JP2018078275A - METHOD FOR PRODUCING RFeB-BASED MAGNET - Google Patents

METHOD FOR PRODUCING RFeB-BASED MAGNET Download PDF

Info

Publication number
JP2018078275A
JP2018078275A JP2017176613A JP2017176613A JP2018078275A JP 2018078275 A JP2018078275 A JP 2018078275A JP 2017176613 A JP2017176613 A JP 2017176613A JP 2017176613 A JP2017176613 A JP 2017176613A JP 2018078275 A JP2018078275 A JP 2018078275A
Authority
JP
Japan
Prior art keywords
rfeb
base material
magnet
rare earth
containing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017176613A
Other languages
Japanese (ja)
Other versions
JP6939299B2 (en
Inventor
高木 忍
Shinobu Takagi
忍 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to DE102017125326.2A priority Critical patent/DE102017125326A1/en
Priority to US15/798,138 priority patent/US20180122571A1/en
Priority to CN201711051149.2A priority patent/CN108010702B/en
Publication of JP2018078275A publication Critical patent/JP2018078275A/en
Application granted granted Critical
Publication of JP6939299B2 publication Critical patent/JP6939299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an RFeB-based magnet, in which not only a grain boundary diffusion treatment can be performed so that a heavy rare earth element Ris caused to penetrate in the whole magnet as evenly as possible to thereby produce a magnet that is homogeneous as a whole but also the magnet can be produced without wasting the heavy rare earth element R.SOLUTION: A method for producing an RFeB-based magnet according to the present invention includes: an R-containing-substance adhesion step in which an R-containing slurry 12 obtained by mixing an organic solvent 122 with R-containing powder 121 that contains at least one heavy rare earth element Rselected from among Dy, Tb and Ho, is blown, in a form of dots or a line, onto a surface of a base material 11 including an RFeB-based sintered magnet or RFeB-based hot-plastic worked magnet which contains a rare earth element R, Fe, and B, thereby adhering an R-containing substance 13 to the surface of the base material; and a heating step in which the base material 11 to which the R-containing substance 13 has been adhered is heated to a predetermined temperature at which the heavy rare earth element Rin the R-containing substance 13 diffuses into the base material 11 through grain boundaries of the base material 11.SELECTED DRAWING: Figure 1

Description

本発明は、R(希土類元素)、Fe(鉄)及びB(硼素)を含有するRFeB系磁石の製造方法に関する。特に、RFeB系合金の粉末から成る原料粉末を磁界中で配向した後に焼結したRFeB系焼結磁石や、同様の原料粉末に対して熱間プレス加工を行った後に熱間塑性加工を行うことで結晶粒を配向したRFeB系熱間塑性加工磁石(非特許文献1参照)内の結晶粒の表面付近に、該結晶粒の粒界を通して、Dy(ジスプロシウム), Tb(テルビウム)及びHo(ホルミウム)のうちの少なくとも1種の希土類元素(以下、Dy, Tb及びHoを「重希土類元素RH」と呼ぶ)を拡散させる処理(粒界拡散処理)を伴うRFeB系磁石の製造方法に関する。 The present invention relates to a method for producing an RFeB-based magnet containing R (rare earth element), Fe (iron) and B (boron). In particular, RFeB-based sintered magnets obtained by orienting raw material powders made of RFeB-based alloy powders in a magnetic field, and hot plastic working after hot pressing on similar raw material powders. Dy (dysprosium), Tb (terbium), and Ho (holmium) through the grain boundary of the crystal grains in the vicinity of the surface of the crystal grains in the RFeB hot plastic working magnet (see Non-Patent Document 1) in which the crystal grains are oriented ) At least one kind of rare earth elements (hereinafter, Dy, Tb and Ho are referred to as “heavy rare earth elements R H ”).

RFeB系磁石は、1982年に佐川眞人らによって見出されたものであり、残留磁束密度等の多くの磁気特性がそれまでの永久磁石よりもはるかに高いという特長を有する。そのため、RFeB系磁石はハイブリッド自動車や電気自動車の駆動用モータ、電動補助型自転車用モータ、産業用モータ、ハードディスク等のボイスコイルモータ、スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。   The RFeB-based magnet was discovered by Hayato Sagawa in 1982 and has a feature that many magnetic properties such as residual magnetic flux density are much higher than the conventional permanent magnet. For this reason, RFeB magnets are used in various products such as hybrid and electric vehicle drive motors, motor-assisted bicycle motors, industrial motors, voice coil motors such as hard disks, speakers, headphones, and permanent magnet magnetic resonance diagnostic equipment. Is used.

初期のRFeB系磁石は種々の磁気特性のうち保磁力HcJが比較的低いという欠点を有していたが、その後、RFeB系磁石の内部に重希土類元素RHを存在させることにより、保磁力が向上することが明らかになった。保磁力は磁化の向きとは逆向きの磁界が磁石に印加されたときに磁化が反転することに耐える力であるが、重希土類元素RHはこの磁化反転を妨げることにより、保磁力を増大させる効果を持つと考えられている。 Early RFeB-based magnets had the disadvantage that the coercive force HcJ was relatively low among various magnetic properties. After that, the presence of heavy rare earth elements RH inside the RFeB-based magnets allowed the coercive force to be reduced. It became clear that improved. The coercive force is a force that can withstand the reversal of magnetization when a magnetic field opposite to the direction of magnetization is applied to the magnet, but the heavy rare earth element R H increases the coercive force by preventing this magnetization reversal. It is thought to have an effect to make.

一方、RFeB系磁石中の重希土類元素RHの含有量が増加すると、残留磁束密度Brが低下し、それにより最大エネルギー積(BH)maxも低下する、という問題が生じる。また、重希土類元素RHが資源として高価・希少であり、且つ産出される地域が偏在していることから、RFeB系磁石を安価且つ安定的に市場に供給するという点からも、重希土類元素RHの含有量を増加させることは望ましくない。 On the other hand, when the content of the heavy rare earth element RH in the RFeB magnet increases, there arises a problem that the residual magnetic flux density Br decreases, and thereby the maximum energy product (BH) max also decreases. In addition, since heavy rare earth elements RH are expensive and scarce as resources, and the regions where they are produced are unevenly distributed, it is also possible to supply RFeB-based magnets to the market at low cost and stably. Increasing the RH content is undesirable.

