JP2018078534A - Oscillator - Google Patents

Oscillator Download PDF

Info

Publication number
JP2018078534A
JP2018078534A JP2016227229A JP2016227229A JP2018078534A JP 2018078534 A JP2018078534 A JP 2018078534A JP 2016227229 A JP2016227229 A JP 2016227229A JP 2016227229 A JP2016227229 A JP 2016227229A JP 2018078534 A JP2018078534 A JP 2018078534A
Authority
JP
Japan
Prior art keywords
resonator
oscillation
harmonic
oscillator
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016227229A
Other languages
Japanese (ja)
Inventor
相川 正義
Masayoshi Aikawa
正義 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016227229A priority Critical patent/JP2018078534A/en
Publication of JP2018078534A publication Critical patent/JP2018078534A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stable high order harmonic wave oscillation circuit technique of high frequency band above milli-wave zone.SOLUTION: Target harmonic synchronization oscillation is realized when a resonator in harmonic resonance relation is coupled while sharing semiconductor oscillation devices (3, 6). More specifically, fundamental frequency (f0) oscillation is originated by a first resonator #1 of fundamental frequency (f0) band and the oscillation device, and a harmonic (mf0) is excited selectively and stably on a second resonator #2 coupling the device covalently. Since this oscillator is configured extremely simply, stable high order harmonic wave oscillation can be realized simply in high frequency band, compared with "a harmonic selection extract oscillation circuit" using harmonic orthogonality on a single resonator, that is an existing harmonic oscillation technology, or "a harmonic synchronization oscillation circuit" by electromagnetic coupling between harmonic resonance wave fields.SELECTED DRAWING: Figure 5

Description

本発明は、マイクロ波・ミリ波帯以上の高周波帯発振器を技術分野とし、特に超高周波帯発振が可能な高次高調波同期発振機能を具備する回路構成技術に関する。  The present invention relates to a technical field of a microwave / millimeter wave band or higher frequency band oscillator, and more particularly to a circuit configuration technology having a high-order harmonic synchronous oscillation function capable of super-high frequency band oscillation.

ミリ波、短ミリ波帯さらにはテラヘルツなどの高周波帯発振技術について、安定で簡易かつより高い周波数帯の発振技術が求められている。例えば、各種のワイヤレスセンサーやレーダー装置が多様に展開しており、無線通信に限らず、様々なニーズが顕在化しつつある。  There is a need for a stable, simple and higher frequency oscillation technique for high frequency band oscillation techniques such as millimeter wave, short millimeter wave band, and terahertz. For example, various wireless sensors and radar devices have been developed in various ways, and various needs are becoming apparent, not limited to wireless communication.

第8図(a)は、高調波発振器構成の基本概念図の一つであり、共振器波動場の電磁界分布の特徴を積極的に活用して高調波を選択抽出する。この基本概念に基づいて、同図(b)は、HEMTなどで構成する負性抵抗回路をリング共振器に実装して、リング共振器上の第4次高調波を選択抽出する発振器である(非特許文献1)。同図(c)もこの基本概念に基づいており、2分の1波長線路共振器の適切なポイントにHEMT等の負性抵抗回路を実装することにより、第2次高調波を抑制して第4次高調波を選択励起し抽出するPush−Push型発振器である(特許文献1)。これらは、単一共振器上の高調波電磁界分布の直交性を利用して目的次数の高調波を励起し選択抽出するという原理に基づいている。そのために、高次の高調波次数の選択性には限界があり、特にミリ波帯以上における実現は困難である。第8図(d)は、高調波(ハーモニック)共振関係にある共振器を電磁結合して高調波同期発振器を実現する他の基本概念図である。これは、電磁結合に基づく高調波同期であるために、安定した高次の同期発振は困難を伴う。  FIG. 8 (a) is one of the basic conceptual diagrams of the harmonic oscillator configuration, and the harmonics are selectively extracted by actively utilizing the characteristics of the electromagnetic field distribution of the resonator wave field. Based on this basic concept, FIG. 5B is an oscillator that selectively extracts the fourth harmonic on the ring resonator by mounting a negative resistance circuit composed of a HEMT or the like on the ring resonator. Non-patent document 1). FIG. 6C is also based on this basic concept. By mounting a negative resistance circuit such as HEMT at an appropriate point of the half-wavelength line resonator, the second harmonic is suppressed. This is a Push-Push type oscillator that selectively excites and extracts fourth-order harmonics (Patent Document 1). These are based on the principle of exciting and selectively extracting harmonics of the target order using the orthogonality of the harmonic electromagnetic field distribution on a single resonator. For this reason, there is a limit to the selectivity of higher harmonic orders, and in particular, it is difficult to realize above the millimeter wave band. FIG. 8 (d) is another basic conceptual diagram for realizing a harmonic synchronous oscillator by electromagnetically coupling resonators having a harmonic (harmonic) resonance relationship. Since this is harmonic synchronization based on electromagnetic coupling, stable high-order synchronous oscillation is difficult.

