JP2018081749A - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
JP2018081749A
JP2018081749A JP2016221281A JP2016221281A JP2018081749A JP 2018081749 A JP2018081749 A JP 2018081749A JP 2016221281 A JP2016221281 A JP 2016221281A JP 2016221281 A JP2016221281 A JP 2016221281A JP 2018081749 A JP2018081749 A JP 2018081749A
Authority
JP
Japan
Prior art keywords
thin
storage element
case
plate
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016221281A
Other languages
Japanese (ja)
Inventor
尚人 竹林
Naohito Takebayashi
尚人 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lithium Energy and Power GmbH and Co KG
Original Assignee
Lithium Energy and Power GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lithium Energy and Power GmbH and Co KG filed Critical Lithium Energy and Power GmbH and Co KG
Priority to JP2016221281A priority Critical patent/JP2018081749A/en
Publication of JP2018081749A publication Critical patent/JP2018081749A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a power storage element which enables the suppression of electrocrystallization.SOLUTION: A power storage element according to an embodiment of the present invention comprises: a case including conductive wall parts; and an electrode body encased in the case and including electrode plates. The wall parts each include a thin portion having a recessed external face. The electrode plates are each welded to an inner face of the corresponding thin portion. A power storage element according to another embodiment of the invention comprises: a case including a conductive wall part; an electrode body encased in the case; and a current collecting member for connecting the electrode body with the wall part. The wall part includes a thin portion having a recessed external face. The current collecting member is welded to an inner face of the thin portion.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電素子に関する。   The present invention relates to a power storage element.

各種機器の電源として、正極板と負極板とをセパレータを介して積層した電極体をケース内に収容した多様な蓄電素子が使用されている。蓄電素子の中には、ケースの一部分を金属で形成し、この金属部分を極板から集電する集電部材及び外部端子として使用するものがある。   Various power storage elements are used as power sources for various devices, in which an electrode body in which a positive electrode plate and a negative electrode plate are stacked via a separator is accommodated in a case. Among power storage devices, there is a device in which a part of a case is formed of metal and the metal portion is used as a current collecting member and an external terminal for collecting current from an electrode plate.

ケースの金属部分を集電部材として使用する蓄電素子では、極板を金属部分に接続する必要がある。ケースの金属部分への極板の接続方法としては、金属部分の内面に複数の凹溝を形成し、各凹溝にそれぞれ極板の端部を嵌合させた状態で金属部分の外面側から電子ビーム又はレーザーを照射して凹溝に極板の端部を溶接する方法が提案されている(特開2006−172780公報参照)。   In a power storage element that uses the metal part of the case as a current collecting member, it is necessary to connect the electrode plate to the metal part. As a method of connecting the electrode plate to the metal part of the case, a plurality of concave grooves are formed on the inner surface of the metal part, and the end of the electrode plate is fitted to each concave groove from the outer surface side of the metal part. There has been proposed a method of welding an end portion of an electrode plate to a concave groove by irradiating an electron beam or a laser (see JP 2006-172780 A).

特開2006−172780公報JP 2006-172780 A

上記公報に記載の接続方法において、電子ビーム等を照射する際に熱が金属部分を伝導して拡散するため、ケースの金属部分の内面に極板を確実に溶接するためには電子ビーム等の出力を比較的大きくする必要がある。しかしながら、電子ビーム等の出力を大きくすると、ケース又は極板が局所的に過剰に加熱され、例えばビードや酸化物等の金属くずを生成し易くなる。このような金属くずは、正極板で金属イオンを生成し、負極板において電析することで極板間を微小短絡させる原因となり得る。また、電極体自体に熱が伝わって、変形等を引き起こす可能性がある。   In the connection method described in the above publication, since heat is conducted and diffused through the metal part when irradiating an electron beam or the like, an electron beam or the like is used to securely weld the electrode plate to the inner surface of the metal part of the case. The output needs to be relatively large. However, when the output of an electron beam or the like is increased, the case or the electrode plate is locally excessively heated, and metal scraps such as beads and oxides are easily generated. Such metal scraps can cause a short circuit between the electrode plates by generating metal ions on the positive electrode plate and electrodepositing on the negative electrode plate. In addition, heat may be transmitted to the electrode body itself, which may cause deformation or the like.

上記不都合に鑑みて、本発明は、極板の溶接による蓄電素子内部への影響が抑制された蓄電素子を提供することを課題とする。   In view of the above disadvantages, an object of the present invention is to provide a power storage element in which the influence on the inside of the power storage element due to welding of the electrode plates is suppressed.

本発明の一態様に係る蓄電素子は、導電性の壁部を含むケースと、上記ケース内に収容され、極板を含む電極体とを備え、上記壁部が、外面が凹状の薄肉部を有し、この薄肉部の内面に上記極板が溶接される。   A power storage device according to one embodiment of the present invention includes a case including a conductive wall portion and an electrode body that is housed in the case and includes a plate, and the wall portion includes a thin-walled portion having a concave outer surface. The electrode plate is welded to the inner surface of the thin portion.

本発明の一態様に係る蓄電素子は、極板の溶接による蓄電素子内部への影響が抑制された蓄電素子を提供できる。   The power storage element according to one embodiment of the present invention can provide a power storage element in which the influence on the inside of the power storage element due to welding of the electrode plates is suppressed.

本発明の一実施形態の蓄電素子を示す模式的断面図である。It is typical sectional drawing which shows the electrical storage element of one Embodiment of this invention. 図1の蓄電素子の模式的斜視図である。It is a typical perspective view of the electrical storage element of FIG. 本発明の図1とは異なる実施形態の蓄電素子を示す模式的断面図である。It is typical sectional drawing which shows the electrical storage element of embodiment different from FIG. 1 of this invention.

本発明の一態様は、導電性の壁部を含むケースと、上記ケース内に収容され、極板を含む電極体とを備え、上記壁部が、外面が凹状の薄肉部を有し、この薄肉部の内面に上記極板が溶接される蓄電素子である。   One aspect of the present invention includes a case including a conductive wall portion and an electrode body that is accommodated in the case and includes an electrode plate, and the wall portion includes a thin-walled portion having a concave outer surface. It is an electrical storage element with which the said electrode plate is welded to the inner surface of a thin part.

当該蓄電素子は、上記ケースの壁部が、外面が凹状の薄肉部を有し、この薄肉部の内面に上記極板が溶接されるので、薄肉部の熱容量が小さく、溶接のための熱が拡散しにくい。このため、当該蓄電素子は、ケースに孔を開けることなくケースに極板を溶接することが比較的容易である。また、当該蓄電素子は、溶接に要する熱量が小さいことで溶接時に金属くずが生成されにくいので、金属イオンの生成による電析を抑制することができ、これにより極板間の短絡を防止することができる。   In the electricity storage device, the wall portion of the case has a thin-walled portion whose outer surface is concave, and the electrode plate is welded to the inner surface of the thin-walled portion, so that the heat capacity of the thin-walled portion is small and heat for welding is reduced. Difficult to diffuse. For this reason, it is relatively easy to weld the electrode plate to the case without opening a hole in the case. In addition, since the storage element has a small amount of heat required for welding, it is difficult for metal scrap to be generated at the time of welding, so that it is possible to suppress electrodeposition due to generation of metal ions, thereby preventing a short circuit between electrode plates. Can do.

上記極板の端部が上記壁部と略平行に広がり且つ上記薄肉部の内面に面接触するとよい。このように、上記極板の端部が上記壁部と略平行に広がり且つ上記薄肉部の内面に面接触することによって、極板の端部に薄肉部を比較的容易に溶接することができる。   The end of the electrode plate may extend substantially parallel to the wall and be in surface contact with the inner surface of the thin portion. As described above, the end portion of the electrode plate extends substantially parallel to the wall portion and is in surface contact with the inner surface of the thin portion, so that the thin portion can be welded to the end portion of the electrode plate relatively easily. .

上記電極体が上記極板の端部が束ねられた束部を含み、上記束部が上記薄肉部の内面に溶接されているとよい。このように、上記電極体が上記極板の端部が束ねられた束部を含み、上記束部が上記薄肉部の内面に溶接されていることによって、複数の極板を一括して薄肉部に接続することができるので、当該蓄電素子の製造が比較的容易となる。   The electrode body may include a bundle portion in which end portions of the electrode plates are bundled, and the bundle portion may be welded to an inner surface of the thin portion. As described above, the electrode body includes a bundle portion in which the end portions of the electrode plates are bundled, and the bundle portion is welded to the inner surface of the thin portion, whereby a plurality of electrode plates are collectively collected into a thin portion. Therefore, the storage element can be manufactured relatively easily.