そこで、重希土類元素RHの含有量を抑えつつ、保磁力を高くするために、粒界拡散処理が行われている(例えば特許文献1参照)。粒界拡散処理では、重希土類元素RHを含有するRH含有物をRFeB系焼結磁石又はRFeB系熱間塑性加工磁石の表面に付着させたうえで加熱することにより、粒界を通して重希土類元素RHを磁石の内部まで侵入させ、各結晶粒の表面近傍のみに重希土類元素RHを拡散させる。以下、粒界拡散処理を行う前のRFeB系焼結磁石又はRFeB系熱間塑性加工磁石を「基材」と呼ぶ。保磁力の低下は、磁化反転が結晶粒の表面近傍で生じた後に結晶粒全体に拡がってゆくことで生じることから、このように結晶粒の表面近傍における重希土類元素RHの濃度を高くすることによって磁化反転を抑え、保磁力を高くすることができる。一方、重希土類元素RHは各結晶粒の表面(粒界)近傍のみに偏在するため、全体としての含有量を抑えることができ、それにより残留磁束密度及び最大エネルギー積の低下を防ぐことができると共に、RFeB系磁石を安価且つ安定的に市場に供給することができる。 Therefore, in order to increase the coercive force while suppressing the content of the heavy rare earth element RH , a grain boundary diffusion process is performed (see, for example, Patent Document 1). In the grain boundary diffusion treatment, an RH- containing material containing a heavy rare earth element R H is attached to the surface of an RFeB-based sintered magnet or RFeB-based hot plastic working magnet, and then heated, thereby allowing the heavy rare earth to pass through the grain boundary. The element RH is penetrated into the magnet, and the heavy rare earth element RH is diffused only near the surface of each crystal grain. Hereinafter, the RFeB-based sintered magnet or the RFeB-based hot plastic working magnet before the grain boundary diffusion treatment is referred to as a “base material”. The decrease in coercive force is caused by magnetization reversal occurring near the surface of the crystal grain and then spreading to the entire crystal grain. Thus, the concentration of the heavy rare earth element R H near the crystal grain surface is increased in this way. Thus, the magnetization reversal can be suppressed and the coercive force can be increased. On the other hand, since the heavy rare earth element R H is unevenly distributed only near the surface (grain boundary) of each crystal grain, the overall content can be suppressed, thereby preventing a decrease in residual magnetic flux density and maximum energy product. In addition, RFeB magnets can be supplied to the market at low cost and stably.

粒界拡散処理を行う際に基材表面にRH含有物を付着させる方法には様々なものがある。例えば特許文献1には、重希土類元素RHを含有する粉末と有機溶剤の混合物から成るRH含有スラリーをノズルから基材表面に向けて吐出することにより、基材表面にRH含有物を付着させることが記載されている。 There are various methods for attaching the RH- containing material to the surface of the base material during the grain boundary diffusion treatment. For example, in Patent Document 1, an RH- containing material composed of a mixture of a powder containing a heavy rare earth element RH and an organic solvent is discharged from a nozzle toward the surface of the base material, whereby the RH- containing material is applied to the surface of the base material. It is described that it adheres.

特開2015-065218号公報JP2015-065218A 特開2006-019521号公報JP 2006-019521 A 国際公開WO2011/136223号International Publication WO2011 / 136223

日置敬子、服部篤 著、「超急冷粉末を原料とした省Dy型Nd−Fe−B系熱間加工磁石の開発」、素形材 第52巻第8号第19〜24頁、一般財団法人素形材センター、平成23年8月発行Keiko Hioki, Atsushi Hattori, “Development of Dy-type Nd-Fe-B hot-working magnets using ultra-quenched powders”, Material 52, No. 8, pp. 19-24, General Foundation Forming Material Center, issued in August 2011

特許文献1では、必要な量を超えて無駄に重希土類元素RHを消費しないために、基材表面に対向して多数のノズルを配置することにより、必要以上に厚い部分が生じることなく均一にRH含有物を基材表面に付着させることが望ましい、とされている。しかしながら、実際には、各ノズルから同じ速度(単位時間当たりの供給量)でRH含有物を吐出させることは難しく、ノズル毎にRH含有物の供給量にばらつきが生じてしまうため、部分的には必要以上に多くのRH含有物が付着する。その結果、その部分においては粒界近傍のみならず結晶粒内にもRHが侵入し、磁気特性を低下させる。従って、磁石全体として均一な磁気特性が得られないことになる。また、重希土類元素RHを無駄に消費してしまうことにもなる。 In Patent Document 1, in order not to waste heavy rare earth elements RH in excess of a necessary amount, a large number of nozzles are arranged opposite to the surface of the base material so that a thicker portion than necessary is not generated. It is said that it is desirable to attach an RH- containing material to the surface of the substrate. However, since in practice, possible to eject R H inclusions difficult at the same rate from each nozzle (supply amount per unit time), there arises a variation in the supply amount of R H inclusions for each nozzle, part In reality, more RH- containing materials are attached than necessary. As a result, RH penetrates not only in the vicinity of the grain boundary but also in the crystal grains in that portion, and the magnetic properties are deteriorated. Therefore, uniform magnetic characteristics cannot be obtained for the entire magnet. In addition, the heavy rare earth element R H is wasted.

本発明が解決しようとする課題は、粒界拡散処理において重希土類元素RHを基材(磁石)全体にできるだけ均等に侵入させることにより全体として均質な磁石を製造するとともに、重希土類元素RHを無駄に消費することなく磁石を製造することができるRFeB系磁石の製造方法を提供することである。 The problem to be solved by the present invention is to produce a homogeneous magnet as a whole by allowing the heavy rare earth element R H to penetrate as much as possible into the entire base material (magnet) in the grain boundary diffusion treatment, and to produce the heavy rare earth element R H It is an object to provide an RFeB-based magnet manufacturing method capable of manufacturing a magnet without wasting power.

上記課題を解決するために成された本発明に係るRFeB系磁石の製造方法は、
希土類元素R、Fe及びBを含有するRFeB系焼結磁石又はRFeB系熱間塑性加工磁石から成る基材の表面に、Dy, Tb及びHoのうちの少なくとも1種から成る重希土類元素RHを含有するRH含有粉末と有機溶剤を混合したRH含有スラリーを点状又は線状に吹き付けることによりRH含有物を付着させるRH含有物付着工程と、
前記RH含有物を付着させた前記基材を、該RH含有物内の重希土類元素RHが該基材の粒界を通して該基材内に拡散する所定温度に加熱する加熱工程と
を有することを特徴とする。
The manufacturing method of the RFeB-based magnet according to the present invention made to solve the above problems is as follows.
A heavy rare earth element R H composed of at least one of Dy, Tb and Ho is applied to the surface of a base material composed of an RFeB sintered magnet or an RFeB based hot plastic working magnet containing rare earth elements R, Fe and B. An RH- containing material adhering step for adhering the RH- containing material by spraying the RH- containing slurry in which the RH- containing powder and the organic solvent are mixed in a dotted or linear manner;
Heating the substrate to which the RH- containing material is adhered to a predetermined temperature at which the heavy rare earth element RH in the RH- containing material diffuses into the substrate through grain boundaries of the substrate; It is characterized by having.

本発明に係るRFeB系磁石の製造方法では、RH含有スラリーを基材表面に点状又は線状に吹き付けることにより、基材表面にはRH含有スラリーから成るRH含有物が点状又は線状の形状で付着する。基材表面に付着した点状又は線状のRH含有物同士は互いに分離していて(RH含有物間にRH含有物が付着していない部分があって)もよいし、点状又は線状のRH含有物同士が繋がって点状又は線状の濃淡模様(点状又は線状の部分の間にRH含有スラリーの量が少ない部分が存在する状態)を形成していてもよい。重希土類元素RHの使用量を抑えるという点で、RH含有物同士は互いに分離している方が望ましい。 In the production method of the RFeB-based magnet according to the present invention, by spraying the R H containing slurry in point-like or linear surface of the base material, the base material surface R H content consists slurry R H inclusions point-like or It adheres in a linear shape. R H inclusions each other of the deposited punctate or linear surface of the base material is not separated from one another (R H inclusions between the there is a portion where R H inclusions do not adhere) also may punctate Or, the linear RH- containing materials are connected to form a dotted or linear shading pattern (a state in which there is a portion with a small amount of RH- containing slurry between the dotted or linear portions). Also good. From the standpoint of reducing the amount of heavy rare earth element RH used, it is desirable that the RH- containing materials are separated from each other.