一方、本発明の実施例に関わるGunn diodeを用いた平面回路構造発振器の先行事例としては、例えば、非特許文献2に示されているように、4分の1波長共振器にGunn diode集積チップを表面実装したミリ波帯発振器がある(図8(e))。また、特許文献2ならびに非特許文献3には、同図(e)の接地用ビアホールを4分の1波長先端開放スタブに置換した回路も報告されている(図8(f))。いずれも、Gunn diodeの基本発振周波数帯で実現したミリ波帯平面回路構造発振器である。  On the other hand, as a prior example of the planar circuit structure oscillator using the Gunn diode according to the embodiment of the present invention, for example, as shown in Non-Patent Document 2, a Gunn diode integrated chip is mounted on a quarter-wave resonator. There is a millimeter wave band oscillator that is surface-mounted (FIG. 8E). Patent Document 2 and Non-Patent Document 3 also report a circuit in which the ground via hole shown in FIG. 5E is replaced with a quarter-wavelength open end stub (FIG. 8F). Both are millimeter wave band planar circuit structure oscillators realized in the fundamental oscillation frequency band of Gunn diode.

特開2007−194871号JP 2007-194471 A 特開2016−139983号Japanese Patent Laid-Open No. 2006-139983

Hai Xiao,et al.,“Basic Behavior of Quadruple−Push Oscillator Using Ring Resonator,”IEICE Trans.Electron.,vol.E88−C,No.7,pp.1502−1508,July 2005. N.Nakagawa,et al.,“77 GHz Planar Gunn VCOs on AlN Substrates Using Novel Flip−Chip InP Gunn Diodes,”2000 IEEE MTT−S Digest,pp.1205−1208,2000.

Figure 2018078534
Hai Xiao, et al. , “Basic Behavior of Quadruple-Push Oscillator Using Ring Resonator,” IEICE Trans. Electron. , Vol. E88-C, no. 7, pp. 1502-1508, July 2005. N. Nakagawa, et al. "77 GHz Planar Gunn VCOs on AlN Substrates Using Novell-Clip InP Gunn Diodes," 2000 IEEE MTT-S Digest, pp. 1205-1208, 2000.
Figure 2018078534

(従来技術の問題点)
高調波発振技術は、ミリ波帯以上の超高周波信号の発生にとって有効であるが、安定した発振の実現には課題が多い。例えば、図8(d)に示すような共振波動場の電磁結合による高調波同期型発振においては、安定した高次高調波発振の実現は一般に困難である。
(Problems of conventional technology)
Harmonic oscillation technology is effective for the generation of ultra-high frequency signals in the millimeter wave band and above, but there are many problems in realizing stable oscillation. For example, in harmonic synchronous oscillation by electromagnetic coupling of a resonant wave field as shown in FIG. 8D, it is generally difficult to realize stable high-order harmonic oscillation.

(発明の目的)
本発明は、Gunn diodeや共鳴トンネルダイオード、さらにはそれらを集積化した表面実装型チップ等と小型化に適した平面回路技術の複合効果によって、高次高調波発振をミリ波帯以上の高周波帯で簡易に実現する回路構成技術を提供することを目的とする。
(Object of invention)
The present invention enables high-order harmonics to be generated in a high frequency band above the millimeter wave band by the combined effect of Gunn diodes, resonant tunneling diodes, and surface-mounted chips that integrate them and planar circuit technology suitable for miniaturization. An object of the present invention is to provide a circuit configuration technique that can be easily realized by the above.

その目的のために、本発明では高調波(ハーモニック)共振関係にある共振器が半導体発振デバイスを共有して結合することによって、高調波同期発振を安定して励起する発振回路を提起している。図1に示すように、基本発振周波数帯において共振周波数f0を有する第一の共振器(以下、共振器#1とする)と発振デバイス3により安定した基本周波数発振を生起すると共に、高調波共振関係にある第二の共振器(以下、共振器#2とする)が発振デバイス3を共有して結合しているために、共振器#2の共振周波数(以下、mf0とする.)信号を選択的に共振励起する。即ち、共振器#2上に、共振器#1のf0波動場と高調波同期した第m次高調波であるmf0波動場を安定して励起する。  For this purpose, the present invention proposes an oscillation circuit that stably excites harmonic synchronous oscillation by a resonator having a harmonic (harmonic) resonance relationship sharing and coupling a semiconductor oscillation device. . As shown in FIG. 1, a stable fundamental frequency oscillation is generated by a first resonator (hereinafter referred to as resonator # 1) having a resonance frequency f0 in the fundamental oscillation frequency band and an oscillation device 3, and harmonic resonance is caused. Since the second resonator (hereinafter referred to as “resonator # 2”) having the relationship is coupled to the oscillation device 3 in common, the resonance frequency (hereinafter referred to as “mf0”) signal of the resonator # 2 is transmitted. Selectively resonant excitation. That is, the mf0 wave field, which is the mth harmonic that is harmonically synchronized with the f0 wave field of the resonator # 1, is stably excited on the resonator # 2.

図1の本発明の基本概念図に基づいた4種の発振器(以下、基本回路とする.)を、図2に示す。ここでは、図1の基本概念構成を2段構造に限定し、その共振器#1および共振器#2は、それぞれの共振周波数(f0、mf0)において4分の1波長の整数倍の線路共振器とする。また、半導体発振デバイス3としては、Gunn diodeを想定している。  FIG. 2 shows four types of oscillators (hereinafter referred to as basic circuits) based on the basic conceptual diagram of the present invention in FIG. Here, the basic conceptual configuration of FIG. 1 is limited to a two-stage structure, and the resonator # 1 and the resonator # 2 are line resonances of integral multiples of a quarter wavelength at the respective resonance frequencies (f0, mf0). Use a vessel. As the semiconductor oscillation device 3, Gunn diode is assumed.