上記薄肉部との間に上記極板を挟み込む板状部材をさらに備えるとよい。このように、上記薄肉部との間に上記極板を挟み込む板状部材をさらに備えることによって、極板を薄肉部に確実に当接させることができるので、薄肉部と極板との溶接をより確実にすることができる。   A plate-like member that sandwiches the electrode plate between the thin-walled portion may be further provided. Thus, by further providing a plate-like member that sandwiches the electrode plate between the thin part and the thin part, the electrode plate can be reliably brought into contact with the thin part, so that the thin part and the electrode plate are welded. It can be made more reliable.

上記板状部材の上記薄肉部に重なる部分の平均厚さが上記薄肉部の平均厚さ以上であるとよい。このように、上記板状部材の上記薄肉部に重なる部分の平均厚さが、上記薄肉部の平均厚さ以上であることによって、薄肉部と極板とを電気抵抗溶接する場合に、薄肉部の外面側から供給される溶接電流が壁部をバイパスすることなく板状部材を流れやすいので、薄肉部と極板との溶接をより確実にすることができる。   The average thickness of the part which overlaps with the said thin part of the said plate-shaped member is good in it being more than the average thickness of the said thin part. Thus, when the thickness of the portion of the plate-like member that overlaps the thin portion is equal to or greater than the average thickness of the thin portion, when the thin portion and the electrode plate are subjected to electric resistance welding, the thin portion Since the welding current supplied from the outer surface side of the steel plate easily flows through the plate member without bypassing the wall portion, welding between the thin wall portion and the electrode plate can be made more reliable.

上記ケースが上記壁部を含む蓋体と、この蓋体により開口が封止される筒状の本体とを有し、上記板状部材が上記本体の端面と蓋体との間に挟持されるとよい。このように、上記ケースが上記壁部を含む蓋体と、この蓋体により開口が封止される筒状の本体とを有し、上記板状部材が上記本体の端面と蓋体との間に挟持されることによって、板状部材により比較的容易に極板の端部を蓋体に圧接することができるので、薄肉部と極板との溶接をより確実にすることができる。   The case has a lid including the wall portion and a cylindrical main body whose opening is sealed by the lid, and the plate-like member is sandwiched between an end surface of the main body and the lid. Good. Thus, the case has a lid body including the wall portion and a cylindrical main body whose opening is sealed by the lid body, and the plate-shaped member is between the end surface of the main body and the lid body. Since the end of the electrode plate can be brought into pressure contact with the lid relatively easily by the plate member, the thin-walled portion and the electrode plate can be more reliably welded.

本発明の別の態様は、導電性の壁部を含むケースと、上記ケース内に収容される電極体と、上記電極体と上記壁部とを接続する集電部材とを備え、上記壁部が外面が凹状の薄肉部を有し、この薄肉部の内面に上記集電部材が溶接される蓄電素子である。   Another aspect of the present invention includes a case including a conductive wall, an electrode body housed in the case, and a current collecting member that connects the electrode body and the wall, and the wall Is an electricity storage element in which the outer surface has a concave thin portion, and the current collecting member is welded to the inner surface of the thin portion.

当該蓄電素子は、上記ケースの壁部が外面が凹状の薄肉部を有し、この薄肉部の内面に上記集電部材が溶接されるので、薄肉部の熱容量が小さく、溶接のための熱が拡散しにくい。このため、当該蓄電素子は、溶接時に金属くずが生成されにくいので、金属イオンの生成による電析を抑制することができ、これによって極板間の短絡を防止することができる。   In the electric storage element, the wall portion of the case has a thin-walled portion whose outer surface is concave, and the current collecting member is welded to the inner surface of the thin-walled portion, so that the heat capacity of the thin-walled portion is small and heat for welding is reduced. Difficult to diffuse. For this reason, since the said electrical storage element is hard to produce | generate a metal scrap at the time of welding, it can suppress the electrodeposition by the production | generation of a metal ion, and can prevent the short circuit between electrode plates by this.

上記薄肉部が上記壁部の長手方向における端部付近に設けられているとよい。このように、上記薄肉部が上記壁部の長手方向における端部付近に設けられていることによって、溶接時に溶接電極等により薄肉部を外側から押圧しても、薄肉部近傍の壁部が撓みにくいので、薄肉部と極板との溶接が比較的確実となる。   The thin wall portion may be provided in the vicinity of the end portion in the longitudinal direction of the wall portion. As described above, since the thin portion is provided in the vicinity of the end portion in the longitudinal direction of the wall portion, the wall portion in the vicinity of the thin portion bends even if the thin portion is pressed from the outside by a welding electrode or the like during welding. Since it is difficult, welding between the thin wall portion and the electrode plate is relatively reliable.

上記壁部が複数の上記薄肉部を含むとよい。このように、上記壁部が複数の上記薄肉部を含むことによって、2つの薄肉部に一対の溶接電極を当接させて一度に電気抵抗溶接することができる。   The wall portion may include a plurality of the thin wall portions. Thus, when the said wall part contains the said some thin part, a pair of welding electrode can be contact | abutted to two thin parts, and it can carry out electrical resistance welding at once.

以下、適宜図面を参照しつつ、本発明の実施形態に係る蓄電素子について詳説する。   Hereinafter, a power storage device according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.

[第一実施形態]
図1及び図2に示す本発明の第一実施形態に係る蓄電素子は、ケース1と、このケース1に収容される電極体2とを備える。
[First embodiment]
The power storage element according to the first embodiment of the present invention shown in FIGS. 1 and 2 includes a case 1 and an electrode body 2 accommodated in the case 1.

ケース1は、筒状のケース本体3と、このケース本体3の両端の開口を封止する一対の蓋体(正極蓋体4及び負極蓋体5)とを有する。このケース1内には、電極体2と共に電解質が封入される。なお、電解質は、液体であってもよく、固体であってもよい。   The case 1 includes a cylindrical case body 3 and a pair of lids (a positive electrode lid body 4 and a negative electrode lid body 5) that seal the openings at both ends of the case body 3. In the case 1, an electrolyte is enclosed together with the electrode body 2. The electrolyte may be a liquid or a solid.

一方、電極体2は、複数の極板(正極板6及び負極板7)と、極板6,7間に介在する複数のセパレータ8とを有する。   On the other hand, the electrode body 2 includes a plurality of electrode plates (a positive electrode plate 6 and a negative electrode plate 7) and a plurality of separators 8 interposed between the electrode plates 6 and 7.

<ケース本体>
ケース本体3は、ケース1内に収容される電極体2を保護する。このケース本体3の材質としては、強度を有するものであればよく、例えば樹脂、金属等を用いることができる。但し、ケース本体3を導電性の材料で形成する場合、例えば正極蓋体4及び負極蓋体5との間に絶縁性を有するパッキンを配置する等により、正極蓋体4と負極蓋体5との間を絶縁する必要が生じることがある。
<Case body>
The case body 3 protects the electrode body 2 accommodated in the case 1. The case body 3 may be made of any material as long as it has strength. For example, resin, metal, or the like can be used. However, when the case main body 3 is formed of a conductive material, for example, an insulating packing is disposed between the positive electrode cover body 4 and the negative electrode cover body 5. It may be necessary to insulate between the two.

ケース本体3の断面形状としては、方形状(好ましくは角を丸く面取りした長方形状)又は長楕円状とするとよい。   The cross-sectional shape of the case body 3 may be a square shape (preferably a rectangular shape with rounded corners) or an oblong shape.

<蓋体>
蓋体4,5は、ケース本体3の端部に嵌合する概略筒状の胴部9と、この胴部9の開口を封止する導電性の壁部10とを含み、少なくとも壁部10が電極体2と外部とを電気的に接続する電路又は外部端子として使用される。従って、蓋体4,5は、少なくとも壁部10が導電性を有する材料から形成される。胴部9と壁部10とは、同じ材料から一体に形成されてもよいが、例えば樹脂等の絶縁性を有する材料で形成される胴部9に、例えば金属等の導電性を有する材質から形成される板状の壁部10を接合することで蓋体4,5を形成することができる。
<Cover body>
The lid bodies 4 and 5 include a substantially cylindrical body portion 9 fitted to an end portion of the case body 3 and a conductive wall portion 10 that seals an opening of the body portion 9, and at least the wall portion 10. Is used as an electric circuit or an external terminal for electrically connecting the electrode body 2 and the outside. Accordingly, the lids 4 and 5 are formed of a material in which at least the wall portion 10 has conductivity. Although the trunk | drum 9 and the wall part 10 may be integrally formed from the same material, for example, the trunk | drum 9 formed with the material which has insulation, such as resin, is made from the material which has electroconductivity, such as a metal. The lid bodies 4 and 5 can be formed by joining the plate-like wall portions 10 to be formed.

壁部10を形成する金属としては、例えばアルミニウム、鉄、ステンレス鋼、銅等が用いられるが、後述する極板6,7の端部を溶接しやすい材質を選択するとよい。また、壁部10を鉄等の錆や腐食のおそれがある金属で形成する場合、例えばニッケル等でメッキをしてもよい。   As the metal forming the wall portion 10, for example, aluminum, iron, stainless steel, copper, or the like is used. However, a material that can easily weld the end portions of the electrode plates 6 and 7, which will be described later, may be selected. Moreover, when forming the wall part 10 with the metal which has a possibility of rust and corrosion, such as iron, you may plate with nickel etc., for example.

