JP2018077070A - Pressure measurement device - Google Patents

Pressure measurement device Download PDF

Info

Publication number
JP2018077070A
JP2018077070A JP2016217727A JP2016217727A JP2018077070A JP 2018077070 A JP2018077070 A JP 2018077070A JP 2016217727 A JP2016217727 A JP 2016217727A JP 2016217727 A JP2016217727 A JP 2016217727A JP 2018077070 A JP2018077070 A JP 2018077070A
Authority
JP
Japan
Prior art keywords
ring
measuring device
temperature
pressure
pressure measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016217727A
Other languages
Japanese (ja)
Inventor
安藤 亮
Ryo Ando
亮 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016217727A priority Critical patent/JP2018077070A/en
Publication of JP2018077070A publication Critical patent/JP2018077070A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure measurement device capable of suppressing the progress of compression set at high temperatures while maintaining the sealability at low temperature of an O ring and usable in a high-temperature environment.SOLUTION: The pressure measurement device of the present invention includes a first O ring for low temperature compatibility and a second O ring for high temperature compatibility, and the second O ring is disposed closer to the inside of the intake pipe than the first O ring.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の吸排気システムに装着されて吸排気の圧力を検出する圧力測定装置に関する。   The present invention relates to a pressure measuring device that is mounted on an intake / exhaust system of an internal combustion engine and detects the pressure of intake / exhaust.

圧力測定装置は、例えば自動車用エンジンの吸気通路に搭載され、吸気の圧力を計測し、燃料噴射量の制御や、運転条件の最適化に用いられる。自動車用エンジン等においては低燃費化を図るために高精度に計測することが求められている。   The pressure measurement device is mounted, for example, in an intake passage of an automobile engine, measures the pressure of intake air, and is used for control of the fuel injection amount and optimization of operating conditions. An automobile engine or the like is required to measure with high accuracy in order to reduce fuel consumption.

上記のような圧力を計測する圧力測定装置はエンジンの吸気管などに開けられた穴に圧力導入口のみを挿入し、モジュール本体は吸気管の外に配置される。   In the pressure measuring device for measuring the pressure as described above, only the pressure introducing port is inserted into a hole formed in the intake pipe or the like of the engine, and the module main body is disposed outside the intake pipe.

大気圧100kPaに対し、吸気管内は10kPaから400kPaの範囲で変化する。このため、吸気管に開けられた穴と圧力導入口との間は気密を保つためのシール材が必要である。   The intake pipe changes in the range of 10 kPa to 400 kPa with respect to the atmospheric pressure of 100 kPa. For this reason, a sealing material is required to keep airtight between the hole opened in the intake pipe and the pressure inlet.

このような圧力測定装置の先行技術文献として、特許文献1(特願2007―168361)には、圧力導入口の周囲にOリングをシール材として配置する構成となっている。   As a prior art document of such a pressure measuring device, Patent Document 1 (Japanese Patent Application No. 2007-168361) has a configuration in which an O-ring is disposed as a sealing material around a pressure inlet.

今までの自動車エンジンルーム内の環境温度は−40℃から130℃の範囲であり、圧力測定装置のOリングも−40℃から150℃の範囲で使用できるものが使われている。   Until now, the environmental temperature in the automobile engine room is in the range of −40 ° C. to 130 ° C., and the O-ring of the pressure measuring device can be used in the range of −40 ° C. to 150 ° C.

特願2007−168361Japanese Patent Application No. 2007-168361

近年の自動車用エンジンでは過給機を備えた小型エンジンが普及してきている。これらのエンジンでは、エンジンルーム内の温度は従来と変わらず−40℃から130℃の範囲であるが、圧力測定装置が測定する吸気温度は高温化してきている。   In recent automobile engines, a small engine equipped with a supercharger has become widespread. In these engines, the temperature in the engine room is in the range of −40 ° C. to 130 ° C. as before, but the intake air temperature measured by the pressure measuring device is getting higher.

自動車エンジンの外気導入口から吸気バルブまでの吸気システムにはエアクリーナや過給機、インタークーラ、スロットルバルブなど前後に圧力差を生じる機器が配置されており、それら機器の区間ごとに圧力や温度が異なる。温度の面では過給機とインタークーラとの間の区間の温度が最も高く、170℃を超える場合がある。   In the intake system from the outside air inlet of the automobile engine to the intake valve, there are devices such as an air cleaner, a supercharger, an intercooler, and a throttle valve that generate a pressure difference before and after that. Different. In terms of temperature, the temperature in the section between the supercharger and the intercooler is the highest and may exceed 170 ° C.