図2(a)の回路1は、共振器#1の両端にそれぞれ共振器#2を接続すると共に、その接続部には発振デバイス3を並列接続する。第m次高調波mf0信号は、共振器#2の他端から抽出する。これをマイクロストリップライン平面回路で実現する場合の実施例を、図3に示す。  In the circuit 1 in FIG. 2A, the resonator # 2 is connected to both ends of the resonator # 1, and the oscillation device 3 is connected in parallel to the connection portion. The m-th harmonic mf0 signal is extracted from the other end of the resonator # 2. FIG. 3 shows an embodiment in which this is realized by a microstrip line planar circuit.

図2(b)の回路2は、共振器#2の両端にそれぞれ共振器#1を接続すると共に、その接続部に発振デバイス3を並列接続する。第m次高調波mf0信号あるいはその倍波である2mf0信号は、共振器#2の中点から抽出する。これをマイクロストリップライン平面回路で実現する場合の実施例を、図4に示す。  In the circuit 2 of FIG. 2B, the resonator # 1 is connected to both ends of the resonator # 2, and the oscillation device 3 is connected in parallel to the connection portion. The m-th harmonic mf0 signal or a 2mf0 signal that is a harmonic thereof is extracted from the midpoint of the resonator # 2. FIG. 4 shows an embodiment in which this is realized by a microstrip line planar circuit.

図2(c)の回路3は、共振器#1ならびに共振器#2をいずれも結合線路とし、それぞれの片端を接続すると共に、その接続部に発振デバイス3を並列接続する。第m次高調波mf0信号は、共振器#2の残る他端から抽出する。これをマイクロストリップライン平面回路で実現する場合の実施例を、図5に示す。  In the circuit 3 of FIG. 2C, both the resonator # 1 and the resonator # 2 are coupled lines, and one end of each is connected, and the oscillation device 3 is connected in parallel to the connection portion. The m-th harmonic mf0 signal is extracted from the remaining other end of the resonator # 2. FIG. 5 shows an embodiment in which this is realized by a microstrip line planar circuit.

図2(d)の回路4は、共振器#1と共振器#2のそれぞれをU字形状に曲げて両端を互いに接続し、各接続部に発振デバイス3をそれぞれ実装する。第m次高調波mf0信号あるいはその倍波である2mf0信号は、共振器#2の中点から出力する。これをマイクロストリップラインやスロットラインの平面回路で実現する場合の実施例を、図6に示す。  In the circuit 4 of FIG. 2D, each of the resonator # 1 and the resonator # 2 is bent into a U-shape and both ends are connected to each other, and the oscillation device 3 is mounted on each connection portion. The mth harmonic mf0 signal or a 2mf0 signal that is a harmonic of the mth harmonic mf0 signal is output from the midpoint of the resonator # 2. An embodiment in which this is realized by a planar circuit of a microstrip line or a slot line is shown in FIG.

図2に示す4種の基本回路において、基本発振周波数(f0)帯の共振器#1とその自然数(m)倍の共振周波数mf0を持つ共振器#2が発振デバイス3を共有結合していること、さらには極めて単純な回路構造であることが本発明の特徴である。その結果、図8(a)の従来の高調波発振技術である高調波選択抽出型発振回路や図8(d)の電磁結合による高調波同期型発振回路と比べて、高周波帯においてより安定した高次の高調波発振を簡易に実現することが出来る。図8(b)、(c)のように単一の共振器上の高調波電磁界分布の直交性を利用する従来の高調波発振技術と比較して、高次高調波の選択性、不要信号の抑圧、耐干渉性に優れ、さらに周波数安定化や低雑音化などの発振制御機能の実装にも適した構造である。  In the four basic circuits shown in FIG. 2, the resonator # 1 having the fundamental oscillation frequency (f 0) band and the resonator # 2 having the resonance frequency mf 0 times its natural number (m) are covalently coupled to the oscillation device 3. Furthermore, it is a feature of the present invention that the circuit structure is very simple. As a result, it is more stable in the high frequency band than the harmonic selective extraction type oscillation circuit which is the conventional harmonic oscillation technique of FIG. 8A and the harmonic synchronization type oscillation circuit by electromagnetic coupling of FIG. 8D. High-order harmonic oscillation can be realized easily. As shown in FIGS. 8B and 8C, high-order harmonic selectivity is unnecessary as compared with the conventional harmonic oscillation technology that uses the orthogonality of the harmonic electromagnetic field distribution on a single resonator. It has excellent signal suppression and interference resistance, and is also suitable for mounting oscillation control functions such as frequency stabilization and noise reduction.