RFeB系焼結磁石及びRFeB系熱間塑性加工磁石は、R、Fe及びBを主な構成元素として含有するが、Co, Ni, Al, Cu等の他の元素を含有していてもよい。   The RFeB-based sintered magnet and the RFeB-based hot plastic working magnet contain R, Fe, and B as main constituent elements, but may contain other elements such as Co, Ni, Al, and Cu.

本発明者が実験を行ったところ、RH含有スラリーを基材表面の全体ではなく、点状又は線状に吹き付けることでRH含有物を基材表面に付着させたうえで粒界拡散処理を行ったRFeB系磁石の保磁力は、粒界拡散処理前の基材の保磁力よりも高くなった。これは、加熱工程において、基材表面に点状又は線状に付着させたRH含有物から重希土類元素RHが基材表面に平行な方向にも拡散してゆくことによる。これにより、基材よりも保磁力を高くしつつ、必要以上に多くのRH含有スラリーを使用することがないため、重希土類元素RHを無駄に消費することを防ぐことができる。 The present inventors have conducted experiments, the R H containing slurry rather than the entire substrate surface, the grain boundary diffusion process to R H inclusions after having adhered to the substrate surface by blowing a point-like or linear The coercive force of the RFeB magnet subjected to the above was higher than the coercive force of the base material before the grain boundary diffusion treatment. This is because the heavy rare earth element R H diffuses in the direction parallel to the substrate surface from the R H containing material adhering to the substrate surface in the form of dots or lines in the heating step. This makes it possible to prevent wasteful consumption of the heavy rare earth element RH because the coercive force is higher than that of the base material and an excessive amount of RH- containing slurry is not used.

また、本発明者の実験によれば、前記RH含有物を付着させた前記基材表面のうち前記RH含有物が占める面積の割合である面積率を31.4%以上とすることにより、基材表面の全体にRH含有物を付着させた場合と同等の保磁力を得ることができる。これは、面積率をこのような値にすることにより、基材表面に平行な方向の全体に(RH含有物が付着していないところにも)重希土類元素RHが行き亘り、基材表面の全体にRH含有物を付着させた場合と同等の効果が得られることによると考えられる。なお、RH含有物を点状又は線状に付着させる領域は、基材の全ての表面である必要はなく、例えば板状(直方体状)の基材では、1つの表面又は対向する2つの表面にのみRH含有物を付着させることが従来より一般的に行われている。このような場合、1つ又は2つの表面にRH含有物を点状又は線状に31.4%以上の面積率で付着させた場合には、それら1つ又は2つの表面の全体にRH含有物を付着させた場合と同等の効果が得られる。 Further, according to the inventor's experiment, by setting the area ratio, which is the ratio of the area occupied by the RH- containing material, to 31.4% or more of the substrate surface to which the RH- containing material is adhered, A coercive force equivalent to that obtained when the RH- containing material is adhered to the entire surface of the material can be obtained. This is because, by setting the area ratio to such a value, the heavy rare earth element RH spreads throughout the direction parallel to the substrate surface (even where no RH- containing material is attached), and the substrate It is thought that this is because the same effect as that obtained when the RH- containing material is adhered to the entire surface is obtained. In addition, the region to which the RH- containing material is attached in the form of dots or lines does not have to be on the entire surface of the substrate. For example, in the case of a plate-shaped (cuboid) substrate, one surface or two opposing surfaces Conventionally, the RH- containing material is generally adhered only to the surface. In such a case, when an RH- containing material is attached to one or two surfaces in a dotted or linear manner at an area ratio of 31.4% or more, the entire one or two surfaces contain RH. An effect equivalent to the case of attaching an object can be obtained.

基材表面におけるRH含有物の付着形態は、重希土類元素RHの使用量をより一層抑えることができるという点で、線状よりも点状の方が望ましい。 The adhesion form of the RH- containing material on the surface of the base material is preferably a dot form rather than a linear form in that the amount of heavy rare earth element RH used can be further suppressed.

RH含有物を点状に付着させる場合、それら点状のRH含有物が直線状に並ぶようにすることが望ましい。このようなRH含有物の配置は、基板表面に対向するノズルを該表面に対して相対的に該表面に平行に直線状に移動させながら、該ノズルからRH含有スラリーを間歇的に吐出することにより、容易に形成することができる。 When adhering the R H inclusions in dots, it is desirable that their points like R H inclusions to be aligned in a straight line. Such arrangement of the RH- containing material is such that the RH- containing slurry is intermittently discharged from the nozzle while moving the nozzle facing the substrate surface linearly relative to the surface and parallel to the surface. By doing so, it can be easily formed.

特許文献3には、スクリーン印刷の手法を用いてRH含有スラリーを基材表面に塗布することが記載されている。この方法では、スクリーンを基材表面上に張設し、スクリーン上にRH含有スラリーを供給したうえで、スクリーン表面をスキージで擦ることにより、スクリーン中のRH含有スラリーが透過可能な透過部を通して該RH含有スラリーを基材表面に塗布する。しかし、この特許文献3の方法は、基材の表面が平面である場合を前提としており、曲面である基材の表面にRH含有スラリーを塗布することは困難である。それに対して本発明に係るRFeB系磁石の製造方法では、RH含有スラリーを点状又は線状に吹き付けることにより、基板の表面が平面、曲面のいずれの場合であっても該表面にRH含有物を付着させることができる。特に、本発明に係るRFeB系磁石の製造方法は、特許文献3の方法では塗布が困難であった基材表面が曲面である場合に好適にRH含有物を付着させることができる。RH含有物を付着させる曲面は、凸面、凹面のいずれであってもよい。基材の表面が凸面と凹面の双方を有する場合には、それら双方にRH含有物を付着させてもよいし、いずれか一方のみにRH含有物を付着させてもよい。 Patent Document 3 describes that an RH- containing slurry is applied to the surface of a substrate using a screen printing technique. In this method, the screen is stretched on the surface of the substrate, the RH- containing slurry is supplied onto the screen, and the screen surface is rubbed with a squeegee so that the RH- containing slurry in the screen can permeate. Through which the RH- containing slurry is applied to the substrate surface. However, the method of Patent Document 3 is based on the assumption that the surface of the base material is a flat surface, and it is difficult to apply the RH- containing slurry to the surface of the base material that is a curved surface. In the manufacturing method of the RFeB-based magnet according to the present invention contrast, R H by blowing-containing slurry to a point or linear, surface plane of the substrate, R to the surface even with either curved H Inclusions can be deposited. In particular, the method for producing an RFeB magnet according to the present invention can suitably attach the RH- containing material when the surface of the base material, which has been difficult to apply by the method of Patent Document 3, is a curved surface. The curved surface to which the RH- containing material is attached may be either a convex surface or a concave surface. When the surface of the substrate has both a convex surface and a concave surface, the RH- containing material may be attached to both of them, or the RH- containing material may be attached to only one of them.

本発明に係るRFeB系磁石の製造方法によれば、粒界拡散処理において重希土類元素RHを基材(磁石)全体にできるだけ均等に侵入させることにより全体として均質な磁石を製造するとともに、重希土類元素RHを無駄に消費することなく磁石を製造することができる。 According to the method for producing an RFeB magnet according to the present invention, a heavy rare earth element RH is made to penetrate into the entire base material (magnet) as evenly as possible in the grain boundary diffusion treatment, and a homogeneous magnet as a whole is produced. A magnet can be manufactured without wasting the rare earth element RH .

