JP2018082407A - 動画像符号化装置、動画像符号化方法、および動画像符号化プログラム - Google Patents

動画像符号化装置、動画像符号化方法、および動画像符号化プログラム Download PDF

Info

Publication number
JP2018082407A
JP2018082407A JP2016225505A JP2016225505A JP2018082407A JP 2018082407 A JP2018082407 A JP 2018082407A JP 2016225505 A JP2016225505 A JP 2016225505A JP 2016225505 A JP2016225505 A JP 2016225505A JP 2018082407 A JP2018082407 A JP 2018082407A
Authority
JP
Japan
Prior art keywords
picture
parameter
pictures
type
roi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016225505A
Other languages
English (en)
Inventor
三好 秀誠
Hidemasa Miyoshi
秀誠 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016225505A priority Critical patent/JP2018082407A/ja
Publication of JP2018082407A publication Critical patent/JP2018082407A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

【課題】符号化した動画像の主観画質を向上させること【解決手段】複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定し、前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの注視領域を設定し、前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、前記第2のピクチャの注視領域の圧縮率を示す第3のパラメータを前記第2のピクチャの注視領域外の領域の圧縮率を示す第4のパラメータより高くし、前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、前記第3のパラメータおよび前記第4のパラメータを用いて前記2のピクチャを符号化する。【選択図】図7