近年、エンジン制御をより精密に行なう目的で、吸気システムのあらゆる区間での圧力測定の要求があり、吸気温度の高い過給機とインタークーラとの間の区間での圧力測定も要求に含まれる。   In recent years, there has been a demand for pressure measurement in every section of the intake system for the purpose of more precise engine control, and pressure measurement in the section between the turbocharger with a high intake temperature and the intercooler is also included in the request. .

このような圧力測定装置の使用環境の高温化のため、従来のOリングでは圧縮永久歪の進行が早く、Oリングのシール性を製品寿命の期間を確保できなくなっている。   Due to the increase in the usage environment of such a pressure measuring device, the compression set of a conventional O-ring progresses quickly, and the O-ring sealability cannot be ensured for the lifetime of the product.

そこで、高温での圧縮永久歪の進行が少なくなるようにOリング材料の配合を変えることが考えられる。しかし、このように配合を変えると低温でのシール性が悪化するという問題が発生する。   Therefore, it is conceivable to change the composition of the O-ring material so that the progression of compression set at high temperatures is reduced. However, when the composition is changed in this way, there arises a problem that the sealing performance at a low temperature is deteriorated.

また、高温時の圧縮永久歪の進行抑制と低温時のシール性を両立したゴム材もあるが、価格が非常に高価な特殊材料である、ガソリンなどの燃料や有機溶剤に弱い、など温度とは異なる面で不利な点がある。   There are also rubber materials that have both compression set suppression at high temperatures and sealing properties at low temperatures, but they are special materials that are very expensive and are vulnerable to fuels such as gasoline and organic solvents. Have disadvantages in different ways.

発明は上記課題を解決するものであり、その目的は、Oリングの低温でのシール性を確保したまま、高温での圧縮永久歪の進行を抑え、到達温度が高い環境で使用できる圧力測定装置を提供することである。   The present invention solves the above-mentioned problems, and its object is to reduce the progress of compression set at high temperatures while maintaining the sealability of the O-ring at low temperatures, and to be used in an environment where the ultimate temperature is high. Is to provide.

上記課題を解決するために、本発明の圧力測定装置は、低温対応用の第1のOリングと高温対応用の第2のOリングとを備え、第2のOリングは第1のOリングより吸気管の内側に近い方へ配置する構成になっている。   In order to solve the above-mentioned problems, the pressure measuring device of the present invention includes a first O-ring for low temperature and a second O-ring for high temperature, and the second O-ring is a first O-ring. It is configured to be arranged closer to the inside of the intake pipe.

これにより吸気温度が高温の時は第2のOリングにより気密されている為、第1のOリングを高温気体から保護でき、低温時は第2のOリングの気密が不十分でも第1のOリングで気密を保つことができるため、吸気温度が高温になる測定環境でも使用できる圧力測定装置を提供できる。   As a result, when the intake air temperature is high, the second O-ring is hermetically sealed, so that the first O-ring can be protected from high-temperature gas. At low temperatures, the first O-ring is insufficient even if the second O-ring is insufficiently sealed. Since the airtightness can be maintained by the O-ring, it is possible to provide a pressure measuring device that can be used even in a measurement environment where the intake air temperature is high.

本発明によれば、高価で特殊なOリングを使わなくても、−40℃から170℃以上の高温までの温度範囲で吸気管に開けられた穴と圧力導入口との間シーリング特性を長期間確保できるため、吸気温度が−40℃から170℃以上の環境で使用可能な圧力測定装置が得られる。   According to the present invention, without using an expensive and special O-ring, the sealing characteristic between the hole opened in the intake pipe and the pressure inlet in the temperature range from −40 ° C. to a high temperature of 170 ° C. or more is long. Since the period can be secured, a pressure measuring device that can be used in an environment where the intake air temperature is −40 ° C. to 170 ° C. or higher is obtained.

