JP2018078323A - Substrate processing apparatus - Google Patents

Substrate processing apparatus Download PDF

Info

Publication number
JP2018078323A
JP2018078323A JP2017253254A JP2017253254A JP2018078323A JP 2018078323 A JP2018078323 A JP 2018078323A JP 2017253254 A JP2017253254 A JP 2017253254A JP 2017253254 A JP2017253254 A JP 2017253254A JP 2018078323 A JP2018078323 A JP 2018078323A
Authority
JP
Japan
Prior art keywords
gas supply
gas
area
reaction tube
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017253254A
Other languages
Japanese (ja)
Inventor
吉田 秀成
Hidenari Yoshida
秀成 吉田
小竹 繁
Shigeru Kotake
繁 小竹
谷山 智志
Tomoshi Taniyama
智志 谷山
高行 中田
Takayuki Nakada
高行 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2017253254A priority Critical patent/JP2018078323A/en
Publication of JP2018078323A publication Critical patent/JP2018078323A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a substrate processing apparatus capable of improving film thickness uniformity while improving productivity.SOLUTION: A substrate processing apparatus has a boat 217 for holding multiple wafers 200, a reaction tube for containing the boat and processing the wafer, a processing gas supply system for supplying the processing gas into the reaction tube, and an exhaust system for exhausting the atmosphere in the reaction tube. The reaction tube includes a cylindrical section having a closed part at te upper end, and an opening at the lower end, a gas supply area 222 formed on the outside of one sidewall of the cylindrical section, and connected with the processing gas supply system, and a gas exhaust area 224 formed on the outside of the other sidewall of the cylindrical section facing the gas supply area, and connected with the exhaust system. The gas supply area and the gas exhaust area include an inside wall for sectioning the internal space into multiple spaces.SELECTED DRAWING: Figure 1

Description

本発明は、基板処理装置、半導体装置の製造方法および反応管に関する。   The present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a reaction tube.

基板処理装置の一例として、半導体製造装置があり、さらに半導体製造装置の一例として、縦型装置があることが知られている。この種の基板処理装置として、反応管内に、基板(ウエハ)を多段に保持する基板保持部材としてのボートを有し、この複数の基板を保持した状態で反応管内の処理室にて基板を処理するものがあることが知られている。   It is known that there is a semiconductor manufacturing apparatus as an example of the substrate processing apparatus, and there is a vertical apparatus as an example of the semiconductor manufacturing apparatus. This type of substrate processing apparatus has a boat as a substrate holding member that holds substrates (wafers) in multiple stages in a reaction tube, and processes the substrate in a processing chamber in the reaction tube while holding the plurality of substrates. It is known that there is something to do.

特許文献1は、バッチ処理される複数枚のウエハ200がボート217に対し多段に保持され、反応管203内に挿入された状態において、2種類以上の原料ガスを同時に反応管203内のウエハ200に対して供給し、ウエハ200上に膜を形成する構成を開示する。   In Patent Document 1, in a state where a plurality of wafers 200 to be batch-processed are held in multiple stages with respect to a boat 217 and inserted into the reaction tube 203, two or more kinds of source gases are simultaneously supplied to the wafers 200 in the reaction tube 203. A configuration in which a film is formed on the wafer 200 is disclosed.

特開2011−52319号公報JP 2011-52319 A

しかしながら、上述した特許文献1に記載の構成ではウエハとウエハとの間に十分な量の原料ガスを供給できないため膜厚均一性が悪く、また、原料ガスの置換効率が悪いため処理時間を長く要し、生産性が悪化するという問題があった。   However, in the configuration described in Patent Document 1 described above, since a sufficient amount of source gas cannot be supplied between the wafers, the film thickness uniformity is poor, and the source gas replacement efficiency is poor, so that the processing time is lengthened. In short, there was a problem that productivity deteriorated.

本発明の目的は、膜厚均一性を改善するとともに生産性を向上させることが可能な技術を提供することにある。   The objective of this invention is providing the technique which can improve productivity while improving a film thickness uniformity.

本発明の一態様によれば、複数枚の基板を保持する基板保持部材と、前記基板保持部材を収容し、前記基板を処理する反応管と、前記反応管内に処理ガスを供給する処理ガス供給系と、前記反応管内の雰囲気を排気する排気系と、を有し、前記反応管は、上端に閉塞部を有し、下端に開口部を有する円筒部と、前記円筒部の一側壁の外側に形成され、前記処理ガス供給系が接続されたガス供給エリアと、前記ガス供給エリアと対向する前記円筒部の他側壁の外側に形成され、前記排気系が接続されたガス排気エリアと、を備え、前記ガス供給エリアおよび前記ガス排気エリアは、その内部の空間を複数の空間に区画する内壁を備えるよう構成された半導体製造装置が提供される。   According to one aspect of the present invention, a substrate holding member that holds a plurality of substrates, a reaction tube that houses the substrate holding member and processes the substrate, and a processing gas supply that supplies a processing gas into the reaction tube An exhaust system for exhausting the atmosphere in the reaction tube, and the reaction tube has a cylindrical portion having a closed portion at an upper end and an opening portion at a lower end, and an outer side of one side wall of the cylindrical portion. A gas supply area to which the processing gas supply system is connected, and a gas exhaust area to which the exhaust system is connected and formed outside the other side wall of the cylindrical portion facing the gas supply area. The semiconductor manufacturing apparatus is provided, wherein the gas supply area and the gas exhaust area include an inner wall that divides an internal space into a plurality of spaces.

本発明によれば、膜厚均一性を改善するとともに生産性を向上させることが可能な技術を提供することができる。   According to the present invention, it is possible to provide a technique capable of improving the film thickness uniformity and improving the productivity.

本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分の縦断面図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus used suitably by embodiment of this invention, and is a longitudinal cross-sectional view of a processing furnace part. 本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の一部の概略構成図であり、反応管の横断面図である。It is a schematic block diagram of a part of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a cross-sectional view of a reaction tube. 本発明の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図である。It is a schematic block diagram of the controller of the substrate processing apparatus used suitably by embodiment of this invention, and is a block diagram of the control system of a controller. 本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の一部の概略構成図であり、反応管部分の縦断面図である。It is a schematic block diagram of a part of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a vertical sectional view of a reaction tube portion. 本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の一部の概略構成図であり、反応管の上部を拡大した拡大図である。It is a schematic block diagram of a part of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is an enlarged view in which an upper part of a reaction tube is enlarged. 本発明の第2の実施形態で好適に用いられる反応管の横断面図である。It is a cross-sectional view of the reaction tube used suitably by the 2nd Embodiment of this invention. 本発明の第2の実施形態で好適に用いられる反応管の縦断面図である。It is a longitudinal cross-sectional view of the reaction tube used suitably by the 2nd Embodiment of this invention. 従来例における処理ガスの流れを表す概略図である。It is the schematic showing the flow of the process gas in a prior art example. 本発明における処理ガスの流れを表す概略図である。It is the schematic showing the flow of the process gas in this invention.

以下、本発明の第1の実施形態について、図1を用いて説明する。本発明における基板処理装置は、半導体装置の製造に使用される半導体製造装置の一例として構成されているものである。   Hereinafter, a first embodiment of the present invention will be described with reference to FIG. The substrate processing apparatus in the present invention is configured as an example of a semiconductor manufacturing apparatus used for manufacturing a semiconductor device.

図1に示すように、処理炉202は加熱手段(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、処理ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。   As shown in FIG. 1, the processing furnace 202 has a heater 207 as a heating means (heating mechanism). The heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate. The heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) the processing gas with heat.

ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成する単管構造の反応管203が配設されている。反応管203は、例えば石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料から形成されている。反応管203は、下端部が開放され、上端部が平坦状の壁体で閉塞された有天井の形状で形成され、いる。反応管203の側壁は、円筒形状に形成された円筒部209と、円筒部209の外壁に設けられたガス供給エリア222とガス排気エリア224とを備えている。反応管203の円筒部209の内部には、処理室201が形成されている。処理室201は、基板としてのウエハ200を処理可能に構成されている。また、処理室201は、ウエハ200を水平姿勢で垂直方向に多段に整列した状態で保持可能なボート217を収容可能に構成されている。   Inside the heater 207, a reaction tube 203 having a single tube structure that constitutes a reaction vessel (processing vessel) concentrically with the heater 207 is disposed. The reaction tube 203 is made of a heat resistant material such as quartz (SiO 2) or silicon carbide (SiC). The reaction tube 203 is formed in a ceiling shape in which the lower end is opened and the upper end is closed with a flat wall. The side wall of the reaction tube 203 includes a cylindrical portion 209 formed in a cylindrical shape, and a gas supply area 222 and a gas exhaust area 224 provided on the outer wall of the cylindrical portion 209. A processing chamber 201 is formed inside the cylindrical portion 209 of the reaction tube 203. The processing chamber 201 is configured to process a wafer 200 as a substrate. Further, the processing chamber 201 is configured to be capable of accommodating a boat 217 that can hold the wafers 200 in a state where the wafers 200 are aligned in a vertical direction in multiple stages in a horizontal posture.

ガス供給エリア222は、凸部が円筒部209の一側壁の外側に突出するように形成されている。ガス供給エリア222の外壁は、円筒部209の外壁の一部としての一側壁の外側に円筒部209の外径よりも大きく、円筒部209と同心円状に形成されている。ガス供給エリア222は、下端部が開放され、上端部が平坦状の壁体で閉塞された有天井の形状で構成されている。ガス供給エリア222は、その長さ方向(上下方向)に沿って後述するノズル410a〜410cが収容され、ガス供給エリア222と円筒部209との間の境界を構成する壁体である境界壁252には後述するガス供給スリット235が形成されている。境界壁252は円筒部209の一側壁であって、その外側面は、ガス供給エリア222に面する側面部分を構成する。   The gas supply area 222 is formed so that the convex portion protrudes outside the one side wall of the cylindrical portion 209. The outer wall of the gas supply area 222 is larger than the outer diameter of the cylindrical portion 209 and concentrically with the cylindrical portion 209 on the outer side of one side wall as a part of the outer wall of the cylindrical portion 209. The gas supply area 222 has a ceiling shape in which the lower end is opened and the upper end is closed by a flat wall. In the gas supply area 222, nozzles 410a to 410c, which will be described later, are accommodated along the length direction (vertical direction), and a boundary wall 252 that is a wall body that forms a boundary between the gas supply area 222 and the cylindrical portion 209. A gas supply slit 235, which will be described later, is formed. The boundary wall 252 is one side wall of the cylindrical portion 209, and an outer side surface of the boundary wall 252 constitutes a side surface portion facing the gas supply area 222.