Description

本発明は、動画像符号化装置、動画像符号化方法、および動画像符号化プログラムに関する。
画像データ、特に動画像データは、一般にデータ量が大きいので、送信装置から受信装置へ伝送される際、あるいは記憶装置に格納される際などには、高能率符号化が行われる。ここで、「高能率符号化」とは、あるデータ列を他のデータ列に変換する符号化処理であって、そのデータ量を圧縮する処理をいう。
動画像データは、主にフレームのみから構成されるものと、フィールドから構成されるものがある
動画像データの高能率符号化方法として、ピクチャ内予測(イントラ予測)符号化方法が知られている。この符号化方法では、動画像データが空間方向に相関性が高いことを利用する。すなわち、他のピクチャの符号化画像、予測を用いない。ピクチャ内の情報のみで画像を復元できる方法である。
また、動画像データの高能率符号化方法として、ピクチャ間予測(インター予測)符号化方法が知られている。この符号化方法では、動画像データが時間方向に相関性が高いことを利用する。すなわち、動画像データは、一般に、あるタイミングのピクチャデータと次のタイミングのピクチャデータとの類似度が高いことが多いので、インター予測符号化では、その性質を利用する。
ピクチャ間予測符号化方法では、原画像をブロックに分割し、このブロック単位に、符号化済みフレームの復号画像から、この原画像ブロックと類似している領域を選択し、この類似領域と原画像ブロックの差分を求め、冗長性を取り除く。そして、類似領域を指し示す動きベクトル情報と、冗長性の取り除かれた差分情報を符号化することにより、高圧縮率を実現している。
例えば、インター予測符号化を用いたデータ伝送システムでは、送信装置において、前ピクチャから対象ピクチャへの「動き」を表す動きベクトルデータ、及びその前ピクチャからその動きベクトルデータを用いて作成した対象ピクチャの予測画像と対象ピクチャの実際の画像との差分データを生成し、それら動きベクトルデータおよび差分データを受信装置に送出する。一方、受信装置は、受信した動きベクトルデータおよび差分データから対象ピクチャを再生する。
代表的な動画像符号化方式として、ISO/IEC MPEG-2/MPEG-4(以下MPEG-2、MPEG-4)が挙げられる。
動画像符号化方式では、一定周期でイントラ予測符号化された画面を送り、残りはインター予測符号化で送られる Group Of Pictures(GOP)構造をとっている。さらに、これらの予測に対応したI,P,Bの3種類のピクチャタイプを規定している。Iピクチャは他のピクチャの符号化画像、予測を用いない、ピクチャ内の情報のみで画像を復元できるピクチャである。Pピクチャは過去のピクチャから順方向のピクチャ間予測を行い、予測誤差を符号化したピクチャである。Bピクチャは過去と未来のピクチャから双方向のピクチャ間予測を行い、予測誤差を符号化したピクチャである。Bピクチャは未来のピクチャを予測に用いるため、その符号化に先駆けて、予測に用いられる未来のピクチャを符号化しておく。
また、ピクチャ内のRegion Of Interest(ROI、注視領域)をROI外よりも高画質に符号化する動画像符号化装置が知られている。
動画像データを構成する画像フレームを複数の矩形領域に分割し、これら複数の矩形領域それぞれを、ROIと非ROIに対応付ける。そして、ROIに対応付けられた矩形領域の符号量が非ROIに対応付けられた矩形領域の符号量よりも多くなるよう、これら矩形領域を順次圧縮することで、各画像フレームの符号化データを生成していく技術が知られている(例えば、特許文献1参照)。
特開2006−101472号公報 特開2007−174568号公報 特開2013−110466号公報
映像伝送では、ネットワークの帯域で上限が決まるため、一般的にConstant Bit Rate(CBR)符号化が行われる。CBRは、単位時間当たりのストリームの情報量を一定とするビットレート制御方法である。ROIとCBRを用いた符号化方法では、ROIの圧縮率を低くしてROIを高画質にするが、一方でピクチャ全体のデータ量を一定とするために、ROI外の圧縮率を高くするので、ROI外に画質劣化が発生する。
本発明は、符号化した動画像の主観画質を向上させることを目的とする。
実施の形態に係る動画像符号化装置は、ピクチャの組に含まれる複数の連続するピクチャの符号化を行い、ピクチャタイプ設定部と、注視領域設定部と、パラメータ算出部と、符号化部と、を備える。
前記ピクチャタイプ設定部は、前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定する。
前記注視領域設定部は、前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの注視領域を設定する。
前記パラメータ算出部は、前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、前記第2のピクチャの注視領域の圧縮率を示す第3のパラメータを前記第2のピクチャの注視領域外の領域の圧縮率を示す第4のパラメータより高くする。
前記符号化部は、前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、前記第3のパラメータおよび前記第4のパラメータを用いて前記2のピクチャを符号化する。
実施の形態に係る動画像符号化装置によれば、符号化した動画像の主観画質を向上させることができる。
GOP構造の第1の例を示す図である。 GOP構造の第2の例を示す図である。 動画像符号化装置の構成図の一例である。 ROIを示す図である。 各マクロブロックの量子化パラメータ値を示す図である。 motion sharpeningを説明する図である。 実施の形態に係る動画像符号化装置の構成図である。 IBBP構造の場合のROIピクチャタイプを示す。 IPPP構造の場合のROIピクチャタイプを示す。 階層B構造の場合のROIピクチャタイプを示す。 インターレース走査方式を示す図である。 フィールド符号化方式の場合のROIピクチャタイプを示す。 実施の形態に係る動画像符号化処理のフローチャートである。 情報処理装置(コンピュータ)の構成図である。
以下、図面を参照しながら実施の形態について説明する。
最初に、GOP構造の例について示す。
図1は、GOP構造の第1の例を示す図である。
図1に示すGOP構造は、一般的なGOP構造のIBBP構造を示す。IBBP構造では、先頭から順にIピクチャ,Bピクチャ,Bピクチャ,Pピクチャ,Bピクチャ,Bピクチャ,Pピクチャ,Bピクチャ,Bピクチャ,Pピクチャとなっている。MPEG−2では、Bピクチャの参照画像として用いることができる符号化済み画像は、PピクチャまたはIピクチャとして符号化されている必要がある。しかし、ITU-T H.264(ITU-T : International Telecommunication Union Telecommunication Standardization Sector)/ISO/IEC MPEG-4AVC(以下、H.264という)では、加えてBピクチャで符号化された符号化済み画像の復号画像も参照画像として使用できる。図1に示す矢印は、参照画像を示す前方向もしくは後方向ベクトルを表している。
図2は、GOP構造の第2の例を示す図である。
動画像符号化のH.264では、図2に示すようなGOP構造をとることが可能となっており、符号化効率を上げることができる。図2に示すようなGOP構造を階層B構造と呼ぶ。階層B構造では、先頭から順に、Iピクチャ,Bピクチャ,Bピクチャ,Bピクチャ,Bピクチャ,Bピクチャ,Bピクチャ,Bピクチャ,Pとなっている。このように1GOP中のピクチャは、ほぼBピクチャで構成されるようになっており、Bピクチャの符号化効率を上げることが、動画像符号化全体の符号化効率を上げることに直結している。図2に示す矢印は、参照画像を示す前方向もしくは後方向ベクトルを表している。
図3は、動画像符号化装置の構成図の一例である。
動画像符号化装置11は、予測誤差信号生成部12、直交変換部13、量子化部14、エントロピー符号化部15、逆量子化部16、逆直交変換部17、復号画像生成部18、復号画像記憶部19、イントラ予測画像生成部20、インター予測画像生成部21、動きベクトル計算部22、および予測画像選択部23を備える。
予測誤差信号生成部12は、複数の連続するピクチャで構成される動画像データのうちの符号化対象である現ピクチャを16×16ピクセルの符号化ブロック(以降、マクロブロック(MB)という)に分割されたマクロブロックデータ(以降、ブロックデータともいう)を得て、そのブロックデータと、予測画像選択部23から供給される予測画像ピクチャのブロックデータとにより、予測誤差信号を生成する。予測誤差信号生成部12は、生成された予測誤差信号を直交変換部13に渡す。
直交変換部13は、入力された予測誤差信号を直交変換処理する。直交変換部13は、直交変換処理によって水平及び垂直方向の周波数成分に分離された信号を量子化部14に供給する。
量子化部14は、直交変換部13の出力を設定された量子化パラメータを用いて量子化する。量子化部14は、符号化することによって当該予測誤差信号の符号量を低減し、エントロピー符号化部14および逆量子化部16に供給する。
エントロピー符号化部15は、量子化部14からの出力をエントロピー符号化(可変長符号化)して出力する。エントロピー符号化とは、シンボルの出現頻度に応じて可変長の符号を割り当てる方式をいう。エントロピー符号化部15は、可変長符号を含むビットストリームを出力する。直交変換部13、量子化部14、およびエントロピー符号化部15は、符号化部の一例である。