壁部10の平面形状としては、ケース本体3の壁部10と平行な面での断面外形形状と略等しいことが好ましく、典型的には長方形状とされる。   The planar shape of the wall portion 10 is preferably substantially equal to the cross-sectional outer shape on a plane parallel to the wall portion 10 of the case body 3 and is typically rectangular.

壁部10は、外面が凹状の薄肉部11を有し、この薄肉部11の内面に極板6,7の端部が溶接される。より詳しくは、正極蓋体4の薄肉部11の内面には、複数の正極板6の端部が溶接され、負極蓋体5の薄肉部11の内面には、複数の負極板7の端部が溶接される。この薄肉部11は、上記壁部における上記薄肉部の周囲よりも、厚さ方向の寸法が小さい。   The wall portion 10 has a thin-walled portion 11 having a concave outer surface, and the end portions of the electrode plates 6 and 7 are welded to the inner surface of the thin-walled portion 11. More specifically, the end portions of the plurality of positive electrode plates 6 are welded to the inner surface of the thin wall portion 11 of the positive electrode lid body 4, and the end portions of the plurality of negative electrode plates 7 are welded to the inner surface of the thin wall portion 11 of the negative electrode lid body 5. Are welded. The thin portion 11 has a smaller dimension in the thickness direction than the periphery of the thin portion in the wall portion.

また、この薄肉部11は、各壁部10にそれぞれ複数形成されることが好ましい。各壁部10に薄肉部11を複数形成することにより、壁部10と正極板6又は負極板7とをより確実に接続することができる。また、壁部10が複数の薄肉部11を有することで、薄肉部11に極板6,7の端部を電気抵抗溶接する場合、一対の溶接電極を異なる薄肉部11に当接させることにより、2つの薄肉部11にそれぞれ正極板6の端部を同時に溶接することができる。   Further, it is preferable that a plurality of the thin portions 11 are formed on each wall portion 10. By forming a plurality of thin portions 11 on each wall portion 10, the wall portion 10 and the positive electrode plate 6 or the negative electrode plate 7 can be more reliably connected. Moreover, when the wall part 10 has the some thin part 11, when carrying out the electrical resistance welding of the edge part of the electrode plates 6 and 7 to the thin part 11, it makes a pair of welding electrodes contact | abut to the different thin part 11 The end portions of the positive electrode plate 6 can be welded to the two thin portions 11 at the same time.

壁部10の薄肉部11を除く部分の平均厚さの下限としては、0.5mmが好ましく、1.0mmがより好ましい。一方、壁部10の薄肉部11を除く部分の平均厚さの上限としては、3mmが好ましく、2mmがより好ましい。壁部10の薄肉部11を除く部分の平均厚さを上記下限以上とすることによって、壁部10の強度が不十分となることを防止できる、逆に、壁部10の薄肉部11を除く部分の平均厚さを上記上限以下とすることによって、薄肉部11の加工が容易でなくなるおそれや、当該蓄電素子が不必要に大型化することを防止できる。   As a minimum of the average thickness of the part except the thin part 11 of the wall part 10, 0.5 mm is preferable and 1.0 mm is more preferable. On the other hand, the upper limit of the average thickness of the wall portion 10 excluding the thin portion 11 is preferably 3 mm, and more preferably 2 mm. By making the average thickness of the portion of the wall portion 10 excluding the thin portion 11 equal to or more than the above lower limit, the strength of the wall portion 10 can be prevented from becoming insufficient. Conversely, the thin portion 11 of the wall portion 10 is excluded. By setting the average thickness of the portion to be equal to or less than the above upper limit, it is possible to prevent the thin portion 11 from being easily processed and prevent the storage element from being unnecessarily enlarged.

薄肉部11の平均厚さの下限としては、0.2mmが好ましく、0.3mmがより好ましい。一方、薄肉部11の平均厚さの上限としては、壁部10の薄肉部11を除く部分の平均厚さの2/3が好ましく、1/2がより好ましい。薄肉部11の平均厚さを上記下限以上とすることによって、極板6,7の溶接時に薄肉部11に孔が開くおそれや、薄肉部11の強度が不十分となることを防止できる。逆に、薄肉部11の平均厚さを上記上限以下とすることによって、極板6,7の溶接を促進できないことを防止できる。   As a minimum of average thickness of thin part 11, 0.2 mm is preferred and 0.3 mm is more preferred. On the other hand, the upper limit of the average thickness of the thin portion 11 is preferably 2/3 of the average thickness of the wall portion 10 excluding the thin portion 11 and more preferably 1/2. By setting the average thickness of the thin portion 11 to be equal to or more than the above lower limit, it is possible to prevent a hole from being formed in the thin portion 11 when the electrode plates 6 and 7 are welded and to prevent the strength of the thin portion 11 from being insufficient. On the contrary, by making the average thickness of the thin portion 11 equal to or less than the above upper limit, it is possible to prevent welding of the electrode plates 6 and 7 from being promoted.

薄肉部11の平面形状としては、アスペクト比(長さと幅との比)が比較的小さく角のない形状とすることが好ましい。薄肉部11の平面形状のアスペクトを小さくすることによって、薄肉部11の面積に対して薄肉部11と極板6,7との溶接時の熱の放散を抑制する効果が比較的大きくなる。また、薄肉部11の平面形状が角を有しないことにより、壁部10の強度低下を抑制すると共に、薄肉部11の形成が比較的容易となる。   The planar shape of the thin portion 11 is preferably a shape having a relatively small aspect ratio (ratio of length to width) and no corners. By reducing the planar aspect of the thin portion 11, the effect of suppressing heat dissipation during welding of the thin portion 11 and the electrode plates 6 and 7 with respect to the area of the thin portion 11 becomes relatively large. Moreover, since the planar shape of the thin part 11 does not have a corner | angular shape, while the strength reduction of the wall part 10 is suppressed, formation of the thin part 11 becomes comparatively easy.

薄肉部11の平面形状の円相当径の下限としては、2mmが好ましく、3mmがより好ましい。一方、薄肉部11の平面形状の円相当径の上限としては、30mmが好ましく、20mmがより好ましい。薄肉部11の平面形状の円相当径を上記下限以上とすることによって、薄肉部11と極板6,7との溶接時に熱が薄肉部11の外側に逃げやすくなることで溶接が不確実となることを防止できる。逆に、薄肉部11の平面形状の円相当径を上記上限以下とすることによって、壁部10の強度が不必要に低下することを防止できる。   As a minimum of a circle equivalent diameter of a plane shape of thin part 11, 2 mm is preferred and 3 mm is more preferred. On the other hand, the upper limit of the equivalent circular diameter of the planar shape of the thin portion 11 is preferably 30 mm, and more preferably 20 mm. By setting the equivalent circle diameter of the planar shape of the thin portion 11 to be equal to or greater than the above lower limit, heat is likely to escape to the outside of the thin portion 11 when welding the thin portion 11 and the electrode plates 6 and 7, so that welding is uncertain. Can be prevented. On the contrary, the strength of the wall portion 10 can be prevented from being unnecessarily reduced by setting the planar equivalent circle diameter of the thin portion 11 to be equal to or less than the above upper limit.

薄肉部11の平面形状の最小曲率半径の下限としては、0.5mmが好ましく、1.0mmがより好ましい。一方、薄肉部11の平面形状の最小曲率半径の上限としては、10mmが好ましく、5mmがより好ましい。薄肉部11の平面形状の最小曲率半径を上記下限以上とすることによって、応力集中により壁部10の強度が不必要に低下することを防止できる。逆に、薄肉部11の平面形状の最小曲率半径を上記上限以下とすることによって、薄肉部11の平面形状が比較的自由となる。   As a minimum of the minimum curvature radius of the plane shape of thin part 11, 0.5 mm is preferred and 1.0 mm is more preferred. On the other hand, the upper limit of the minimum curvature radius of the planar shape of the thin portion 11 is preferably 10 mm, and more preferably 5 mm. By making the minimum curvature radius of the planar shape of the thin portion 11 equal to or more than the lower limit, it is possible to prevent the strength of the wall portion 10 from being unnecessarily lowered due to stress concentration. On the contrary, the planar shape of the thin part 11 becomes comparatively free by making the minimum curvature radius of the planar shape of the thin part 11 below the upper limit.

薄肉部11は、略一定の厚さを有することが好ましいが、周縁部では応力集中を緩和するよう厚さが連続的に増大してもよい。   The thin portion 11 preferably has a substantially constant thickness, but the thickness may continuously increase at the peripheral portion so as to relieve stress concentration.