円筒部209のガス供給エリア222が形成された一側壁に対向する他側壁には、ガス排気エリア224が形成される。ガス排気エリア224は、ガス供給エリア222との間に処理室201のウエハ200が収容される領域を挟むように配置されている。ガス排気エリア224は、凸部が円筒部209のガス供給エリア222が形成された一側壁に対向する他側壁の外側に突出するように形成されている。ガス排気エリア224の外壁は、円筒部209の外壁の一部としての他側壁の外側に円筒部209の外径よりも大きく、円筒部209と同心円状に形成されている。ガス排気エリア224は、下端部がと上端部が平坦状の壁体で閉塞された有天井の形状で構成されている。ガス排気エリア224と円筒部209との間の境界を構成する壁体である境界壁254には後述するガス排気スリット236が形成されている。境界壁254は円筒部209の一部であって、その外側面は、ガス排気エリア224に面する側面部分を構成する。   A gas exhaust area 224 is formed on the other side wall of the cylindrical portion 209 facing the one side wall where the gas supply area 222 is formed. The gas exhaust area 224 is disposed so as to sandwich an area where the wafer 200 of the processing chamber 201 is accommodated between the gas exhaust area 224 and the gas supply area 222. The gas exhaust area 224 is formed so that the convex portion protrudes outside the other side wall facing the one side wall where the gas supply area 222 of the cylindrical portion 209 is formed. The outer wall of the gas exhaust area 224 is larger than the outer diameter of the cylindrical portion 209 and formed concentrically with the cylindrical portion 209 outside the other side wall as a part of the outer wall of the cylindrical portion 209. The gas exhaust area 224 has a ceiling shape in which the lower end and the upper end are closed by a flat wall. A gas exhaust slit 236 to be described later is formed in a boundary wall 254 that is a wall body that forms a boundary between the gas exhaust area 224 and the cylindrical portion 209. The boundary wall 254 is a part of the cylindrical portion 209, and an outer side surface thereof constitutes a side surface portion facing the gas exhaust area 224.

反応管203の下端は、円筒体状のマニホールド226によって支持されている。マニホールド226は、例えばニッケル合金やステンレス等の金属で形成されるか、若しくは石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料で形成されている。マニホールド226の上端部にはフランジが形成されており、このフランジ上に反応管203の下端部を設置して支持する。このフランジと反応管203の下端部との間にはOリング等の気密部材220を介在させて反応管203内を気密状態にしている。   The lower end of the reaction tube 203 is supported by a cylindrical manifold 226. The manifold 226 is formed of a metal such as a nickel alloy or stainless steel, or a heat resistant material such as quartz (SiO 2) or silicon carbide (SiC). A flange is formed at the upper end portion of the manifold 226, and the lower end portion of the reaction tube 203 is installed and supported on the flange. An airtight member 220 such as an O-ring is interposed between the flange and the lower end portion of the reaction tube 203 to keep the inside of the reaction tube 203 airtight.

マニホールド226の下端の開口部には、シールキャップ219がOリング等の気密部材220を介して気密に取り付けられており、反応管203の下端の開口部側、すなわちマニホールド226の開口部を気密に塞ぐようになっている。シールキャップ219は、例えばニッケル合金やステンレス等の金属で形成され、円盤状に形成されている。シールキャップ219は、石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料でその外側を覆うように構成されてもよい。   A seal cap 219 is attached to the opening at the lower end of the manifold 226 through an airtight member 220 such as an O-ring, so that the opening at the lower end of the reaction tube 203, that is, the opening of the manifold 226 is airtight. It is supposed to close. The seal cap 219 is formed of, for example, a metal such as nickel alloy or stainless steel, and is formed in a disk shape. The seal cap 219 may be configured to cover the outside with a heat-resistant material such as quartz (SiO 2) or silicon carbide (SiC).

シールキャップ219上にはボート217を支持するボート支持台218が設けられている。ボート支持台218は、例えば石英や炭化珪素等の耐熱性材料で構成され断熱部として機能すると共にボートを支持する支持体となっている。ボート217は、ボート支持台218上に立設されている。ボート217は例えば石英や炭化珪素等の耐熱性材料で構成されている。ボート217は図示しないボート支持台に固定された底板とその上方に配置された天板とを有しており、底板と天板との間に複数本の支柱が架設された構成を有している。ボート217には複数枚のウエハ200が保持されている。複数枚のウエハ200は、互いに一定の間隔をあけながら水平姿勢を保持しかつ互いに中心を揃えた状態で反応管203の管軸方向に多段に積載されボート217の支柱に支持されている。   A boat support 218 that supports the boat 217 is provided on the seal cap 219. The boat support 218 is made of a heat-resistant material such as quartz or silicon carbide, and functions as a heat insulating portion and is a support that supports the boat. The boat 217 is erected on the boat support 218. The boat 217 is made of a heat resistant material such as quartz or silicon carbide. The boat 217 has a bottom plate fixed to a boat support (not shown) and a top plate arranged above the bottom plate, and has a configuration in which a plurality of columns are installed between the bottom plate and the top plate. Yes. A plurality of wafers 200 are held on the boat 217. The plurality of wafers 200 are loaded in multiple stages in the tube axis direction of the reaction tube 203 in a state where the wafers 200 are kept in a horizontal posture while being spaced apart from each other at the center, and are supported on the support column of the boat 217.

シールキャップ219の処理室201と反対側にはボートを回転させるボート回転機構267が設けられている。ボート回転機構267の回転軸265はシールキャップを貫通してボート支持台218に接続されており、ボート回転機構267によって、ボート支持台218を介してボート217を回転させることでウエハ200を回転させる。   A boat rotation mechanism 267 that rotates the boat is provided on the side of the seal cap 219 opposite to the processing chamber 201. A rotation shaft 265 of the boat rotation mechanism 267 passes through the seal cap and is connected to the boat support base 218. The boat rotation mechanism 267 rotates the boat 217 via the boat support base 218 to rotate the wafer 200. .

シールキャップ219は反応管203の外部に設けられた昇降機構としてのボートエレベータ115によって垂直方向に昇降され、これによりボート217を処理室201内に対し搬入搬出することが可能となっている。   The seal cap 219 is raised and lowered in the vertical direction by a boat elevator 115 as an elevating mechanism provided outside the reaction tube 203, so that the boat 217 can be carried into and out of the processing chamber 201.

マニホールド226には、ノズル340a〜340cを支持するノズル支持部350a〜350cが、L字状に屈曲されてマニホールド226を貫通するようにして設置されている。ここでは、3本のノズル支持部350a〜350cが設置されている。ノズル支持部350a〜350cは、例えばニッケル合金やステンレス等の材料から形成される。ノズル支持部350の反応管203側の一端には反応管203内へガスを供給するガス供給管310a〜310cがそれぞれ接続されている。また、ノズル支持部350a〜350cの他端にはノズル340a〜340cがそれぞれ接続されている。ノズル340a〜340cは、例えば石英またはSiC等の耐熱性材料から形成される。   In the manifold 226, nozzle support portions 350 a to 350 c that support the nozzles 340 a to 340 c are installed so as to be bent in an L shape and penetrate the manifold 226. Here, the three nozzle support parts 350a-350c are installed. The nozzle support portions 350a to 350c are formed of a material such as a nickel alloy or stainless steel, for example. Gas supply pipes 310 a to 310 c for supplying gas into the reaction tube 203 are connected to one end of the nozzle support portion 350 on the reaction tube 203 side. In addition, nozzles 340a to 340c are connected to the other ends of the nozzle support portions 350a to 350c, respectively. The nozzles 340a to 340c are formed of a heat resistant material such as quartz or SiC.

ノズル340a〜340cはガス供給エリア222内の下部より上部に、その長さ方向(上下方向)に沿って設けられている。ノズル340a〜340cは、I字型のロングノズルとしてそれぞれ構成されている。ノズル340a〜340cの側面には、ガスを供給するガス供給孔232a〜232cがそれぞれ設けられている。ガス供給孔232a〜232cは、それぞれ反応管203の中心を向くように開口している。このように、ガス供給エリア222には、3本のノズル340a〜340cが設けられており、処理室201内へ複数種類のガスを供給することができるように構成されている。   The nozzles 340 a to 340 c are provided above the lower portion in the gas supply area 222 along the length direction (vertical direction). The nozzles 340a to 340c are each configured as an I-shaped long nozzle. Gas supply holes 232a to 232c for supplying gas are provided on the side surfaces of the nozzles 340a to 340c, respectively. The gas supply holes 232a to 232c are opened to face the center of the reaction tube 203, respectively. As described above, the gas supply area 222 is provided with the three nozzles 340 a to 340 c so that a plurality of types of gases can be supplied into the processing chamber 201.

以上の処理炉202では、バッチ処理される複数枚のウエハ200がボート217に対し多段に積層された状態において、ボート217がボート支持台218で支持されながら処理室201に挿入され、ヒータ207が処理室201に挿入されたウエハ200を所定の温度に加熱するようになっている。   In the processing furnace 202 described above, in a state where a plurality of wafers 200 to be batch-processed are stacked on the boat 217 in multiple stages, the boat 217 is inserted into the processing chamber 201 while being supported by the boat support 218, and the heater 207 is The wafer 200 inserted into the processing chamber 201 is heated to a predetermined temperature.

ガス供給管310aには、上流方向から順に、第1処理ガスを供給する第1処理ガス供給源360a、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241aおよび開閉弁であるバルブ243aがそれぞれ設けられている。ガス供給管310bには、上流方向から順に、第2処理ガスを供給する第1処理ガス供給源360b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241bおよび開閉弁であるバルブ243bがそれぞれ設けられている。ガス供給管310cには、上流方向から順に、第3処理ガスを供給する第1処理ガス供給源360c、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241cおよび開閉弁であるバルブ243cがそれぞれ設けられている。ガス供給管310a〜310cのバルブバルブ243a〜243cよりも下流側には、不活性ガスを供給するガス供給管310d〜310fがそれぞれ接続されている。ガス供給管310d〜310fには、上流方向から順に、流量制御器(流量制御部)であるMFC241d〜241fおよび開閉弁であるバルブ243d〜243fがそれぞれ設けられている。   The gas supply pipe 310a includes, in order from the upstream direction, a first processing gas supply source 360a that supplies a first processing gas, a mass flow controller (MFC) 241a that is a flow rate controller (flow rate control unit), and a valve 243a that is an on-off valve. Are provided. The gas supply pipe 310b includes, in order from the upstream direction, a first processing gas supply source 360b that supplies a second processing gas, a mass flow controller (MFC) 241b that is a flow rate controller (flow rate control unit), and a valve 243b that is an on-off valve. Are provided. The gas supply pipe 310c includes, in order from the upstream direction, a first processing gas supply source 360c that supplies a third processing gas, a mass flow controller (MFC) 241c that is a flow rate controller (flow rate control unit), and a valve 243c that is an on-off valve. Are provided. Gas supply pipes 310d to 310f for supplying an inert gas are connected to the gas supply pipes 310a to 310c on the downstream side of the valve valves 243a to 243c, respectively. The gas supply pipes 310d to 310f are provided with MFCs 241d to 241f as flow rate controllers (flow rate control units) and valves 243d to 243f as opening / closing valves, respectively, in order from the upstream direction.