逆量子化部16は、量子化部14の出力を逆量子化してから逆直交変換部17に供給する。逆直交変換部17は、逆量子化部16の出力を逆直交変換処理してから復号画像生成部18に供給する。これら逆量子化部16および逆直交変換部17によって復号化処理が行われることにより、符号化前の予測誤差信号と同程度の信号が得られる。
復号画像生成部18は、インター予測画像生成部21で動き補償されたピクチャのブロックデータと、逆量子化部16、及び逆直交変換部17により復号処理された予測誤差信号とを加算することにより、現画像データピクチャの予測されるブロックデータを再生し、復号画像記憶部19に出力する。
復号画像記憶部19は、入力されたブロックデータを新たな参照ピクチャのデータとして記憶し、イントラ予測画像生成部20、インター予測画像生成部21及び動きベクトル計算部22に供給する。
イントラ予測画像生成部20は、同ピクチャのすでに符号化された周辺画素から予測画像を生成する。
一方、インター予測画像生成部21は、復号画像記憶部19から得た参照ピクチャのデータを動きベクトル計算部22から提供される動きベクトルで動き補償することにより、動き補償された参照ピクチャのブロックデータを生成する。
動きベクトル計算部22は、現画像データピクチャにおけるブロックデータと、復号画像記憶部から得られる既に符号化された参照ピクチャのブロックデータを用いて、動きベクトルを求める。動きベクトルとは、ブロック単位で参照ピクチャから現ピクチャに最も類似している位置を探索するブロックマッチング技術を用いて求められるブロック単位の空間的なずれを示す値である。動きベクトル計算部22は、求めた動きベクトルをインター予測画像生成部に渡す。
イントラ予測画像生成部20とインター予測画像生成部21から出力されたブロックデータは、予測画像選択部23に入力され、予測画像選択部23は、どちらか一方の予測画像を選択する。選択されたブロックデータは、予測誤差信号生成部12に供給される。
次にROIを用いた符号化について説明する。
図4は、ROIを示す図である。
図5は、各マクロブロックの量子化パラメータ値を示す図である。
ROIを用いた符号化方法では、あるピクチャの中で、視聴者の視線情報やオブジェクト検出に基づき、視聴者の興味がある領域(例えば、人の顔)をROIとして設定する。
一方、動画像符号化はマクロブロックに与える情報量を変えることで、ブロック内の画質を上下させることができる。当然、視聴者の興味があるROIを高画質化することで、視聴の質を高めることができる。そこでROIが設定されたマクロブロックに対して、他の領域より大きな情報量を与え、圧縮率を低くする。情報量の制御は、動画像符号化装置において予測誤差信号を直交変換処理した水平及び垂直方向の周波数成分を量子化する際に用いられる量子化パラメータ(QP)で行うことができる。QP値が大きいほど量子化ステップが荒く情報量が小さくなる。すなわち、ROIのQP値をより小さくすることでROIの高画質化が可能となる。QP値は、符号化の際の情報の圧縮率を示し、QP値が大きいほど、圧縮率は高くなり、情報量が小さくなり、画質は低下する。QP値が小さいほど、圧縮率は低くなり、情報量は大きくなり、画質は向上する。
図4は、人の顔が写ったピクチャ31を示し、理解を容易にするためマクロブロックに分割して表しており、顔が写っているマクロブロックがROIに設定されている。図4において、ROIに設定されたマクロブロックは灰色で示す。
図5の灰色で示したROIに設定されたマクロブロックには、図5に示すように量子化パラメータ値として22が用いられ、ROI外のマクロブロックには量子化パラメータ値として30が用いられる。それにより、ROIに対応するマクロブロックは、ROI外のマクロブロックに比べて圧縮率が低くなり画質が向上する。
次に、人間の視覚特性のひとつであるmotion sharpeningについて説明する。
図6は、motion sharpeningを説明する図である。
図6の上側は、左から右に表示される順に並んだ実際に表示される画像を示し、高解像度画像(鋭画像)32−1〜32−4と低解像度画像(鈍画像)33−1〜33−4とが交互に表示されることを示す。図6の下側は、図6の上側に示す鋭画像と鈍画像とが交互に表示される動画を見たときの錯視による各画像の主観画質を示す。
人間の視覚特性について、非特許文献(吹抜敬彦,"鋭/鈍繰返し画像の時空間信号処理による解明",PCSJ2007/IMPS2007, No.P3-03,(修善寺,平19.10))を引用すると、「鋭/鈍画像の繰返しにおける錯視について、1枚おきに低解像度画像(鈍画像)があるにも拘らず、動画としてみると一連の高解像度画像(鋭画像)に見える」ことが知られている。すなわち、鮮明な画像(鋭画像)に挟まれた、ぼけ画像(鈍画像)は人間には認識されずに、鮮明な映像として捉えることが出来るというものである。これをmotion sharpeningと呼ぶ。図6の上側に示すような鋭画像32−1〜32−4と鈍画像33−1〜33−4とが交互に表示される動画を見た場合、図6の下側に示すように、人間は鋭画像32−1〜32−4に挟まれた鈍画像33−1〜33−4を鋭画像であるように認識する。
図7は、実施の形態に係る動画像符号化装置の構成図である。
動画像符号化装置101は、図3に示す動画像符号化装置11の構成要素に加え、ピクチャ記憶部111、動き検出部121、動き判定部131、ピクチャ位置判定部141、注視領域設定部151、量子化パラメータ算出部161、および直交変換部171を備える。図7では、予測誤差信号生成部12、直交変換部13、量子化部14、エントロピー符号化部15、逆量子化部16、逆直交変換部17、復号画像生成部18、復号画像記憶部19、イントラ予測画像生成部20、インター予測画像生成部21、動きベクトル計算部22、および予測画像選択部23は省略している。動画像符号化装置101は、ピクチャの組(GOP)に含まれる複数の連続するピクチャの符号化を行う。動画像符号化装置101には、ピクチャの組に含まれる複数の連続するピクチャのうちピクチャ符号化対象のピクチャ(現ピクチャ)が符号化順に入力される。
予測誤差信号生成部12、直交変換部13、量子化部14、エントロピー符号化部15、逆量子化部16、逆直交変換部17、復号画像生成部18、復号画像記憶部19、イントラ予測画像生成部20、インター予測画像生成部21、動きベクトル計算部22、および予測画像選択部23の機能については、上述の通りであるので省略する。
ピクチャ記憶部111は、復号画像記憶部19と同等の機能を有するが、復号画像ではなく、すでに符号化が完了しているピクチャと同時刻の原画を記憶してもよい。
動き検出部121は、動きベクトル計算部22と同等の機能を有するが、必ずしもマクロブロック単位に処理する必要はなく、ある程度の粒度で動きベクトルを算出すればよいが、ここでは簡単のため、マクロブロック単位で実行されるとする。動き検出部121は、ブロックマッチングで参照される参照ピクチャをピクチャ記憶部111から選択する。動き検出部121には、符号化対象である現ピクチャが入力され、現ピクチャのマクロブロックと参照ピクチャの探索点のブロックから画素差分絶対値和を計算し、その探索点のコストCostを下式で算出する。
Cost = Σ|Current_Pixeli - Pred_Pixeli|
ここで、Current_Pixeliは符号化対象マクロブロックを構成するi番目の画素、Pred_Pixeliは予測画を構成するi番目の画素である。
前回までの全ての探索点の中でコストが最小であった点のコストと、今回の探索点のコストを比較して小さかった場合のみ、動きベクトルを更新する。動きベクトル探索は、予め決められた領域に対して探索処理を行うので、さらに探索が続く場合は次の探索点を導出し繰り返し実行される。最終的に符号化対象マクロブロックで水平ベクトルMV_Xと垂直ベクトルMV_Yの1組が決定される。動き検出部121は、水平ベクトルMV_X、垂直ベクトルMV_Y各々の絶対値を計算し、ピクチャ単位の累積値SumMV_X、SumMV_Yを算出する。SumMV_X、SumMV_Yは、下式で算出される。
SumMV_X = Σ|MV_Xj|
SumMV_Y = Σ|MV_Yj|
MV_Xjは、ピクチャ内のj番目の符号化対象マクロブロックの水平ベクトルであり、MV_Yjは、ピクチャ内のj番目の符号化対象マクロブロックの垂直ベクトルである。
水平絶対値ベクトルピクチャ累積値SumMV_X、垂直絶対値ベクトルピクチャ累積値SumMV_Yに関して、1マクロブロック当たりの平均ベクトルAvgMV_X、AvgMV_Yを下式で算出する。
AvgMV_X = SumMV_X/MB_Num
AvgMV_Y = SumMV_Y/MB_Num
ここで、MB_Numは1ピクチャに含まれるマクロブロックの数である。
動き判定部131は、予め与えられた閾値MV_THを用いて下記の条件を満たす場合を動きがあると判定する。
AvgMV_X + AvgMV_Y > MV_TH
すなわち、AvgMV_XとAvgMV_Yの合計が閾値MV_THより大きい場合、動きがあると判定し、当該合計が閾値MV_TH以下の場合、動きがないと判定する。
また、これらの閾値処理は、水平方向、垂直方向別に実施してもよい。
ピクチャ位置判定部141は、動き判定部131によって動きがあると判定された場合、符号化対象のGOP構造に基づいてピクチャをROI強ピクチャとROI弱ピクチャの2つのROIピクチャタイプのいずれかに該当するか判定し、当該ピクチャを判定したROIピクチャタイプに設定する。ピクチャ位置判定部141は、例えば、今までに入力されたピクチャの数をカウントし、今回入力されたピクチャが先頭から何番目のピクチャであるか算出する。そして、ピクチャ位置判定部141は、ピクチャがGOP構造において、先頭から何番目のピクチャであるかに応じて、ROI強ピクチャかROI弱ピクチャか判定する。また、ピクチャ位置判定部141は、入力されるピクチャの組のGOP構造がどのような構造であるか、例えば、IBBPかIPPPであるかの情報をユーザから予め与えられて知っているものとする。ピクチャ位置判定部141は、ピクチャタイプ設定部の一例である。