薄肉部11は、壁部10の長手方向における端部付近、具体的には長手方向の端部から長さの1/3以下の範囲内に形成されることが好ましい。壁部10が長方形状である場合、薄肉部11の中心の壁部10の長手方向端部からの距離の上限としては、壁部10の短手方向の幅の1倍が好ましく、0.5倍がより好ましい。薄肉部11の中心の壁部10の長手方向端部からの距離を上記上限以下とすることによって、薄肉部11と極板6,7とを電気抵抗溶接する場合に、薄肉部11に溶接電極を圧接することで壁部10が撓み、極板6,7との接触状体が不安定となって溶接が不完全となることを防止できる。   The thin portion 11 is preferably formed in the vicinity of the end portion of the wall portion 10 in the longitudinal direction, specifically within the range of 1/3 or less of the length from the end portion in the longitudinal direction. When the wall 10 is rectangular, the upper limit of the distance from the longitudinal end of the wall 10 at the center of the thin portion 11 is preferably 1 times the width of the wall 10 in the short direction, 0.5 Double is more preferred. When the distance from the longitudinal end of the wall portion 10 at the center of the thin portion 11 is less than or equal to the above upper limit, when the thin portion 11 and the electrode plates 6 and 7 are electrically resistance welded, the welding electrode is applied to the thin portion 11. Can be prevented from being incompletely welded due to instability of the contact body with the electrode plates 6 and 7.

薄肉部11は、例えば切削加工、プレス加工等によって形成することができる。   The thin portion 11 can be formed by, for example, cutting or pressing.

<正極板>
正極板6は、導電性を有する箔状乃至シート状の正極集電基材と、この正極集電基材の表面に積層される正極活物質層とを有する。具体的には、正極板6は、正極集電基材の表面に正極活物質層が積層される平面視矩形状の電極部と、この電極部から電極部よりも幅の小さい帯状に延出し、正極蓋体4の薄肉部11に接続される正極板6の端部を形成する接続部とを有する構成とすることができる。
<Positive electrode plate>
The positive electrode plate 6 has a conductive foil-like or sheet-like positive electrode current collector and a positive electrode active material layer laminated on the surface of the positive electrode current collector. Specifically, the positive electrode plate 6 has a rectangular electrode part in which a positive electrode active material layer is laminated on the surface of the positive electrode current collecting base material, and extends from the electrode part into a strip shape having a width smaller than the electrode part. The connecting portion forming the end portion of the positive electrode plate 6 connected to the thin portion 11 of the positive electrode lid 4 can be used.

複数の正極板6の接続部は、束ねられて1つの束部を形成する。つまり、複数の正極板6の接続部は互いに重ね合わされて一体的に薄肉部11の内面に溶接される。具体的には、束部を形成する正極板6の接続部は、正極蓋体4の壁部10と略平行に広がり且つ薄肉部11の内面に面接触するよう配置される。このため、正極板6の接続部は、薄肉部11に対して比較的確実な溶接することができる。   Connection portions of the plurality of positive electrode plates 6 are bundled to form one bundle portion. That is, the connecting portions of the plurality of positive electrode plates 6 are overlapped with each other and integrally welded to the inner surface of the thin portion 11. Specifically, the connecting portion of the positive electrode plate 6 that forms the bundle portion is disposed so as to extend substantially parallel to the wall portion 10 of the positive electrode lid body 4 and to be in surface contact with the inner surface of the thin portion 11. For this reason, the connection part of the positive electrode plate 6 can be relatively reliably welded to the thin part 11.

また、正極板6の接続部をこのように配置するために、当該蓄電素子は、図示するように、薄肉部11との間に正極板6の接続部を挟み込む板状部材12をさらに備えているとよい。この板状部材12は、ケース本体3の端面と蓋体4との間に挟持されるとよく、断面長方形状のケース本体3の少なくとも2つの側面の端面に当接するよう配置されることがより好ましい。このように板状部材12をケース本体3と蓋体4との間に挟持することで、板状部材12によって正極板6の接続部を薄肉部11の内面により確実に圧接することができる。また、板状部材12は、正極板6の接続部と共に薄肉部11に溶接され、薄肉部11に孔が開くことを防止する。   Moreover, in order to arrange the connection part of the positive electrode plate 6 in this way, the electric storage element further includes a plate-like member 12 that sandwiches the connection part of the positive electrode plate 6 between the thin part 11 as shown in the figure. It is good to be. The plate-like member 12 is preferably sandwiched between the end surface of the case body 3 and the lid body 4, and is more preferably disposed so as to contact the end surfaces of at least two side surfaces of the case body 3 having a rectangular cross section. preferable. By sandwiching the plate-like member 12 between the case main body 3 and the lid body 4 in this way, the connecting portion of the positive electrode plate 6 can be reliably pressed against the inner surface of the thin portion 11 by the plate-like member 12. The plate-like member 12 is welded to the thin portion 11 together with the connecting portion of the positive electrode plate 6, and prevents the thin portion 11 from opening a hole.

板状部材12は、複数の薄肉部11に重なるよう配置されることが好ましい。1つの板状部材12が複数の薄肉部11に跨がって配置されることにより、2つの薄肉部11の外側に一対の溶接電極を当接させて電流を流すことにより、一方の薄肉部11及び正極板6の接続部を厚さ方向に貫通した電流が板状部材12を通って他方の正極板6の接続部及び薄肉部を厚さ方向に貫通する。従って、一度の通電により2つの薄肉部11にそれぞれ正極板6の接続部を溶接することができる。   The plate member 12 is preferably arranged so as to overlap the plurality of thin portions 11. One plate-like member 12 is arranged across a plurality of thin-walled portions 11, so that a pair of welding electrodes are brought into contact with the outer sides of the two thin-walled portions 11, thereby allowing one thin-walled portion to flow. 11 and the current passing through the connecting portion of the positive electrode plate 6 in the thickness direction pass through the plate-like member 12 and pass through the connecting portion and the thin portion of the other positive electrode plate 6 in the thickness direction. Therefore, the connection part of the positive electrode plate 6 can be welded to each of the two thin parts 11 by one energization.

板状部材12の薄肉部11に重なる部分の平均厚さの下限としては、薄肉部11の平均厚さの1.0倍が好ましく、1.5倍がより好ましい。一方、板状部材12の薄肉部11に重なる部分の平均厚さの上限としては、壁部10の薄肉部11を除く部分の平均厚さの3倍が好ましく、2倍がより好ましい。板状部材12の薄肉部11に重なる部分の平均厚さを上記下限以上とすることによって、溶接時に薄肉部11に孔が開くことを抑制する効果がちいさくなるおそれや、溶接電流の電路として機能することができずに電気抵抗溶接が困難となることを防止できる。逆に、板状部材12の薄肉部11に重なる部分の平均厚さを上記上限以下とすることによって、溶接時の熱が放散することで正極板6の接続部と薄肉部11との溶接が不完全となることを防止できる。   As a minimum of the average thickness of the part which overlaps with thin part 11 of tabular member 12, 1.0 times the average thickness of thin part 11 is preferred, and 1.5 times is more preferred. On the other hand, the upper limit of the average thickness of the portion overlapping the thin portion 11 of the plate-like member 12 is preferably three times the average thickness of the portion excluding the thin portion 11 of the wall portion 10 and more preferably twice. By making the average thickness of the portion of the plate-like member 12 that overlaps the thin portion 11 equal to or more than the above lower limit, the effect of suppressing the opening of the thin portion 11 during welding may be small, or it functions as an electric current path for welding current. Therefore, it is possible to prevent electric resistance welding from becoming difficult. Conversely, by setting the average thickness of the portion overlapping the thin portion 11 of the plate-like member 12 to the upper limit or less, the heat at the time of welding is dissipated so that the connection between the connection portion of the positive electrode plate 6 and the thin portion 11 is performed. Incompleteness can be prevented.

(正極集電基材)
正極集電基材の材質としては、アルミニウム、銅、鉄、ニッケル等の金属又はそれらの合金が用いられる。これらの中でも、導電性の高さとコストとのバランスからアルミニウム、アルミニウム合金、銅及び銅合金が好ましく、アルミニウム及びアルミニウム合金がより好ましい。また、正極集電基材の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極集電基材としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS−H4000(2014)に規定されるA1085P、A3003P等が例示できる。
(Positive electrode current collector)
As a material of the positive electrode current collector base, a metal such as aluminum, copper, iron, nickel, or an alloy thereof is used. Among these, aluminum, an aluminum alloy, copper, and a copper alloy are preferable from the balance between high conductivity and cost, and aluminum and an aluminum alloy are more preferable. Moreover, as a formation form of a positive electrode current collection base material, foil, a vapor deposition film, etc. are mentioned, A foil is preferable from the surface of cost. That is, an aluminum foil is preferable as the positive electrode current collecting base material. Examples of aluminum or aluminum alloy include A1085P and A3003P defined in JIS-H4000 (2014).

