JP2018077004A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2018077004A
JP2018077004A JP2016218792A JP2016218792A JP2018077004A JP 2018077004 A JP2018077004 A JP 2018077004A JP 2016218792 A JP2016218792 A JP 2016218792A JP 2016218792 A JP2016218792 A JP 2016218792A JP 2018077004 A JP2018077004 A JP 2018077004A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
air
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016218792A
Other languages
Japanese (ja)
Inventor
浩太郎 福田
Kotaro Fukuda
浩太郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016218792A priority Critical patent/JP2018077004A/en
Priority to PCT/JP2017/033618 priority patent/WO2018088033A1/en
Publication of JP2018077004A publication Critical patent/JP2018077004A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Abstract

PROBLEM TO BE SOLVED: To suppress a backflow of an air-phase refrigerant which is separated in an air-liquid separator in a compressor through a differential pressure valve when stopping the compressor.SOLUTION: A refrigeration cycle device comprises: an air-liquid separation part 14 for separating an air-liquid of a refrigerant which is decompressed by a high-stage side decompression part; low-stage side decompression parts 17, 18 and 18a for decompressing a liquid-phase refrigerant which is separated by the air-liquid separation part; an evaporator 20 for evaporating the refrigerant which is decompressed by the low-stage side decompression parts; an air-phase refrigerant passage 15 in which an air-phase refrigerant which is separated by the air-liquid separation part flows; and a differential pressure valve 16 for opening and closing the air-phase refrigerant passage by differential pressure between the refrigerant which is decompressed by the low-stage side decompression parts and the refrigerant which flows in the air-phase refrigerant passage. The low-stage side decompression parts have adjustment mechanisms 18, 18a for adjusting a decompression amount of the refrigerant, and also comprises a control device 40 for performing compressor stop delay control for stopping the compressor after the low-stage side decompression parts are controlled so that the decompression amount of the refrigerant is reduced when it is decided to stop the compressor.SELECTED DRAWING: Figure 3

Description

本発明は、二段圧縮式の圧縮機を備える冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus including a two-stage compression compressor.

従来、特許文献1には、圧縮機、室内凝縮器、気液分離部、高段側膨張弁、固定絞り、室外熱交換器、差圧弁等を備える冷凍サイクル装置が記載されている。   Conventionally, Patent Document 1 describes a refrigeration cycle apparatus including a compressor, an indoor condenser, a gas-liquid separator, a high stage side expansion valve, a fixed throttle, an outdoor heat exchanger, a differential pressure valve, and the like.

暖房モードでは、圧縮機の吐出ポートから吐出された高圧冷媒が室内凝縮器へ流入する。室内凝縮器に流入した冷媒は、車室内へ送風される空気と熱交換して放熱する。これにより、車室内へ送風される空気が加熱される。   In the heating mode, the high-pressure refrigerant discharged from the discharge port of the compressor flows into the indoor condenser. The refrigerant flowing into the indoor condenser radiates heat by exchanging heat with the air blown into the passenger compartment. Thereby, the air blown into the passenger compartment is heated.

室内凝縮器から流出した冷媒は、絞り状態となっている高段側膨張弁にて中間圧冷媒となるまで等エンタルピ的に減圧膨脹される。高段側膨張弁にて減圧された中間圧冷媒は、気液分離部に流入して気液分離される。   The refrigerant flowing out of the indoor condenser is decompressed and expanded in an enthalpy manner until it becomes an intermediate pressure refrigerant by the high-stage expansion valve that is in a throttled state. The intermediate-pressure refrigerant decompressed by the high stage side expansion valve flows into the gas-liquid separation unit and is gas-liquid separated.

気液分離部にて分離された液相冷媒は、固定絞りにて低圧冷媒となるまで等エンタルピ的に減圧膨脹される。固定絞りにて減圧膨張された冷媒は、室外熱交換器へ流入し、外気と熱交換して吸熱する。室外熱交換器から流出した冷媒は、圧縮機の吸入ポートから吸入されて再び圧縮される。   The liquid phase refrigerant separated in the gas-liquid separation unit is decompressed and expanded in an isoenthalpy manner until it becomes a low-pressure refrigerant in a fixed throttle. The refrigerant decompressed and expanded by the fixed throttle flows into the outdoor heat exchanger and exchanges heat with the outside air to absorb heat. The refrigerant flowing out of the outdoor heat exchanger is sucked from the suction port of the compressor and compressed again.