本発明に係るRFeB系磁石の製造方法の一実施形態を示す概略図。Schematic which shows one Embodiment of the manufacturing method of the RFeB type magnet which concerns on this invention. 本発明に係るRFeB系磁石の製造方法の実施形態において用いるRH含有スラリー供給装置の概略構成図。The schematic block diagram of the RH containing slurry supply apparatus used in embodiment of the manufacturing method of the RFeB type magnet which concerns on this invention. RH含有物を基材の表面に配置するパターンの例を示す上面図。The top view which shows the example of the pattern which arrange | positions a RH containing material on the surface of a base material. RH含有物を基材の表面に配置するパターンの例を示す上面図。The top view which shows the example of the pattern which arrange | positions a RH containing material on the surface of a base material. 基材の表面にRH含有物を付着させた例を示す写真。The photograph which shows the example which made RH containing material adhere to the surface of a base material. 実施例9で用いた、RH含有物を基材の表面に配置するパターンを示す上面図。The top view which shows the pattern used in Example 9, and arrange | positions the RH containing material on the surface of a base material. 実施例9において基材の(a)凸面及び(b)凹面にRH含有物を付着させた状態を示す写真。In Example 9, the photograph which shows the state which made the RH containing material adhere to the (a) convex surface and (b) concave surface of a base material.

図1〜図7を用いて、本発明に係るRFeB系磁石の製造方法の実施形態を説明する。
図1は、本実施形態のRFeB系磁石の製造方法の工程を示す概略図である。まず、公知の方法により、RFeB系焼結磁石又はRFeB系熱間塑性加工磁石から成る基材11を用意する(a)。RFeB系焼結磁石は、原料のRFeB系合金粉末を磁界により配向させながらプレス成形を行った後に焼結するプレス法で作製してもよいし、特許文献2に記載のようにRFeB系合金粉末をプレス成形することなくモールド中で磁界により配向させたうえでそのまま焼結するPLP(Press-less process)法で作製してもよい。RFeB系熱間塑性加工磁石は、非特許文献1に記載の方法で作製することができる。基材11の形状は、図1に示すように、直方体状(符号111)、全体が弓形状のもの(符号112)、直方体の1つの面のみを上に凸の弓形状の曲面に変更した形状を有するもの(符号113、以下では「1面弓形形状」と呼ぶ)等、種々の形状を取り得る。符号112及び113を付した基材のように曲面を有する形状の基材は、それらの形状に対応したモールドを用いてPLP法により作製することにより、それらの形状を形成するための機械加工を行う必要がない(表面の仕上げ加工のみで済む)という点で望ましい。
1 to 7, an embodiment of a method for manufacturing an RFeB magnet according to the present invention will be described.
FIG. 1 is a schematic diagram showing the steps of a method for manufacturing an RFeB magnet according to this embodiment. First, a substrate 11 made of an RFeB sintered magnet or an RFeB hot plastic working magnet is prepared by a known method (a). The RFeB-based sintered magnet may be produced by a pressing method in which the raw RFeB-based alloy powder is pressed while being oriented by a magnetic field and then sintered, or as described in Patent Document 2, the RFeB-based alloy powder May be produced by a PLP (Press-less process) method in which the material is oriented by a magnetic field in a mold without being pressed and then sintered as it is. The RFeB-based hot plastic working magnet can be manufactured by the method described in Non-Patent Document 1. As shown in FIG. 1, the shape of the base material 11 was changed to a rectangular parallelepiped shape (reference numeral 111), an overall one having a bow shape (reference numeral 112), and a curved surface having an upward convex shape on only one surface of the rectangular parallelepiped. Various shapes such as one having a shape (reference numeral 113, hereinafter referred to as “one-sided bow shape”) can be taken. The base material having a curved surface, such as the base materials denoted by reference numerals 112 and 113, is manufactured by the PLP method using a mold corresponding to the shape, and is subjected to machining for forming those shapes. This is desirable in that it does not need to be performed (only the surface finishing is required).

次に、RH含有スラリー12を用意する(b)。RH含有スラリーは、重希土類元素RHを含有するRH合金粉末121と、有機溶剤122を混合することにより作製する。RH合金粉末121には、後述の実施例ではTb、Ni及びAlを質量比で92:4:4で含有するTbNiAl合金の粉末を用いた。ここでTbの代わりにDy又はHoを用いてもよいし、Dy, Tb及びHoのうちの2種以上を用いてもよい。また、Ni及びAlは合金の融点を低下させる役割を有するが本発明では必須ではない。従って、RH合金粉末121には、重希土類元素RHのみから成る金属や、Ni及び/又はAl以外の元素を含有するものを用いてもよい。有機溶剤122では、後述の実施例では粘性の異なる2種類のシリコーン(いわゆるシリコーングリースとシリコーンオイル)を混合して粘性を調整したものを用いた。有機溶剤122の粘性は、RH含有スラリー12が、次に述べるノズル21から射出可能であって、且つ基材11の表面に点状又は線状に吹き付けた際に隣接する点又は線同士が結合するように該表面上を流れることが無いように調整した。また、シリコーン以外の有機溶剤を用いてもよい。 Next, an RH- containing slurry 12 is prepared (b). The RH- containing slurry is prepared by mixing the RH alloy powder 121 containing the heavy rare earth element RH and the organic solvent 122. As the RH alloy powder 121, a TbNiAl alloy powder containing Tb, Ni, and Al at a mass ratio of 92: 4: 4 was used in the examples described later. Here, Dy or Ho may be used instead of Tb, or two or more of Dy, Tb and Ho may be used. Ni and Al have a role to lower the melting point of the alloy, but are not essential in the present invention. Therefore, the RH alloy powder 121 may be a metal containing only the heavy rare earth element RH , or one containing elements other than Ni and / or Al. As the organic solvent 122, in the examples described later, a mixture of two types of silicones having different viscosities (so-called silicone grease and silicone oil) was used to adjust the viscosity. The viscosity of the organic solvent 122 is such that the RH- containing slurry 12 can be ejected from the nozzle 21 described below, and adjacent points or lines when sprayed on the surface of the substrate 11 in the form of dots or lines. It was adjusted so that it would not flow on the surface so as to bond. An organic solvent other than silicone may be used.

次に、図2に示すRH含有スラリー供給装置20により、RH含有スラリー12を基材11の表面に点状又は線状に吹き付ける(図1(c))。RH含有スラリー供給装置20は、1本のノズル21と、RH含有スラリーを貯留する貯留タンク22と、RH含有スラリー12を貯留タンク22から吸引して間欠的にノズル21に送出するRH含有スラリー送出装置23と、ノズル21に対向するように基材11を保持する基材保持部24と、ノズル21と基材保持部24の水平方向の相対的な位置を移動させる移動部25とを備える。 Next, the RH- containing slurry 12 is sprayed onto the surface of the base material 11 in the form of dots or lines by the RH- containing slurry supply device 20 shown in FIG. 2 (FIG. 1 (c)). R H containing slurry supply device 20, and sends the one nozzle 21, a storage tank 22 for storing the R H containing slurry, to intermittently nozzle 21 by suction R H containing slurry 12 from the reservoir tank 22 R The H- containing slurry delivery device 23, the base material holding part 24 that holds the base material 11 so as to face the nozzle 21, and the moving part 25 that moves the relative positions of the nozzle 21 and the base material holding part 24 in the horizontal direction. With.

