内での義歯の金属床の体積に依存せずに均一な加熱ができるものとしたナノ銀粒子担持方法、装置を提供することを目的とする。   Therefore, the present invention was created in view of the conventional circumstances as described above, and when the silver particles are discretely carried on the target object by heating with IH, the surface area of the metal bed of various dentures. A method for supporting nano silver particles that can maintain a constant temperature for supporting without depending on the volume and can perform uniform heating without depending on the volume of the metal bed of the denture within the electromagnetic wave reach of IH An object is to provide an apparatus.

上述した課題を解決するために、本発明にあっては、ターゲット物体を浸漬した状態で誘導加熱(IH)を行うことにより、銀粒子を離散して前記ターゲット物体に担持させる銀粒子担持方法であって、誘導加熱拡散用金属にターゲット物体を配置して、誘導加熱拡散用金属を所定の容器内に入れ、銀水溶液でターゲット物体を浸漬して、所定の容器に対し誘導加熱(IH)を行うことを特徴とする。
さらに、上述した課題を解決するために、本発明にあっては、ターゲット物体を浸漬した状態で誘導加熱(IH)を行うことにより、銀粒子を離散して前記ターゲット物体に担持させる装置であって、誘導加熱拡散用金属にターゲット物体を配置して、誘導加熱拡散用金属を所定の容器内に入れ、銀水溶液でターゲット物体を浸漬して、所定の容器に対し誘導加熱(IH)を行うことを特徴とする。
In order to solve the above-described problems, the present invention provides a silver particle supporting method in which silver particles are discretely supported on the target object by performing induction heating (IH) while the target object is immersed. The target object is placed on the induction heating diffusion metal, the induction heating diffusion metal is placed in a predetermined container, the target object is immersed in an aqueous silver solution, and induction heating (IH) is performed on the predetermined container. It is characterized by performing.
Furthermore, in order to solve the above-described problems, the present invention is an apparatus for discretely supporting silver particles on the target object by performing induction heating (IH) while the target object is immersed. Then, the target object is disposed on the induction heating diffusion metal, the induction heating diffusion metal is placed in a predetermined container, the target object is immersed in a silver aqueous solution, and induction heating (IH) is performed on the predetermined container. It is characterized by that.

本発明によれば、IHによる加熱により、ターゲット物体に、銀粒子を離散して担持する際に、各種ターゲット物体の表面積に依存せずに、担持のための一定の温度を保持可能とし、IHの電磁波到達範囲内でのターゲット物体の体積に依存せずに均一な加熱ができる。   According to the present invention, when silver particles are carried discretely on a target object by heating with IH, a constant temperature for carrying can be maintained without depending on the surface area of various target objects. Can be heated uniformly without depending on the volume of the target object within the electromagnetic wave reachable range.

IH装置によるステンレスメッシュかご、ステンレスプレートかご、かご無しの場合の比較実験に使用される金属床大の写真である。It is the photograph of the metal floor size used for the comparison experiment in the case of a stainless mesh cage, a stainless steel plate cage, and a cage without an IH device. IH装置によるステンレスメッシュかご、ステンレスプレートかご、かご無しの場合の比較実験に使用される金属床小の写真である。It is a photograph of a small metal floor used for a comparative experiment in the case of a stainless mesh cage, a stainless steel plate cage, and no cage by an IH device. ステンレスメッシュかごによる誘導加熱拡散用金属容器の写真である。It is a photograph of the metal container for induction heating diffusion by a stainless steel mesh basket. ステンレスプレートかごによる誘導加熱拡散用金属容器の写真である。It is a photograph of the metal container for induction heating diffusion by a stainless steel plate cage. 表1(メッシュかご使用時)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph (when the vertical axis is ° C. and the horizontal axis is minutes) in Table 1 (when using a mesh cage). 表2(プレートかご使用時)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph (when the vertical axis is ° C. and the horizontal axis is minutes) in Table 2 (when using a plate cage). 表3(かご無し時)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph (when the vertical axis is ° C. and the horizontal axis is minutes) in Table 3 (when there is no car). 表4(義歯無し)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph of Table 4 (without dentures) (the vertical axis is ° C. and the horizontal axis is minutes). 表5(金属床大)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph (vertical axis is ° C. and horizontal axis is minutes) in Table 5 (large metal floor). 表6(金属床小)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph (vertical axis is ° C., horizontal axis is minutes) of Table 6 (small metal floor).