以上の特徴より、本発明は以下のような効用、展開可能性がある。
(1)ミリ波から短ミリ波帯、さらにはサブテラヘルツ帯において、安定かつ良好な特性 の高次高調波発振が実現出来る。
(2)半導体発振デバイスとその集積化、そのチップ実装技術および平面回路技術による 高精度な製造が可能であり、高周波数帯の実現に適している。
(3)周波数可変制御、注入同期や位相同期等の安定化や低雑音化処理さらには周波数変 調等が、基本周波数(f0)帯で容易に実装出来る。
(4)隣接発振器間の相互同期にも適した構造であり、発振アレー等の2次元展開も可能 である。
(5)より高い周波数帯の新たな開拓にも寄与すると共に、ミリ波からテラヘルツに至る 様々な計測やセンシングなど、様々なワイヤレス応用技術への展開が期待される。
From the above features, the present invention has the following effects and possibilities.
(1) High-order harmonic oscillation with stable and good characteristics can be realized in the millimeter wave to short millimeter wave band and further to the sub-terahertz band.
(2) The semiconductor oscillation device and its integration, its chip mounting technology and planar circuit technology can be manufactured with high precision, and is suitable for realizing a high frequency band.
(3) Frequency variable control, stabilization of injection locking and phase locking, noise reduction processing, and frequency modulation can be easily implemented in the fundamental frequency (f0) band.
(4) The structure is suitable for mutual synchronization between adjacent oscillators, and two-dimensional development such as an oscillation array is possible.
(5) In addition to contributing to the new development of higher frequency bands, it is expected to develop various wireless application technologies such as various measurements and sensing from millimeter waves to terahertz.

高次高調波発振器の構成に関する基本概念である。This is a basic concept regarding the configuration of a high-order harmonic oscillator. その基本概念に基づき、線路共振器2段(#1、#2)と発振デバイス3で構成する高調波発振器の4種の基本回路である。(請求項1、2)Based on the basic concept, there are four basic circuits of a harmonic oscillator composed of two stages of line resonators (# 1, # 2) and the oscillation device 3. (Claims 1 and 2) 図2の回路1の基本回路に基づく第1の実施例である。(請求項1、2、3、7)3 is a first embodiment based on the basic circuit of the circuit 1 of FIG. (Claims 1, 2, 3, 7) 図2の回路2の基本回路に基づく第2の実施例である。このなかで(c)は磁界結合を用いたスロットライン出力回路によって、共振器#2の共振周波数の倍波である2mf0信号を選択抽出する。(請求項1、2、4、7、9)3 is a second embodiment based on the basic circuit of the circuit 2 of FIG. Among them, (c) selectively extracts a 2mf0 signal that is a harmonic of the resonance frequency of the resonator # 2 by a slot line output circuit using magnetic field coupling. (Claims 1, 2, 4, 7, 9) 図2の回路3の基本回路に基づく第3の実施例である。(請求項1、2、5、7)3 is a third embodiment based on the basic circuit of the circuit 3 of FIG. (Claims 1, 2, 5, and 7) 図2の回路4の基本回路に基づく第4の実施例である。このなかで(c)は、磁界結合を用いたスロットライン出力回路によって、共振器#2の共振周波数mf0の倍波である2mf0信号を選択抽出する。(d)は、共振器#1、共振器#2にスロットライン共振器を用いた実施例である。(請求項1、2、6、7、9)4 is a fourth embodiment based on the basic circuit of the circuit 4 of FIG. In (c), a 2mf0 signal that is a harmonic wave of the resonance frequency mf0 of the resonator # 2 is selectively extracted by a slot line output circuit using magnetic field coupling. (D) is an embodiment in which slot line resonators are used for the resonators # 1 and # 2. (Claims 1, 2, 6, 7, 9) 本発明の第5の実施例である。(a)は、共振器#1の電気長をI波長と設定し、(b)は、2分の1波長共振器10を電磁結合することによって接続部で逆位相波動場を形成し、Push−Push発振を実現する。(請求項1、2、7、8)It is a 5th example of the present invention. (A) sets the electrical length of the resonator # 1 to be the I wavelength, and (b) forms an antiphase wave field at the connection portion by electromagnetically coupling the half-wave resonator 10, and Push -Realize Push oscillation. (Claims 1, 2, 7, 8) 先行技術の説明図である。(a)は、高調波選択型発振回路の基本概念図、(b)は、その基本概念に基づいたリング共振器と負性抵抗回路を用いた第4次高調波発振器、(c)は同じ基本概念に基づいて、2分の1波長線路共振器と負性抵抗回路で構成した第4次高調波発振器である。(d)は共振器の電磁結合による高調波器同期発振器の基本概念図である。(e)、(f)は、Gunn diode集積チップを表面実装したミリ波帯基本周波数発振器の実施例である。It is explanatory drawing of a prior art. (A) is a basic conceptual diagram of a harmonic selection type oscillation circuit, (b) is a fourth harmonic oscillator using a ring resonator and a negative resistance circuit based on the basic concept, and (c) is the same. Based on the basic concept, it is a fourth harmonic oscillator composed of a half-wavelength line resonator and a negative resistance circuit. (D) is a basic conceptual diagram of a harmonic synchronous oscillator by electromagnetic coupling of a resonator. (E), (f) is an embodiment of a millimeter wave band fundamental frequency oscillator in which a Gunn diode integrated chip is surface-mounted.