RH含有スラリー送出装置23は空気式又は電磁ソレノイド式アクチュエータを有しており、RH含有スラリー送出装置23のコントローラからアクチュエータに信号が送信されたときに、弁要素又はピストンが移動することで、RH含有スラリーをノズル21に押し出す。なお、アクチュエータには、ピエゾ素子(圧電素子)を用いることもできる。これらの例はいずれもRH含有スラリー12を基材11の表面に点状に吹き付けるものであるが、例えばRH含有スラリー送出装置23として弁を開放することによってRH含有スラリーをノズル21から連続的に送出するものを用いることにより、RH含有スラリー12を基材11の表面に線状に吹き付けることもできる。 The RH- containing slurry delivery device 23 has a pneumatic or electromagnetic solenoid actuator. When a signal is transmitted from the controller of the RH- containing slurry delivery device 23 to the actuator, the valve element or the piston moves. The RH containing slurry is extruded to the nozzle 21. A piezoelectric element (piezoelectric element) can also be used as the actuator. These examples are blown onto the point-like surface of any R H containing slurry 12 substrate 11, the R H containing slurry from the nozzle 21 by opening a valve, for example, as R H containing slurry delivery apparatus 23 By using what is continuously fed, the RH- containing slurry 12 can be sprayed linearly on the surface of the substrate 11.

移動部25は、本実施形態では基材保持部24を移動させるものを用いるが、ノズル21を移動させるものや、ノズル21と基材保持部24の双方を移動させるものであってもよい。以下では、「ノズル21を移動させる」との記載は、基材保持部24に保持された基材11に対する相対的なノズル21の位置を移動させることを意味し、ノズル21と基材保持部24のいずれを移動させる場合も含むものとする。ここで例示した移動部25は、基材保持部24を水平な1方向であるX方向と、水平であってX方向に垂直なY方向の2方向に移動させる機構を有しており、それにより、基材保持部24を所定の平面状の範囲内で任意の位置に移動させることができる。   Although the moving part 25 uses what moves the base material holding part 24 in this embodiment, what moves the nozzle 21 and what moves both the nozzle 21 and the base material holding part 24 may be used. In the following, the description of “moving the nozzle 21” means that the position of the nozzle 21 relative to the base material 11 held by the base material holding part 24 is moved, and the nozzle 21 and the base material holding part. The case where any one of 24 is moved is included. The moving unit 25 exemplified here has a mechanism for moving the base material holding unit 24 in two directions, ie, a horizontal X direction and a horizontal Y direction perpendicular to the X direction. Thus, the substrate holding part 24 can be moved to an arbitrary position within a predetermined planar range.

RH含有スラリー12を付着させる基材11の表面は、平面であってもよいし、曲面であってもよい。 The surface of the substrate 11 to which the RH- containing slurry 12 is attached may be a flat surface or a curved surface.

基材11の表面に吹き付けたRH含有スラリー12は、有機溶剤122が揮発性のものであれば該有機溶剤122が蒸発して固体状のものが基材11の表面に残り、有機溶剤122が不揮発性のものであればRH含有スラリーのまま基材11の表面に残る。いずれにせよ、基材11の表面には重希土類元素RHを含有するRH含有物13が点状又は線状に付着した状態となる。RH含有スラリーを基材11の表面に点状又は線状に吹き付ける際に、点又は線同士をある程度離しておくと、基材11の表面に付着したRH含有物13の点又は線も互いに分離して、間隔が空いた状態で配置される。 If the organic solvent 122 is volatile, the RH- containing slurry 12 sprayed on the surface of the substrate 11 evaporates and the solid solvent remains on the surface of the substrate 11. Is non-volatile, it remains on the surface of the substrate 11 as an RH- containing slurry. In any case, the RH- containing material 13 containing the heavy rare earth element RH is attached to the surface of the base material 11 in the form of dots or lines. When the RH- containing slurry is sprayed on the surface of the base material 11 in the form of dots or lines, if the points or lines are separated to some extent, the points or lines of the RH- containing material 13 attached to the surface of the base material 11 are also obtained. They are separated from each other and spaced apart.

このようにRH含有物13が付着した基材11を、RH含有物13ごと、所定温度に加熱する(d)。この所定温度は、RH含有物13内の重希土類元素RHが基材11の粒界を通して基材11内に拡散する温度であって、典型的には700〜1000℃である。このように重希土類元素RHを粒界を通して基材11内に拡散させた後、必要に応じて時効処理(500℃程度の比較的低温で加熱する処理)や基材11の表面に残留したRH含有物13の残渣を除去するための研削処理、磁石の成形処理を行うことにより、最終製品であるRFeB系磁石が得られる。 The base material 11 to which the RH- containing material 13 is attached is heated to a predetermined temperature together with the RH- containing material 13 (d). The predetermined temperature is a temperature at which the heavy rare earth element R H in the R H containing material 13 diffuses into the base material 11 through the grain boundary of the base material 11, and is typically 700 to 1000 ° C. Thus, after diffusing the heavy rare earth element R H into the base material 11 through the grain boundary, the heavy rare earth element R H remains on the surface of the base material 11 if necessary, or an aging treatment (treatment at a relatively low temperature of about 500 ° C.). An RFeB magnet, which is the final product, is obtained by performing a grinding process and a magnet forming process for removing the residue of the RH- containing material 13.

図3及び図4に、RH含有物13を基材11の表面に配置するパターンの例を示す。図3はいずれも、RH含有物13が平面視で円形である点状のものである例を示している。RH含有物13は、図3(a)の例では正方格子状に配置されている。正方格子状の代わりに長方格子状にRH含有物13を配置してもよい。このような配置は、図の縦方向又は横方向にノズル21を移動させながらRH含有スラリー12を間欠的に且つ周期的に基材11の表面に吹き付けることによってRH含有物13の列を1列分形成したうえで、列に垂直な方向にノズル21を移動させ、同様の操作を繰り返すことにより形成することができる。一方、図3(b)の例では、RH含有物13は、図の縦方向に等間隔に1列で並び、横方向で隣接する列同士では位置が1/2周期分だけずれるように設けられている。この配置を、以下では「千鳥状」の配置と呼ぶ。このような配置は、基本的には(a)と同様の方法で形成するが、2列目以降の列にRH含有スラリー12を吹き付ける際に、位置を列方向に1/2周期ずらすことにより形成することができる。 3 and 4 show examples of patterns in which the RH- containing material 13 is arranged on the surface of the substrate 11. FIG. 3 shows an example in which the RH- containing material 13 is a dot-like shape that is circular in plan view. The RH- containing material 13 is arranged in a square lattice shape in the example of FIG. The RH- containing material 13 may be arranged in a rectangular lattice instead of a square lattice. In such an arrangement, the RH containing slurry 13 is sprayed intermittently and periodically on the surface of the base material 11 while moving the nozzle 21 in the vertical direction or the horizontal direction of the figure, thereby arranging the rows of the RH containing materials 13. After forming one row, the nozzle 21 is moved in a direction perpendicular to the row, and the same operation is repeated to form the row. On the other hand, in the example of FIG. 3 (b), the RH inclusions 13 are arranged in one row at equal intervals in the vertical direction in the figure, and the positions are shifted by a half cycle between adjacent rows in the horizontal direction. Is provided. This arrangement is hereinafter referred to as a “staggered” arrangement. Such an arrangement is basically formed by the same method as in (a), but when the RH- containing slurry 12 is sprayed on the second and subsequent rows, the position is shifted by 1/2 cycle in the row direction. Can be formed.