図8は、IBBP構造の場合のROIピクチャタイプを示す。
GOP構造が片方向予測ピクチャ(Pピクチャ)と両方向予測ピクチャ(Bピクチャ)を含む場合、すなわち図1のようなGOP構造の場合、図8のようにPピクチャをROI強ピクチャとし、BピクチャをROI弱ピクチャと設定する。すなわち、先頭のIピクチャをROI強ピクチャとし、2つおきにROI強ピクチャを設定し、それ以外を弱ピクチャに設定する。ピクチャ位置判定部141は、GOP構造がIBBP構造である場合に、ピクチャがGOP構造において先頭から1、4、7、または10番目のピクチャである場合、当該ピクチャをROI強ピクチャに設定する。
図9は、IPPP構造の場合のROIピクチャタイプを示す。
また、図9のようにGOP構造が両方向予測ピクチャを含まないIPPP構造である場合(Pピクチャまたは片方向のみのBピクチャ)、ROI強ピクチャとROI弱ピクチャを交互に設定する。すなわち、先頭のIピクチャをROI強ピクチャとし、1つおきにROI強ピクチャを設定し、それ以外を弱ピクチャに設定する。ピクチャ位置判定部141は、GOP構造がIPPP構造である場合に、ピクチャがGOP構造において先頭から1、3、5、7、または9番目のピクチャである場合、当該ピクチャをROI強ピクチャに設定する。
図10は、階層B構造の場合のROIピクチャタイプを示す。
GOP構造が時間順序で一部のピクチャのみ参照することで復号できるような階層符号化されている場合、すなわち図2のようなGOP構造の場合、図10のように他のピクチャから参照されるピクチャをROI強ピクチャとし、他のピクチャから参照されないようなピクチャをROI弱ピクチャと設定する。すなわち、先頭のIピクチャをROI強ピクチャとし、1つおきにROI強ピクチャを設定し、それ以外を弱ピクチャに設定する。ピクチャ位置判定部141は、GOP構造が階層B構造である場合に、ピクチャがGOP構造において先頭から1、3、5、7、または9番目のピクチャである場合、当該ピクチャをROI強ピクチャに設定する。
図11は、インターレース走査方式を示す図である。
インターレース走査方式は、図11の左側に示す1枚のフレームの奇数の走査線(行)のみを集めた奇数フィールドと、図11の右側に示す残った偶数の走査線のみを集めた偶数フィールドで構成される。水平方向の画面走査を1行おきに走査し、次にその間を埋めるようにまた1行おきに走査し、2回の走査で一画面を構成する。このような動画像信号を符号化するための方式として、フィールド符号化方式が使われる。奇数フィールドをトップフィールドと、偶数フィールドをボトムフィールドと呼ぶ。
図12は、フィールド符号化方式の場合のROIピクチャタイプを示す。
図12において、GOP構造は両方向予測ピクチャを含まないIPPP構造である。この場合、図12のようにトップフィールド、ボトムフィールドのタイプを基準にいずれかのフィールドタイプをROI強ピクチャとし、それ以外のフィールドタイプをROI弱ピクチャ設定する。すなわち、先頭のIピクチャをROI強ピクチャとし、1つおきにROI強ピクチャを設定し、それ以外を弱ピクチャに設定する。ピクチャ位置判定部141は、例えば、ピクチャがGOP構造において先頭から1、3、5、7、または9番目のトップフィールドであるピクチャである場合、当該ピクチャをROI強ピクチャに設定する。
図7に戻り説明を続ける。
注視領域設定部151は、現ピクチャの注視領域(ROI)の範囲を示すROI座標が入力され、ROI座標に基づいてROIを設定する。ROIは、例えば、オブジェクト検出により抽出されたオブジェクトを中心とした矩形領域を設定してもよいし、視線センサにより検出された視聴者の視線を中心とした矩形領域を設定してもよい。ROI座標は、例えば、オブジェクト検出を実行する装置や視線センサから入力される。このとき矩形領域を示すROI座標がマクロブロック(16x16)単位でない場合、すなわち画素座標系の場合は、マクロブロック座標に変換する。例えば、画素座標系において矩形領域の左上座標と対角にある右下座標で表したとし、そのROI座標をそれぞれ(UL_ROIx, UL_ROIy)、(DR_ROIx, DR_ROIy)としたとき、マクロブロック座標系における矩形領域の左上座標と対角にある右下座標であるROI座標(UL_MB_ROIx, UL_MB_ROIy)、(DR_MB_ROIx, DR_MB_ROIy)は、ROIの画素が含まれるように以下のように算出できる。尚、UL_MB_ROIx、UL_MB_ROIy、DR_MB_ROIx、DR_MB_ROIyは、整数であり、小数点以下切り捨てである。
UL_MB_ROIx = UL_ROIx / 16
UL_MB_ROIy = UL_ROIy / 16
DR_MB_ROIx = (DR_ROIx + 15) / 16
DR_MB_ROIy = (DR_ROIy + 15) / 16
また、注視領域設定部151は、ピクチャROI強ピクチャに対し注視領域を設定し、ROI弱ピクチャに対し注視領域を設定しないようにしてもよい。
量子化パラメータ算出部161は、従来のTest Model(TM)5レート制御と同様に、ピクチャ単位で目標情報量の割当を行う。TM5レート制御については、例えば、
URL:http://www.mpeg.org/MPEG/MSSG/tm5/Ch10/Ch10.htmlに開示されている。
量子化パラメータ算出部161は、TM5レート制御を用いて、量子化パラメータの基準値Qを算出する。
量子化パラメータ算出部161は、動き判定部131によって動きがないと判定された場合、算出した量子化パラメータの基準値Qを用いて、あるピクチャにおけるROI内のマクロブロックの符号化に際して用いる量子化パラメータROIQを、下式で算出する。
ROIQ=Qj-ΔROIQ
ここで、ΔROIQは予め決められた、例えばユーザが与えたROI内で実施される適応量子化(高画質化パラメータ)強度である。
また、量子化パラメータ算出部161は、あるピクチャにおけるROI外の量子化パラメータNROIQを下式で算出する。
NROIQ=Qj+ΔNROIQ
ただし、ΔNROIQ=ΔROIQ*ROIX/NROIXである。
ここでROIXはROI内の複雑度であり、NROIXはROI外の複雑度である。複雑度は、例えば、画素分散値やブロックマッチングの探索点のコスト、または含まれるブロック数である。
以下、GOP構造がIPPP構造である場合について説明する。
GOP構造がIPPP構造であれば、従来ではPピクチャが常に用いられるため、どのピクチャでも量子化パラメータ基準値Qjは一定である。また時間的に近いことからROI内外の複雑度はほぼ等しいことから、すべてのピクチャでROI内はROIQであり、ROI外はNROIQで符号化される。これにより画質は常に一定であることから、motion sharpeningは発生しない。
実施の形態の動画像符号化装置101は、motion sharpeningを利用するため以下のように動作する。動き判定部131によって動きがあると判定された場合、すなわちピクチャ位置判定部141で、ROI強ピクチャとROI弱ピクチャの2つのROIピクチャタイプに分類されている場合を説明する。
ROI強ピクチャのROI内の量子化パラメータSROIQとROI弱ピクチャのROI内の量子化パラメータWROIQは、以下で表される。
SROIQ=Qj-ΔSROIQ
ただし、ΔSROIQ=ΔROIQであり、ΔSROIQは、ユーザから与えられたΔROIQと等しい。
WRIOQj=Qj-ΔWROIQ
ただし、ΔWROIQ<ΔROIQであり、ΔWROIQは、ユーザから与えられたΔROIQより小さい。ΔWROIQは、例えば、ΔROIQから所定値を減算することにより算出される。よって、ΔWROIQ<ΔSROIQが成り立つ。
これにより、SROIQ<WROIQが成り立つ。
次に、ROI強ピクチャのROI外の量子化パラメータをSNROIQとし、ROI弱ピクチャのROI外の量子化パラメータをWNROIQとすると、単位時間のストリームの情報量を一定とするビットレート制御(CBR)を用いることから、ピクチャ内の情報量は一定であること、ROI強ピクチャとROI弱ピクチャは、時間的に近いことからROI内外の複雑度はほぼ等しいことから、下式が成り立つ。
SNROIQj=Qj+ΔSNROIQ
WNROIQj=Qj+ΔWNROIQ
ΔWROIQ<ΔSROIQ
ΔWROIQ<ΔSROIQあり、SNROIQ > WNROIQが成り立つ。
すなわち、下式が成り立つ。
SROIQj<WROIQj
SNROIQj>WNROIQj
ここでROI内の画像は、ROI強ピクチャが鋭画像であり、ROI弱ピクチャが鈍画像であり、また、ROI外の画像は、ROI強ピクチャが鈍画像であり、ROI弱ピクチャが鋭画像となる。それにより、ユーザは、motion sharpeningにより主観的にすべてのピクチャで鋭画像としてとらえることができる。すなわち、すべてのピクチャに対して同じ高画質化パラメータ強度を用いて符号化するよりもROI外の画質劣化を低減できる。