以下、本発明の実施形態を、図3〜図7を用いて説明する。いずれも図2に示す4種の基本回路に基づいた実施例である。共振器は主にマイクロストリップラインあるいはスロットラインで形成し、発振デバイスはGunn diodeを用いる場合である。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. Each of the embodiments is an embodiment based on the four basic circuits shown in FIG. The resonator is mainly formed of a microstrip line or a slot line, and the oscillation device is a Gunn diode.

図3は、図2(a)の回路1の基本回路に基づく第1の実施例である。いずれも#1共振器をU字形状に曲げ、共振器#2上の第m次高調波であるmf0信号を電磁結合で電力合成すると共に、表面実装型Gunn diode集積チップ6を実装するために適した回路形状でもある。(a)では、2個のGunn diode個別素子3のアノード端子をビアホール4で接地し、カソード端子を共振器#1と共振器#2の接続部に並列実装する。共振器#1とビアホール接地によって基本周波数f0の発振を生起すると同時に、発振デバイス3を共有する共振器#2によって第m次高調波mf0を選択励起して電磁結合でポート5へ出力する。(b)、(c)の回路も基本原理は同じであるが、前者は集積チップ6を表面実装する場合の構成であり、後者はさらにビアホール接地を除去するために共振器#1、#2それぞれの共振周波数において先端開放4分の1波長スタブ7、8を形成している。(請求項1、2、3、7)  FIG. 3 shows a first embodiment based on the basic circuit of the circuit 1 of FIG. In both cases, the # 1 resonator is bent into a U-shape, and the mf0 signal, which is the mth harmonic on the resonator # 2, is combined by electromagnetic coupling and the surface mount type Gunn diode integrated chip 6 is mounted. It is also a suitable circuit shape. In (a), the anode terminals of the two Gunn diode individual elements 3 are grounded via the via holes 4, and the cathode terminals are mounted in parallel at the connection between the resonator # 1 and the resonator # 2. Oscillation of the fundamental frequency f0 is generated by the resonator # 1 and via-hole grounding, and at the same time, the mth-order harmonic mf0 is selectively excited by the resonator # 2 sharing the oscillation device 3 and output to the port 5 by electromagnetic coupling. The basic principles of the circuits (b) and (c) are the same, but the former is a configuration in the case where the integrated chip 6 is surface-mounted, and the latter further uses the resonators # 1 and # 2 in order to eliminate via-hole grounding. The open end quarter-wave stubs 7 and 8 are formed at the respective resonance frequencies. (Claims 1, 2, 3, 7)

図4は、図2(b)の回路2の基本回路に基づく第2の実施例である。この実施例ではいずれも共振器#2をU字形とし、共振器#2上の第m次高調波であるmf0信号をその中点から電磁結合で抽出すると共に、Gunn diode集積チップ6を実装するために適した回路形状である。(a)では、2個のGunn diode個別素子3のアノード端子をビアホール4で接地し、残るカソード端子を共振器#1と#2の接続部に並列実装する。この構造によって、基本周波数f0の発振を生起すると同時に、共振器#2によって第m次高調波mf0を選択励起する。(b)、(c)の回路も基本原理は同じであり、いずれも集積チップ6を表面実装する場合の構成である。(c)では、共振器#2の中点と基板裏面に形成したスロットライン9を磁界結合することによって、共振器#2の共振周波数mf0の倍波である2mf0信号を選択抽出する。この磁界結合出力によって、原理的には基本周波数信号f0およびmf0信号を完全に抑圧することが出来る。(請求項1、2、4、7、9)  FIG. 4 shows a second embodiment based on the basic circuit of the circuit 2 in FIG. In this embodiment, the resonator # 2 is U-shaped, and the mf0 signal, which is the mth harmonic on the resonator # 2, is extracted from the midpoint by electromagnetic coupling, and the Gunn diode integrated chip 6 is mounted. Therefore, the circuit shape is suitable. In (a), the anode terminals of the two Gunn diode individual elements 3 are grounded via the via holes 4, and the remaining cathode terminals are mounted in parallel on the connecting portions of the resonators # 1 and # 2. With this structure, oscillation of the fundamental frequency f0 occurs, and at the same time, the m-th harmonic mf0 is selectively excited by the resonator # 2. The basic principles of the circuits (b) and (c) are the same, and both have the configuration in which the integrated chip 6 is surface-mounted. In (c), the 2mf0 signal, which is a harmonic of the resonance frequency mf0 of the resonator # 2, is selectively extracted by magnetically coupling the midpoint of the resonator # 2 and the slot line 9 formed on the back surface of the substrate. In principle, the fundamental frequency signals f0 and mf0 can be completely suppressed by the magnetic field coupling output. (Claims 1, 2, 4, 7, 9)