以下、図面を参照して本発明の実施の一形態を詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

本実施形態においては、IH装置によるナノ銀粒子を担持させるデータ採得用の試験対象物(ワーク)として、例えば金属床大(図1参照)、もしくは金属床小を含む義歯(図2参照)を採用している。   In the present embodiment, as a test object (work) for collecting data carrying nano silver particles by an IH device, for example, a metal bed large (see FIG. 1) or a denture including a metal floor small (see FIG. 2). Is adopted.

そして、図3に示すステンレスメッシュかご、もしくは図4に示すステンレスプレートかごとなって各形成された耐食性を有する誘導加熱拡散用金属容器に、金属床大、もしくは金属床小を含む義歯を収容する。   Then, the denture including the large metal floor or the small metal floor is accommodated in the induction heating diffusion metal container having corrosion resistance formed as the stainless steel mesh cage shown in FIG. 3 or the stainless steel plate cage shown in FIG. .

さらに、この誘導加熱拡散用金属容器を、例えば透磁率の比較的大きな耐熱性のデンチャーボックス(図示せず)内に入れ、金属床または義歯を後述する約150mlの銀水溶液で浸漬する。   Further, the induction heating diffusion metal container is placed in, for example, a heat-resistant denture box (not shown) having a relatively large magnetic permeability, and the metal floor or denture is immersed in about 150 ml of an aqueous silver solution described later.

そして、デンチャーボックスの例えば下部より電源約10Vで一定時間IHを照射する方法を採っている。すなわち、IH照射による加熱は、デンチャーボックスを磁力発生コイルの上に載せて当該磁力発生コイルに高周波電流(電源約10V)を供給することにより、デンチャーボックス全体に所定の時間だけIHを照射する。   Then, for example, a method of irradiating IH with a power supply of about 10 V for a certain time from the lower part of the denture box is employed. That is, in the heating by IH irradiation, the denture box is placed on the magnetic force generating coil and a high frequency current (power supply of about 10 V) is supplied to the magnetic force generating coil, so that the entire denture box is irradiated with IH for a predetermined time.

すると、当該コイル上に載せられているデンチャーボックス内の銀水溶液及び誘導加熱拡散用金属容器、さらにはワークにうず電流が流れ、当該銀水溶液及び誘導加熱拡散用金属容器、ワーク自体の電気抵抗でジュール熱が発生して自己発熱する。   Then, an eddy current flows through the silver aqueous solution and the induction heating diffusion metal container in the denture box placed on the coil, and further to the work, and the electrical resistance of the silver aqueous solution and the induction heating diffusion metal container and the work itself. Joule heat is generated and self-heating occurs.

IH照射後、デンチャーボックス内の誘導加熱拡散用金属容器からワークを取り出し、表裏を逆にしてから銀水溶液に再び浸漬し、再度、同じ条件にてIHを照射する。こうして、IHの照射によって、銀水溶液中のナノ銀粒子をワークの表裏に離散的に担持させることができる。ここで、IHの照射は、銀水溶液が常温状態(20℃前後)であることを確認した上で、水溶液の上昇温度を最高でも75℃程度に保っている為、照射の際にワークが変形することを防ぐことができる。このように、IHの照射が常温で行われるので、ワークの表面に、銀が薄膜を形成するのではなく、ナノ銀粒子となって離散的にワークの表面に担持する。   After the IH irradiation, the work is taken out from the induction heating diffusion metal container in the denture box, the front and the back are reversed, immersed again in the silver aqueous solution, and again irradiated with IH under the same conditions. Thus, the nano silver particles in the silver aqueous solution can be discretely supported on the front and back of the workpiece by IH irradiation. Here, IH irradiation is performed after confirming that the aqueous silver solution is at room temperature (around 20 ° C.), and the rising temperature of the aqueous solution is kept at about 75 ° C. at the maximum. Can be prevented. As described above, since the irradiation with IH is performed at room temperature, silver does not form a thin film on the surface of the workpiece, but is nano-silver particles that are discretely carried on the surface of the workpiece.