本発明の実施例1による圧力測定装置の構成図1 is a configuration diagram of a pressure measuring device according to Embodiment 1 of the present invention. 従来技術の実施形態例による圧力測定装置の構成図Configuration diagram of a pressure measuring device according to an embodiment of the prior art 従来技術の実施形態例による圧力測定装置の搭載図Mounting diagram of pressure measuring device according to an embodiment of the prior art 本発明の実施例1による圧力測定装置の搭載図Mounting diagram of pressure measuring apparatus according to Embodiment 1 of the present invention 本発明の実施例2による圧力測定装置の構成図Configuration diagram of pressure measuring apparatus according to embodiment 2 of the present invention 本発明の実施例3による圧力測定装置の構成図Configuration diagram of pressure measuring apparatus according to Embodiment 3 of the present invention 本発明の実施例3による圧力測定装置の搭載図Mounting diagram of pressure measuring device according to embodiment 3 of the present invention 本発明の実施例4による圧力測定装置の搭載図Mounting diagram of pressure measuring device according to embodiment 4 of the present invention

圧力測定装置は、例えば自動車用エンジンの吸気通路に搭載され、吸気の圧力計測に用いられる。   The pressure measuring device is mounted, for example, in an intake passage of an automobile engine, and is used for measuring intake pressure.

上記のような圧力測定装置はエンジンの吸気路などに開けられた穴に圧力導入口のみを挿入し、モジュール本体は吸気管の外に配置される。図3に従来の実施例による圧力測定装置の配置断面図を示す。図3で吸気通路の外側は自動車エンジンルーム内の環境であり温度は−40℃から130℃の範囲である。吸気通路の内側は吸気通路内の環境であり、圧力測定装置1の圧力導入口5により圧力測定素子モジュールとつながっている。従来の圧力測定装置1は吸気通路内の温度も−40℃から130℃の範囲の場所で使用されている。   In the pressure measuring apparatus as described above, only the pressure introducing port is inserted into a hole formed in the intake passage of the engine, and the module main body is disposed outside the intake pipe. FIG. 3 is a sectional view showing the arrangement of a pressure measuring device according to a conventional embodiment. In FIG. 3, the outside of the intake passage is the environment in the automobile engine room, and the temperature is in the range of −40 ° C. to 130 ° C. The inside of the intake passage is an environment in the intake passage, and is connected to the pressure measurement element module by the pressure introduction port 5 of the pressure measurement device 1. The conventional pressure measuring device 1 is used in a place where the temperature in the intake passage is in the range of -40 ° C to 130 ° C.

吸気通路内の圧力は10kPaから400kPaの範囲で変化する。大気圧は約100kPaであるため、吸気通路に開けられた穴と圧力導入口5との間は気密を保つためのシール材が必要である。従来の圧力測定装置では図2、図3に示すように、圧力導入口の周囲にOリングを1個、シール材として配置する構成となっている。従来の使用環境では圧力測定装置のOリングも−40℃から130℃の範囲で使用できるものが使われている。   The pressure in the intake passage varies in the range of 10 kPa to 400 kPa. Since the atmospheric pressure is about 100 kPa, a sealing material is required to keep airtight between the hole opened in the intake passage and the pressure introduction port 5. As shown in FIGS. 2 and 3, the conventional pressure measuring device has a configuration in which one O-ring is disposed around the pressure inlet as a sealing material. In a conventional use environment, an O-ring of a pressure measuring device that can be used in a range of −40 ° C. to 130 ° C. is used.

また、自動車のエンジンルームで使用されるので、ガソリンなどの燃料や有機溶剤、潤滑油、薬品等により劣化しないことが求められる。このため、自動車用の圧力測定装置ではOリングでは材料としてフッ素ゴム(FKM)やニトリルゴム(NBR)、水素化ニトリルゴム(HNBR)が主に用いられている。   Further, since it is used in an engine room of an automobile, it is required not to be deteriorated by a fuel such as gasoline, an organic solvent, a lubricating oil, a chemical or the like. For this reason, fluorine rubber (FKM), nitrile rubber (NBR), and hydrogenated nitrile rubber (HNBR) are mainly used as materials for O-rings in automotive pressure measuring devices.

しかし、近年過給機とインタークーラとの間のなど、吸気温度が170℃以上になる区間での圧力測定の要求がある。   However, in recent years, there is a demand for pressure measurement in a section where the intake air temperature is 170 ° C. or higher, such as between a supercharger and an intercooler.