図5は、図2(c)の回路3の基本回路に基づく第3の実施例である。共振器#1、共振器#2はいずれも結合線路であり、共振器#2上の第m次高調波であるmf0信号を電力合成すると共に、表面実装型Gunn diode集積チップ6を実装するために適した回路構成である。(a)では、2個のGunn diode個別素子3のアノード端子をビアホール4で接地し、残るカソード端子を共振器#1と#2の接続部に並列実装する。この構造によって、基本周波数f0の発振を生起すると共に、共振器#2によって第m次高調波のmf0信号を選択励起してポート5へ出力する。(b)、(c)の回路も基本原理は同じであるが、前者は集積チップ6を表面実装すると共に、ビアホール4を除去するために先端開放4分の1波長スタブ7、8を用いた回路構成であり、後者では共振器#1、共振器#2を単一線路に簡略化した回路である。(b)および(c)の回路は、ビアホール接地の(a)と比較して高調波信号の次数選択性向上が期待出来る。(請求項1、2、5、7)  FIG. 5 shows a third embodiment based on the basic circuit of the circuit 3 of FIG. Resonator # 1 and resonator # 2 are both coupled lines to synthesize power from the mf0 signal, which is the m-th harmonic on resonator # 2, and to mount surface mounted Gunn diode integrated chip 6 The circuit configuration is suitable for. In (a), the anode terminals of the two Gunn diode individual elements 3 are grounded via the via holes 4, and the remaining cathode terminals are mounted in parallel on the connecting portions of the resonators # 1 and # 2. With this structure, oscillation of the fundamental frequency f0 occurs, and the mf0 signal of the mth harmonic is selectively excited by the resonator # 2 and output to the port 5. The basic principles of the circuits of (b) and (c) are the same, but the former used the integrated chip 6 to be surface-mounted and used the open-end quarter-wave stubs 7 and 8 to remove the via holes 4. The latter is a circuit in which the resonator # 1 and the resonator # 2 are simplified to a single line. The circuits of (b) and (c) can be expected to improve the order selectivity of the harmonic signal as compared with (a) of via-hole grounding. (Claims 1, 2, 5, and 7)

図6は、図2(d)の回路4の基本回路に基づく第4の実施例である。共振器#1、共振器#2はいずれもU字形状の線路共振器であり、共振器#2上の第m次高調波であるmf0信号を電磁結合でポート5へ出力すると共に、表面実装型集積チップを実装するために適した回路形状である。(a)では、2個のGunn diode個別素子3のアノード端子をビアホール接地し、残るカソード端子を共振器#1と#2の接続部に並列実装する。この構造によって、基本周波数f0の発振を生起すると同時に、第m次高調波であるmf0信号を選択励起してポート5へ出力する。(b)〜(d)の回路は、いずれも基本原理は同じである。(b)、(c)は集積チップ6を表面実装するために適したビアホール接地配置である。(c)では、基板裏面のスロットライン9と共振器2の磁界結合によって、倍波である2mf0信号を出力することが出来る。(d)はスロットラインで形成した共振器#1、共振器#2の接続部に発振デバイス3を並列実装した回路である。(請求項1、2、6、7、9)  FIG. 6 shows a fourth embodiment based on the basic circuit of the circuit 4 in FIG. Resonator # 1 and resonator # 2 are both U-shaped line resonators that output the mf0 signal, which is the m-th harmonic on resonator # 2, to port 5 by electromagnetic coupling and are surface mounted. The circuit shape is suitable for mounting a type integrated chip. In (a), the anode terminals of the two Gunn diode individual elements 3 are grounded via holes, and the remaining cathode terminals are mounted in parallel at the connecting portions of the resonators # 1 and # 2. With this structure, oscillation of the fundamental frequency f0 occurs, and at the same time, the mf0 signal that is the mth harmonic is selectively excited and output to the port 5. The basic principles of the circuits (b) to (d) are the same. (B) and (c) are via hole grounding arrangements suitable for surface mounting the integrated chip 6. In (c), a 2mf0 signal, which is a double wave, can be output by magnetic field coupling between the slot line 9 on the back surface of the substrate and the resonator 2. (D) is a circuit in which the oscillation device 3 is mounted in parallel at the connection portion of the resonators # 1 and # 2 formed by slot lines. (Claims 1, 2, 6, 7, 9)

図7は、Push−Push発振型の実施例5である。回路1の基本回路に基づく実施例1の回路(図3の(a)、(c))を変形して、共振器#1と共振器#2の接続点で逆位相となる基本周波数帯波動場を共振器#1上に形成する。図7(a)では、共振器#1の電気長を1波長と設定し、同図(b)では共振器#1と2分の1波長共振器10を電磁結合することによって、逆位相波動場を形成する。その結果、原理的には基本周波数成分や奇数次高調波成分の出力を完全に抑圧することが出来る。なお、このPush−Push動作の場合、原理的に高調波次数mは偶数であることが必要である。(請求項1、2、7、8)  FIG. 7 shows a fifth embodiment of the push-push oscillation type. A circuit of the first embodiment based on the basic circuit of the circuit 1 (FIGS. 3A and 3C) is modified to generate a fundamental frequency band wave having an opposite phase at the connection point between the resonator # 1 and the resonator # 2. A field is formed on resonator # 1. In FIG. 7A, the electrical length of the resonator # 1 is set to one wavelength, and in FIG. 7B, the resonator # 1 and the half-wave resonator 10 are electromagnetically coupled to each other, thereby causing an anti-phase wave. Create a field. As a result, in principle, the output of fundamental frequency components and odd-order harmonic components can be completely suppressed. In the case of this Push-Push operation, in principle, the harmonic order m needs to be an even number. (Claims 1, 2, 7, 8)

以上、共振器#1、#2の2段構成のGunn diode高調波発振器で5つの実施例を説明したが、3段以上の構成や他の高周波デバイスを用いる高次発振器への拡大も容易である。また、周波数可変制御や位相同期等の低雑音化や安定化機能の実装にも適した単純な回路構造であり、さらには発振器間の相互同期による多素子アレー発振なども可能である  In the above, five embodiments of the two-stage Gunn diode harmonic oscillators of the resonators # 1 and # 2 have been described. However, it is easy to expand to a higher-order oscillator using three or more stages and other high-frequency devices. is there. In addition, it has a simple circuit structure suitable for low-noise control such as frequency variable control and phase synchronization and implementation of stabilization functions, and multi-element array oscillation is also possible by mutual synchronization between oscillators.