主に、ガス供給管310a、MFC320a、バルブ330aにより第1処理ガス供給系が構成される。第1処理ガス供給源360a、ノズル支持部350a、ノズル340aを第1処理ガス供給系に含めて考えても良い。また、主に、ガス供給管310b、MFC320b、バルブ330bにより第2処理ガス供給系が構成される。第2処理ガス供給源360b、ノズル支持部350b、ノズル340bを第2処理ガス供給系に含めて考えても良い。また、主に、ガス供給管310c、MFC320c、バルブ330cにより第3処理ガス供給系が構成される。第3処理ガス供給源360c、ノズル支持部350c、ノズル340cを第3処理ガス供給系に含めて考えても良い。なお、本明細書において、処理ガスという言葉を用いた場合は、第1処理ガスのみを含む場合、第2処理ガスのみを含む場合、第3処理ガスのみを含む場合、もしくはそれら全てを含む場合がある。また、処理ガス供給系という言葉を用いた場合は、第1処理ガス供給系のみを含む場合、第2処理ガス供給系のみを含む場合、第3処理ガス供給系のみを含む場合、もしくはそれら全てを含む場合がある。   A first process gas supply system is mainly configured by the gas supply pipe 310a, the MFC 320a, and the valve 330a. The first process gas supply source 360a, the nozzle support part 350a, and the nozzle 340a may be included in the first process gas supply system. In addition, a second processing gas supply system is mainly configured by the gas supply pipe 310b, the MFC 320b, and the valve 330b. The second process gas supply source 360b, the nozzle support part 350b, and the nozzle 340b may be included in the second process gas supply system. Further, a third processing gas supply system is mainly configured by the gas supply pipe 310c, the MFC 320c, and the valve 330c. The third processing gas supply source 360c, the nozzle support 350c, and the nozzle 340c may be included in the third processing gas supply system. In this specification, when the term “processing gas” is used, it includes only the first processing gas, includes only the second processing gas, includes only the third processing gas, or includes all of them. There is. When the term processing gas supply system is used, it includes only the first processing gas supply system, only the second processing gas supply system, only the third processing gas supply system, or all of them. May be included.

ガス排気エリア224の下部には排気口230が設けられている。排気口230は排気管231に接続されている。排気管232には処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto PressureController)バルブ244を介して真空排気装置としての真空ポンプ246が接続されており、処理室201内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。真空ポンプ246の下流側の排気管232は廃ガス処理装置(図示せず)等に接続されている。なお、APCバルブ244は、弁を開閉して処理室201内の真空排気・真空排気停止ができ、更に弁開度を調節してコンダクタンスを調整して処理室201内の圧力調整をできるようになっている開閉弁である。主に、排気管232、APCバルブ244、圧力センサ245により排気系が構成される。なお、真空ポンプ246も排気系に含めてもよい。   An exhaust port 230 is provided below the gas exhaust area 224. The exhaust port 230 is connected to the exhaust pipe 231. The exhaust pipe 232 is evacuated through a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit). A vacuum pump 246 as an apparatus is connected, and is configured to be evacuated so that the pressure in the processing chamber 201 becomes a predetermined pressure (degree of vacuum). An exhaust pipe 232 on the downstream side of the vacuum pump 246 is connected to a waste gas treatment device (not shown) or the like. The APC valve 244 can open and close the valve to stop evacuation / evacuation in the processing chamber 201, and further adjust the valve opening to adjust conductance to adjust the pressure in the processing chamber 201. It is an open / close valve. An exhaust system is mainly configured by the exhaust pipe 232, the APC valve 244, and the pressure sensor 245. A vacuum pump 246 may also be included in the exhaust system.

反応管203内には温度検出器としての後述する温度センサ238が設置されており、温度センサ238により検出された温度情報に基づきヒータ207への供給電力を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。   A temperature sensor 238 to be described later is installed in the reaction tube 203 as a temperature detector. By adjusting the power supplied to the heater 207 based on the temperature information detected by the temperature sensor 238, The temperature is configured to have a desired temperature distribution.

図3に示すように、制御部(制御手段)であるコントローラ280は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ280には、例えばタッチパネル等として構成された入出力装置122が接続されている。   As shown in FIG. 3, the controller 280, which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Has been. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e. For example, an input / output device 122 configured as a touch panel or the like is connected to the controller 280.

記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ280に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。   The storage device 121c is configured by, for example, a flash memory, an HDD (Hard Disk Drive), or the like. In the storage device 121c, a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner. The process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 280 to execute each procedure in the substrate processing process described later, and functions as a program. Hereinafter, the process recipe, the control program, and the like are collectively referred to simply as a program. When the term “program” is used in this specification, it may include only a process recipe alone, only a control program alone, or both. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.

I/Oポート121dは、上述のMFC241a〜241f、バルブ243a〜243f、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ238、ボート回転機構267、ボートエレベータ115等に接続されている。   The I / O port 121d is connected to the above-described MFCs 241a to 241f, valves 243a to 243f, pressure sensor 245, APC valve 244, vacuum pump 246, heater 207, temperature sensor 238, boat rotation mechanism 267, boat elevator 115, and the like. Yes.

CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。CPU121aは、読み出したプロセスレシピの内容に沿うように、MFC241a〜241fによる各種ガスの流量調整動作、バルブ243a〜243fの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ238に基づくヒータ207の温度調整動作、ボート回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。   The CPU 121a is configured to read out and execute a control program from the storage device 121c, and to read out a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. The CPU 121a adjusts the flow rates of various gases by the MFCs 241a to 241f, the opening / closing operations of the valves 243a to 243f, the opening / closing operations of the APC valve 244 and the pressure by the APC valve 244 based on the pressure sensor 245 so as to match the contents of the read process recipe. Control of adjustment operation, start and stop of vacuum pump 246, temperature adjustment operation of heater 207 based on temperature sensor 238, rotation and rotation speed adjustment operation of boat 217 by boat rotation mechanism 267, raising / lowering operation of boat 217 by boat elevator 115, etc. Is configured to do.

コントローラ280は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123を用意し、この外部記憶装置123を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態のコントローラ280を構成することができる。但し、コンピュータにプログラムを供給するための手段は、外部記憶装置123を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置123を介さずにプログラムを供給するようにしてもよい。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。   The controller 280 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer. For example, an external storage device storing the above-described program (for example, magnetic tape, magnetic disk such as a flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123 is prepared, and the controller 280 of this embodiment can be configured by installing a program on a general-purpose computer using the external storage device 123. However, the means for supplying the program to the computer is not limited to supplying the program via the external storage device 123. For example, the program may be supplied without using the external storage device 123 by using communication means such as the Internet or a dedicated line. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.

次に、第1の実施形態にて好適に用いられる反応管203の形状について、さらに図2、図4、図5を参照して説明する。   Next, the shape of the reaction tube 203 suitably used in the first embodiment will be further described with reference to FIGS. 2, 4, and 5.

図2に示すように、ガス供給エリア222およびガス排気エリア224の内部には、各エリア内空間を複数の空間に区画する内壁248、250が形成されている。内壁248、250は、反応管203と同一材料で形成され、例えば、石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料から形成されている。ここでは、それぞれ2つの内壁を備え、3つの空間に区画されている。   As shown in FIG. 2, inner walls 248 and 250 that divide each internal space into a plurality of spaces are formed inside the gas supply area 222 and the gas exhaust area 224. The inner walls 248 and 250 are made of the same material as that of the reaction tube 203, and are made of a heat resistant material such as quartz (SiO2) or silicon carbide (SiC). Here, each has two inner walls and is divided into three spaces.

ガス供給エリア222内を区画する2つの内壁248は、ガス供給エリア222を下端側から上端側に至るまで区画し、それぞれ隔離した3つの空間を形成するように、設けられている。ガス供給エリア222の各空間には、ノズル340a〜340cがそれぞれ設置されている。内壁248により、各ノズル340a〜340cはそれぞれ独立した空間内に設置されるため、各ノズル340a〜340cから供給される処理ガスがガス供給エリア222内で混ざり合う事を抑制することができる。このような構成により、ガス供給エリア222内で処理ガスが混ざり合って薄膜が形成されたり、副生成物が生成されたりすることを抑制することができる。好適には、内壁248は、ガス供給エリア222を下端から上端に至るまで区画し、それぞれ隔離した3つの空間を形成するように、設けると良い。   The two inner walls 248 that divide the gas supply area 222 are provided so as to divide the gas supply area 222 from the lower end side to the upper end side to form three isolated spaces. In each space of the gas supply area 222, nozzles 340a to 340c are respectively installed. Since the nozzles 340 a to 340 c are installed in independent spaces by the inner wall 248, it is possible to prevent the processing gas supplied from the nozzles 340 a to 340 c from being mixed in the gas supply area 222. With such a configuration, it is possible to prevent the processing gas from being mixed in the gas supply area 222 to form a thin film or to generate a by-product. Preferably, the inner wall 248 may be provided so as to partition the gas supply area 222 from the lower end to the upper end and form three isolated spaces.

ガス排気エリア224内を区画する2つの内壁250は、ガス排気エリア224を下端側から上端側に至るまで区画し、それぞれ隔離した3つの空間を形成するように、設けられている。好適には、内壁250は、ガス排気エリア224を下端側から上端に至るまで区画し、それぞれ隔離した3つの空間を形成するように、設けると良い。好適には、ガス供給エリア222およびガス排気エリア224の外壁の外径は、同一寸法とすると、ヒータ207との間のデッドスペースを少なくすることができる等のメリットがある。また、好適には、ガス供給エリア222とガス排気エリア224それぞれのガスの流路断面積は同じ面積とする。また、好適には、ガス供給エリア222内の各空間のガスの流路断面積と、ガス供給エリア222内の各空間に対面するガス排気エリア224内の各空間のガスの流路断面積を同じ面積とする。   The two inner walls 250 that divide the inside of the gas exhaust area 224 are provided so as to partition the gas exhaust area 224 from the lower end side to the upper end side to form three isolated spaces. Preferably, the inner wall 250 is provided so as to partition the gas exhaust area 224 from the lower end side to the upper end and form three isolated spaces. Preferably, if the outer diameters of the outer walls of the gas supply area 222 and the gas exhaust area 224 are the same, there is an advantage that a dead space between the heater 207 and the like can be reduced. Preferably, the gas flow path cross-sectional areas of the gas supply area 222 and the gas exhaust area 224 are the same. Preferably, the cross-sectional area of the gas in each space in the gas supply area 222 and the cross-sectional area of the gas in each space in the gas exhaust area 224 facing each space in the gas supply area 222 are Same area.

図4に示すように、円筒部209のガス供給エリア222側の境界壁252の下端には、ノズル340a〜340cをガス供給エリア222内に設置するための開口部256が形成されている。ノズル340a〜340cを設置する際は、開口部256から各空間にノズル340a〜340cを挿入し、ノズル340a〜340cの下端をノズル支持部350a〜350cの上端より一旦高く持ち上げてから、ノズル340a〜340cの下端がノズル支持部350a〜350cの上端よりも低くなるようにすることで差し込む。   As shown in FIG. 4, an opening 256 for installing the nozzles 340 a to 340 c in the gas supply area 222 is formed at the lower end of the boundary wall 252 on the gas supply area 222 side of the cylindrical portion 209. When installing the nozzles 340a to 340c, the nozzles 340a to 340c are inserted into the spaces from the openings 256, and the lower ends of the nozzles 340a to 340c are once lifted higher than the upper ends of the nozzle support portions 350a to 350c, and then the nozzles 340a to 340c are installed. The lower end of 340c is inserted so as to be lower than the upper ends of the nozzle support portions 350a to 350c.

ノズル340a〜340cを一旦持ち上げてガス支持部350a〜350cに設置する際に、ノズル340a〜340cの上端がガス供給エリア222の上端にある天井部に接触しないように、ガス供給エリア222のノズル340a〜340c上端より上部にバッファ領域258が形成されている(図5参照)。ガス供給エリア222の上端側は、少なくともバッファ領域258の分だけ、ガス排気エリア224の天井部よりも高くなるように構成されている。   When the nozzles 340a to 340c are once lifted and installed in the gas support portions 350a to 350c, the nozzles 340a in the gas supply area 222 are prevented so that the upper ends of the nozzles 340a to 340c do not contact the ceiling at the upper end of the gas supply area 222. A buffer region 258 is formed above the upper end of ˜340c (see FIG. 5). The upper end side of the gas supply area 222 is configured to be higher than the ceiling of the gas exhaust area 224 by at least the buffer area 258.