暖房モードでは、固定絞りにて減圧された低圧冷媒の圧力が差圧弁に導かれるので、差圧弁が開く。これにより、気液分離部にて分離された気相冷媒は、圧縮機の中間圧ポート側へ流入する。中間圧ポートへ流入した中間圧気相冷媒は、圧縮機の吸入ポートから吸入されて低段側圧縮機構で圧縮された冷媒と合流して高段側圧縮機構で圧縮される。   In the heating mode, the pressure of the low-pressure refrigerant decompressed by the fixed throttle is guided to the differential pressure valve, so that the differential pressure valve opens. Thereby, the gaseous-phase refrigerant | coolant isolate | separated in the gas-liquid separation part flows in into the intermediate pressure port side of a compressor. The intermediate-pressure gas-phase refrigerant that has flowed into the intermediate-pressure port joins with the refrigerant sucked from the suction port of the compressor and compressed by the low-stage compression mechanism, and is compressed by the high-stage compression mechanism.

以上の如く、暖房モードでは、室内凝縮器にて圧縮機から吐出された冷媒の有する熱を車室内へ送風される空気に放熱させて、加熱された空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。   As described above, in the heating mode, the heat of the refrigerant discharged from the compressor in the indoor condenser can be dissipated to the air blown into the vehicle interior, and the heated air can be blown out into the vehicle interior. Thereby, heating of a vehicle interior is realizable.

さらに、暖房モードでは、固定絞りにて減圧された低圧冷媒を圧縮機の吸入ポートから吸入させ、高段側膨張弁にて減圧された中間圧冷媒を圧縮機の中間圧ポートへ流入させて昇圧過程の冷媒と合流させる、ガスインジェクションサイクル(換言すればエコノマイザ式冷凍サイクル)を構成することができる。   Further, in the heating mode, the low-pressure refrigerant decompressed by the fixed throttle is sucked from the suction port of the compressor, and the intermediate-pressure refrigerant decompressed by the high stage side expansion valve is introduced into the intermediate pressure port of the compressor to increase the pressure. A gas injection cycle (in other words, an economizer refrigeration cycle) that merges with the refrigerant in the process can be configured.

これにより、圧縮機の高段側圧縮機構に、温度の低い混合冷媒を吸入させることができ、高段側圧縮機構の圧縮効率を向上させることができるとともに、低段側圧縮機構および高段側圧縮機構の双方の吸入冷媒圧力と吐出冷媒圧力との圧力差を縮小させて、双方の圧縮機構の圧縮効率を向上させることができる。その結果、サイクルの高低圧差が大きくなる暖房モード時に、冷凍サイクル全体としての成績係数(いわゆるCOP)を向上させることができる。   Accordingly, the refrigerant mixture having a low temperature can be sucked into the high-stage compression mechanism of the compressor, the compression efficiency of the high-stage compression mechanism can be improved, and the low-stage compression mechanism and the high-stage side can be improved. By reducing the pressure difference between the suction refrigerant pressure and the discharge refrigerant pressure of both compression mechanisms, the compression efficiency of both compression mechanisms can be improved. As a result, the coefficient of performance (so-called COP) of the entire refrigeration cycle can be improved during the heating mode in which the difference between the high and low pressures of the cycle becomes large.

特開2013−92355号公報JP 2013-92355 A

上記従来技術では、暖房モード時に圧縮機を停止させると、気液分離器で分離された気相冷媒が差圧弁を通って中間圧ポートから圧縮機に流入し、中間圧ポート側と比較して圧力が低い吸入ポート側へ逆流してしまう。その結果、圧縮機のスクロールが逆回転して圧縮室の壁面と不規則に衝突することで異音が発生してしまうという問題があった。   In the above prior art, when the compressor is stopped in the heating mode, the gas-phase refrigerant separated by the gas-liquid separator flows into the compressor from the intermediate pressure port through the differential pressure valve, and compared with the intermediate pressure port side. It will flow backward to the suction port side where the pressure is low. As a result, there has been a problem that abnormal noise is generated due to reverse rotation of the compressor scroll and irregular collision with the wall surface of the compression chamber.

本発明は上記点に鑑みて、圧縮機を停止させたときに、気液分離器で分離された気相冷媒が差圧弁を通って圧縮機を逆流することを抑制することを目的とする。   In view of the above points, an object of the present invention is to prevent the gas-phase refrigerant separated by the gas-liquid separator from flowing backward through the differential pressure valve when the compressor is stopped.