そこで、圧力測定装置1に用いられるOリングも170℃以上の吸気温度範囲で使用できるものが要求される。   Therefore, an O-ring used for the pressure measuring device 1 is required to be usable in an intake air temperature range of 170 ° C. or higher.

Oリングの使用温度範囲で重要な特性は、高温での圧縮永久歪が少ないことと、低温でシール性が確保できることである。   The important characteristics in the operating temperature range of the O-ring are that the compression set at a high temperature is small and the sealability can be secured at a low temperature.

FKMの材料ラインナップやNBRの材料ラインナップ、HNBRの材料ラインナップからでは−40℃から170℃の温度範囲で使用できる材料が無い。高温での圧縮永久圧縮歪が少ない材料は低温でのシール性が確保できず、低温でのシール性が確保できる材料は高温での圧縮永久歪が大きくなるからである。   There are no materials that can be used in the temperature range of -40 ° C to 170 ° C from the FKM material lineup, NBR material lineup, and HNBR material lineup. This is because a material having a small compression set at a high temperature cannot secure a sealing property at a low temperature, and a material capable of ensuring a sealing property at a low temperature has a large compression set at a high temperature.

以上を鑑みて、本発明における実施例を、図面を用いて以下に詳述する。   In view of the above, embodiments of the present invention will be described in detail below with reference to the drawings.

図1に示すように、材料の異なる第1のOリング2と第2のOリング1を備え、−40℃から170℃の吸気温度範囲で製品寿命を満たす期間シール性を確保できる構成とした。本構成では第1のOリング2は低温でのシール性が優れたOリングであり、第2のOリング3は高温での圧縮永久圧縮歪が少ないOリングである。   As shown in FIG. 1, the first O-ring 2 and the second O-ring 1 which are made of different materials are provided, and the sealability can be ensured in the intake air temperature range of −40 ° C. to 170 ° C. for the product life. . In this configuration, the first O-ring 2 is an O-ring having excellent sealing performance at a low temperature, and the second O-ring 3 is an O-ring having a low compression set at a high temperature.

図4に本発明の圧力測定装置を吸気通路10に配置した実施例の断面図を示す。   FIG. 4 shows a sectional view of an embodiment in which the pressure measuring device of the present invention is arranged in the intake passage 10.

例えば、圧力測定装置の使用温度環境が、吸気温度範囲が−40℃から170℃で、吸気通路の外側であるエンジンルーム内の温度範囲が−40℃から130℃の場合、図4では吸気通路壁内側面12の温度範囲が−40℃から170℃で、吸気通路壁外側面11の温度範囲が−40℃から130℃である。   For example, when the operating temperature environment of the pressure measuring device is an intake air temperature range of −40 ° C. to 170 ° C. and the temperature range in the engine room outside the intake passage is −40 ° C. to 130 ° C., FIG. The temperature range of the inner wall surface 12 is −40 ° C. to 170 ° C., and the temperature range of the intake passage wall outer surface 11 is −40 ° C. to 130 ° C.

このため、圧力測定装置が使用される最高温度時では第1のOリング2と第2のOリング3とでは温度が異なる。第1のOリング2は吸気通路壁外側面11に近く、また、圧力測定装置1と吸気通路10との隙間にも130℃の外気が到達する為、ほぼ130℃である。第2のOリング3は吸気通路壁内側面12に近く、また、圧力測定装置1と吸気通路10との隙間にも170℃の吸気が到達する為、ほぼ170℃である。   For this reason, the temperature differs between the first O-ring 2 and the second O-ring 3 at the maximum temperature at which the pressure measuring device is used. The first O-ring 2 is close to the outside surface 11 of the intake passage wall, and 130 ° C. outside air reaches the gap between the pressure measuring device 1 and the intake passage 10, so the temperature is about 130 ° C. The second O-ring 3 is close to the inner side surface 12 of the intake passage wall, and since the intake air at 170 ° C. reaches the gap between the pressure measuring device 1 and the intake passage 10, it is almost 170 ° C.

一方、低温の使用条件は、低温外気時のエンジン始動直後の条件となる為、吸気温度と外気温度はどちらも−40℃である。   On the other hand, since the low temperature use condition is a condition immediately after the engine start in the low temperature outside air, both the intake air temperature and the outside air temperature are −40 ° C.