図3(c)の例は(a)を変形したものであり、同一列内のRH含有物13の間隔が列同士の間隔よりも短くなっている。このような配置は、線状の配置に近いが、同一列内でRH含有物13間に隙間が存在することから、線状の場合よりも重希土類元素RHの使用量を少なくすることができる。図3(d)の例は、RH含有物13を、縦方向及び横方向に3個並んでいる距離と同じ間隔で、図の縦方向及び横方向にそれぞれ列を形成したものである。これらの列の間隔は、RH含有物13の3個分以外の大きさとしてもよい。 The example of FIG. 3C is a modification of (a), and the interval between the RH- containing materials 13 in the same column is shorter than the interval between the columns. Such an arrangement is close to a linear arrangement, but since there is a gap between the RH- containing materials 13 in the same row, the amount of heavy rare earth element RH used should be less than that of the linear arrangement. Can do. In the example of FIG. 3 (d), rows are formed in the vertical and horizontal directions of the figure at the same interval as the distance in which three RH containing materials 13 are arranged in the vertical and horizontal directions. The interval between these rows may be a size other than the three RH- containing materials 13.

図3(e)の例は、RH含有物13を無秩序(ランダム)に配置したものである。図3(f)の例では、点状のRH含有物13が他の例よりも密に基材11の表面に形成されており、RH含有物13同士が接触している。 The example of FIG.3 (e) arrange | positions the RH containing material 13 randomly (randomly). In the example of FIG. 3 (f), the dotted RH- containing material 13 is formed on the surface of the base material 11 more densely than the other examples, and the RH- containing materials 13 are in contact with each other.

図4には、平面視で円形以外のRH含有物13を用いる例を示す。図4(a)では正方形のRH含有物13を示す。RH含有物13は、ノズル21の形状に応じて、正方形以外にも、長方形やその他の四角形、三角形や六角形等の四角形以外の多角形、楕円形等の種々の平面形状を取り得る。図4(b)の例では、RH含有物13の平面視での形状は線状であり、該線状のRH含有物13が平行に多数配置されている。 FIG. 4 shows an example in which an RH- containing material 13 other than a circle is used in plan view. FIG. 4A shows a square RH- containing material 13. Depending on the shape of the nozzle 21, the RH- containing material 13 can take various planar shapes such as a rectangle, other quadrangle, a polygon other than a quadrangle such as a triangle and a hexagon, and an ellipse, in addition to a square. In the example of FIG. 4B, the shape of the RH- containing material 13 in a plan view is linear, and a large number of the linear RH- containing materials 13 are arranged in parallel.

図5に、基材11の表面にRH含有物13を付着させた例を写真で示す。この例では、内径が0.12mmのノズル21を使用した。使用したRH合金粉末121は前述のTb、Ni及びAlを質量比で92:4:4で含有するTbNiAl合金の粉末であって、有機溶剤122はシリコーングリースとシリコーンオイルを質量比で10:15で混合したものであり、RH含有スラリー12はこれらRH合金粉末121と有機溶剤122を質量比で75:25で混合したものである。基材11の表面に付着した多数のRH含有物13は、いずれも径がほぼ同じであり、その径の値は0.68mmである。基材11の表面全体では、単位面積当たり16mg/cm2のRH含有物13を付着させた。基材11の表面全体のうち、RH含有物13が占める割合である面積率は31.4%である。 In FIG. 5, the example which made the RH containing material 13 adhere to the surface of the base material 11 is shown with a photograph. In this example, a nozzle 21 having an inner diameter of 0.12 mm was used. The used RH alloy powder 121 is a powder of TbNiAl alloy containing the above-mentioned Tb, Ni and Al in a mass ratio of 92: 4: 4, and the organic solvent 122 is a silicone grease and silicone oil in a mass ratio of 10: The RH- containing slurry 12 is a mixture of the RH alloy powder 121 and the organic solvent 122 at a mass ratio of 75:25. Many of the RH- containing materials 13 attached to the surface of the substrate 11 have almost the same diameter, and the value of the diameter is 0.68 mm. On the entire surface of the substrate 11, 16 mg / cm 2 of RH- containing material 13 was adhered per unit area. The area ratio, which is the ratio of the RH- containing material 13 in the entire surface of the substrate 11, is 31.4%.

次に、本実施形態において複数の条件で作製した実施例及び参考例の試料につき、磁気特性を測定した結果を示す。この実験では、各試料は同一ロットで作製した同一の大きさを有する1面弓形形状(図1の符号113)の基材を用いて作製した。実施例の各試料では、基材の弓形の曲面に平面視で円形のRH含有物を点状に付着させた。参考例では、特許文献3に記載のスクリーン印刷法を用いて、弓形の曲面に対向する平面にRH含有スラリーを塗布することにより、該平面全体にRH含有物を均一に付着させた。なお、参考例で平面にRH含有スラリーを塗布したのは、スクリーン印刷法では曲面にRH含有スラリーを塗布することが困難であるためである。粒界拡散処理の際の加熱温度は900℃である。その他の作製条件は試料により相違するため、以下で説明する。 Next, the results of measuring the magnetic properties of the samples of Examples and Reference Examples manufactured under a plurality of conditions in this embodiment will be shown. In this experiment, each sample was produced using a single-sided bow-shaped substrate (reference numeral 113 in FIG. 1) having the same size and produced in the same lot. In each sample of the example, a circular RH- containing material was attached in a dot shape to the arcuate curved surface of the substrate in plan view. In the reference example, by using the screen printing method described in Patent Document 3, the RH- containing material was uniformly adhered to the entire plane by applying the RH- containing slurry to the plane facing the arcuate curved surface. The reason why the RH- containing slurry was applied to the flat surface in the reference example is that it is difficult to apply the RH- containing slurry to the curved surface by the screen printing method. The heating temperature in the grain boundary diffusion treatment is 900 ° C. Other manufacturing conditions differ depending on the sample and will be described below.

表1に、各試料につき、試料毎に異なる作製条件の内容、及び室温での磁気特性を示す。ここで表中のドット間隔c及び隙間dは、RH含有物13の配置が正方格子状の場合には図3(a)に、千鳥状の場合には図3(b)に示すように、1個のRH含有物13とそれに再隣接のRH含有物13の間隔及び隙間(RH含有物13が存在しない部分)の大きさで定義される。塗布量は、RH含有物13を塗布した面の単位面積当たりの塗布量をいう。面積率は、RH含有物が付着した基材表面のうちRH含有物が占める面積の割合をいう。
Table 1 shows the contents of different production conditions for each sample and the magnetic properties at room temperature for each sample. Here, the dot interval c and the gap d in the table are as shown in FIG. 3A when the arrangement of the RH- containing material 13 is a square lattice, and as shown in FIG. 3B when it is a staggered pattern. , The distance between one RH- containing material 13 and the RH- containing material 13 adjacent to the RH- containing material 13 and the size of the gap (the portion where the RH- containing material 13 does not exist). The coating amount refers to the coating amount per unit area of the surface on which the RH- containing material 13 is applied. The area ratio refers to the ratio of the area occupied by the RH- containing material on the surface of the substrate to which the RH- containing material is attached.