また、ROI弱ピクチャに対して、ROIを設定しない場合(若しくはROIを設定しても、マクロブロックがROI内であるかROI外であるかに応じて、量子化パラメータの調整を行わない場合)、ROI弱ピクチャ全体を算出された量子化パラメータの基準値を用いて符号化を行うので、ROI弱ピクチャ全体は、中間程度の鋭画像となる。ROI強ピクチャのROI内は鋭画像、ROI外は鈍画像であるため、ユーザは、motion sharpeningにより主観的には、ROI内は鋭画像、ROI外は中間程度の鋭画像と認識し、ROI外の画質劣化を低減できる。
次に、GOP構造がIBBP構造である場合について説明する。
Pピクチャの量子化パラメータ基準値をPQ、Bピクチャの量子化パラメータ基準値をBQとすると、PピクチャのROI内の量子化パラメータPROIQとBピクチャのROI内の量子化パラメータBROIQは、以下で表される。
PROIQj=PQj-ΔPROIQ
ただし、ΔPROIQ=ΔROIQであり、ΔPROIQは、ユーザから与えられたΔROIQと等しい。
BOIQj=BQj-ΔBROIQ
ただし、ΔBROIQ=ΔROIQであり、ΔBROIQは、ユーザから与えられたΔROIQと等しい。よって、ΔBROIQ=ΔPROIQとなる。
PQ < BQであり、ΔPROIQ=ΔBROIQであってもPROIQ <BROIQが成り立つ。次に、PピクチャのROI外の量子化パラメータPNROIQとし、BピクチャのROI外の量子化パラメータBNROIQとすると、単位時間のストリームの情報量を一定とするビットレート制御(CBR)を用いることから、ピクチャ内の情報量は一定であること、時間的に近いことからROI内外の複雑度はほぼ等しいことから、以下が成り立つ。
PNROIQ=PQ+ΔPNROIQ
BNROIQ=PQ+ΔBNROIQ
ΔBNROIQ=ΔPNROIQ
PQ < BQであり、ΔPROIQ=ΔBROIQであってもPNROIQ<BNROIQが成り立つ。すなわち、下式が成り立つ。
PROIQj=BROIQj
PNROIQj<BNROIQj
ここでROI内外の画像は、Pピクチャが鋭画像であり、Bピクチャが鈍画像であり、motion sharpeningにより主観的にはすべてのピクチャで鋭画像としてとらえることができる。
そこで実施の形態では、PピクチャをROI強ピクチャ、BピクチャをROI弱ピクチャに設定する。これによりROI強ピクチャのROI内の画像により多くの情報量を割り当てることもできる。
すなわち、ROI内のマクロブロックの量子化パラメータに関して、下式が成り立つ。
SROIQj=SQj-ΔSROIQ
WROIQj=SQj-ΔWROIQ
ΔWROIQ<ΔSROIQ
ここで、SQ < WQかつΔWROIQ<ΔSROIQ であるため、SROIQ<WROIQが成り立つ。
また、ROI外のマクロブロックの量子化パラメータに関して、下式が成り立つ。
SNROIQj=SQj-ΔSNROIQ
WNROIQj=SQj-ΔWNROIQ
ΔWNROIQ<ΔSNROIQ
ここで、SQ < WQかつΔWNROIQ<ΔSNROIQであるため、
ΔSNROIQ -ΔWNROIQ > SQ-WQのとき、SNROIQ > WNROIQが成り立つ。
ΔSNROIQ -ΔWNROIQ < SQ-WQのとき、SNROIQ < WNROIQが成り立つ。
ここでROI内の画像は、ROI強ピクチャが鋭画像であり、ROI弱ピクチャが鈍画像であり、また、ROI外の画像は、どちらかが鈍画像であり、どちらかが鋭画像となることで、ユーザはmotion sharpeningにより主観的にはすべてのピクチャで鋭画像としてとらえることができる。さらに、ΔROI<ΔSNROIQであることから、従来と比較してよりROI強ピクチャのROI内に情報を割り当てることができる。また、ΔWNROIQ<ΔROIであることから、従来と比較してよりROI弱ピクチャのROI外に情報を割り当てることができる。特にSNROIQ < WNROIQにすることで、ROI弱ピクチャのROI外の情報量割り当てをmotion sharpeningに効果的に利用できる。
図13は、実施の形態に係る動画像符号化処理のフローチャートである。
ステップS501は、ステップS523に対応するループの始端であり、入力されたピクチャ若しくは入力された複数のピクチャのうちから符号化されていないピクチャが符号化順に1つ選択される。以下、選択されたピクチャは符号化対象ピクチャと称する。
ステップS502において、注視領域設定部151は、ROI座標を受信し、符号化対象ピクチャのROI座標を設定、すなわち符号化対象ピクチャ内の各マクロブロックがROI内かROI外であるかを設定する。また、注視領域設定部151は、ピクチャ位置判定部141の判定結果に基づいて、符号化対象ピクチャがROI弱ピクチャである場合、符号化対象ピクチャのROI座標を設定しなくてもよい。
ステップS503において、動き検出部121は、動きベクトル探索を行い、1マクロブロック当たりの平均ベクトルAvgMV_X、AvgMV_Yを算出し、動き判定部131に出力する。
ステップS504において、量子化パラメータ算出部161は、適応量子化(高画質化パラメータ)強度ΔROIQを受信し、ROI内の量子化パラメータ減算値ΔROIQとして設定する。
ステップS505において、量子化パラメータ算出部161は、ROI外の量子化パラメータ加算値ΔNROIQを算出する。
ステップS506において、動き判定部131は、動き検出部121の出力に基づいて、動きがあるか判定し、動きがある場合、制御はステップS507に進み、動きが無い場合、制御はS516に進む。
ステップS507において、ピクチャ位置判定部141は、符号化対象ピクチャがROI強ピクチャであるか判定し、符号化対象ピクチャがROI強ピクチャである場合、符号化対象ピクチャをROI強ピクチャに設定し、制御はステップS508に進む。符号化対象ピクチャがROI強ピクチャで無い場合(すなわち、ROI弱ピクチャである場合)、ピクチャ位置判定部141は、符号化対象ピクチャをROI弱ピクチャに設定し、制御はステップS512に進む。
ステップS508において、量子化パラメータ算出部161は、ROI強ピクチャのROI内の量子化パラメータ減算値ΔSROIQを算出する。ΔSROIQの算出方法は、上述の通りである。
ステップS509において、量子化パラメータ算出部161は、ROI強ピクチャのROI外の量子化パラメータ減算値ΔSNROIQを算出する。ΔSNROIQの算出方法は、上述の通りである。
ステップS510において、量子化パラメータ算出部161は、ΔROIQ=ΔSROIQとする。
ステップS511において、量子化パラメータ算出部161は、ΔNROIQ=ΔSNROIQとする。
ステップS512において、量子化パラメータ算出部161は、ROI弱ピクチャのROI内の量子化パラメータ減算値ΔWROIQを算出する。ΔWROIQの算出方法は、上述の通りである。
ステップS513において、量子化パラメータ算出部161は、ROI弱ピクチャのROI外の量子化パラメータ減算値ΔWNROIQを算出する。ΔWNROIQの算出方法は、上述の通りである。
ステップS514において、量子化パラメータ算出部161は、ΔROIQ=ΔWROIQとする。
ステップS515において、量子化パラメータ算出部161は、ΔNROIQ=ΔWNROIQとする。
ステップS516は、ステップS522に対応するループの始端であり、符号化対象ピクチャのマクロブロックのうち符号化処理を行っていないマクロブロックを1つ選択する。選択されたマクロブロックは符号化対象マクロブロックと称する。
ステップS517において、量子化パラメータ算出部161は、TM5レート制御を用いて、量子化パラメータの基準値Qを算出する。
ステップS518において、量子化パラメータ算出部161は、符号化対象マクロブロックがROIに含まれるか判定し、符号化対象マクロブロックがROI内である場合、制御はステップS519に進み、ROI外である場合、制御はステップS520に進む。
ステップS519において、量子化パラメータ算出部161は、符号化対象マクロブロックの符号化の際に用いられる量子化パラメータROIQ(=Qj-ΔROIQ)を算出する。
ステップS520において、量子化パラメータ算出部161は、符号化対象マクロブロックの符号化の際に用いられる量子化パラメータNROIQ(=Qj+ΔNROIQ)を算出する。
ステップS521において、直行変換部13、量子化部14、およびエントロピー符号化部は、量子化パラメータ算出部161により算出されて量子化パラメータROIQまたはNROIQを用いて、符号化対象マクロブロックを符号化する。
また、符号化対象ピクチャが弱ROIピクチャである場合、また符号化対象ピクチャにROI座標が設定されていない場合、ステップS518〜S520を省略し、量子化パラメータの基準値Qを用いて符号化対象マクロブロックを符号化してもよい。
ステップS522において、符号化対象ピクチャの全てのマクロブロックの符号化処理が完了した場合、制御はステップS523に進み、符号化対象ピクチャで符号化処理が完了していないマクロブロックがある場合、制御はステップS516に戻る。
ステップS523において、入力された全てのピクチャの符号化処理が完了した場合、処理は終了し、符号化処理が完了していないピクチャがある場合、制御はステップS501に戻る。
実施の形態に係る動画像符号化装置によれば、符号化した動画像の主観画質を向上させることができる。
図14は、情報処理装置(コンピュータ)の構成図である。
動画像符号化装置11、101は、例えば、ハードウェア回路として実装することもでき、また情報処理装置(コンピュータ)1を用いて実装することもできる。
情報処理装置1は、CPU2、メモリ3、入力装置4、出力装置5、記憶部6、記録媒体駆動部7、及びネットワーク接続装置8を備え、それらはバス9により互いに接続されている。