正極集電基材の平均厚さの下限としては、5μmが好ましく、10μmがより好ましい、一方、正極集電基材の平均厚さの上限としては、50μmが好ましく、40μmがより好ましい。正極集電基材の平均厚さを上記下限以上とすることによって、正極集電基材の強度が不十分となることを防止できる。逆に、正極集電基材の平均厚さを上記上限以下とすることによって、正極集電基材の束の厚さが大きくなることで、全ての正極板6を薄肉部11に溶接することが容易でなくなることを防止できる。   The lower limit of the average thickness of the positive electrode current collector is preferably 5 μm, more preferably 10 μm. On the other hand, the upper limit of the average thickness of the positive electrode current collector is preferably 50 μm, more preferably 40 μm. By setting the average thickness of the positive electrode current collecting base material to the above lower limit or more, it is possible to prevent the strength of the positive electrode current collecting base material from becoming insufficient. Conversely, by setting the average thickness of the positive electrode current collector base material to be equal to or lower than the above upper limit, the thickness of the bundle of positive current collector base materials is increased, so that all the positive electrode plates 6 are welded to the thin portion 11. Can be prevented from becoming easy.

(正極活物質層)
正極活物質層は、正極活物質を含むいわゆる正極合材から形成される。また、正極活物質層を形成する正極合材は、必要に応じて導電剤、結着剤(バインダ)、増粘剤、フィラー等の任意成分を含む。
(Positive electrode active material layer)
The positive electrode active material layer is formed from a so-called positive electrode mixture containing a positive electrode active material. In addition, the positive electrode mixture forming the positive electrode active material layer includes optional components such as a conductive agent, a binder (binder), a thickener, and a filler as necessary.

上記正極活物質としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(LiCoO、LiNiO、LiMn、LiMnO、LiNiαCo(1−α)、LiNiαMnβCo(1−α−β)、LiNiαMn(2−α)等)、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは他の元素又はアニオン種で一部が置換されていてもよい。正極活物質層においては、これら化合物の一種を単独で用いてもよく、二種以上を混合して用いてもよい。また、正極活物質の結晶構造は、層状構造又はスピネル構造であることが好ましい。 Examples of the positive electrode active material include composite oxides represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x MnO 3, Li x Ni α Co (1-α) O 2, Li x Ni α Mn β Co (1-α-β) O 2, Li x Ni α Mn (2-α) O 4 , etc.), Li w A polyanion compound (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 ) represented by Me x (XO y ) z (Me represents at least one transition metal, and X represents, for example, P, Si, B, V, etc.) Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.). The elements or polyanions in these compounds may be partially substituted with other elements or anion species. In the positive electrode active material layer, one kind of these compounds may be used alone, or two or more kinds may be mixed and used. The crystal structure of the positive electrode active material is preferably a layered structure or a spinel structure.

正極活物質層における正極活物質の含有量の下限としては、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましい。一方、正極活物質の含有量の上限としては、99質量%が好ましく、94質量%がより好ましい。正極活物質粒子の含有量を上記範囲とすることで、当該蓄電素子のエネルギー密度を高めることができる。   As a minimum of content of the positive electrode active material in a positive electrode active material layer, 50 mass% is preferable, 70 mass% is more preferable, and 80 mass% is further more preferable. On the other hand, as an upper limit of content of a positive electrode active material, 99 mass% is preferable and 94 mass% is more preferable. By setting the content of the positive electrode active material particles in the above range, the energy density of the power storage element can be increased.

上記導電剤としては、電池性能に悪影響を与えない導電性材料であれば特に限定されない。このような導電剤としては、天然又は人造の黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、金属、導電性セラミックスなどが挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。   The conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect battery performance. Examples of such a conductive agent include carbon black such as natural or artificial graphite, furnace black, acetylene black, and ketjen black, metals, and conductive ceramics. Examples of the shape of the conductive agent include powder and fiber.

正極活物質層における導電剤の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましい。一方、導電剤の含有量の上限としては、10質量%が好ましく、5質量%がより好ましい。導電剤の含有量を上記範囲とすることで、当該蓄電素子のエネルギー密度を高めることができる。   The lower limit of the content of the conductive agent in the positive electrode active material layer is preferably 0.1% by mass, and more preferably 0.5% by mass. On the other hand, as an upper limit of content of a electrically conductive agent, 10 mass% is preferable and 5 mass% is more preferable. By setting the content of the conductive agent in the above range, the energy density of the power storage element can be increased.

上記結着剤としては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン−プロピレン−ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子などが挙げられる。   Examples of the binder include thermoplastic resins such as fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM. , Elastomers such as styrene butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.

正極活物質層における結着剤の含有量の下限としては、1質量%が好ましく、2質量%がより好ましい。一方、結着剤の含有量の上限としては、10質量%が好ましく、5質量%がより好ましい。結着剤の含有量を上記範囲とすることで、正極活物質を安定して保持することができる。   As a minimum of content of a binder in a cathode active material layer, 1 mass% is preferred and 2 mass% is more preferred. On the other hand, as an upper limit of content of a binder, 10 mass% is preferable and 5 mass% is more preferable. By setting the content of the binder in the above range, the positive electrode active material can be stably held.

上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。   Examples of the thickener include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose. When the thickener has a functional group that reacts with lithium, it is preferable to deactivate this functional group in advance by methylation or the like.

上記フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス、炭素などが挙げられる。   The filler is not particularly limited as long as it does not adversely affect battery performance. Examples of the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, glass, and carbon.

<負極板>
負極板7は、導電性を有する箔状乃至シート状の負極集電基材と、この負極集電基材の表面に積層される負極活物質層とを有する。具体的には、負極板7は、負極集電基材の表面に負極活物質層が積層される平面視矩形状の電極部と、この電極部から電極部よりも幅の小さい帯状に延出し、負極蓋体5の薄肉部11に接続される負極板7の端部を形成する接続部とを有する構成とされる。
<Negative electrode plate>
The negative electrode plate 7 has a conductive foil-shaped or sheet-shaped negative electrode current collector and a negative electrode active material layer laminated on the surface of the negative electrode current collector. Specifically, the negative electrode plate 7 extends in a rectangular shape in plan view in which a negative electrode active material layer is laminated on the surface of the negative electrode current collector base material, and extends from this electrode portion into a strip shape having a width smaller than the electrode portion. And a connection part that forms an end of the negative electrode plate 7 connected to the thin part 11 of the negative electrode cover 5.

複数の負極板7の接続部の負極蓋体5の壁部10の薄肉部11への接続は、複数の正極板6の接続部の正極蓋体4の壁部10の薄肉部11への接続と同様とすることができる。   The connection of the connection portions of the plurality of negative electrode plates 7 to the thin wall portion 11 of the wall portion 10 of the negative electrode lid body 5 is connected to the thin wall portion 11 of the wall portion 10 of the positive electrode cover body 4 of the connection portion of the plurality of positive electrode plates 6. And can be similar.

(負極集電基材)
負極集電基材は、上述の正極集電基材と同様の構成とすることができるが、材質としては、銅又は銅合金が好ましい。つまり、負極板7の負極集電基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。
(Negative electrode current collector)
The negative electrode current collecting base material can have the same configuration as the above-described positive electrode current collecting base material, but the material is preferably copper or a copper alloy. That is, the negative electrode current collector base material of the negative electrode plate 7 is preferably a copper foil. Examples of the copper foil include rolled copper foil and electrolytic copper foil.

銅は熱伝導率が比較的大きく、レーザーによる溶接が容易ではないため、負極集電基材が銅から形成される場合、板状部材12を配置して負極板7の接続部を2つの薄肉部11に同時に電気抵抗溶接することが好ましい。   Since copper has a relatively high thermal conductivity and is not easily welded by laser, when the negative electrode current collector base material is formed of copper, the plate-like member 12 is arranged to connect the connection part of the negative electrode plate 7 with two thin walls. It is preferable to perform electrical resistance welding to the part 11 simultaneously.

(負極活物質層)
負極活物質層は、負極活物質を含むいわゆる負極板合材から形成される。また、負極活物質層を形成する負極板合材は、必要に応じて導電剤、結着剤(バインダ)、増粘剤、フィラー等の任意成分を含む。導電剤、結着剤、増粘剤、フィラー等の任意成分は、正極活物質層と同様のものを用いることができる。
(Negative electrode active material layer)
The negative electrode active material layer is formed from a so-called negative electrode plate mixture containing a negative electrode active material. Moreover, the negative electrode plate mixture forming the negative electrode active material layer includes optional components such as a conductive agent, a binder (binder), a thickener, and a filler as necessary. The same components as those for the positive electrode active material layer can be used as optional components such as a conductive agent, a binder, a thickener, and a filler.