この実験結果から、いずれの実施例においても、基材の保磁力13kOeよりも高い保磁力が得られているといえる。また、面積率が31.4%よりも大きい実施例1〜4、7、8では、参考例1よりも高い保磁力が得られていると共に、それら実施例よりも塗布量が多い参考例2と同等の保磁力が得られている。特に、実施例1〜4は、ドット間に隙間が設けられているにも関わらず、基材表面に均一にRH含有物13を塗布した参考例と同等又はそれ以上の保磁力が得られている点が特筆される。 From these experimental results, it can be said that a coercive force higher than the coercive force of 13 kOe of the substrate is obtained in any of the examples. Further, in Examples 1 to 4, 7, and 8 having an area ratio larger than 31.4%, a coercive force higher than that of Reference Example 1 was obtained, and equivalent to Reference Example 2 having a larger coating amount than those Examples. The coercive force of is obtained. In particular, in Examples 1 to 4, a coercive force equal to or higher than that of the reference example in which the RH- containing material 13 was uniformly applied to the surface of the base material was obtained despite the fact that a gap was provided between the dots. It is noted that.

次に、全体の形状が弓形状である基材(図1(a)に符号112を付したもの)を用いた実施例9について説明する。実施例9では、弓形状の基材112が有する2つの曲面のうち、凸面1121と凹面1122(図1(a)参照)の双方に、平面視で図6に示すパターンとなるようにRH含有物13を付着させた。このパターンでは、RH含有物13のドットを図6の縦方向(y方向)に間隔c(ドット間の隙間d)で一列に配置し、このRH含有物13のドットの列を図6の横方向(x方向)に間隔aで配置している。y方向のドットの基本的な位置は、隣接するドットの列の間で(c/8)だけずれている。従って、x方向に8周期分離れた列同士では、ドットはy方向の同じ位置に配置されている。但し、RH含有物13のドットは、4列毎に(図6中に一点鎖線で示した列のみ)、前記基本的な位置からy方向に(c/2)ずれた位置に配置されている。これにより、基本的な位置のみにドットを配置した場合に形成されるx方向からarctan(1/8)(約7°)傾斜した方向に延びるドットの列を乱し、ドットが分散するように配置することができる。 Next, Example 9 using a base material having a bow shape as a whole (the one shown in FIG. 1 (a) denoted by reference numeral 112) will be described. In Example 9, among the two curved surfaces of the bow-shaped base material 112, both the convex surface 1121 and the concave surface 1122 (see FIG. 1 (a)) have R H so that the pattern shown in FIG. Inclusion material 13 was deposited. In this pattern, placing dots of R H inclusions 13 in a row in the vertical direction in FIG. 6 (y-direction) to the distance c (the gap between the dots d), a row of dots of the R H inclusions 13 6 Are arranged at intervals a in the horizontal direction (x direction). The basic position of dots in the y direction is shifted by (c / 8) between adjacent dot rows. Therefore, in the columns separated by 8 periods in the x direction, the dots are arranged at the same position in the y direction. However, the dots of the RH- containing material 13 are arranged at positions shifted by (c / 2) in the y direction from the basic position every four rows (only the row indicated by the alternate long and short dash line in FIG. 6). Yes. This disturbs the row of dots extending in the direction inclined by arctan (1/8) (about 7 °) from the x direction formed when dots are arranged only at the basic position so that the dots are dispersed. Can be arranged.

実施例9では、ノズル21の径は0.21mmとし、それにより、基材112の表面に形成されるRH含有物13のドットの径を0.8mmとした。y方向のドットの間隔は2mm、y方向のドット間の隙間dは1.2mm、x方向に延びるドットの列の間隔aは0.6mmとした。基材112の表面におけるRH含有物13の塗布量は16mg/cm2、基材112の表面のうちRH含有物13が占める面積率は31.6%である。使用したRH含有物13は実施例1〜8と同様である。 In Example 9, the diameter of the nozzle 21 was 0.21 mm, whereby the diameter of the dots of the RH- containing material 13 formed on the surface of the substrate 112 was 0.8 mm. The distance between the dots in the y direction was 2 mm, the gap d between the dots in the y direction was 1.2 mm, and the distance a between the rows of dots extending in the x direction was 0.6 mm. The coating amount of the RH- containing material 13 on the surface of the base material 112 is 16 mg / cm 2 , and the area ratio occupied by the RH- containing material 13 on the surface of the base material 112 is 31.6%. The RH- containing material 13 used is the same as in Examples 1-8.

図7に、基材112の(a)凸面1121及び(b)凹面1122にRH含有物13のドットを付着させた状態を写真で示す。このように凸面1121と凹面1122の双方にRH含有物13のドットを付着させた後、実施例1〜8と同様に温度900℃に加熱することにより、実施例9の試料が得られた。得られた試料の磁気特性を測定したところ、残留磁束密度Brは13.9kG、保磁力Hcjは22.3kOeという、他の実施例と同程度の値が得られた。 FIG. 7 is a photograph showing a state in which dots of the RH- containing material 13 are attached to the (a) convex surface 1121 and (b) concave surface 1122 of the substrate 112. Thus, after depositing the dots of the RH- containing material 13 on both the convex surface 1121 and the concave surface 1122, the sample of Example 9 was obtained by heating to a temperature of 900 ° C. as in Examples 1-8. . When the magnetic characteristics of the obtained sample were measured, the residual magnetic flux density B r is 13.9 kg, the coercive force H cj is called 22.3KOe, values comparable to other examples were obtained.

なお、実施例9では弓形状である基材112の凸面1121と凹面1122の双方にRH含有物13を付着させたが、凸面1121のみ、又は凹面1122のみにRH含有物13を付着させてもよい。また、凸面1121や凹面1122に付着させるRH含有物13のドットのパターンは図6に示した例には限られず、図3や図4に示した例などの種々の形態を取ることができる。あるいは、図6に示したRH含有物13のドットのパターンを、平板状の基材や1面弓形形状の基材等、他の形状の基材に適用してもよい。さらには、図6に示したもの以外のパターンで、種々の形状の基材における凸面及び/又は凹面にRH含有物13のドットを付着させることもできる。 Although was deposited R H inclusions 13 in both the convex 1121 and the concave 1122 of the substrate 112 is arcuate in Example 9, only the convex surface 1121, or only the concave 1122 is adhered to R H inclusions 13 May be. Further, the dot pattern of the RH- containing material 13 attached to the convex surface 1121 and the concave surface 1122 is not limited to the example shown in FIG. 6, and can take various forms such as the examples shown in FIG. 3 and FIG. 4. . Alternatively, the dot pattern of the RH- containing material 13 shown in FIG. 6 may be applied to a substrate having another shape, such as a flat substrate or a single-sided arcuate substrate. Furthermore, the dots of the RH- containing material 13 can be attached to the convex surface and / or the concave surface of the substrate having various shapes in a pattern other than that shown in FIG.