本実施形態では、ガス供給エリア222の天井部の上端は円筒部209の天井部の上端と同じ高さであり、ガス排気エリア224の天井部の上端は円筒部209の天井部の上端よりも低くなるように構成されている。言い換えれば、バッファ領域258の分だけガス供給エリア222の容積はガス排気エリア224の容積よりも大きくなっているように構成されている。なお、本実施形態ではガス排気エリア224の上端の高さをガス供給エリア222の上端よりも低く構成しているが、ガス排気エリア224が容積のサイズによる排気バランスへの影響や副生成物の付着具合への影響等が問題ない場合には、同じ高さに構成しても良い。   In the present embodiment, the upper end of the ceiling portion of the gas supply area 222 is the same height as the upper end of the ceiling portion of the cylindrical portion 209, and the upper end of the ceiling portion of the gas exhaust area 224 is higher than the upper end of the ceiling portion of the cylindrical portion 209. It is configured to be low. In other words, the volume of the gas supply area 222 is larger than the volume of the gas exhaust area 224 by the buffer area 258. In this embodiment, the height of the upper end of the gas exhaust area 224 is configured to be lower than the upper end of the gas supply area 222. However, the gas exhaust area 224 has an influence on the exhaust balance due to the size of the volume and the amount of by-products. If there is no problem in the influence on the adhesion, the same height may be used.

ガス排気エリア224内の内壁250は、ガス排気エリア224の天井部の上端から下端側の排気口230上端よりも高い位置まで形成されている。ガス排気エリア224の下端側の排気口230上端よりも高い位置からガス排気エリア224の下端までは、1つの空間として構成されている。ガス排気エリア224の内壁250で区画された各空間を流通したガスは、排気口230の手前の1つの空間にて合流し、排気口230から排気されるようになっている。このような構成とすることにより、   The inner wall 250 in the gas exhaust area 224 is formed from the upper end of the ceiling of the gas exhaust area 224 to a position higher than the upper end of the exhaust port 230 on the lower end side. From the position higher than the upper end of the exhaust port 230 on the lower end side of the gas exhaust area 224 to the lower end of the gas exhaust area 224 is configured as one space. The gas flowing through each space partitioned by the inner wall 250 of the gas exhaust area 224 joins in one space before the exhaust port 230 and is exhausted from the exhaust port 230. With this configuration,

ガス供給エリア222内の内壁248は、ガス供給エリア222の天井部から反応管203の下端部上部まで形成されている。具体的には、内壁248の下端は、開口部256の上端よりも下側まで形成される。内壁248の下端は、反応管203の下端部よりも上側であって、ノズル支持部350の上端部よりも下側になる領域として形成されている。ガス供給エリア222内の内壁248の長さは、反応管203の長さよりも短く、境界壁252の長さよりも長くなるよう構成されている。また、ガス供給エリア222内の内壁248の方が、ガス排気エリア224内の内壁250よりも長くなるように構成されている。   An inner wall 248 in the gas supply area 222 is formed from the ceiling of the gas supply area 222 to the upper part of the lower end of the reaction tube 203. Specifically, the lower end of the inner wall 248 is formed below the upper end of the opening 256. The lower end of the inner wall 248 is formed as a region above the lower end portion of the reaction tube 203 and below the upper end portion of the nozzle support portion 350. The length of the inner wall 248 in the gas supply area 222 is configured to be shorter than the length of the reaction tube 203 and longer than the length of the boundary wall 252. Further, the inner wall 248 in the gas supply area 222 is configured to be longer than the inner wall 250 in the gas exhaust area 224.

図4に示すように、円筒部209とガス供給エリア222との境界壁252には、処理室201内に処理ガスを供給するためのガス供給スリット235が形成されている。ガス供給スリット235は、上下左右方向に複数段、複数列のマトリクス状に形成されている。すなわち、ガス供給エリア222内の内壁248で区画された各空間それぞれに対向した横長のスリットが上下方向に複数形成されている。   As shown in FIG. 4, a gas supply slit 235 for supplying a processing gas into the processing chamber 201 is formed in the boundary wall 252 between the cylindrical portion 209 and the gas supply area 222. The gas supply slits 235 are formed in a matrix with a plurality of rows and columns in the vertical and horizontal directions. That is, a plurality of horizontally long slits are formed in the vertical direction facing each space defined by the inner wall 248 in the gas supply area 222.

好適には、ガス供給スリット235の円筒部209周方向の長さはガス供給エリア222内の各空間の周方向の長さと同じにするとガス供給効率が向上するので良い。また、好適には、ガス供給スリット235は、内壁248と境界壁252との連結部分を除いて横長に、縦複数段に形成するとガス供給効率が向上するので良い。また、好適には、ガス供給スリット235の列数は区画された空間と同じ数に形成されると良い。本実施形態では、3つの空間が形成されているため、ガス供給スリット235は3列形成されている。   Preferably, if the length of the gas supply slit 235 in the circumferential direction of the cylindrical portion 209 is the same as the length of each space in the gas supply area 222 in the circumferential direction, the gas supply efficiency can be improved. Further, preferably, the gas supply slit 235 may be formed in a horizontally long shape except for a connecting portion between the inner wall 248 and the boundary wall 252 so as to improve gas supply efficiency. Preferably, the number of rows of gas supply slits 235 is the same as the number of partitioned spaces. In this embodiment, since three spaces are formed, the gas supply slits 235 are formed in three rows.

円筒部209とガス排気エリア224との境界壁254に、処理室201内の雰囲気を排気するためのガス排気スリット236が形成されている。ガス排気スリット236は、上下左右方向に複数段、複数列のマトリクス状に形成されている。すなわち、ガス供給エリア222内の内壁248で区画された各空間それぞれに対向し、円筒部の周方向に長く形成された横長のスリットが上下方向に複数形成されている。好適には、ガス排気スリット236の円筒部209周方向の長さはガス排気エリア224内の各空間の周方向の長さと同じにするとガス排気効率が向上するので良い。また、好適には、ガス排気スリット236は、内壁250と境界壁254との連結部分を除いて横長に、縦複数段に形成するとガス排気効率が向上するので良い。また、好適には、ガス排気スリット236の列数は区画された空間と同じ数に形成されると良い。本実施形態では、3つの空間が形成されているため、ガス排気スリット236は3列形成されている。   A gas exhaust slit 236 for exhausting the atmosphere in the processing chamber 201 is formed in a boundary wall 254 between the cylindrical portion 209 and the gas exhaust area 224. The gas exhaust slits 236 are formed in a matrix of a plurality of rows and columns in the vertical and horizontal directions. That is, a plurality of horizontally long slits are formed in the vertical direction so as to face each space defined by the inner wall 248 in the gas supply area 222 and to be long in the circumferential direction of the cylindrical portion. Preferably, if the length of the gas exhaust slit 236 in the circumferential direction of the cylindrical portion 209 is the same as the length of each space in the gas exhaust area 224 in the circumferential direction, the gas exhaust efficiency can be improved. Further, preferably, the gas exhaust slit 236 is formed in a horizontally long and a plurality of vertical stages excluding the connecting portion between the inner wall 250 and the boundary wall 254, so that the gas exhaust efficiency is improved. Preferably, the number of rows of gas exhaust slits 236 is the same as the number of partitioned spaces. In the present embodiment, since three spaces are formed, the gas exhaust slits 236 are formed in three rows.

ガス供給スリット235およびガス排気スリット236は、それぞれの四隅としてのエッジ部が曲面を描くように滑らかに形成されている。エッジ部にRがけ等を行い、曲面状にすることにより、エッジ部周縁のガスのよどみを抑制することができ、エッジ部の膜の形成を抑制することができ、さらに、エッジ部に形成される膜の膜剥がれを抑制することができる。   The gas supply slit 235 and the gas exhaust slit 236 are smoothly formed so that the edge portions as the four corners draw curved surfaces. By performing R scribing or the like on the edge part to make it curved, it is possible to suppress stagnation of gas around the edge part, to suppress film formation on the edge part, and to be formed on the edge part. The film peeling of the film can be suppressed.

図5に示すように、ガス供給スリット235およびガス排気スリット236は、処理室201に収容された状態のボート217に複数段載置された、隣り合うウエハ200とウエハ200との間にそれぞれ配置されるように形成されている。図5では、ボート217を省略して説明する。好適には、ボート217に載置可能な最下段のウエハ200とその上側に隣り合うウエハ200との間から、最上段のウエハ200とその上側に隣り合うボート217の天板との間に至るまで、各ウエハ200間、ウエハ200と天板間に対し1段ずつ対向するように形成されると良い。好適には、各ガス供給スリット235と各ガス排気スリット236とは同じ高さ、同じ数に形成されると良い。例えば、ウエハ200が25枚載置されるときは、ガス供給スリット235とガス排気スリット234は25段形成されると良い。   As shown in FIG. 5, the gas supply slit 235 and the gas exhaust slit 236 are respectively arranged between adjacent wafers 200 mounted on the boat 217 in a state of being accommodated in the processing chamber 201. It is formed to be. In FIG. 5, the boat 217 will be omitted. Preferably, from the lowermost wafer 200 that can be placed on the boat 217 and the wafer 200 adjacent to the uppermost wafer 200 to the uppermost wafer 200 and the top plate of the boat 217 adjacent to the uppermost wafer 200. Until then, it is preferable to form the wafers 200 so as to face each other between the wafers 200 and the top plate. Preferably, the gas supply slits 235 and the gas exhaust slits 236 are formed to have the same height and the same number. For example, when 25 wafers 200 are mounted, the gas supply slit 235 and the gas exhaust slit 234 may be formed in 25 stages.

好適には、ガス供給スリット235およびガス排気スリット236は、一定の縦幅L1で形成すると良い。隣り合うウエハ200間の間隔をL2とすると、L1の方がL2より小さくなるようにガス供給スリット235およびガス排気スリット234が形成されると良い。このように構成することで、ガス供給スリット235からウエハ200へ流れるガスのよどみの発生を抑制でき、さらに、処理室201からガス排気スリット236へ流れるガスのよどみの発生を抑制することができる。好適には、L1は1mm〜9mm程度の範囲内とすると良く、さらに好適には3〜7mm程度の範囲内とすると良い。また、L2は6〜14mm程度の範囲内とすると良く、さらに好適には8〜12mm程度の範囲内とすると良い。   Preferably, the gas supply slit 235 and the gas exhaust slit 236 are formed with a constant vertical width L1. When the interval between adjacent wafers 200 is L2, the gas supply slit 235 and the gas exhaust slit 234 are preferably formed so that L1 is smaller than L2. With this configuration, generation of stagnation of gas flowing from the gas supply slit 235 to the wafer 200 can be suppressed, and generation of stagnation of gas flowing from the processing chamber 201 to the gas exhaust slit 236 can be suppressed. Preferably, L1 is in the range of about 1 mm to 9 mm, and more preferably in the range of about 3 to 7 mm. L2 is preferably in the range of about 6 to 14 mm, and more preferably in the range of about 8 to 12 mm.