CPU2は、情報処理装置1全体を制御する中央処理装置である。CPU2は、予測誤差信号生成部12、直交変換部13、量子化部14、エントロピー符号化部15、逆量子化部16、逆直交変換部17、復号画像生成部18、イントラ予測画像生成部20、インター予測画像生成部21、動きベクトル計算部22、および予測画像選択部23として動作する。また、CPU2は、動き検出部121、動き判定部131、ピクチャ位置判定部141、注視領域設定部151、および量子化パラメータ算出部161として動作する。
メモリ3は、プログラム実行の際に、記憶部6(あるいは可搬記録媒体10)に記憶されているプログラムあるいはデータを一時的に格納するRead Only Memory(ROM)やRandom Access Memory(RAM)等のメモリである。CPU2は、メモリ3を利用してプログラムを実行することにより、上述した各種処理を実行する。
この場合、可搬記録媒体10等から読み出されたプログラムコード自体が実施の形態の機能を実現する。
入力装置4は、ユーザ又はオペレータからの指示や情報の入力、情報処理装置1で用いられるデータの取得等に用いられる。入力装置4は、例えば、キーボード、マウス、タッチパネル、カメラ、またはセンサ等である。
出力装置5は、ユーザ又はオペレータへの問い合わせや処理結果を出力したり、CPU2による制御により動作する装置である。出力装置5は、例えば、ディスプレイ、またはプリンタ等である。
記憶部6は、例えば、磁気ディスク装置、光ディスク装置、テープ装置等である。情報処理装置1は、記憶部6に、上述のプログラムとデータを保存しておき、必要に応じて、それらをメモリ3に読み出して使用する。メモリ3または記憶部6は、復号画像記憶部19およびピクチャ記憶部111に対応する。
記録媒体駆動部7は、可搬記録媒体10を駆動し、その記録内容にアクセスする。可搬記録媒体としては、メモリカード、フレキシブルディスク、Compact Disk Read Only Memory(CD−ROM)、光ディスク、光磁気ディスク等、任意のコンピュータ読み取り可能な記録媒体が用いられる。ユーザは、この可搬記録媒体10に上述のプログラムとデータを格納しておき、必要に応じて、それらをメモリ3に読み出して使用する。
ネットワーク接続装置8は、Local Area Network(LAN)やWide Area Network(WAN)等の任意の通信ネットワークに接続され、通信に伴うデータ変換を行う通信インターフェースである。ネットワーク接続装置8は、通信ネットワークを介して接続された装置へデータの送信または通信ネットワークを介して接続された装置からデータを受信する。
以上の実施の形態に関し、さらに以下の付記を開示する。
(付記1)
ピクチャの組に含まれる複数の連続するピクチャの符号化を行う動画像符号化装置であって、
前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定するピクチャタイプ設定部と、
前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの注視領域を設定する注視領域設定部と、
前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、前記第2のピクチャの注視領域の圧縮率を示す第3のパラメータを前記第2のピクチャの注視領域外の領域の圧縮率を示す第4のパラメータより高くするパラメータ算出部と、
前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、前記第3のパラメータおよび前記第4のパラメータを用いて前記2のピクチャを符号化する符号化部と、
を備える動画像符号化装置。
(付記2)
ピクチャの組に含まれる複数の連続するピクチャの符号化を行う動画像符号化装置であって、
前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定するピクチャタイプ設定部と、
前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定する注視領域設定部と、
前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの圧縮率を示す第3のパラメータを前記第1のパラメータより高く且つ前記第2のパラメータより低くするパラメータ算出部と、
前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、前記第3のパラメータを用いて前記2のピクチャを符号化する符号化部と、
を備える動画像符号化装置。
(付記3)
ピクチャの組に含まれる複数の連続するピクチャの符号化を行う動画像符号化装置が実行する動画像符号化方法であって、
前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、
前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定し、
前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、
前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの注視領域を設定し、
前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、
前記第2のピクチャの注視領域の圧縮率を示す第3のパラメータを前記第2のピクチャの注視領域外の領域の圧縮率を示す第4のパラメータより高くし、
前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、
前記第3のパラメータおよび前記第4のパラメータを用いて前記2のピクチャを符号化する
処理を備える動画像符号化方法。
(付記4)
ピクチャの組に含まれる複数の連続するピクチャの符号化を行う動画像符号化装置が実行する動画像符号化方法であって、
前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、
前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定し、
前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、
前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、
前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの圧縮率を示す第3のパラメータを前記第1のパラメータより高く且つ前記第2のパラメータより低くし、
前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、
前記第3のパラメータを用いて前記2のピクチャを符号化する
処理を備える動画像符号化方法。
(付記5)
ピクチャの組に含まれる複数の連続するピクチャの符号化を行うコンピュータに、
前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、
前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定し、
前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、
前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの注視領域を設定し、
前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、
前記第2のピクチャの注視領域の圧縮率を示す第3のパラメータを前記第2のピクチャの注視領域外の領域の圧縮率を示す第4のパラメータより高くし、
前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、
前記第3のパラメータおよび前記第4のパラメータを用いて前記2のピクチャを符号化する
処理を実行させる動画像符号化プログラム。
(付記6)
ピクチャの組に含まれる複数の連続するピクチャの符号化を行うコンピュータに、
前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、
前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定し、
前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、
前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、
前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの圧縮率を示す第3のパラメータを前記第1のパラメータより高く且つ前記第2のパラメータより低くし、
前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、
前記第3のパラメータを用いて前記2のピクチャを符号化する
処理を実行させる動画像符号化プログラム。
11 動画像符号化装置
12 予測誤差信号生成部
13 直交変換部
14 量子化部
15 エントロピー符号化部
16 逆量子化部
17 逆直交変換部
18 復号画像生成部
19 復号画像記憶部
20 イントラ予測画像生成部
21 インター予測画像生成部
22 動きベクトル計算部
23 予測画像選択部
101 動画像符号化装置
111 ピクチャ記憶部
121 動き検出部
131 動き判定部
141 ピクチャ位置判定部
151 注視領域設定部
161 量子化パラメータ算出部