11、111、112、113…基材
1121…凸面
1122…凹面
12…RH含有スラリー
121…RH合金粉末
122…有機溶剤
13…RH含有物
20…RH含有スラリー供給装置
21…ノズル
22…貯留タンク
23…RH含有スラリー送出装置
24…基材保持部
25…移動部
DESCRIPTION OF SYMBOLS 11, 111, 112, 113 ... Base material 1121 ... Convex surface 1122 ... Concave surface 12 ... RH containing slurry 121 ... RH alloy powder 122 ... Organic solvent 13 ... RH containing material 20 ... RH containing slurry supply apparatus 21 ... Nozzle 22 ... Storage tank 23 ... RH-containing slurry delivery device 24 ... Base material holding part 25 ... Moving part

Claims (7)

希土類元素R、Fe及びBを含有するRFeB系焼結磁石又はRFeB系熱間塑性加工磁石から成る基材の表面に、Dy, Tb及びHoのうちの少なくとも1種から成る重希土類元素RHを含有するRH含有粉末と有機溶剤を混合したRH含有スラリーを点状又は線状に吹き付けることによりRH含有物を付着させるRH含有物付着工程と、
前記RH含有物を付着させた前記基材を、該RH含有物内の重希土類元素RHが該基材の粒界を通して該基材内に拡散する所定温度に加熱する加熱工程と
を有することを特徴とするRFeB系磁石の製造方法。
A heavy rare earth element R H composed of at least one of Dy, Tb and Ho is applied to the surface of a base material composed of an RFeB sintered magnet or an RFeB based hot plastic working magnet containing rare earth elements R, Fe and B. An RH- containing material adhering step for adhering the RH- containing material by spraying the RH- containing slurry in which the RH- containing powder and the organic solvent are mixed in a dotted or linear manner;
Heating the substrate to which the RH- containing material is adhered to a predetermined temperature at which the heavy rare earth element RH in the RH- containing material diffuses into the substrate through grain boundaries of the substrate; A method for producing an RFeB-based magnet, comprising:
前記基材表面に点状又は線状の複数個の前記RH含有物を互いに分離した状態で付着させることを特徴とする請求項1に記載のRFeB系磁石の製造方法。 2. The method for producing an RFeB magnet according to claim 1, wherein a plurality of dotted or linear RH- containing materials are adhered to the surface of the base material in a state of being separated from each other. 前記RH含有物を付着させた前記基材表面のうち前記RH含有物が占める面積の割合である面積率が31.4%以上であることを特徴とする請求項1又は2に記載のRFeB系磁石の製造方法。 The RFeB system according to claim 1 or 2, wherein an area ratio, which is a ratio of an area occupied by the RH- containing material, on the surface of the base material to which the RH- containing material is attached is 31.4% or more. Magnet manufacturing method. 前記基材表面に前記RH含有物を点状に付着させることを特徴とする請求項1〜3のいずれかに記載のRFeB系磁石の製造方法。 The method for producing an RFeB-based magnet according to any one of claims 1 to 3, wherein the RH- containing material is adhered to the surface of the base material in the form of dots. 前記基材表面に付着させた点状の前記RH含有物が直線状に並ぶことを特徴とする請求項4に記載のRFeB系磁石の製造方法。 The method for producing an RFeB-based magnet according to claim 4, wherein the RH- containing materials in the form of dots attached to the surface of the base material are arranged in a straight line. 前記RH含有物を付着させる基材表面が曲面であることを特徴とする請求項1〜5のいずれかに記載のRFeB系磁石の製造方法。 The method for producing an RFeB magnet according to any one of claims 1 to 5, wherein a surface of the base material to which the RH- containing material is attached is a curved surface. 前記曲面が凹面であることを特徴とする請求項6に記載のRFeB系磁石の製造方法。   The method according to claim 6, wherein the curved surface is a concave surface.
JP2017176613A 2016-10-31 2017-09-14 Manufacturing method of RFEB magnet Active JP6939299B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102017125326.2A DE102017125326A1 (en) 2016-10-31 2017-10-27 Method for producing a RFeB-based magnet
US15/798,138 US20180122571A1 (en) 2016-10-31 2017-10-30 METHOD FOR PRODUCING RFeB-BASED MAGNET
CN201711051149.2A CN108010702B (en) 2016-10-31 2017-10-31 Method for producing RFeB magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016212518 2016-10-31
JP2016212518 2016-10-31

Publications (2)

Publication Number Publication Date
JP2018078275A true JP2018078275A (en) 2018-05-17
JP6939299B2 JP6939299B2 (en) 2021-09-22

Family

ID=62150808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176613A Active JP6939299B2 (en) 2016-10-31 2017-09-14 Manufacturing method of RFEB magnet

Country Status (1)

Country Link
JP (1) JP6939299B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040010A (en) * 2019-09-02 2021-03-11 Tdk株式会社 Manufacturing method of rare-earth permanent magnet and manufacturing installation of rare-earth permanent magnet
JP2021093448A (en) * 2019-12-10 2021-06-17 Tdk株式会社 Manufacturing method of rare earth-based permanent magnet, and manufacturing device for rare earth-based permanent magnet
DE102023133208A1 (en) 2022-11-29 2024-05-29 Daido Electronics Co., Ltd. Method for producing an R-Fe-B magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129648A (en) * 2009-12-16 2011-06-30 Tdk Corp Method of manufacturing rare earth sintered magnet, and coating device
JP2015065218A (en) * 2013-09-24 2015-04-09 大同特殊鋼株式会社 METHOD FOR PRODUCING RFeB-BASED MAGNET
WO2016023961A1 (en) * 2014-08-12 2016-02-18 Abb Technology Ag Magnet having regions of different magnetic properties and method for forming such a magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129648A (en) * 2009-12-16 2011-06-30 Tdk Corp Method of manufacturing rare earth sintered magnet, and coating device
JP2015065218A (en) * 2013-09-24 2015-04-09 大同特殊鋼株式会社 METHOD FOR PRODUCING RFeB-BASED MAGNET
WO2016023961A1 (en) * 2014-08-12 2016-02-18 Abb Technology Ag Magnet having regions of different magnetic properties and method for forming such a magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040010A (en) * 2019-09-02 2021-03-11 Tdk株式会社 Manufacturing method of rare-earth permanent magnet and manufacturing installation of rare-earth permanent magnet
JP7259651B2 (en) 2019-09-02 2023-04-18 Tdk株式会社 Rare earth permanent magnet manufacturing method and rare earth permanent magnet manufacturing apparatus
JP2021093448A (en) * 2019-12-10 2021-06-17 Tdk株式会社 Manufacturing method of rare earth-based permanent magnet, and manufacturing device for rare earth-based permanent magnet
JP7384016B2 (en) 2019-12-10 2023-11-21 Tdk株式会社 Rare earth permanent magnet manufacturing method and rare earth permanent magnet manufacturing device
DE102023133208A1 (en) 2022-11-29 2024-05-29 Daido Electronics Co., Ltd. Method for producing an R-Fe-B magnet

Also Published As

Publication number Publication date
JP6939299B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP6303356B2 (en) Method for producing RFeB magnet
US11501914B2 (en) Grain boundary diffusion method of R-Fe-B series rare earth sintered magnet
KR101375974B1 (en) Coating apparatus for grain-boundary diffusion treatment
JP7137908B2 (en) Manufacturing method of Nd--Fe--B based sintered permanent magnetic material
EP3522185B1 (en) Method of producing r-t-b sintered magnet
JP6939299B2 (en) Manufacturing method of RFEB magnet
US11062844B2 (en) Method of producing R-T-B sintered magnet
CN103890880A (en) Method for producing NdFeB sintered magnet
CN105355353B (en) A kind of neodymium iron boron magnetic body and preparation method thereof
US20210166871A1 (en) METHOD OF IMPROVING COERCIVITY OF AN ARC-SHAPED Nd-Fe-B MAGNET
JP6180507B2 (en) RFeB magnet manufacturing method, RFeB magnet, and grain boundary diffusion coating
CN107017072B (en) R-T-B system sintered magnet and engine
CN104221100A (en) Ndfeb-based sintered magnet
CN108010702B (en) Method for producing RFeB magnet
JP2015228431A (en) Rare-earth iron boron based magnet and manufacturing method thereof
JP2019062152A (en) Diffusion source
JP2024078303A (en) Manufacturing method of RFeB magnet
KR20240086468A (en) Production method for permanent magnet containing heavy rare earth element and a permanent magnet using this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6939299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150