ノズル340a〜340cのガス供給孔234a〜234cは各ガス供給スリット235に対し1個ずつ対応するように、各ガス供給スリット235の縦幅の中央部分に形成すると良い。例えば、ガス供給スリット235が25個形成されているときは、それぞれ25個のガス供給孔234a〜234cが形成されると良い。すなわち、ガス供給スリット235とガス供給孔234a〜234cは、載置されるウエハ200と同数形成されると良い。このようなスリット構成とすることにより、ウエハ200上にウエハ200に平行な処理ガスの流れを形成することができる(図5矢印参照)。   The gas supply holes 234a to 234c of the nozzles 340a to 340c are preferably formed in the central portion of the vertical width of each gas supply slit 235 so as to correspond to each gas supply slit 235 one by one. For example, when 25 gas supply slits 235 are formed, 25 gas supply holes 234a to 234c are preferably formed. That is, the gas supply slit 235 and the gas supply holes 234a to 234c are preferably formed in the same number as the wafer 200 to be placed. With such a slit configuration, a flow of processing gas parallel to the wafer 200 can be formed on the wafer 200 (see the arrow in FIG. 5).

また、ガス排気エリア224には周方向に長くスリットが形成されているため、ウエハ200上を流れる処理ガスの流れを乱すことなく、排気を行う事が出来る。例えば、ガス排気スリットを孔状に形成した場合、処理ガスの流れが孔に向かって集中するため、ウエハ200上において均一なガスの流れを形成することができない。これに対し、本実施形態においては、ガス排気スリットを横長に形成しているため、排気側に近づくにつれて集中した処理ガスの流れが形成されることなく、ウエハ200上において流れを整流し、均一に処理ガスを供給することが可能となる。   In addition, since the gas exhaust area 224 is formed with a long slit in the circumferential direction, exhaust can be performed without disturbing the flow of the processing gas flowing on the wafer 200. For example, when the gas exhaust slit is formed in a hole shape, the flow of the processing gas concentrates toward the hole, so that a uniform gas flow cannot be formed on the wafer 200. On the other hand, in this embodiment, since the gas exhaust slit is formed in a horizontally long shape, the flow is rectified and uniformed on the wafer 200 without forming a concentrated process gas flow as it approaches the exhaust side. It becomes possible to supply the processing gas.

次に、本発明に関わる基板処理装置の動作概要について説明する。なお、基板処理装置は、コントローラ280により制御されるものである。   Next, an outline of the operation of the substrate processing apparatus according to the present invention will be described. The substrate processing apparatus is controlled by the controller 280.

所定枚数のウエハ200が載置されたボート217が反応管203内に挿入され、シールキャップ219により、反応管203が気密に閉塞される。気密に閉塞された反応管203内では、ウエハ200が加熱されると共に、処理ガスが反応管203内に供給され、ウエハ200に加熱等の熱処理がなされる。   A boat 217 on which a predetermined number of wafers 200 are placed is inserted into the reaction tube 203, and the reaction tube 203 is hermetically closed by a seal cap 219. In the reaction tube 203 that is airtightly closed, the wafer 200 is heated and a processing gas is supplied into the reaction tube 203, so that the wafer 200 is subjected to heat treatment such as heating.

熱処理として、例えば、第1処理ガスとしてNH3ガスと、第2処理ガスとしてHCDSガスと、第3処理ガスとしてN2ガスとを交互供給(HCDSガス供給→N2パージ→NH3ガス供給→N2パージを1サイクルとしてこのサイクルを所定回数繰り返すこと)することにより、ウエハ200上にSiN膜を形成する。処理条件は、例えば下記のとおりである。ウエハ200の温度:100〜600℃処理室内圧力:1〜3000PaHCDSガス供給流量:1〜2000sccmNH3ガス供給流量:100〜10000sccmN2ガス供給流量:10〜10000sccmSiN膜の膜厚:0.2〜10nm   As the heat treatment, for example, NH3 gas as the first processing gas, HCDS gas as the second processing gas, and N2 gas as the third processing gas are alternately supplied (HCDS gas supply → N2 purge → NH3 gas supply → N2 purge is 1 By repeating this cycle a predetermined number of times), a SiN film is formed on the wafer 200. The processing conditions are, for example, as follows. Temperature of wafer 200: 100-600 ° C. Processing chamber pressure: 1-3000 PaHCDS gas supply flow rate: 1-2000 sccm NH 3 gas supply flow rate: 100-10000 sccm N 2 gas supply flow rate: 10-10000 sccm SiN film thickness: 0.2-10 nm

まず、第2処理ガス供給系のガス供給管310bよりノズル350bのガス供給孔234b、ガス供給スリット235を介して処理室201内にHCDSガスを供給する。具体的には、バルブ330b、330eを開けることにより、キャリアガスと共に、ガス供給管310bからHCDSガスの処理室201内への供給を開始する。このとき、APCバルブ244の開度を調整して、処理室201内の圧力を所定の圧力に維持する。所定時間が経過したら、バルブ330bを閉じ、HCDSガスの供給を停止する。   First, HCDS gas is supplied into the processing chamber 201 from the gas supply pipe 310b of the second processing gas supply system through the gas supply hole 234b of the nozzle 350b and the gas supply slit 235. Specifically, the supply of the HCDS gas into the processing chamber 201 from the gas supply pipe 310b is started together with the carrier gas by opening the valves 330b and 330e. At this time, the opening degree of the APC valve 244 is adjusted to maintain the pressure in the processing chamber 201 at a predetermined pressure. When the predetermined time has elapsed, the valve 330b is closed and the supply of HCDS gas is stopped.

処理室201内に供給されたHCDSガスは、ウエハ200に供給され、ウエハ200上を平行に流れた後、ガス排気スリット236を通ってガス排気エリア222を上部から下部へと流れ、ガス排気エリア222下部の排気口230を介して排気管232から排気される。   The HCDS gas supplied into the processing chamber 201 is supplied to the wafer 200, flows in parallel on the wafer 200, and then flows through the gas exhaust slit 236 from the upper part to the lower part through the gas exhaust area 236. The exhaust pipe 232 is exhausted through the exhaust port 230 at the bottom of 222.

なお、処理室201内にHCDSガスを供給する間、ガス供給管310aおよび310cに接続される不活性ガス供給管のバルブ330aおよび330cを開けてN2等の不活性ガスを流すと、ガス供給管320内にHCDSガスが回り込むのを防ぐことができる。   Note that while supplying the HCDS gas into the processing chamber 201, if the inert gas such as N 2 is flowed by opening the valves 330 a and 330 c of the inert gas supply pipe connected to the gas supply pipes 310 a and 310 c, the gas supply pipe It is possible to prevent the HCDS gas from flowing into 320.

バルブ330bを閉じ、処理室201内へのHCDSガスの供給を停止した後は、APCバルブ244を開けて処理室201内の排気し、処理室201内に残留しているHCDSガスや反応生成物等を排除する。この時、不活性ガス供給管310aおよび310cからN2等の不活性ガスをそれぞれ処理室201内に供給してパージすると、処理室201内からの残留ガスを排除する効果をさらに高めることができる。所定時間経過後、バルブ330eを閉じる。   After the valve 330b is closed and the supply of the HCDS gas into the processing chamber 201 is stopped, the APC valve 244 is opened to exhaust the processing chamber 201, and the HCDS gas and reaction products remaining in the processing chamber 201 are exhausted. Etc. are excluded. At this time, if an inert gas such as N 2 is supplied into the processing chamber 201 from the inert gas supply pipes 310a and 310c and purged, the effect of removing the residual gas from the processing chamber 201 can be further enhanced. After a predetermined time has elapsed, the valve 330e is closed.

次に、第1処理ガス供給系のガス供給管310aよりノズル350aのガス供給孔234a、ガス供給スリット235を介して処理室201内にNH3ガスガスを供給する。具体的には、バルブ330a、330dを開けることにより、キャリアガスと共に、ガス供給管310aからNH3ガスの処理室201内への供給を開始する。このとき、APCバルブ244の開度を調整して、処理室201内の圧力を所定の圧力に維持する。所定時間が経過したら、バルブ330aを閉じ、NH3ガスの供給を停止する。   Next, NH 3 gas gas is supplied into the processing chamber 201 through the gas supply hole 234a of the nozzle 350a and the gas supply slit 235 from the gas supply pipe 310a of the first processing gas supply system. Specifically, by opening the valves 330a and 330d, the supply of the NH3 gas into the processing chamber 201 from the gas supply pipe 310a is started together with the carrier gas. At this time, the opening degree of the APC valve 244 is adjusted to maintain the pressure in the processing chamber 201 at a predetermined pressure. When the predetermined time has elapsed, the valve 330a is closed and the supply of NH3 gas is stopped.

処理室201内に供給されたNH3ガスは、ウエハ200に供給され、ウエハ200上を平行に流れた後、ガス排気スリット236を通ってガス排気エリア222を上部から下部へと流れ、ガス排気エリア222下部の排気口230を介して排気管232から排気される。   The NH 3 gas supplied into the processing chamber 201 is supplied to the wafer 200, flows in parallel on the wafer 200, and then flows through the gas exhaust slit 236 from the upper part to the lower part through the gas exhaust area 236. The exhaust pipe 232 is exhausted through the exhaust port 230 at the bottom of 222.

なお、処理室201内にNH3ガスを供給する間、ガス供給管310bおよび310cに接続される不活性ガス供給管のバルブ330eおよび330fを開けてN2等の不活性ガスを流すと、ガス供給管320内にNH3ガスが回り込むのを防ぐことができる。   When NH3 gas is supplied into the processing chamber 201, if the inert gas supply pipes 310b and 310f connected to the gas supply pipes 310b and 310c are opened and an inert gas such as N2 is allowed to flow, the gas supply pipe It is possible to prevent the NH 3 gas from flowing into 320.

バルブ330aを閉じ、処理室201内へのNH3ガスの供給を停止した後は、APCバルブ244を開けて処理室201内の排気し、処理室201内に残留しているHCDSガスや反応生成物等を排除する。この時、不活性ガス供給管310eおよび310fからN2等の不活性ガスをそれぞれ処理室201内に供給してパージすると、処理室201内からの残留ガスを排除する効果をさらに高めることができる。所定時間経過後、バルブ330eを閉じる。   After the valve 330a is closed and the supply of NH3 gas into the processing chamber 201 is stopped, the APC valve 244 is opened to exhaust the processing chamber 201, and the HCDS gas and reaction products remaining in the processing chamber 201 are exhausted. Etc. are excluded. At this time, if an inert gas such as N 2 is supplied into the processing chamber 201 from the inert gas supply pipes 310e and 310f and purged, the effect of removing the residual gas from the processing chamber 201 can be further enhanced. After a predetermined time has elapsed, the valve 330e is closed.

ウエハ200の処理が完了すると、上記した動作の逆の手順により、ボート217が反応管203内から搬出される。ウエハ200は、ウエハ移載機112により、ボート217から移載棚123のカセット100に移載され、カセット100は、カセット搬送機115により、移載棚123からカセットステージ105に移載され、図示しない外部搬送装置により、筐体101の外部に搬出される。   When the processing of the wafer 200 is completed, the boat 217 is unloaded from the reaction tube 203 by the reverse procedure of the above-described operation. The wafers 200 are transferred from the boat 217 to the cassette 100 of the transfer shelf 123 by the wafer transfer device 112, and the cassette 100 is transferred from the transfer shelf 123 to the cassette stage 105 by the cassette transfer device 115. It is carried out of the housing 101 by an external transport device that does not.