Claims (6)

  1. ピクチャの組に含まれる複数の連続するピクチャの符号化を行う動画像符号化装置であって、
    前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定するピクチャタイプ設定部と、
    前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの注視領域を設定する注視領域設定部と、
    前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、前記第2のピクチャの注視領域の圧縮率を示す第3のパラメータを前記第2のピクチャの注視領域外の領域の圧縮率を示す第4のパラメータより高くするパラメータ算出部と、
    前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、前記第3のパラメータおよび前記第4のパラメータを用いて前記2のピクチャを符号化する符号化部と、
    を備える動画像符号化装置。
  2. ピクチャの組に含まれる複数の連続するピクチャの符号化を行う動画像符号化装置であって、
    前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定するピクチャタイプ設定部と、
    前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定する注視領域設定部と、
    前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの圧縮率を示す第3のパラメータを前記第1のパラメータより高く且つ前記第2のパラメータより低くするパラメータ算出部と、
    前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、前記第3のパラメータを用いて前記2のピクチャを符号化する符号化部と、
    を備える動画像符号化装置。
  3. ピクチャの組に含まれる複数の連続するピクチャの符号化を行う動画像符号化装置が実行する動画像符号化方法であって、
    前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、
    前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定し、
    前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、
    前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの注視領域を設定し、
    前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、
    前記第2のピクチャの注視領域の圧縮率を示す第3のパラメータを前記第2のピクチャの注視領域外の領域の圧縮率を示す第4のパラメータより高くし、
    前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、
    前記第3のパラメータおよび前記第4のパラメータを用いて前記2のピクチャを符号化する
    処理を備える動画像符号化方法。
  4. ピクチャの組に含まれる複数の連続するピクチャの符号化を行う動画像符号化装置が実行する動画像符号化方法であって、
    前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、
    前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定し、
    前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、
    前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、
    前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの圧縮率を示す第3のパラメータを前記第1のパラメータより高く且つ前記第2のパラメータより低くし、
    前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、
    前記第3のパラメータを用いて前記2のピクチャを符号化する
    処理を備える動画像符号化方法。
  5. ピクチャの組に含まれる複数の連続するピクチャの符号化を行うコンピュータに、
    前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、
    前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定し、
    前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、
    前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの注視領域を設定し、
    前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、
    前記第2のピクチャの注視領域の圧縮率を示す第3のパラメータを前記第2のピクチャの注視領域外の領域の圧縮率を示す第4のパラメータより高くし、
    前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、
    前記第3のパラメータおよび前記第4のパラメータを用いて前記2のピクチャを符号化する
    処理を実行させる動画像符号化プログラム。
  6. ピクチャの組に含まれる複数の連続するピクチャの符号化を行うコンピュータに、
    前記複数の連続するピクチャを先頭から所定の枚数おきに第1のタイプのピクチャに設定し、
    前記第1のタイプのピクチャに設定されなかったピクチャを第2のタイプのピクチャに設定し、
    前記第1のタイプのピクチャに設定されたピクチャのうちの第1のピクチャの注視領域を設定し、
    前記第1のピクチャの注視領域の圧縮率を示す第1のパラメータを前記第1のピクチャの注視領域外の領域の圧縮率を示す第2のパラメータより低くし、
    前記第1のピクチャの次の前記第2のタイプのピクチャに設定された第2のピクチャの圧縮率を示す第3のパラメータを前記第1のパラメータより高く且つ前記第2のパラメータより低くし、
    前記第1のパラメータおよび前記第2のパラメータを用いて前記1のピクチャを符号化し、
    前記第3のパラメータを用いて前記2のピクチャを符号化する
    処理を実行させる動画像符号化プログラム。
JP2016225505A 2016-11-18 2016-11-18 動画像符号化装置、動画像符号化方法、および動画像符号化プログラム Pending JP2018082407A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016225505A JP2018082407A (ja) 2016-11-18 2016-11-18 動画像符号化装置、動画像符号化方法、および動画像符号化プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225505A JP2018082407A (ja) 2016-11-18 2016-11-18 動画像符号化装置、動画像符号化方法、および動画像符号化プログラム