銀水溶液は、銀イオンの水溶液であって、例えば、フィチン酸、ポリアクリル酸ナトリウム、炭酸水素ナトリウム、及び、酢酸銀等を含有する安全性の高い銀水溶液500mlに、アルコール製剤50ml〜150ml、望ましくは100mlを混合したものを用いてもよい。また、デンチャーボックスとして、例えば透磁率1.2567×10のマイナス6乗のフッ素樹脂(テフロン:登録商標)製の容器を用いることで、ナノ銀粒子の付着を低減するようにしてもよい。   The aqueous silver solution is an aqueous solution of silver ions. For example, an alcohol preparation of 50 ml to 150 ml, preferably 500 ml of a highly safe silver aqueous solution containing phytic acid, sodium polyacrylate, sodium hydrogen carbonate, silver acetate and the like is desirable. May be a mixture of 100 ml. In addition, as a denture box, for example, a container made of a fluororesin (Teflon: registered trademark) having a permeability of minus 567 × 10 may be used to reduce the adhesion of nano silver particles.

<IH装置によるステンレスメッシュかごとステンレスプレートかごとの比較実験>
(1)実験器具
本実施形態におけるIH装置によるステンレスメッシュかごとステンレスプレートかごとの比較実験に使用される器具としては、IH装置と、誘導加熱拡散用金属容器であるステンレスメッシュかご及びステンレスプレートかご(t0.2)と、金属床大と、金属床小を含む義歯と、デンチャーボックスと、銀イオンを含む水溶液150ml×9と、非接触赤外線温度計(例えばTASI−8608)と、ストップウォッチとを含む。
<Comparison experiment with stainless steel mesh cage and stainless steel plate by IH device>
(1) Experimental instrument As an instrument used for the comparison experiment between the stainless steel mesh cage and the stainless steel plate cage by the IH device in this embodiment, the stainless steel mesh cage and the stainless steel plate cage which are the metal containers for induction heating diffusion. (T0.2), a denture including a metal floor large, a metal floor small, a denture box, an aqueous solution 150 ml × 9 containing silver ions, a non-contact infrared thermometer (for example, TASI-8608), and a stopwatch including.

(2)実験方法
(イ)先ず、実験用ワークとしての金属床大(図1参照)を、図3に示すステンレスメッシュかご、もしくは図4に示すステンレスプレートかごとなって形成された誘導加熱拡散用金属容器に個別に収容する。
(2) Experimental method (a) First, induction heating diffusion formed by forming a large metal floor (see FIG. 1) as an experimental work into a stainless mesh cage shown in FIG. 3 or a stainless steel plate cage shown in FIG. Store individually in metal containers.

(ロ)ワークを収容した誘導加熱拡散用金属容器をデンチャーボックス内に入れ、デンチャーボックスをボビン内に設置する。   (B) Place the induction heating diffusion metal container containing the work in the denture box, and install the denture box in the bobbin.

(ハ)銀イオンの水溶液150mlをデンチャーボックス内に注ぐ。   (C) Pour 150 ml of an aqueous solution of silver ions into the denture box.

(ニ)IH装置に電源コードが接続されていることを確認し、電源スイッチをオンにする。   (D) Check that the power cord is connected to the IH device, and turn on the power switch.

(ホ)非接触赤外線温度計によって、誘導加熱拡散用金属容器内部のワークの中心部分(義歯の中心部分:測定場所は時間によって変えない)の0分時の温度を測定する。   (E) Using a non-contact infrared thermometer, measure the temperature at 0 minutes of the central part of the work inside the induction heating diffusion metal container (the central part of the denture: the measurement location does not change with time).

(へ)IH装置のスタートボタンを押すと同時に、非接触赤外線温度計によって、ワークの1分毎の温度の記録を開始する。   (F) At the same time when the start button of the IH device is pressed, recording of the temperature of the workpiece every minute is started by the non-contact infrared thermometer.

(ト)10分経過後、IH装置の電源スイッチをオフにする。   (G) After 10 minutes, turn off the power switch of the IH device.

(チ)デンチャーボックスを取替えて、金属床小を含む義歯であるワークを、図3に示すステンレスメッシュかご、もしくは図4に示すステンレスプレートかごとなって形成された誘導加熱拡散用金属容器に個別に収容する。   (H) Replacing the denture box, the work, which is a denture including a small metal floor, is individually placed in a metal container for induction heating diffusion formed as a stainless steel mesh cage shown in FIG. 3 or a stainless steel plate cage shown in FIG. To house.

(リ)その後、誘導加熱拡散用金属容器をデンチャーボックス内に入れ、デンチャーボックスをボビン内に設置し、以後は、前記(ハ)から(ト)までの手順を繰り返す。   (I) After that, the metal container for induction heating diffusion is put in the denture box, the denture box is installed in the bobbin, and thereafter the procedures from (C) to (G) are repeated.