これらの温度条件から、第1のOリング2は170℃などの高温での圧縮永久歪は大きいが低温でのシール性を確保できる物を使い、第2のOリング3には低温でのシール性は確保できないが高温での圧縮永久歪の少ないOリングを用いる構成とすることで−40℃から170℃で使用できる圧力測定装置を実現できる。   Under these temperature conditions, the first O-ring 2 uses a material that has a high compression set at a high temperature such as 170 ° C. but can ensure a low-temperature sealing property, and the second O-ring 3 is sealed at a low temperature. However, it is possible to realize a pressure measuring device that can be used at −40 ° C. to 170 ° C. by using an O-ring having a low compression set at a high temperature.

言い換えると、低温対応のOリングと、低温対応のOリングよりも圧力導入口側に配置される高温対応のOリングとを備えることで、−40℃から170℃で使用できる圧力測定装置を実現できる。   In other words, a pressure measuring device that can be used between -40 ° C and 170 ° C is realized by providing a low-temperature-compatible O-ring and a high-temperature-compatible O-ring located closer to the pressure inlet than the low-temperature compatible O-ring. it can.

本発明の実施例2を、図5を用いて説明する。なお、実施例1と同様の構成については説明を省略する。   A second embodiment of the present invention will be described with reference to FIG. Note that the description of the same configuration as that of the first embodiment is omitted.

図5に示すように、圧力装置7は、第1のOリング2と第2のOリング3との間にスリット8が設けられている。スリット8により、第1のOリング2と第2のOリング3との間の熱的な絶縁が向上可能となる。外気温が130℃、吸気温が170℃である場合、第1のOリング2の温度が上がらないように吸気側からの熱が伝わりにくくすることが可能となり、第1のOリングが高温に曝されることを抑制可能となる。すなわち、高温の空気は第2のOリング3で遮断され、高温に晒された第2のOリング3からの熱が圧力測定装置の筐体を経由して第1のOリング2へ伝わるのをスリット8があることで防ぐことができる。   As shown in FIG. 5, the pressure device 7 is provided with a slit 8 between the first O-ring 2 and the second O-ring 3. The slit 8 can improve the thermal insulation between the first O-ring 2 and the second O-ring 3. When the outside air temperature is 130 ° C. and the intake air temperature is 170 ° C., heat from the intake side can be made difficult to be transmitted so that the temperature of the first O-ring 2 does not rise, and the first O-ring becomes high temperature. It becomes possible to suppress exposure. That is, high-temperature air is blocked by the second O-ring 3, and heat from the second O-ring 3 exposed to high temperature is transferred to the first O-ring 2 through the housing of the pressure measuring device. Can be prevented by the presence of the slit 8.

本発明の実施例3を、図6を用いて説明する。なお、実施例1と同様の構成については説明を省略する。   A third embodiment of the present invention will be described with reference to FIG. Note that the description of the same configuration as that of the first embodiment is omitted.

図6に示すように、第1のOリング22を平面シール構造にした。図7は、圧力測定装置9を吸気通路10に配置した場合の平面シール構造の様子を示す。図1、図2の様なピストンシール構造の場合、吸気通路10の穴に挿入することでシールするのに対し、平面シール構造の場合、圧力測定装置9を吸気通路10にネジなどで押し付ける必要がある。一方で、第1のOリング22は吸気通路壁外側面11に接するため、第1のOリング22が吸気通路内を流れる吸気から離れて吸気通路外の外気に近くなること、第2のOリング3からより離すことが可能となる。そのため、第1のOリング2への高温吸気からの影響が小さくなる利点がある。   As shown in FIG. 6, the first O-ring 22 has a flat seal structure. FIG. 7 shows a state of the flat seal structure when the pressure measuring device 9 is arranged in the intake passage 10. In the case of the piston seal structure as shown in FIGS. 1 and 2, sealing is performed by inserting into the hole of the intake passage 10, whereas in the case of the flat seal structure, the pressure measuring device 9 needs to be pressed against the intake passage 10 with a screw or the like. There is. On the other hand, since the first O-ring 22 is in contact with the outside surface 11 of the intake passage wall, the first O-ring 22 is separated from the intake air flowing in the intake passage and becomes close to the outside air outside the intake passage. It becomes possible to separate from the ring 3 more. Therefore, there is an advantage that the influence from the high temperature intake to the first O-ring 2 is reduced.