負極活物質としては、リチウムイオンを吸蔵及び放出することができる材質が好適に用いられる。具体的な負極活物質としては、例えばリチウム、リチウム合金等の金属;金属酸化物;ポリリン酸化合物;黒鉛、非晶質炭素(易黒鉛化炭素または難黒鉛化性炭素)等の炭素材料などが挙げられる。   As the negative electrode active material, a material capable of inserting and extracting lithium ions is preferably used. Specific examples of the negative electrode active material include metals such as lithium and lithium alloys; metal oxides; polyphosphate compounds; carbon materials such as graphite and amorphous carbon (easily graphitizable carbon or non-graphitizable carbon). Can be mentioned.

上記負極活物質の中でも、正極板6と負極板7との単位対向面積当たりの放電容量を好適な範囲とする観点から、Si、Si酸化物、Sn、Sn酸化物又はこれらの組み合わせを用いることが好ましく、Si酸化物を用いることが特に好ましい。なお、SiとSnとは、酸化物にした際に、黒鉛の3倍程度の放電容量を持つことができる。   Among the negative electrode active materials, Si, Si oxide, Sn, Sn oxide, or a combination thereof is used from the viewpoint of setting the discharge capacity per unit facing area between the positive electrode plate 6 and the negative electrode plate 7 to a suitable range. It is preferable to use Si oxide. Si and Sn can have a discharge capacity about three times that of graphite when they are made into oxides.

負極活物質としてSi酸化物を用いる場合、Si酸化物に含まれるOのSiに対する原子数の比としては0超2未満が好ましい。つまり、Si酸化物としては、SiO(0<x<2)で表される化合物が好ましい。また、上記原子数の比としては、0.5以上1.5以下がより好ましい。 When Si oxide is used as the negative electrode active material, the ratio of the number of atoms of O to Si contained in the Si oxide is preferably more than 0 and less than 2. That is, as the Si oxide, a compound represented by SiO x (0 <x <2) is preferable. The ratio of the number of atoms is more preferably 0.5 or more and 1.5 or less.

なお、負極活物質は上述したものを一種単体で用いてもよいし、二種以上を混合して用いてもよい。例えば、Si酸化物と他の負極活物質とを混合して用いることで、正極板6と負極板7との単位対向面積当たりの放電容量及び後述する負極活物質の質量に対する上記正極活物質の質量の比が共に好適な値となるように調整できる。Si酸化物と混合して用いる他の負極活物質としては、黒鉛、ハードカーボン、ソフトカーボン、コークス類、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、フラーレン、活性炭等の炭素材料が挙げられる。これらの炭素材料は、一種のみをSi酸化物と混合してもよいし、二種以上を任意の組み合わせ及び比率でSi酸化物と混合してもよい。これらの他の負極活物質の中でも、充放電電位が比較的卑である黒鉛が好ましく、黒鉛を用いることで高いエネルギー密度の二次電池素子が得られる。Si酸化物と混合して用いる黒鉛としては、鱗片状黒鉛、球状黒鉛、人造黒鉛、天然黒鉛等が挙げられる。これらの中でも、充放電を繰り返してもSi酸化物粒子表面との接触を維持しやすい鱗片状黒鉛が好ましい。   As the negative electrode active material, those described above may be used singly or in combination of two or more. For example, by using a mixture of Si oxide and another negative electrode active material, the discharge capacity per unit facing area between the positive electrode plate 6 and the negative electrode plate 7 and the mass of the negative electrode active material to be described later can be reduced. Both of the mass ratios can be adjusted to be suitable values. Other negative electrode active materials used in combination with Si oxide include carbon materials such as graphite, hard carbon, soft carbon, coke, acetylene black, ketjen black, vapor grown carbon fiber, fullerene, activated carbon and the like. . Only one kind of these carbon materials may be mixed with Si oxide, or two or more kinds may be mixed with Si oxide in an arbitrary combination and ratio. Among these other negative electrode active materials, graphite having a relatively low charge / discharge potential is preferable, and a secondary battery element having a high energy density can be obtained by using graphite. Examples of graphite used by mixing with Si oxide include flaky graphite, spherical graphite, artificial graphite, and natural graphite. Among these, scaly graphite that can easily maintain contact with the surface of the Si oxide particles even after repeated charge and discharge is preferable.

負極活物質におけるSi酸化物の含有量の下限としては、30質量%が好ましく、50質量%より好ましく、70質量%がさらに好ましい。一方、Si酸化物の含有量の上限としては、通常100質量%であり、90質量%が好ましい。   As a minimum of content of Si oxide in a negative electrode active material, 30 mass% is preferred, 50 mass% is more preferred, and 70 mass% is still more preferred. On the other hand, the upper limit of the content of Si oxide is usually 100% by mass, and preferably 90% by mass.

さらに、負極活物質層は、Si酸化物に加えて少量のB、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を含有してもよい。   Furthermore, the negative electrode active material layer includes a small amount of typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Typical metal elements such as Ga and Ge, and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W may be contained.

上記Si酸化物(一般式SiOで表される物質)として、SiO及びSiの両相を含むものを使用することが好ましい。このようなSi酸化物は、SiOのマトリックス中のSiにリチウムが吸蔵及び放出されるため、体積変化が小さく、かつ充放電サイクル特性に優れる。 As the Si oxide (substance represented by the general formula SiO x ), it is preferable to use one containing both phases of SiO 2 and Si. Such Si oxide has a small volume change and excellent charge / discharge cycle characteristics because lithium is occluded and released from Si in the SiO 2 matrix.

上記Si酸化物は、高結晶性のものからアモルファスのものまで使用することができる。さらに、Si酸化物としては、フッ化水素、硫酸などの酸で洗浄されているものや水素で還元されているものを使用してもよい。   The Si oxide can be used from a highly crystalline one to an amorphous one. Further, as the Si oxide, one washed with an acid such as hydrogen fluoride or sulfuric acid or one reduced with hydrogen may be used.

負極活物質層における負極活物質の含有量の下限としては、60質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。一方、負極活物質の含有量の上限としては、99質量%が好ましく、98質量%がより好ましい。負極活物質粒子の含有量を上記範囲とすることで、蓄電素子のエネルギー密度を高めることができる。   As a minimum of content of a negative electrode active material in a negative electrode active material layer, 60 mass% is preferred, 80 mass% is more preferred, and 90 mass% is still more preferred. On the other hand, as an upper limit of content of a negative electrode active material, 99 mass% is preferable and 98 mass% is more preferable. By setting the content of the negative electrode active material particles in the above range, the energy density of the energy storage device can be increased.

負極活物質層における結着剤の含有量の下限としては、1質量%が好ましく、5質量%がより好ましい。一方、結着剤の含有量の上限としては、20質量%が好ましく、15質量%がより好ましい。結着剤の含有量を上記範囲とすることで、負極活物質を安定して保持することができる。   As a minimum of content of a binder in a negative electrode active material layer, 1 mass% is preferred and 5 mass% is more preferred. On the other hand, as an upper limit of content of a binder, 20 mass% is preferable and 15 mass% is more preferable. By setting the content of the binder in the above range, the negative electrode active material can be stably held.

<セパレータ>
セパレータ8は、多孔質樹脂フィルムから形成される。
<Separator>
The separator 8 is formed from a porous resin film.

セパレータ8の主成分としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、エチレン−酢酸ビニル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、塩素化ポリエチレン等のポリオレフィン誘導体、エチレン−プロピレン共重合体等のポリオレフィン、ポリエチレンテレフタレートや共重合ポリエステル等のポリエステル、キュプラレーヨン、再生セルロース、セルロースなどを採用することができる。中でも、セパレータ8の主成分としては、耐電解質性、耐久性及び溶着性に優れるポリエチレン及びポリプロピレンが好適に用いられる。なお、「主成分」とは、最も質量含有率が大きい成分を意味する。   Examples of the main component of the separator 8 include polyolefin derivatives such as polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and chlorinated polyethylene. Polyolefins such as ethylene-propylene copolymers, polyesters such as polyethylene terephthalate and copolymerized polyesters, cupra rayon, regenerated cellulose, and cellulose can be employed. Among these, as the main component of the separator 8, polyethylene and polypropylene excellent in electrolyte resistance, durability, and weldability are preferably used. The “main component” means a component having the largest mass content.

セパレータ8の平均厚さの下限としては、0.5μmが好ましく、1μmがより好ましい。一方、セパレータ8の平均厚さの上限としては、100μmが好ましく、50μmがより好ましい。セパレータ8の平均厚さを上記下限以上とすることによって、溶着時にセパレータ8が破断することを防止できる。逆に、セパレータ8の平均厚さを上記上限以下とすることによって、セパレータ8の厚さが不必要に増大することにより蓄電素子の体積当たりの容量が小さくなることを防止できる。   The lower limit of the average thickness of the separator 8 is preferably 0.5 μm, and more preferably 1 μm. On the other hand, the upper limit of the average thickness of the separator 8 is preferably 100 μm, and more preferably 50 μm. By making the average thickness of the separator 8 equal to or more than the above lower limit, it is possible to prevent the separator 8 from breaking during welding. Conversely, by setting the average thickness of the separator 8 to be equal to or less than the above upper limit, it is possible to prevent the capacity per unit volume of the power storage element from being reduced due to an unnecessarily increased thickness of the separator 8.