(3)実験結果
1分毎のワークの温度(℃)の測定データを、誘導加熱拡散用金属容器が図4に示すステンレスプレートかごの場合、誘導加熱拡散用金属容器が図3に示すステンレスメッシュかごの場合、誘導加熱拡散用金属容器が無しの場合それぞれについてグラフにプロットすると、以下の表1から表3に示した結果が得られた(図5から図10に各表に対応したグラフを示す)。
(3) Experimental results Measurement data of the temperature (° C) of the work per minute is used. When the induction heating diffusion metal container is the stainless steel plate cage shown in FIG. 4, the induction heating diffusion metal container is the stainless steel mesh shown in FIG. In the case of a cage, the results shown in Tables 1 to 3 below were obtained by plotting the graphs for each case where there was no induction heating diffusion metal container (the graphs corresponding to the tables in FIGS. 5 to 10 were obtained). Show).

また、1分毎のワークの温度(℃)の測定データを、ワーク無しの場合、金属床大のワークの場合、金属床小を含む義歯のワークの場合のそれぞれについてグラフにプロットすると、表4から表6に示した結果が得られた。   In addition, when the measurement data of the workpiece temperature (° C) per minute is plotted on a graph for each of the case of no workpiece, the workpiece of a large metal floor, and the workpiece of a denture including a small metal floor, Table 4 The results shown in Table 6 were obtained.

すなわち、誘導加熱拡散用金属容器として、ステンレスプレートかごの方が、ステンレスメッシュかごの場合よりもわずかに早く温度が上昇した。   That is, as the induction heating diffusion metal container, the temperature of the stainless steel plate cage increased slightly faster than that of the stainless steel mesh cage.

誘導加熱拡散用金属容器として、ステンレスプレートかご、ステンレスメッシュかごが共にある場合は、内部のワークの種類に関係なく安定した温度上昇が見られた。   When both the stainless steel plate cage and the stainless steel mesh cage were used as the induction heating diffusion metal container, a stable temperature increase was observed regardless of the type of workpiece inside.

かご無しの場合はワークの種類ごとの温度上昇のばらつきが大きく、ワーク無しと、金属床小を含む義歯のワークの場合は殆ど温度が上昇しなかった。   In the case of no cage, the variation in the temperature rise for each type of workpiece was large. In the case of no workpiece and a denture workpiece including a small metal floor, the temperature hardly increased.

(4)考察
以上の実験結果から、ステンレスメッシュかごやステンレスプレートかご等の誘導加熱拡散用金属容器をデンチャーボックス内に入れることによってIHの出力を安定させることができる。これは、ステンレスメッシュかごよりもステンレスプレートかごの方が、磁束を受ける面積が広いため、わずかに早く温度上昇したものと考えられる。
(4) Discussion From the above experimental results, it is possible to stabilize the output of IH by placing an induction heating diffusion metal container such as a stainless mesh cage or a stainless steel plate cage in the denture box. This is considered to be due to the fact that the stainless steel plate cage has a larger area to receive the magnetic flux than the stainless steel mesh cage, so the temperature rises slightly faster.

以上から、金属床を含む義歯を収容した誘導加熱拡散用金属容器をデンチャーボックス内に入れ、銀水溶液で義歯を浸漬して、デンチャーボックスに対し誘導加熱(IH)を行うというプロセスを経ることで、義歯に離散して担持されたナノ銀粒子は、カンジダの義歯材料への付着を抑制することが確認できた。これにより、金属床を含む義歯へのIH照射によるナノ銀粒子の担持方法において、誘導加熱拡散用金属容器の適用が有効であることが示された。


From the above, by passing the induction heating diffusion metal container containing the denture including the metal floor in the denture box, immersing the denture in the silver aqueous solution, and performing induction heating (IH) on the denture box It was confirmed that the nano silver particles dispersedly carried on the dentures suppressed the adhesion of Candida to the denture material. Thereby, it was shown that the application of the metal container for induction heating diffusion is effective in the method for supporting nano silver particles by IH irradiation on the denture including the metal bed.