上述の実施形態では、第1処理ガスと第2処理ガスとを交互に供給する場合について説明したが、同時に供給した場合においても本発明は適用できる。   In the above-described embodiment, the case where the first processing gas and the second processing gas are alternately supplied has been described. However, the present invention can be applied even when the first processing gas and the second processing gas are supplied simultaneously.

図8に示すように、従来の反応管構成による処理ガス供給の場合、処理ガスはガス供給孔から上下左右にわたって円錐状に供給される。処理ガスがウエハ200に平行な方向(左右方向)だけではなく、上下方向にも広く供給されることにより、ウエハ200のエッジと反応管との間の空間に処理ガスが流れてしまい、ウエハ200間に十分な量の処理ガスを供給できない。このため、ガス供給孔近傍の膜が厚くなり均一な膜厚が得られない。また、処理ガスの置換効率が悪く、生産性が悪化してしまう。   As shown in FIG. 8, in the case of processing gas supply with a conventional reaction tube configuration, the processing gas is supplied in a conical shape from the gas supply hole in the vertical and horizontal directions. Since the processing gas is widely supplied not only in the direction parallel to the wafer 200 (left-right direction) but also in the up-down direction, the processing gas flows into the space between the edge of the wafer 200 and the reaction tube. A sufficient amount of processing gas cannot be supplied in the meantime. For this reason, the film in the vicinity of the gas supply hole becomes thick and a uniform film thickness cannot be obtained. Further, the replacement efficiency of the processing gas is poor, and the productivity is deteriorated.

これに対し、図9に示すように、本実施形態においては、ガス供給孔の下流側に横長のガス供給スリット235が形成されている。上下方向に供給された処理ガスは境界壁254にぶつかるため、そのまま処理室201内に供給されることはない。境界壁254にぶつかった処理ガスは、ガス供給エリア222内を拡散し、ガス供給スリット235の形状に沿って横長(左右方向)に広がって処理室201内に供給される。ガス供給スリット235の縦幅はウエハ200間の間隔よりも短く形成されているため、ガス供給スリット235を通った処理ガスは、多少上下方向に広がったとしても、ウエハ200のエッジと反応管との間の空間に処理ガスが流れることはなく、ウエハ200間に十分な量を供給することができ、膜厚の偏りを軽減できる。   On the other hand, as shown in FIG. 9, in the present embodiment, a horizontally long gas supply slit 235 is formed on the downstream side of the gas supply hole. Since the processing gas supplied in the vertical direction hits the boundary wall 254, it is not supplied as it is into the processing chamber 201. The processing gas that hits the boundary wall 254 diffuses in the gas supply area 222, spreads horizontally (in the left-right direction) along the shape of the gas supply slit 235, and is supplied into the processing chamber 201. Since the vertical width of the gas supply slit 235 is shorter than the interval between the wafers 200, even if the processing gas that has passed through the gas supply slit 235 spreads in the vertical direction, the edge of the wafer 200 and the reaction tube The processing gas does not flow into the space between the two, a sufficient amount can be supplied between the wafers 200, and the uneven thickness can be reduced.

本実施形態においては、ガス供給エリア222とガス排気エリア224とを円筒部209(処理室201)の外側に形成している。このような構成により、反応管203の容積を従来の反応管よりも小さくすることが可能となる。円筒部209とウエハ200のエッジとの間隔をS1とすると(図5参照)、すなわち、従来の反応管に比べて容積を30%程度削減することが可能となるため、生産性を向上させることが可能となる。   In the present embodiment, the gas supply area 222 and the gas exhaust area 224 are formed outside the cylindrical portion 209 (processing chamber 201). With such a configuration, the volume of the reaction tube 203 can be made smaller than that of the conventional reaction tube. If the interval between the cylindrical portion 209 and the edge of the wafer 200 is S1 (see FIG. 5), that is, the volume can be reduced by about 30% compared to the conventional reaction tube, so that productivity is improved. Is possible.

上述の実施形態においては、ガス供給エリア222とガス排気エリア224とを3つの空間に区画したが、2つの空間に区画しても良いし、4つ以上の空間に区画しても良い。所望の加熱処理に必要なノズルの本数に合わせて、区画する空間の数は適宜変更可能である。   In the above-described embodiment, the gas supply area 222 and the gas exhaust area 224 are divided into three spaces, but may be divided into two spaces or may be divided into four or more spaces. The number of spaces to be partitioned can be changed as appropriate in accordance with the number of nozzles necessary for the desired heat treatment.

また、ノズルの形状を各々変更しても良い。例えば、真ん中の空間に設置されるノズルのガス供給孔を内壁に向けて開口させても良い。ガス供給口をウエハ200ではなく内壁に向けて開口させることにより、処理ガスを空間内で拡散させ、各ガス供給スリットから均一に処理ガスを供給させることが可能になる。   Moreover, you may change the shape of a nozzle, respectively. For example, a gas supply hole of a nozzle installed in the middle space may be opened toward the inner wall. By opening the gas supply port toward the inner wall instead of the wafer 200, it is possible to diffuse the processing gas in the space and supply the processing gas uniformly from each gas supply slit.

(3)本実施形態による効果本実施形態によれば、以下に示す1つ又は複数の効果が得られる。   (3) Effects according to this embodiment According to this embodiment, one or more of the following effects can be obtained.

(a)ガス供給エリアとガス排気エリアとを処理室の外側に形成することにより、処理室にガスを供給するガス供給媒体としてのノズルを設置する必要がないため、基板のエッジと反応管内壁との間隔を短くすることができ、また、反応管の容積を従来の反応管よりも大幅に小さくすることが可能となる。これにより、ウエハのエッジと反応管内壁との間の間隙から処理ガスが流れることを抑制することができ、基板間に十分な量の処理ガスを供給でき、処理ガスの置換効率を向上させることが可能となる。   (A) Since the gas supply area and the gas exhaust area are formed outside the processing chamber, it is not necessary to install a nozzle as a gas supply medium for supplying gas to the processing chamber. And the volume of the reaction tube can be made much smaller than that of the conventional reaction tube. Thereby, it is possible to suppress the flow of the processing gas from the gap between the edge of the wafer and the inner wall of the reaction tube, supply a sufficient amount of the processing gas between the substrates, and improve the replacement efficiency of the processing gas. Is possible.

(b)供給バッファエリアおよび排気バッファエリアに内壁を形成することにより、ガス供給エリアとガス排気エリアとを処理室の外側に形成することによる反応管の強度の低下を補うことができる。これにより、反応管の容積を小さくしつつも反応管の破損のリスクを低下させることができる。   (B) By forming the inner walls in the supply buffer area and the exhaust buffer area, it is possible to compensate for a decrease in the strength of the reaction tube due to the formation of the gas supply area and the gas exhaust area outside the processing chamber. Thereby, the risk of damage to the reaction tube can be reduced while reducing the volume of the reaction tube.

(c)ガス供給スリットおよびガス排気スリットのエッジ部が曲面を描くように滑らかに形成することにより、エッジ部周縁のガスのよどみを抑制することができ、エッジ部の膜の形成を抑制することができ、さらに、エッジ部に形成される膜の膜剥がれを抑制することができる。   (C) By smoothly forming the edge portions of the gas supply slit and the gas exhaust slit so as to draw a curved surface, it is possible to suppress the stagnation of the gas at the periphery of the edge portion and to suppress the formation of the film at the edge portion. Furthermore, film peeling of the film formed on the edge portion can be suppressed.

(d)ガス供給エリアの内部の内壁により、ノズルがそれぞれ隔離した空間内に設置されるため、各ノズルから供給される処理ガスがガス供給エリア内で混ざり合う事を抑制することができる。このような構成により、ガス供給エリア内で処理ガスが混ざり合って薄膜が形成されたり、副生成物が生成されたりすることを防ぐことができ、パーティクル発生による歩留り低下を抑制することができる。また、各空間内で処理ガスの流速を緩和させることができるため、突発的な処理ガスの流速変化を生じさせることなく、処理室内への均一な処理ガスの供給を促進させ、生産性を向上させることが可能となる。   (D) Since the nozzles are installed in the isolated spaces by the inner walls of the gas supply area, it is possible to prevent the processing gases supplied from the nozzles from being mixed in the gas supply area. With such a configuration, it is possible to prevent the processing gas from being mixed in the gas supply area to form a thin film or to generate a by-product, and to suppress a decrease in yield due to generation of particles. In addition, since the flow rate of the processing gas can be reduced in each space, the supply of the uniform processing gas into the processing chamber is promoted and productivity is improved without causing a sudden change in the flow rate of the processing gas. It becomes possible to make it.

(e)ガス供給エリアのノズル上端より上部にバッファ領域が形成されることにより、ノズル交換を安全に行う事が出来る。   (E) Since the buffer region is formed above the upper end of the nozzle in the gas supply area, the nozzle can be replaced safely.

次に、本発明の第2の実施形態について説明する。本実施の形態は、ガス排気エリアに温度センサ238を設置するために、ガス排気エリア224の両端に温度測定エリア260を形成した点で第1の実施形態と相違する。以下、第2の実施形態において好適に用いられる反応管203の形状について図6を参照して説明する。なお、第1の実施形態と同じ構成については説明を省略する。   Next, a second embodiment of the present invention will be described. This embodiment is different from the first embodiment in that a temperature measurement area 260 is formed at both ends of the gas exhaust area 224 in order to install the temperature sensor 238 in the gas exhaust area. Hereinafter, the shape of the reaction tube 203 suitably used in the second embodiment will be described with reference to FIG. Note that description of the same configuration as in the first embodiment is omitted.

図6に示すように、ガス排気エリア224の両端には、温度センサ238が収納される温度測定エリア260が形成されている。温度測定エリア260は、下端部と上端部とが平坦に閉塞された有天井の形状で構成され、その外壁は円筒部209と同心円状に形成されている。また、温度測定エリア260はガス排気エリア224と内壁252を介して連続して形成されている。温度測定エリア260と円筒部209との境界壁にはガス排気スリット236は形成されていない。すなわち、温度測定エリア260はガス排気エリア224および処理室201から空間的に独立して形成されている。このような構成とすることにより、温度センサ238が処理ガスに曝されることを防ぐことができるため、温度センサ238の劣化を抑制することが可能となる。   As shown in FIG. 6, temperature measurement areas 260 in which the temperature sensor 238 is accommodated are formed at both ends of the gas exhaust area 224. The temperature measurement area 260 has a ceiling shape in which a lower end portion and an upper end portion are closed flat, and an outer wall thereof is formed concentrically with the cylindrical portion 209. Further, the temperature measurement area 260 is continuously formed through the gas exhaust area 224 and the inner wall 252. The gas exhaust slit 236 is not formed in the boundary wall between the temperature measurement area 260 and the cylindrical portion 209. That is, the temperature measurement area 260 is formed spatially independent from the gas exhaust area 224 and the processing chamber 201. With such a configuration, it is possible to prevent the temperature sensor 238 from being exposed to the processing gas, so that deterioration of the temperature sensor 238 can be suppressed.