上記目的を達成するため、請求項1に記載の冷凍サイクル装置では、
吸入ポート(11a)から冷媒を吸入して圧縮し、吐出ポート(11c)から吐出する圧縮機(11)と、
吐出ポートから吐出された冷媒を熱交換させる高圧側熱交換器(12)と、
高圧側熱交換器から流出した冷媒を減圧させる高段側減圧部(13)と、
高段側減圧部にて減圧された冷媒の気液を分離する気液分離部(14)と、
気液分離部にて分離された液相の冷媒を減圧させる低段側減圧部(17、18、18a)と、
低段側減圧部にて減圧された冷媒を蒸発させる蒸発器(20)と、
気液分離部にて分離された気相の冷媒が流れる気相冷媒通路(15)と、
低段側減圧部にて減圧された冷媒と気相冷媒通路を流れる冷媒との圧力差によって気相冷媒通路を開閉する差圧弁(16)とを備え、
圧縮機は、気相冷媒通路を流れた冷媒を流入させる中間圧ポート(11b)を有し、中間圧ポートから流入した冷媒を、吸入ポートから吸入された圧縮過程の冷媒に合流させるようになっており、
低段側減圧部は、冷媒の減圧量を調整する調整機構(18、18a)を有しており、
さらに、圧縮機を停止させることが決定された場合、冷媒の減圧量が減少するように低段側減圧部を制御した後に圧縮機を停止させる圧縮機停止遅延制御を行う制御部(40)を備える。
In order to achieve the above object, in the refrigeration cycle apparatus according to claim 1,
A compressor (11) that sucks and compresses refrigerant from the suction port (11a) and discharges it from the discharge port (11c);
A high-pressure side heat exchanger (12) for exchanging heat of the refrigerant discharged from the discharge port;
A high-stage decompression section (13) that decompresses the refrigerant flowing out of the high-pressure side heat exchanger;
A gas-liquid separation unit (14) for separating the gas-liquid of the refrigerant decompressed by the high-stage decompression unit;
A lower-stage decompression section (17, 18, 18a) for decompressing the liquid-phase refrigerant separated in the gas-liquid separation section;
An evaporator (20) for evaporating the refrigerant decompressed in the low-stage decompression unit;
A gas-phase refrigerant passage (15) through which the gas-phase refrigerant separated in the gas-liquid separator flows,
A differential pressure valve (16) that opens and closes the gas-phase refrigerant passage by a pressure difference between the refrigerant decompressed by the low-stage decompression section and the refrigerant flowing through the gas-phase refrigerant passage,
The compressor has an intermediate pressure port (11b) through which the refrigerant flowing through the gas-phase refrigerant passage flows, and the refrigerant flowing in from the intermediate pressure port joins the refrigerant in the compression process sucked from the suction port. And
The low-stage decompression unit has an adjustment mechanism (18, 18a) for adjusting the decompression amount of the refrigerant,
Furthermore, when it is determined to stop the compressor, a control unit (40) that performs compressor stop delay control for stopping the compressor after controlling the low-stage decompression unit so that the amount of decompression of the refrigerant decreases. Prepare.

これによると、低段側減圧部(17、18、18a)における冷媒の減圧量が減少することによって、吸入ポート(11a)側の低圧冷媒の圧力が高くなるので、中間圧ポート(11b)と吸入ポート(11a)との圧力差が小さくなる。   According to this, since the pressure of the low-pressure refrigerant on the suction port (11a) side increases due to a decrease in the amount of refrigerant decompression in the low-stage decompression section (17, 18, 18a), the intermediate pressure port (11b) The pressure difference from the suction port (11a) is reduced.

そのため、圧縮機(11)を停止させたときに、気液分離部(14)で分離された気相冷媒が差圧弁(16)を通って圧縮機(11)の低圧側に流れることを抑制できる。その結果、圧縮機(11)が逆回転して振動や異音が発生することを抑制できる。   Therefore, when the compressor (11) is stopped, the gas-phase refrigerant separated by the gas-liquid separator (14) is prevented from flowing to the low pressure side of the compressor (11) through the differential pressure valve (16). it can. As a result, it can suppress that a compressor (11) reversely rotates and a vibration and abnormal noise generate | occur | produce.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

一実施形態におけるヒートポンプサイクルの冷房モード時および直列除湿暖房モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the air_conditioning | cooling mode of the heat pump cycle in one Embodiment, and a serial dehumidification heating mode. 一実施形態におけるヒートポンプサイクルの並列除湿暖房モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the parallel dehumidification heating mode of the heat pump cycle in one Embodiment. 一実施形態におけるヒートポンプサイクルの暖房モード時の冷媒回路を示す全体構成図である。It is a whole lineblock diagram showing the refrigerant circuit at the time of the heating mode of the heat pump cycle in one embodiment. 一実施形態におけるヒートポンプサイクルの圧縮機停止遅延制御の作動例を示すタイムチャートである。It is a time chart which shows the operation example of the compressor stop delay control of the heat pump cycle in one Embodiment.