また、セパレータ8は、正極に対向する面に耐熱性を向上する耐熱層が積層されていることが好ましい。この耐熱層は、多数の無機粒子と、この無機粒子間を接続するバインダとを含む構成とすることができる   Moreover, it is preferable that the separator 8 is laminated | stacked on the surface facing a positive electrode with the heat resistant layer which improves heat resistance. The heat-resistant layer can include a large number of inorganic particles and a binder that connects the inorganic particles.

耐熱層の無機粒子の主成分としては、例えばアルミナ、シリカ、ジルコニア、チタニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレイ、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウムなどが挙げられる。中でも、耐熱層の無機粒子の主成分としては、アルミナ、シリカ及びチタニアが特に好ましい。   Examples of the main component of the inorganic particles of the heat-resistant layer include alumina, silica, zirconia, titania, magnesia, ceria, yttria, zinc oxide, iron oxide and other nitrides, silicon nitride, titanium nitride, boron nitride and other nitrides, silicon Carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, calcium silicate, Examples include magnesium silicate. Among these, alumina, silica and titania are particularly preferable as the main component of the inorganic particles of the heat-resistant layer.

耐熱層のバインダの主成分としては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素樹脂、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体等のフッ素ゴム、スチレン−ブタジエン共重合体及びその水素化物、アクリロニトリル−ブタジエン共重合体及びその水素化物、アクリロニトリル−ブタジエン−スチレン共重合体及びその水素化物、メタクリル酸エステル−アクリル酸エステル共重合体、スチレン−アクリル酸エステル共重合体、アクリロニトリル−アクリル酸エステル共重合体等の合成ゴム、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、カルボキシメチルセルロースのアンモニウム塩等のセルロース誘導体、ポリエーテルイミド、ポリアミドイミド、ポリアミド及びその前駆体(ポリアミック酸等)等のポリイミド、エチレン−エチルアクリレート共重合体等のエチレン−アクリル酸共重合体、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリ酢酸ビニル、ポリウレタン、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエステルな   As a main component of the binder of the heat-resistant layer, for example, fluororesin such as polyvinylidene fluoride and polytetrafluoroethylene, fluororubber such as vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, styrene-butadiene copolymer and Its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid ester-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, acrylonitrile- Synthetic rubber such as acrylic ester copolymer, carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC), cellulose derivatives such as ammonium salt of carboxymethylcellulose, polyetherimide, polyester Polyimides such as amide imide, polyamide and precursors thereof (polyamic acid, etc.), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymer, polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP) , Polyvinyl acetate, polyurethane, polyphenylene ether, polysulfone, polyethersulfone, polyphenylene sulfide, polyester, etc.

<利点>
当該蓄電素子は、壁部10の薄肉部11に極板6,7の接続部を溶接する構成としたことによって、溶接部分の熱容量が比較的小さいので比較的小さい熱量で溶接することができ、壁部10に孔を開ける危険性が小さい。また、当該蓄電素子は、溶接に必要な熱量が比較的小さいので、溶接時に金属くずが発生しにくく、金属くずに起因する電析を防止することができる。
<Advantages>
The electric storage element can be welded with a relatively small amount of heat because the welded portion has a relatively small heat capacity by welding the connecting portion of the electrode plates 6 and 7 to the thin portion 11 of the wall portion 10. The risk of opening a hole in the wall 10 is small. Further, since the power storage element requires a relatively small amount of heat for welding, metal scraps are less likely to be generated during welding, and electrodeposition due to metal scraps can be prevented.

[第二実施形態]
図3に示す本発明の第二実施形態に係る蓄電素子は、ケース1aと、このケース1aに収容される電極体2とを備える。図3の蓄電素子における電極体2の構成は、図1の蓄電素子における電極体2の構成と同様とすることができる。このため、図3の蓄電素子について、図1の蓄電素子同じ構成要素には同じ符号を付して重複する説明を省略する。
[Second Embodiment]
The power storage element according to the second embodiment of the present invention shown in FIG. 3 includes a case 1a and an electrode body 2 accommodated in the case 1a. The configuration of the electrode body 2 in the power storage element of FIG. 3 can be the same as the configuration of the electrode body 2 in the power storage element of FIG. For this reason, with respect to the power storage element of FIG. 3, the same components as those of the power storage element of FIG.

<ケース>
ケース1aは、導電性を有する材料から形成され、有底筒状のケース本体3aと、このケース本体3aの開口を封止する負極蓋体5とを有する。このケース1a内には、電極体2と共に電解液が封入される。図3の蓄電素子において、ケース本体3aは、正極外部端子として使用される。図3のケース1aにおける負極蓋体5の構成は、図1のケース1における負極蓋体5の構成と同様とすることができる。
<Case>
The case 1a is formed of a conductive material and includes a bottomed cylindrical case body 3a and a negative electrode lid 5 that seals the opening of the case body 3a. In the case 1a, an electrolyte solution is sealed together with the electrode body 2. In the energy storage device of FIG. 3, the case body 3a is used as a positive electrode external terminal. The configuration of the negative electrode lid 5 in the case 1a of FIG. 3 can be the same as the configuration of the negative electrode lid 5 in the case 1 of FIG.

(ケース本体)
ケース本体3aは、筒状部分の一部、例えば例えば断面が方形状筒状部分1つの側壁を形成する壁部10aの底部近傍部分に外面が凹状の薄肉部11aを有し、この薄肉部11aの内面に正極板6の接続部が溶接される。
(Case body)
The case main body 3a has a thin-walled portion 11a having a concave outer surface in a portion near the bottom of a wall portion 10a that forms a side wall of a cylindrical portion, for example, a square-shaped cross-section. The connecting portion of the positive electrode plate 6 is welded to the inner surface of the plate.

薄肉部11aの構成としては、負極蓋体5の壁部10の薄肉部11(ひいては図1のケース1における正極蓋体4の薄肉部11)と同様とすることができる。   The configuration of the thin portion 11a can be the same as that of the thin portion 11 of the wall portion 10 of the negative electrode lid 5 (as a result, the thin portion 11 of the positive electrode lid 4 in the case 1 of FIG. 1).

また、当該蓄電素子は、図3に示すように、ケース本体3aの薄肉部11aと正極板6の接続部を挟んで対向する板状部材12aを有してもよい。この板状部材12aの形状及び材質等は、図1の板状部材12の形状及び材質と同様とすることができる。   In addition, as shown in FIG. 3, the power storage element may include a plate-like member 12 a that is opposed to the thin body 11 a of the case body 3 a and the connecting portion of the positive electrode plate 6. The shape and material of the plate-like member 12a can be the same as the shape and material of the plate-like member 12 of FIG.

また、当該蓄電素子は、負極蓋体5の壁部10の薄肉部11の内面に、導電性の材料から形成される集電部材13が溶接される。この集電部材13には、負極板7の接続部が接続される。つまり、当該蓄電素子において、複数の負極板7は、集電部材13を介して負極蓋体5の壁部10に接続される。   Further, in the electricity storage element, a current collecting member 13 formed of a conductive material is welded to the inner surface of the thin portion 11 of the wall portion 10 of the negative electrode lid 5. A connecting portion of the negative electrode plate 7 is connected to the current collecting member 13. That is, in the power storage element, the plurality of negative electrode plates 7 are connected to the wall portion 10 of the negative electrode lid 5 via the current collecting member 13.

薄肉部11への集電部材13の溶接は、例えば薄肉部11の外側からのレーザーの照射、薄肉部11の外側に電極を当接させる電気抵抗溶接等によって行うことができる。また、集電部材13への負極板7の接続部の接続は、例えば、超音波溶接、レーザー溶接、電気抵抗溶接、かしめ、ねじ止め、半田付け等によって行うことができる。   The current collector 13 is welded to the thin portion 11 by, for example, laser irradiation from the outside of the thin portion 11, electric resistance welding in which an electrode is in contact with the outside of the thin portion 11, or the like. The connection of the connecting portion of the negative electrode plate 7 to the current collecting member 13 can be performed by, for example, ultrasonic welding, laser welding, electric resistance welding, caulking, screwing, soldering, or the like.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.

当該蓄電素子において、ケースの壁部に形成した薄肉部に極板の端部を溶接する構成は、正極側及び負極側のいずれか一方だけに適用してもよい。   In the power storage element, the configuration in which the end portion of the electrode plate is welded to the thin portion formed on the wall portion of the case may be applied to only one of the positive electrode side and the negative electrode side.

当該蓄電素子において、板状部材は省略してもよい。   In the power storage element, the plate member may be omitted.

当該蓄電素子において、極板の端部の薄肉部への溶接は、ケースの内側から行ってもよい。例えば、ケース本体を蓋体で封止する前に、ケース本体又は蓋体の壁部に形成した薄肉部に極板の端部を溶接してもよい。   In the electric storage element, welding to the thin portion at the end of the electrode plate may be performed from the inside of the case. For example, the end portion of the electrode plate may be welded to a thin wall portion formed on the wall portion of the case body or the lid before the case body is sealed with the lid.