図7に示すように、温度センサ238により、ボート217に載置された最上段のウエハ200上方における処理室201内の温度を計測するために、温度測定エリア260の天井部の高さは、円筒部209の高さと同じ高さに形成されている。また、ガス排気エリア224の天井部も同様に、円筒部209の高さと同じ高さに形成される。すなわち、本実施例においては、ガス供給エリア222とガス排気エリア224と温度測定エリア260と円筒部209との天井部の高さが同じ高さに、平坦になるように形成されている。このような構成とすることにより、処理室201内を上下にわたって温度測定することが可能となり、ヒータ207による処理室201内の均一な加熱を行う事が出来る。また、反応管203の強度を高めることが可能となる。また、ガス排気エリア224の両端に温度測定エリア260を形成することにより、メンテナンス性を向上させることができる。   As shown in FIG. 7, in order to measure the temperature in the processing chamber 201 above the uppermost wafer 200 mounted on the boat 217 by the temperature sensor 238, the height of the ceiling portion of the temperature measurement area 260 is It is formed at the same height as the cylindrical portion 209. Similarly, the ceiling portion of the gas exhaust area 224 is formed at the same height as the height of the cylindrical portion 209. That is, in the present embodiment, the gas supply area 222, the gas exhaust area 224, the temperature measurement area 260, and the cylindrical portion 209 are formed so that the height of the ceiling is the same height. With such a configuration, it is possible to measure the temperature inside the processing chamber 201 in the vertical direction, and uniform heating of the processing chamber 201 by the heater 207 can be performed. In addition, the strength of the reaction tube 203 can be increased. Further, by forming the temperature measurement areas 260 at both ends of the gas exhaust area 224, it is possible to improve maintainability.

基板処理装置で行われる成膜処理には、例えば、CVD、PVD、ALD、Epi、その他酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理がある。更に、アニール処理、酸化処理、拡散処理等の処理でも構わない。   Examples of the film forming process performed in the substrate processing apparatus include CVD, PVD, ALD, Epi, other processes for forming an oxide film and a nitride film, and processes for forming a film containing a metal. Further, annealing treatment, oxidation treatment, diffusion treatment or the like may be performed.

<本発明の好ましい態様>以下、本発明の好ましい態様について付記する。   <Preferred Aspects of the Present Invention> Preferred aspects of the present invention will be described below.

(付記1)複数枚の基板を保持する基板保持部材と、前記基板保持部材を収容し、前記基板を処理する反応管と、前記反応管内に処理ガスを供給する処理ガス供給系と、前記反応管内の雰囲気を排気する排気系と、を有し、前記反応管は、上端に閉塞部を有し、下端に開口部を有する円筒部と、前記円筒部の一側壁の外側に形成され、前記処理ガス供給系が接続されたガス供給エリアと、前記ガス供給エリアと対向する前記円筒部の他側壁の外側に形成され、前記排気系が接続されたガス排気エリアと、を備え、前記ガス供給エリアおよび前記ガス排気エリアは、その内部の空間を複数の空間に区画する内壁を備えるよう構成された基板処理装置が提供される。   (Appendix 1) A substrate holding member that holds a plurality of substrates, a reaction tube that accommodates the substrate holding member and processes the substrate, a processing gas supply system that supplies a processing gas into the reaction tube, and the reaction An exhaust system for exhausting the atmosphere in the tube, and the reaction tube is formed on the outside of one side wall of the cylindrical portion having a closed portion at the upper end and an opening at the lower end, and the cylindrical portion, A gas supply area to which a processing gas supply system is connected; and a gas exhaust area formed outside the other side wall of the cylindrical portion facing the gas supply area and connected to the exhaust system. The area and the gas exhaust area are provided with a substrate processing apparatus configured to include an inner wall that divides an internal space into a plurality of spaces.

(付記2)付記1に記載の基板処理装置であって、好ましくは、前記ガス供給エリアと前記円筒部との境界壁に前記処理ガスを前記円筒部内に供給するガス供給スリットが形成される。   (Additional remark 2) It is a substrate processing apparatus of Additional remark 1, Preferably, the gas supply slit which supplies the said process gas in the said cylindrical part in the boundary wall of the said gas supply area and the said cylindrical part is formed.

(付記3)付記1または2に記載の基板処理装置であって、好ましくは、前記ガス排気エリアと前記円筒部との境界壁に前記円筒部内の雰囲気を排気するガス排気スリットが形成される。   (Additional remark 3) It is a substrate processing apparatus of Additional remark 1 or 2, Preferably, the gas exhaust slit which exhausts the atmosphere in the said cylindrical part is preferably formed in the boundary wall of the said gas exhaust area and the said cylindrical part.

(付記4)付記3に記載の基板処理装置であって、好ましくは、前記ガス供給スリットおよび前記ガス排気スリットは、前記複数の空間それぞれに対向した位置に、上下方向に複数に形成されている。   (Additional remark 4) It is a substrate processing apparatus of Additional remark 3, Preferably, the said gas supply slit and the said gas exhaust slit are formed in multiple numbers in the up-down direction in the position facing each of these space. .

(付記5)付記3または4に記載の基板処理装置であって、好ましくは、前記ガス供給スリットおよび前記ガス排気スリットは前記円筒部の周方向に長くに形成され、その両端部が曲面状に形成されている。   (Additional remark 5) It is a substrate processing apparatus as described in additional remark 3 or 4, Preferably, the said gas supply slit and the said gas exhaust slit are formed long in the circumferential direction of the said cylindrical part, and the both ends are curved surface shape. Is formed.

(付記6)付記1乃至5に記載の基板処理装置であって、好ましくは、前記ガス供給エリアの横断面積と前記ガス排気エリアの横断面積とは同じである。   (Additional remark 6) It is a substrate processing apparatus of Additional remark 1 thru | or 5, Preferably, the cross-sectional area of the said gas supply area and the cross-sectional area of the said gas exhaust area are the same.

(付記7)付記1乃至6に記載の基板処理装置であって、好ましくは、前記ガス供給エリアと前記ガス排気エリアとは同じ数だけ内壁を有し、同じ空間数に区画される。   (Additional remark 7) It is a substrate processing apparatus as described in additional remarks 1 thru | or 6, Preferably, the said gas supply area and the said gas exhaust area have the same number of inner walls, and are divided into the same number of spaces.

(付記8)付記6または付記7に記載の基板処理装置であって、好ましくは、前記ガス供給エリアの各空間の横断面積と前記ガス供給エリアの各空間に対面する前記ガス排気エリアの各空間の横断面積とは同じ面積である。   (Supplementary note 8) The substrate processing apparatus according to supplementary note 6 or supplementary note 7, preferably, a cross-sectional area of each space of the gas supply area and each space of the gas exhaust area facing each space of the gas supply area The cross-sectional area is the same area.

(付記9)付記1乃至8に記載の基板処理装置であって、好ましくは、前記ガス供給エリアの容積の方が前記ガス排気エリアの容積より大きい。   (Supplementary note 9) In the substrate processing apparatus according to supplementary notes 1 to 8, preferably, the volume of the gas supply area is larger than the volume of the gas exhaust area.

(付記10)付記9に記載の基板処理装置であって、好ましくは、前記ガス供給エリアの内壁の長さの方が前記ガス排気エリアの内壁の長さよりも長い。   (Supplementary note 10) The substrate processing apparatus according to supplementary note 9, wherein the length of the inner wall of the gas supply area is preferably longer than the length of the inner wall of the gas exhaust area.

(付記11)付記1乃至10に記載の基板処理装置であって、好ましくは、前記ガス供給エリアと前記円筒部との境界壁の下端に開口部が形成されている。   (Additional remark 11) It is a substrate processing apparatus as described in additional remarks 1 thru | or 10, Comprising: Preferably, the opening part is formed in the lower end of the boundary wall of the said gas supply area and the said cylindrical part.

(付記12)付記11に記載の基板処理装置であって、好ましくは、前記ガス供給エリアの内壁の長さは、前記円筒部の長さよりも短く、かつ、前記ガス供給エリアと前記円筒部との前記境界壁の長さよりも長い。   (Supplementary note 12) In the substrate processing apparatus according to supplementary note 11, preferably, the length of the inner wall of the gas supply area is shorter than the length of the cylindrical portion, and the gas supply area, the cylindrical portion, Longer than the boundary wall length.

(付記13)付記1乃至12に記載の基板処理装置であって、好ましくは、前記ガス供給スリットの縦の長さは、前記基板間の間隔よりも短い。   (Additional remark 13) It is a substrate processing apparatus as described in additional remarks 1 thru | or 12, Preferably, the vertical length of the said gas supply slit is shorter than the space | interval between the said board | substrates.

(付記14)付記4乃至13に記載の基板処理装置であって、好ましくは、前記ガス供給スリットおよび前記ガス排気スリットの段数は前記基板の枚数と同数である。   (Supplementary note 14) The substrate processing apparatus according to supplementary notes 4 to 13, wherein the number of stages of the gas supply slit and the gas exhaust slit is preferably the same as the number of the substrates.

(付記15)付記4乃至付記14に記載の基板処理装置であって、好ましくは、前記ガス供給スリットおよび前記ガス排気スリットの列数は、前記ガス供給エリアの前記空間数および前記ガス排気エリアの前記空間数と同数である。   (Supplementary note 15) In the substrate processing apparatus according to supplementary notes 4 to 14, preferably, the number of rows of the gas supply slit and the gas exhaust slit is the number of spaces in the gas supply area and the number of rows of the gas exhaust area. It is the same number as the number of spaces.

(付記16)付記15に記載の基板処理装置であって、好ましくは、前記ガス供給スリットおよび前記ガス排気スリットの横の長さは、前記ガス供給エリアの前記空間および前記ガス排気エリアの前記空間の横の長さと同じである。   (Additional remark 16) It is a substrate processing apparatus of Additional remark 15, Preferably, the horizontal length of the said gas supply slit and the said gas exhaust slit is the said space of the said gas supply area, and the said space of the said gas exhaust area Is the same as the horizontal length of

(付記17)付記1に記載の基板処理装置であって、好ましくは、前記ガス排気エリアに隣接して前記反応管内の温度を測定する温度センサが内部に設置された温度測定エリアが形成されている。   (Supplementary note 17) In the substrate processing apparatus according to supplementary note 1, preferably, a temperature measurement area in which a temperature sensor for measuring a temperature in the reaction tube is installed is formed adjacent to the gas exhaust area. Yes.

(付記18)本発明の別の一態様によれば、上端に閉塞部を有し、下端に開口部を有する円筒部と、前記円筒部の一側壁の外側に形成されたガス供給エリアと、前記ガス供給エリアと対向する前記円筒部の他側壁の外側に形成されたガス排気エリアとで構成された反応管の円筒部内に基板を搬送する工程と、その内部の空間を複数の空間に区画する内壁を備えたガス供給エリアから前記円筒部内に処理ガスを供給する工程と、その内部の空間を複数の空間に区画する内壁を備えたガス排気エリアから前記円筒部内の雰囲気を排気する工程と、を有する半導体装置の製造方法および基板処理方法が提供される。   (Supplementary note 18) According to another aspect of the present invention, a cylindrical portion having a closed portion at the upper end and an opening at the lower end, a gas supply area formed on the outside of one side wall of the cylindrical portion, A step of transporting the substrate into a cylindrical portion of a reaction tube formed by a gas exhaust area formed outside the other side wall of the cylindrical portion facing the gas supply area, and a space inside the chamber is partitioned into a plurality of spaces Supplying a processing gas into the cylindrical portion from a gas supply area having an inner wall, and exhausting the atmosphere in the cylindrical portion from a gas exhaust area having an inner wall that divides the internal space into a plurality of spaces. A method for manufacturing a semiconductor device and a substrate processing method are provided.