Claims (2)

ターゲット物体を浸漬した状態で誘導加熱を行うことにより、銀粒子を離散して前記ターゲット物体に担持させる銀粒子担持方法であって、誘導加熱拡散用金属にターゲット物体を配置して、前記誘導加熱拡散用金属を所定の容器内に入れ、銀水溶液でターゲット物体を浸漬して、前記所定の容器に対し誘導加熱を行うことを特徴とする銀粒子担持方法。   A method of carrying silver particles by carrying out induction heating in a state in which a target object is immersed to disperse silver particles on the target object, wherein the target object is arranged on a metal for induction heating diffusion, and the induction heating is performed. A method for carrying silver particles, comprising placing a diffusion metal in a predetermined container, immersing a target object in a silver aqueous solution, and performing induction heating on the predetermined container. ターゲット物体を浸漬した状態で誘導加熱を行うことにより、銀粒子を離散して前記ターゲット物体に担持させる装置であって、誘導加熱拡散用金属にターゲット物体を配置して、前記誘導加熱拡散用金属を所定の容器内に入れ、銀水溶液でターゲット物体を浸漬して、前記所定の容器に対し誘導加熱を行うことを特徴とする装置。


An apparatus for discretely supporting silver particles on the target object by performing induction heating in a state where the target object is immersed, the target object being disposed on the induction heating diffusion metal, and the induction heating diffusion metal Is placed in a predetermined container, the target object is immersed in a silver aqueous solution, and induction heating is performed on the predetermined container.


JP2017162936A 2017-08-28 2017-08-28 Silver particle supporting method and apparatus Pending JP2018083062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017162936A JP2018083062A (en) 2017-08-28 2017-08-28 Silver particle supporting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017162936A JP2018083062A (en) 2017-08-28 2017-08-28 Silver particle supporting method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016228948A Division JP6198925B1 (en) 2016-11-25 2016-11-25 Nano silver particle support method

Publications (1)

Publication Number Publication Date
JP2018083062A true JP2018083062A (en) 2018-05-31

Family

ID=62237895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017162936A Pending JP2018083062A (en) 2017-08-28 2017-08-28 Silver particle supporting method and apparatus

Country Status (1)

Country Link
JP (1) JP2018083062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441508B2 (en) 2020-08-19 2024-03-01 日歯研株式会社 Antibacterial partial denture and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING, vol. Vol.60, JPN6015040522, 2014, pages 1 - 9 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441508B2 (en) 2020-08-19 2024-03-01 日歯研株式会社 Antibacterial partial denture and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6561171B2 (en) Nano silver particle support method
Wang et al. Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field
Tan et al. Induction sintering of silver nanoparticle inks on polyimide substrates
JP2014518893A5 (en)
KR101181680B1 (en) Vacuum-evaporation source, and organic el element manufacturing apparatus
US20150183138A1 (en) Rapid non-contact energy transfer for additive manufacturing driven high intensity electromagnetic fields
EP1343355A3 (en) Smart susceptor having a geometrically complex molding surface
US20150183164A1 (en) Rapid electro-magnetic heating of nozzle in polymer extrusion based deposition for additive manufacturing
JP6198925B1 (en) Nano silver particle support method
JP2018083062A (en) Silver particle supporting method and apparatus
JP2010056064A (en) High-frequency induction heating device of ceramic material, and nonpressurized sintering method using the same
JP2011214111A (en) Aluminum porous body and fabrication method of the same
JP2013127446A (en) Method of manufacturing radioactive molybdenum
Rudinsky et al. The effects of applied current on one-dimensional interdiffusion between copper and nickel in spark plasma sintering
TWI279274B (en) Electric discharge surface treating electrode, electric discharge surface treating, and electric discharge treating device
Meng et al. Laser heated boron doped diamond electrodes: effect of temperature on outer sphere electron transfer processes
KR19980702867A (en) Power source and method for induction heating of article
JP2003325327A (en) Heating method, heating container and heating element using electromagnetic cooker
Rabiee et al. Effect of CO2 laser power intensity on the surface morphology and friction behavior of alumina ceramic brackets
Drayton et al. A comparative measurement technique of nanoparticle heating for magnetic hyperthermia applications
KR101655121B1 (en) A aluminum heating plate having a enlarged radiating area and method for manufacturing the same
JP2006294509A (en) Induction heating element made of vitriform carbon, heating device and heater
CN108870966A (en) A kind of production sensor wire circle jig
Naab et al. Conducting Well‐Controlled Ion Irradiations To Understand Neutron Irradiation Effects In Materials
Voyko et al. Influence of the geometry and current of the inductor on the process of chemical heat treatment of titanium in a container with a carbon-containing medium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108