ミリ波から短ミリ波、そしてサブテラヘルツからテラヘルツに至る高周波数帯の簡易な信号発生技術として、計測やセンシングなど様々なニーズや新たな応用を喚起することが期待される。特に、Gunn diodeや共鳴トンネルダイオードなどを発振デバイスとした平面回路構造の発振系は容易かつ低コストで実現出来る上に、平面アンテナなどのRF機能を一体集積化することによって多様なニーズの送信・受信モジュール開拓に向けた技術展開も期待出来る。  As a simple signal generation technology in the high frequency band from millimeter waves to short millimeter waves and from sub-terahertz to terahertz, it is expected to stimulate various needs and new applications such as measurement and sensing. In particular, an oscillation system with a planar circuit structure using Gunn diodes, resonant tunneling diodes, etc. as an oscillation device can be realized easily and at low cost, and by integrating RF functions such as a planar antenna, transmission / reception of various needs can be achieved. Technology development for the development of receiver modules can also be expected.

#1 基本発振周波数f0の共振器(共振器#1)
#2 第m次高調波周波数mf0の共振器(共振器#2)、m:自然数
3 発振デバイス、Gunn diodeや共鳴トンネルダイオード等の発振素子
4 接地用ビアホール
5 マイクロストリップライン発振出力ポート
6 発振デバイス集積チップ、表面実装型集積チップ
7 基本発振周波数f0における4分の1波長先端開放スタブ
8 第m次高調波周波数mf0における4分の1波長先端開放スタブ
9 スロットライン発振出力ポート
10 Push−Push動作のための2分の1波長共振器
λ 1波長 λ( ):( )内の周波数における1波長を意味する。
# 1 Resonator with fundamental oscillation frequency f0 (Resonator # 1)
# 2 Resonator with mth harmonic frequency mf0 (resonator # 2), m: natural number 3 oscillation device, oscillation element such as Gunn diode or resonant tunnel diode 4 ground via hole 5 microstrip line oscillation output port 6 oscillation device Integrated chip, surface-mount type integrated chip 7 1/4 wavelength tip open stub 8 at fundamental oscillation frequency f0 Quarter wave tip open stub 9 at mth harmonic frequency mf0 Slot line oscillation output port 10 Push-Push operation A half-wave resonator for λ 1 wavelength λ (): means one wavelength at a frequency in ().

Claims (9)