当該蓄電素子の電極体は、複数正極板及び負極板を積み重ねた積層型に限られず、例えば長尺の極板及びセパレータの積層体を巻き取った巻回型であってもよい。   The electrode body of the power storage element is not limited to a laminated type in which a plurality of positive and negative electrode plates are stacked, and may be a wound type in which a laminated body of a long electrode plate and a separator is wound up, for example.

当該蓄電素子において、ケース本体の壁部に形成した薄肉部の内面に集電部材を解して極板の端部を接続してもよい。   In the power storage device, the end of the electrode plate may be connected to the inner surface of the thin portion formed on the wall portion of the case body by disengaging the current collecting member.

上記実施形態では、蓋体を外部端子として構成した例を示したが、当該蓄電素子は、例えば、ケース外面に突出する外部端子を有してもよい。この場合、外部に突出する外部端子は、正極及び負極のどちらか一方の外部端子でもよいし、両方の外部端子でもよい。当該外部端子は、壁部を通じて、電極体と電気的に接続される。   In the said embodiment, although the example which comprised the cover body as an external terminal was shown, the said electrical storage element may have an external terminal which protrudes to a case outer surface, for example. In this case, the external terminal protruding to the outside may be either one of the positive terminal and the negative terminal, or both external terminals. The external terminal is electrically connected to the electrode body through the wall portion.

当該蓄電素子において、薄肉部及び板状部材の少なくとも一方は、極板と対向する表面に突起部を有してもよい。突起部は相対的に接触面積を小さくすることで電気抵抗を増大させるため、抵抗溶接を行う場合に発熱量が大きくなり、極板との溶接性を向上することができる。   In the power storage element, at least one of the thin portion and the plate-like member may have a protrusion on the surface facing the electrode plate. Since the protrusion increases the electrical resistance by relatively reducing the contact area, the amount of heat generated is increased when resistance welding is performed, and the weldability with the electrode plate can be improved.

本発明に係る蓄電素子は、当該蓄電素子を複数含む組電池を構成することができる。   The electric storage element according to the present invention can constitute an assembled battery including a plurality of the electric storage elements.

本発明の実施形態に係る蓄電素子は、ケースの一部分と極板とを溶接する蓄電素子に好適に利用可能である。   The electric storage element according to the embodiment of the present invention can be suitably used for an electric storage element that welds a part of a case and an electrode plate.

1,1a ケース
2 電極体
3,3a ケース本体
4 正極蓋体
5 負極蓋体
6 正極板
7 負極板
8 セパレータ
9 胴部
10,10a 壁部
11,11a 薄肉部
12,12a 板状部材
13 集電部材
DESCRIPTION OF SYMBOLS 1, 1a Case 2 Electrode body 3 and 3a Case main body 4 Positive electrode cover body 5 Negative electrode cover body 6 Positive electrode plate 7 Negative electrode plate 8 Separator part 9 10, 10a Wall part 11, 11a Thin part 12, 12a Plate-shaped member 13 Current collection Element

Claims (9)

導電性の壁部を含むケースと、
上記ケース内に収容され、極板を含む電極体と
を備え、
上記壁部が外面が凹状の薄肉部を有し、この薄肉部の内面に上記極板が溶接される蓄電素子。
A case including a conductive wall;
An electrode body housed in the case and including an electrode plate,
An electricity storage element in which the wall portion has a thin-walled portion with an outer surface recessed, and the electrode plate is welded to the inner surface of the thin-walled portion.
上記極板の端部が上記壁部と略平行に広がり且つ上記薄肉部の内面に面接触する請求項1に記載の蓄電素子。   The power storage element according to claim 1, wherein an end portion of the electrode plate extends substantially parallel to the wall portion and is in surface contact with an inner surface of the thin portion. 上記電極体が上記極板の端部が束ねられた束部を含み、
上記束部が上記薄肉部の内面に溶接されている
請求項1又は2に記載の蓄電素子。
The electrode body includes a bundle portion in which end portions of the electrode plates are bundled,
The electric storage element according to claim 1, wherein the bundle portion is welded to an inner surface of the thin portion.
上記薄肉部との間に上記極板を挟み込む板状部材をさらに備える請求項1、請求項2又は請求項3に記載の蓄電素子。   The electric storage element according to claim 1, further comprising a plate-like member that sandwiches the electrode plate between the thin portion. 上記板状部材の上記薄肉部に重なる部分の平均厚さが上記薄肉部の平均厚さ以上である請求項4に記載の蓄電素子。   The electric storage element according to claim 4, wherein an average thickness of a portion of the plate-like member overlapping the thin portion is equal to or greater than an average thickness of the thin portion. 上記ケースが上記壁部を含む蓋体と、この蓋体により開口が封止される筒状の本体とを有し、
上記板状部材が上記本体の端面と蓋体との間に挟持される請求項4又は請求項5に記載の蓄電素子。
The case includes a lid including the wall portion, and a cylindrical main body whose opening is sealed by the lid,
The electric storage element according to claim 4 or 5, wherein the plate-like member is sandwiched between an end face of the main body and a lid.
導電性の壁部を含むケースと、
上記ケース内に収容される電極体と、
上記電極体と上記壁部とを接続する集電部材と
を備え、
上記壁部が外面が凹状の薄肉部を有し、この薄肉部の内面に上記集電部材が溶接される蓄電素子。
A case including a conductive wall;
An electrode body housed in the case;
A current collecting member for connecting the electrode body and the wall,
An electricity storage element in which the wall portion has a thin-walled portion whose outer surface is concave and the current collecting member is welded to the inner surface of the thin-walled portion.
上記薄肉部が上記壁部の長手方向における端部付近に設けられている請求項1から請求項7のいずれか1項に記載の蓄電素子。   The power storage element according to any one of claims 1 to 7, wherein the thin portion is provided near an end portion in a longitudinal direction of the wall portion. 上記壁部が複数の上記薄肉部を含む請求項1から請求項8のいずれか1項に記載の蓄電素子。   The electricity storage device according to any one of claims 1 to 8, wherein the wall portion includes a plurality of the thin portions.
JP2016221281A 2016-11-14 2016-11-14 Power storage element Pending JP2018081749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016221281A JP2018081749A (en) 2016-11-14 2016-11-14 Power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221281A JP2018081749A (en) 2016-11-14 2016-11-14 Power storage element

Publications (1)

Publication Number Publication Date
JP2018081749A true JP2018081749A (en) 2018-05-24

Family

ID=62197147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221281A Pending JP2018081749A (en) 2016-11-14 2016-11-14 Power storage element

Country Status (1)

Country Link
JP (1) JP2018081749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047708A (en) * 2018-09-18 2020-03-26 太陽誘電株式会社 Electrochemical device, conjugant, method for manufacturing electrochemical device and method for manufacturing conjugant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047708A (en) * 2018-09-18 2020-03-26 太陽誘電株式会社 Electrochemical device, conjugant, method for manufacturing electrochemical device and method for manufacturing conjugant
JP7044676B2 (en) 2018-09-18 2022-03-30 太陽誘電株式会社 Electrochemical devices and methods for manufacturing electrochemical devices

Similar Documents

Publication Publication Date Title
TWI295119B (en) Lead line for non-aqueous electrolyte cell and non-aqueous electrolyte cell
EP2674999B1 (en) Secondary battery with enhanced contact resistance
JP6363893B2 (en) Secondary battery
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP7069612B2 (en) Manufacturing method of laminated electrode body, power storage element and laminated electrode body
CN109768211A (en) Secondary cell
JP2018055799A (en) Power storage element
JP2017143003A (en) Power storage device
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
JP2019071178A (en) Method of manufacturing power storage element
JP2016103412A (en) Square secondary battery
KR101787636B1 (en) Battery cell and device comprising thereof
JP2018081749A (en) Power storage element
JP2018056017A (en) Power storage element
JP2022024044A (en) Method for manufacturing laminate electrode body and method for manufacturing power storage element
CN113994502B (en) Energy storage element and method for manufacturing energy storage element
JP2019003891A (en) Power storage element, power storage device, and manufacturing method of power storage element
JP2018098154A (en) Power storage element, power storage device and method of manufacturing power storage element
JP2016143618A (en) Rectangular secondary battery
JP2008311011A (en) Nonaqueous electrolyte secondary battery
JP2019016493A (en) Electrode body sub-unit, electrode unit, multilayer electrode body and power storage element
US20230170461A1 (en) Nonaqueous electrolyte secondary battery
WO2018166882A1 (en) Bag-packed positive electrode plate, layered electrode assembly, energy storage device, and manufacturing method of bag-packed positive electrode plate
JP2018125223A (en) Power storage element
JP7194338B2 (en) secondary battery