本発明の実施例4を、図8を用いて説明する。なお、実施例1、2、3と同様の構成二ついては、説明を省略する。   A fourth embodiment of the present invention will be described with reference to FIG. In addition, description is abbreviate | omitted about the two structures similar to Example 1,2,3.

図8は、実施例3の平面シール構造に、実施例2のスリット8を組み合わせた構造である。それぞれの利点を備えていて、第1のOリング22への熱の影響を抑制することが可能となる。吸気通路への実装は図7と同様となるため省略する。   FIG. 8 shows a structure in which the flat seal structure of the third embodiment is combined with the slit 8 of the second embodiment. Each advantage is provided, and the influence of heat on the first O-ring 22 can be suppressed. Mounting in the intake passage is the same as in FIG.

以上の各実施例では、吸気通路の搭載を例に示したが、当然ながら排気通路へも適用可能である。また、圧力装置を例に示したが、その他流体の物理量を測定する装置に適用することを妨げず、同様の作用効果を示す。   In each of the above-described embodiments, the mounting of the intake passage is shown as an example, but it is naturally applicable to the exhaust passage. Moreover, although the pressure apparatus was shown as an example, the same operation and effect are exhibited without impeding application to other apparatuses that measure the physical quantity of fluid.

1…本発明の圧力測定装置
2…第1のOリング
3…第2のOリング
4…圧力測定素子モジュール
5…圧力導入口
6…従来の圧力測定装置
7…第1のOリングと第2のOリングとの間にスリットを設けた本発明の圧力測定装置
8…スリット
9…第1のOリングを平面シール構造とした本発明の圧力測定装置
10…吸気通路壁
11…吸気通路壁外側面
12…吸気通路壁内側面
22…第1のOリング
99…第1のOリングを面シール構造とし、第1のOリングと第2のOリングとの間にスリットを設けた本発明の圧力測定装置
DESCRIPTION OF SYMBOLS 1 ... Pressure measuring device 2 of this invention ... 1st O-ring 3 ... 2nd O-ring 4 ... Pressure measuring element module 5 ... Pressure inlet 6 ... Conventional pressure measuring device 7 ... 1st O-ring and 2nd Pressure measuring device 8 of the present invention provided with a slit between the O-ring of the present invention ... Slit 9 ... Pressure measuring device 10 of the present invention having the first O-ring having a flat seal structure ... Intake passage wall 11 ... Outside of the intake passage wall Side surface 12 ... Intake passage wall inner side surface 22 ... First O-ring 99 ... The first O-ring has a face seal structure, and a slit is provided between the first O-ring and the second O-ring. Pressure measuring device

Claims (6)

流体が流れる通路に取り付けられる流体の物理量測定装置において、
第1のOリングと、
前記第1のOリングよりも前記通路内壁側に位置するように設けられる第2のOリングと、を備え、
前記第2のOリングは、前記第1のOリングよりも高温での圧縮永久歪が少ない流体の物理量測定装置。
In the fluid physical quantity measuring device attached to the passage through which the fluid flows,
The first O-ring;
A second O-ring provided so as to be positioned closer to the inner wall side of the passage than the first O-ring;
The second O-ring is a fluid physical quantity measuring device that has a lower compression set at a higher temperature than the first O-ring.
前記第1のOリングは、前記第2のOリングよりも低温シール性のよい請求項1に記載の流体の物理量測定装置。   2. The fluid physical quantity measurement device according to claim 1, wherein the first O-ring has better low-temperature sealing performance than the second O-ring. 第1のOリングと第2のOリングとの間にスリットを備える請求項1または2に記載の流体の物理量測定装置。   The fluid physical quantity measuring device according to claim 1 or 2, further comprising a slit between the first O-ring and the second O-ring. 第1のOリングが、前記通路に取り付けられる際に面シール構造となる請求項1乃至3の何れかに記載の流体の物理量測定装置。   The fluid physical quantity measuring device according to any one of claims 1 to 3, wherein the first O-ring has a face seal structure when attached to the passage. 前記流体の物理量測定装置は、過給機とインタークーラとの間の圧力を測定する圧力測定装置である請求項1乃至4の何れかに記載の圧力測定装置。   The pressure measuring device according to claim 1, wherein the fluid physical quantity measuring device is a pressure measuring device that measures a pressure between a supercharger and an intercooler. 低温対応のOリングと、前記低温対応のOリングよりも圧力導入口側に配置される高温対応のOリングとを備える圧力測定装置。   A pressure measuring device comprising: a low-temperature-compatible O-ring; and a high-temperature-compatible O-ring disposed closer to the pressure inlet than the low-temperature-compatible O-ring.
JP2016217727A 2016-11-08 2016-11-08 Pressure measurement device Pending JP2018077070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016217727A JP2018077070A (en) 2016-11-08 2016-11-08 Pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016217727A JP2018077070A (en) 2016-11-08 2016-11-08 Pressure measurement device