共振周波数が基本発振周波数帯にある第一の共振器と、共振周波数が前記基本発振周波数の整数倍の高調波(ハーモニック)共振関係にある第二の共振器が、半導体発振デバイスを共有して結合していることを特徴とする発振器。  A first resonator having a resonance frequency in the fundamental oscillation frequency band and a second resonator having a harmonic resonance relationship whose resonance frequency is an integral multiple of the fundamental oscillation frequency share a semiconductor oscillation device. An oscillator characterized by being coupled. 前記第一の共振器および第二の共振器は長さがそれぞれの共振周波数において4分の1波長の整数倍である線路共振器であり、また前記半導体発振デバイスは2端子負性抵抗素子あるいはその集積チップであり、前記半導体発振デバイスを前記共振器の接続部に実装し、発振信号は前記第二の共振器より電磁結合で出力することを特徴とした発振器。  The first resonator and the second resonator are line resonators whose length is an integral multiple of a quarter wavelength at each resonance frequency, and the semiconductor oscillation device is a two-terminal negative resistance element or An oscillator comprising the integrated chip, wherein the semiconductor oscillation device is mounted on a connection portion of the resonator, and an oscillation signal is output from the second resonator by electromagnetic coupling. 請求項1、2において、前記第一の共振器をU字形状に曲げ、その両端にそれぞれ第二の共振器を接続すると共に、その接続部に前記半導体発振デバイスを実装し、発振出力は前記第二の共振器の残る他端から電磁結合で取り出すことを特徴とする発振器。  In Claim 1, 2, the first resonator is bent in a U-shape, the second resonator is connected to both ends thereof, and the semiconductor oscillation device is mounted at the connection portion, the oscillation output is the An oscillator characterized by being extracted by electromagnetic coupling from the remaining other end of the second resonator. 請求項1、2において、前記第二の共振器をU字形状に曲げ、その両端にそれぞれ第一の共振器を接続すると共に、その接続部に前記半導体発振デバイスを実装し、発振出力は前記第二の共振器より電磁結合で取り出すことを特徴とする発振器。  In Claims 1 and 2, the second resonator is bent into a U shape, and the first resonator is connected to both ends of the second resonator, and the semiconductor oscillation device is mounted at the connection portion, and the oscillation output is the An oscillator characterized by being extracted by electromagnetic coupling from a second resonator. 請求項1、2において、前記第一の共振器ならびに第二の共振器は結合線路共振器とし、それぞれの片端を接続すると共に、その接続部に前記半導体発振デバイスを実装し、発振出力は前記第二の共振器の残る他端から電磁結合で取り出すことを特徴とする発振器。  In Claim 1, 2, The first resonator and the second resonator are coupled line resonators, each one end is connected, the semiconductor oscillation device is mounted on the connection portion, the oscillation output is the An oscillator characterized by being extracted by electromagnetic coupling from the remaining other end of the second resonator. 請求項1、2において、前記第一の共振器ならびに第二の共振器をU字形に曲げ、それらの両端を互いに接続すると共に、その接続部に前記半導体発振デバイスを実装し、発振出力は前記第二の共振器から電磁結合で取り出すことを特徴とする発振器。  In Claim 1, 2, the first resonator and the second resonator are bent in a U-shape, both ends thereof are connected to each other, the semiconductor oscillation device is mounted at the connection portion, the oscillation output is the An oscillator characterized by being extracted from the second resonator by electromagnetic coupling. 請求項3〜6において、前記半導体発振デバイスは、Gunn diodeや共鳴トンネルダイオード(RTD)あるいはそれらの集積チップであり、それらを前記接続部においてはビアホール接地を用いて実装するか、あるいはビアホールの代わりに前記第一の共振器ならびに第二の共振器の共振周波数帯においてそれぞれ4分の1波長の先端開放スタブで高周波接地して実装したことを特徴とする発振器。  7. The semiconductor oscillation device according to claim 3, wherein the semiconductor oscillation device is a Gunn diode, a resonant tunneling diode (RTD), or an integrated chip thereof, and is mounted using via-hole grounding in the connection portion or instead of the via-hole. And an oscillator characterized by being mounted with high-frequency grounding with a quarter-wavelength open-end stub in the resonance frequency bands of the first resonator and the second resonator, respectively. 請求項3〜7において、前記接続部における基本周波数信号が互いに逆位相となる共振波動場を第一の共振器上に形成することを特徴とする発振器。  8. The oscillator according to claim 3, wherein a resonance wave field in which the fundamental frequency signals in the connection portions are in opposite phases is formed on the first resonator. 請求項4および6において、前記第二の共振器の中点と磁界結合して、第二の共振器の共振周波数の偶数倍である周波数信号を取り出すことを特徴とした発振器。  7. The oscillator according to claim 4, wherein a frequency signal that is an even multiple of a resonance frequency of the second resonator is extracted by magnetic field coupling with a midpoint of the second resonator.
JP2016227229A 2016-11-07 2016-11-07 Oscillator Pending JP2018078534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016227229A JP2018078534A (en) 2016-11-07 2016-11-07 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016227229A JP2018078534A (en) 2016-11-07 2016-11-07 Oscillator

Publications (1)

Publication Number Publication Date
JP2018078534A true JP2018078534A (en) 2018-05-17

Family

ID=62149446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227229A Pending JP2018078534A (en) 2016-11-07 2016-11-07 Oscillator

Country Status (1)

Country Link
JP (1) JP2018078534A (en)

Similar Documents

Publication Publication Date Title
JP4772255B2 (en) High frequency oscillator using slot line
Ang et al. Balanced monolithic oscillators at K-and Ka-band
JP4588947B2 (en) Coplanar line type high frequency oscillator
JPH07221546A (en) Injection synchronization oscillator
JP2018078534A (en) Oscillator
US8031016B2 (en) Multiplying oscillator and wireless apparatus in which the same is installed
Nimehvari Varcheh et al. Low phase‐noise X‐band oscillator based on elliptic filter and branchline coupler
Liu et al. SIW-based low phase-noise millimeter-wave planar dual-port voltage-controlled oscillator
US6771137B2 (en) High-frequency oscillator
JP2003087052A (en) Frequency synthesizer
JP2018121315A (en) Oscillator
US20050184818A1 (en) High frequency oscillator using dielectric resonator
JP2006094333A (en) Two-frequency oscillator and radar system
Liu et al. A self-oscillating active filtering antenna with second and third harmonic suppressions
JP6548939B2 (en) Oscillator circuit
JP6534280B2 (en) Oscillator and oscillator array
JP4553288B2 (en) Multi-element oscillator using high-order mode planar resonator
Nogi et al. Active integrated antenna techniques for beam control
Kawasaki et al. An Octa-Push Oscillator at $ V $-Band
Tsvelykh Quasi-planar K-band push-push low phase noise oscillator stabilized by cavity resonator
KR100377786B1 (en) A New Phase Locked Voltage Controlled Oscillator (PLVCO)
RU157160U1 (en) ULTRA-BAND ANTENNA WITH BAR LINE
Liu et al. SIW-Based W-Band Low Phase-Noise Injection-Locked Harmonic Oscillator
JP3220896B2 (en) Injection locked oscillator
JP2009077326A (en) Microstrip line resonator and microwave oscillator