Publications (1)

Publication Number Publication Date
JP2018082407A true JP2018082407A (ja) 2018-05-24

Family

ID=62197275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225505A Pending JP2018082407A (ja) 2016-11-18 2016-11-18 動画像符号化装置、動画像符号化方法、および動画像符号化プログラム

Country Status (1)

Country Link
JP (1) JP2018082407A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034800A (ja) * 2019-08-20 2021-03-01 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 圧縮装置、移動体、圧縮方法、及びプログラム
JP2022525580A (ja) * 2019-03-28 2022-05-18 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド 異なる圧縮レベルでのビデオコーディングのためのサイド情報
CN115002512A (zh) * 2022-05-23 2022-09-02 北京市商汤科技开发有限公司 视频转码方法及装置、电子设备和存储介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022525580A (ja) * 2019-03-28 2022-05-18 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド 異なる圧縮レベルでのビデオコーディングのためのサイド情報
JP7449941B2 (ja) 2019-03-28 2024-03-14 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド 異なる圧縮レベルでのビデオコーディングのためのサイド情報
JP2021034800A (ja) * 2019-08-20 2021-03-01 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 圧縮装置、移動体、圧縮方法、及びプログラム
CN115002512A (zh) * 2022-05-23 2022-09-02 北京市商汤科技开发有限公司 视频转码方法及装置、电子设备和存储介质
CN115002512B (zh) * 2022-05-23 2023-11-28 北京市商汤科技开发有限公司 视频转码方法及装置、电子设备和存储介质

Similar Documents

Publication Publication Date Title
US10110902B2 (en) Method and apparatus for encoding/decoding motion vector
JP6632456B2 (ja) 画像符号化データ
JP7012809B2 (ja) 画像符号化装置、動画像復号装置、動画像符号化データ及び記録媒体
RU2628212C1 (ru) Устройство кодирования видео, устройство декодирования видео, способ кодирования видео и способ декодирования видео
EP2214415A1 (en) A dual prediction video encoding and decoding method and a device
KR20070011225A (ko) 인터-코딩에 사용된 기준 화상의 수를 최소화하기 위한방법 및 장치
JP2018107580A (ja) 動画像符号化装置、動画像符号化方法、動画像符号化用コンピュータプログラム、動画像復号装置及び動画像復号方法ならびに動画像復号用コンピュータプログラム
JP3866624B2 (ja) 動画像符号化方法,動画像復号方法,動画像符号化装置および動画像復号装置
US9036918B2 (en) Image processing apparatus and image processing method
JP2018082407A (ja) 動画像符号化装置、動画像符号化方法、および動画像符号化プログラム
KR20080041972A (ko) 현재 영상의 복원영역을 참조하는 동영상 부호화/복호화장치 및 그 방법
JP2008004984A (ja) 画像理装置および方法、プログラム、並びに記録媒体
JP2011091772A (ja) 画像符号化装置
KR101691553B1 (ko) 영상 복호화 방법 및 장치
KR101882949B1 (ko) 영상 부호화 방법 및 장치, 및 컴퓨터로 판독가능한 기록매체
KR101783965B1 (ko) 영상 복호화 방법 및 장치
KR101477545B1 (ko) 움직임 벡터를 복호화하는 방법
KR101477546B1 (ko) 움직임 벡터를 복호화하는 장치
JP2013098711A (ja) 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法
JP2012080212A (ja) 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法
JP2012186762A (ja) 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法
KR101617796B1 (ko) 영상 복호화 방법 및 장치
KR101606812B1 (ko) 영상 복호화 방법
US20130215966A1 (en) Image encoding method, image decoding method, image encoding device, image decoding device
KR101454664B1 (ko) 움직임 벡터를 복호화하는 방법