Publications (1)

Publication Number Publication Date
JP2018077070A true JP2018077070A (en) 2018-05-17

Family

ID=62150286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016217727A Pending JP2018077070A (en) 2016-11-08 2016-11-08 Pressure measurement device

Country Status (1)

Country Link
JP (1) JP2018077070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118066183A (en) * 2024-04-19 2024-05-24 浙江威星电子系统软件股份有限公司 Pressure control valve tightness detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312661A (en) * 1992-05-15 1993-11-22 Mitsubishi Electric Corp Pressure sensor
JPH10311768A (en) * 1997-05-12 1998-11-24 Omron Corp Pressure sensor and gas meter
JP2006329884A (en) * 2005-05-27 2006-12-07 Hitachi Ltd Mounting structure of sensor for automobile
US20080034878A1 (en) * 2006-07-13 2008-02-14 Kurtz Anthony D Pressure transducer adapted to measure engine pressure parameters
JP2008111778A (en) * 2006-10-31 2008-05-15 Ulvac Japan Ltd Pirani vacuum gage and method for measuring pressure
JP2012180793A (en) * 2011-03-02 2012-09-20 Toyota Motor Corp Control device of internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312661A (en) * 1992-05-15 1993-11-22 Mitsubishi Electric Corp Pressure sensor
JPH10311768A (en) * 1997-05-12 1998-11-24 Omron Corp Pressure sensor and gas meter
JP2006329884A (en) * 2005-05-27 2006-12-07 Hitachi Ltd Mounting structure of sensor for automobile
US20080034878A1 (en) * 2006-07-13 2008-02-14 Kurtz Anthony D Pressure transducer adapted to measure engine pressure parameters
JP2008111778A (en) * 2006-10-31 2008-05-15 Ulvac Japan Ltd Pirani vacuum gage and method for measuring pressure
JP2012180793A (en) * 2011-03-02 2012-09-20 Toyota Motor Corp Control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118066183A (en) * 2024-04-19 2024-05-24 浙江威星电子系统软件股份有限公司 Pressure control valve tightness detection method

Similar Documents

Publication Publication Date Title
CA2798808C (en) Thermocouple
RU2539916C2 (en) Thermocouple input channel resistant to wear and respective methods
JP6425974B2 (en) PCV valve mounting structure
JP6059170B2 (en) Temperature sensor
EP2400138A3 (en) Automatic choke for an engine
JP2018077070A (en) Pressure measurement device
JP2008191059A (en) Combustion pressure sensor and attachment structure for the same
JP2008026326A (en) Pressure measuring device
JP2013064367A (en) Air physical quantity detection device
US20140311212A1 (en) Gas sensor with heat shielding
US9664162B2 (en) Sealing structure
JP2008063980A (en) Oxyhydrogen gas two-stroke engine
US5571397A (en) Boron nitride exhaust seal
FI124604B (en) Cylinder head
RU2019108047A (en) TURBOCHARGER
WO2008142263A3 (en) Installation for cooling recirculated internal combustion engine exhaust gases and control valve for the flow of said gases
JP2017207014A (en) Oil filler cap
KR101210746B1 (en) Oil coller's O-ring of CNG Engine
JP4384803B2 (en) Gas turbine exhaust system
KR20200028286A (en) Flow control valve for exhaust gas recirculation
JP3174167U (en) Sealing device
US9404398B2 (en) Continuously variable valve timing device
JP2002070696A (en) Seal structure for fuel injection valve
JP2006170715A (en) Gas sensor
JP2009115169A (en) Seal member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303