(付記19)本発明のさらに他の一態様によれば、上端に閉塞部を有し、下端に開口部を有する円筒部と、前記円筒部の一側壁の外側に形成されたガス供給エリアと、前記ガス供給エリアと対向する前記円筒部の他側壁の外側に形成されたガス排気エリアとで構成された反応管の円筒部内に基板を搬送する手順と、その内部の空間を複数の空間に区画する内壁を備えたガス供給エリアから前記円筒部内に処理ガスを供給する手順と、その内部の空間を複数の空間に区画する内壁を備えたガス排気エリアから前記円筒部内の雰囲気を排気する手順と、をコンピュータに実行させるプログラム、または、該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。   (Supplementary note 19) According to yet another aspect of the present invention, a cylindrical portion having a closed portion at the upper end and an opening at the lower end, and a gas supply area formed on the outside of one side wall of the cylindrical portion, , A procedure for transporting the substrate into the cylindrical portion of the reaction tube formed by the gas exhaust area formed outside the other side wall of the cylindrical portion facing the gas supply area, and the internal space into a plurality of spaces A procedure for supplying a processing gas into the cylindrical portion from a gas supply area having an inner wall to be partitioned, and a procedure for exhausting the atmosphere in the cylindrical portion from a gas exhaust area having an inner wall that divides the internal space into a plurality of spaces And a computer-readable recording medium on which the program is recorded are provided.

(付記20)本発明のさらに他の一態様によれば、上端に閉塞部を有し、下端に開口部を有する円筒部と、前記円筒部の一側壁の外側に形成されたガス供給エリアと、前記ガス供給エリアの対向する前記円筒部の他側壁の外側に形成されたガス排気エリアと、を有し前記ガス供給エリアおよび前記ガス排気エリアは、その内部の空間を複数の空間に区画する内壁を備えるよう構成される反応管が提供される。産業上の利用可能性   (Supplementary note 20) According to yet another aspect of the present invention, a cylindrical portion having a closed portion at the upper end and an opening at the lower end, and a gas supply area formed outside one side wall of the cylindrical portion, A gas exhaust area formed on the outside of the other side wall of the cylindrical portion facing the gas supply area, and the gas supply area and the gas exhaust area divide the internal space into a plurality of spaces. A reaction tube configured to include an inner wall is provided. Industrial applicability

本発明に係る基板処理装置、半導体装置の製造方法、反応管によれば、反応管の容積を削減し、処理ガスの置換効率を向上させることが可能となる。   According to the substrate processing apparatus, the method for manufacturing a semiconductor device, and the reaction tube according to the present invention, it is possible to reduce the volume of the reaction tube and improve the replacement efficiency of the processing gas.

280 コントローラ(制御部)200 ウエハ201 処理室202 処理炉203 反応管207 ヒータ222 ガス供給エリア224 ガス排気エリア231 排気管310a〜310f ガス供給管   280 Controller (control unit) 200 Wafer 201 Processing chamber 202 Processing furnace 203 Reaction tube 207 Heater 222 Gas supply area 224 Gas exhaust area 231 Exhaust tubes 310a to 310f Gas supply tubes

Claims (5)

複数枚の基板を保持する基板保持部材と、
前記基板保持部材を収容し、前記基板を処理する反応管と、
前記反応管内に少なくとも2種類の処理ガスを供給する処理ガス供給系と、
前記反応管内の雰囲気を排気する排気系と、を有し、
前記反応管は、上端に閉塞部を有し、下端に開口部を有する円筒部と、前記円筒部の一側突出するように形成され、前記処理ガス供給系が接続されたガス供給エリアと、記円筒部外側に形成され、前記排気系が接続されたガス排気エリアと、を備え、
前記ガス供給エリアと前記円筒部内との境界壁には、前記処理ガスを前記円筒部内に供給するガス供給スリットが形成され、
前記ガス供給エリアおよび前記ガス排気エリアは、その内部の空間を複数の空間に区画する内壁を備え、
前記内壁は、前記ガス供給エリアおよび前記ガス供給エリアのそれぞれの上端付近から下端付近まで伸びた板であり、それぞれの前記内部の空間を横方向に分割し、
前記ガス供給エリアの区画された前記空間の少なくとも2つには、前記2種類の処理ガスがそれぞれ供給さるよう構成された基板処理装置。
A substrate holding member for holding a plurality of substrates;
A reaction tube containing the substrate holding member and processing the substrate;
A processing gas supply system for supplying at least two kinds of processing gases into the reaction tube;
An exhaust system for exhausting the atmosphere in the reaction tube,
The reaction tube has a closed portion at the upper end, a cylindrical portion having an opening at the lower end, is formed so as to protrude on one side of the cylindrical portion, the process gas supply areas where the gas supply system is connected If, formed outside the front Symbol cylindrical portion, and a gas exhaust area connected the exhaust system,
The boundary wall of the gas supply area within the cylindrical portion, Ruga scan supply slit to supply the processing gas into the cylindrical portion is made form,
The gas supply area and the gas exhaust area include an inner wall that divides an internal space into a plurality of spaces,
The inner wall is a plate extending from near the upper end to the lower end of each of the gas supply area and the gas supply area, and divides each internal space in the lateral direction,
It said gas at least 2 in part of compartmented the space of the supply area, the two kinds of processing gas a substrate processing apparatus that is so that configured are supplied.
処理ガス供給系と接続され、前記ガス供給エリアの区画された前記空間の少なくとも1つに着脱可能に設けられた少なくとも1つのノズルを更に備え、
前記ガス供給エリアは下端部が開放されており、
前記ノズルは、前記ガス供給エリア内の下部から上部へ長さ方向に沿って設けられ、前記ノズルの側面には、前記反応管の中心を向くように開口しガスを供給するガス供給孔が設けられた請求項1記載の基板処理装置。
And further comprising at least one nozzle connected to a processing gas supply system and detachably provided in at least one of the spaces defined in the gas supply area;
The gas supply area is open at the lower end,
The nozzle is provided along a length direction from the lower part to the upper part in the gas supply area, and a gas supply hole that opens toward the center of the reaction tube and supplies gas is provided on a side surface of the nozzle. The substrate processing apparatus according to claim 1.
前記ガス排気エリアと前記円筒部との境界壁に前記円筒部内の雰囲気を排気する横長のガス排気スリットが形成され、前記ガス供給スリット及びガス排気スリットの横の長さは、前記ガス供給エリアおよび前記ガス排気エリアの前記空間の横の長さそれぞれと同じである請求項1又は2に記載の基板処理装置。   A horizontally long gas exhaust slit for exhausting the atmosphere in the cylindrical portion is formed in a boundary wall between the gas exhaust area and the cylindrical portion, and the horizontal lengths of the gas supply slit and the gas exhaust slit are the gas supply area and The substrate processing apparatus according to claim 1, wherein each of the gas exhaust areas has the same lateral length as the space. 前記ノズルは、前記ガス供給エリアの区画された前記空間の少なくとも2つにそれぞれ設けられ、
前記ノズルの少なくとも1つは、前記ガス供給孔が、前記基板に対応して設けられた前記ガス供給スリットのそれぞれの開口の縦中央位置に形成されている請求項2記載の基板処理装置。
The nozzles are respectively provided in at least two of the spaces defined in the gas supply area,
The substrate processing apparatus according to claim 2, wherein at least one of the nozzles has the gas supply hole formed at a vertical center position of each opening of the gas supply slit provided corresponding to the substrate.
前記反応管の下端の開口部に接続されて前記反応管を支持するとともに、前記ノズルの支持部を有するマニホールドを更に備え、
ノズル支持部は、前記マニホールドを貫通するように設けられ、前記マニホールド外側の端は前記処理ガス供給と接続し、前記マニホールド内側の端は前記ノズルと接続して支持し、
前記ガス供給エリアの内壁の下端は、前記ノズル支持部の上端よりも下側になる請求項2又は4に記載の基板処理装置。
The support tube is connected to an opening at the lower end of the reaction tube to support the reaction tube, and further includes a manifold having a support portion of the nozzle.
The nozzle support portion is provided so as to penetrate the manifold, the end outside the manifold is connected to the processing gas supply, and the end inside the manifold is connected to the nozzle and supported.
5. The substrate processing apparatus according to claim 2, wherein a lower end of an inner wall of the gas supply area is lower than an upper end of the nozzle support portion.
JP2017253254A 2017-12-28 2017-12-28 Substrate processing apparatus Pending JP2018078323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017253254A JP2018078323A (en) 2017-12-28 2017-12-28 Substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253254A JP2018078323A (en) 2017-12-28 2017-12-28 Substrate processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015538001A Division JP6257000B2 (en) 2014-09-30 2014-09-30 Substrate processing apparatus, semiconductor device manufacturing method, and reaction tube

Publications (1)

Publication Number Publication Date
JP2018078323A true JP2018078323A (en) 2018-05-17

Family

ID=62149282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253254A Pending JP2018078323A (en) 2017-12-28 2017-12-28 Substrate processing apparatus

Country Status (1)

Country Link
JP (1) JP2018078323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188857A1 (en) * 2019-03-20 2020-09-24 株式会社Kokusai Electric Substrate processing device, reaction vessel, method for manufacturing semiconductor device, and recording medium
CN112740373A (en) * 2018-09-20 2021-04-30 株式会社国际电气 Substrate processing apparatus
WO2022034996A1 (en) * 2020-08-12 2022-02-17 삼성전자 주식회사 Semiconductor manufacturing apparatus and substrate processing method using the manufacturing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740373A (en) * 2018-09-20 2021-04-30 株式会社国际电气 Substrate processing apparatus
WO2020188857A1 (en) * 2019-03-20 2020-09-24 株式会社Kokusai Electric Substrate processing device, reaction vessel, method for manufacturing semiconductor device, and recording medium
JPWO2020188857A1 (en) * 2019-03-20 2020-09-24
CN113519041A (en) * 2019-03-20 2021-10-19 株式会社国际电气 Substrate processing apparatus, reaction vessel, method for manufacturing semiconductor device, and recording medium
JP7198908B2 (en) 2019-03-20 2023-01-04 株式会社Kokusai Electric Substrate processing apparatus, reaction vessel, semiconductor device manufacturing method and program
CN113519041B (en) * 2019-03-20 2024-04-16 株式会社国际电气 Substrate processing apparatus, reaction container, method for manufacturing semiconductor device, and recording medium
WO2022034996A1 (en) * 2020-08-12 2022-02-17 삼성전자 주식회사 Semiconductor manufacturing apparatus and substrate processing method using the manufacturing apparatus
KR20220021448A (en) * 2020-08-12 2022-02-22 삼성전자주식회사 Semiconductor manufacturing apparatus and substrate processing method using the manufacturing apparatus
KR102388357B1 (en) * 2020-08-12 2022-04-19 삼성전자주식회사 Semiconductor manufacturing apparatus and substrate processing method using the manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP6257000B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and reaction tube
KR102238585B1 (en) Substrate processing device, reaction tube, manufacturing method and program of semiconductor device
US11495477B2 (en) Substrate processing apparatus
US11685992B2 (en) Substrate processing apparatus, quartz reaction tube and method of manufacturing semiconductor device
KR102099330B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
US20210043485A1 (en) Substrate processing apparatus and substrate holder
JP2018078323A (en) Substrate processing apparatus
JP6415215B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
US20230055506A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, method of processing substrate, and gas injector
US11898247B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP7240557B2 (en) Substrate processing equipment, semiconductor device manufacturing method, program and inner tube
WO2021192090A1 (en) Substrate processing device, method for manufacturing semiconductor device, recording media, and inner tube

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820