以下、実施形態について図に基づいて説明する。本実施形態では、ヒートポンプサイクル10を、エンジン(換言すれば内燃機関)および走行用電動モータから走行用の駆動力を得るハイブリッド車両の車両用空調装置1に適用している。ヒートポンプサイクル10は、蒸気圧縮式の冷凍サイクルである。   Hereinafter, embodiments will be described with reference to the drawings. In the present embodiment, the heat pump cycle 10 is applied to the vehicle air conditioner 1 of a hybrid vehicle that obtains a driving force for traveling from an engine (in other words, an internal combustion engine) and a traveling electric motor. The heat pump cycle 10 is a vapor compression refrigeration cycle.

ヒートポンプサイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風される空気を冷却あるいは加熱する機能を果たす。従って、本実施形態の空調対象空間は車室内であり、本実施形態の熱交換対象流体は車室内へ送風される空気である。   The heat pump cycle 10 fulfills the function of cooling or heating the air blown into the vehicle interior that is the air-conditioning target space in the vehicle air conditioner 1. Therefore, the air-conditioning target space of this embodiment is a vehicle interior, and the heat exchange target fluid of this embodiment is air blown into the vehicle interior.

ヒートポンプサイクル10は、図1に示す冷房モード、図1に示す直列除湿暖房モード、図2に示す並列除湿暖房モード、あるいは図3に示す暖房モードの冷媒回路を切替可能に構成されている。図1〜図3では、それぞれの運転モードにおける冷媒の流れを実線矢印で示している。   The heat pump cycle 10 is configured to be able to switch between the cooling mode shown in FIG. 1, the serial dehumidification heating mode shown in FIG. 1, the parallel dehumidification heating mode shown in FIG. 2, or the heating mode shown in FIG. 3. 1-3, the flow of the refrigerant | coolant in each operation mode is shown by the solid line arrow.

冷房モードは、車室内へ送風される空気を冷却して車室内を冷房する冷却運転モードである。直列除湿暖房モードおよび並列除湿暖房モードは、車室内へ送風される空気を除湿した後に加熱して車室内を除湿暖房する除湿暖房運転モードである。暖房モードは、車室内へ送風される空気を加熱して車室内を暖房する加熱運転モードである。   The cooling mode is a cooling operation mode in which the air blown into the passenger compartment is cooled to cool the passenger compartment. The series dehumidification heating mode and the parallel dehumidification heating mode are dehumidification heating operation modes in which the air blown into the vehicle interior is dehumidified and then heated to dehumidify and heat the vehicle interior. The heating mode is a heating operation mode in which air blown into the passenger compartment is heated to heat the passenger compartment.

ヒートポンプサイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒としてHFO系冷媒(例えば、R1234yf)等を採用してもよい。冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。   The heat pump cycle 10 employs an HFC-based refrigerant (specifically, R134a) as a refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. An HFO refrigerant (for example, R1234yf) or the like may be employed as the refrigerant. Refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.

ヒートポンプサイクル10の圧縮機11は、冷媒を吸入し、圧縮して吐出する。圧縮機11は、車両のボンネット内に配置されている。圧縮機11は、その外殻を形成するハウジングの内部に、低段側圧縮機構と高段側圧縮機構との2つの圧縮機構、および、双方の圧縮機構を回転駆動する電動モータを収容して構成された二段昇圧式の電動圧縮機である。   The compressor 11 of the heat pump cycle 10 sucks the refrigerant, compresses it, and discharges it. The compressor 11 is arrange | positioned in the hood of a vehicle. The compressor 11 houses two compression mechanisms, a low-stage compression mechanism and a high-stage compression mechanism, and an electric motor that rotationally drives both compression mechanisms in a housing that forms the outer shell. This is a two-stage booster type electric compressor configured.

圧縮機11のハウジングには、ハウジングの外部から低段側圧縮機構へ低圧冷媒を吸入させる吸入ポート11a、ハウジングの外部からハウジングの内部へ中間圧冷媒を流入させて低圧から高圧への圧縮過程の冷媒に合流させる中間圧ポート11b、および、高段側圧縮機構から吐出された高圧冷媒をハウジングの外部へ吐出させる吐出ポート11cが設けられている。   The housing of the compressor 11 has a suction port 11a for sucking low-pressure refrigerant from the outside of the housing into the low-stage compression mechanism, and an intermediate-pressure refrigerant flows from the outside of the housing to the inside of the housing to compress from low pressure to high pressure. An intermediate pressure port 11b for joining the refrigerant and a discharge port 11c for discharging the high-pressure refrigerant discharged from the high-stage compression mechanism to the outside of the housing are provided.

中間圧ポート11bは、低段側圧縮機構の冷媒吐出口側(すなわち、高段側圧縮機構の冷媒吸入口側)に接続されている。低段側圧縮機構および高段側圧縮機構は、スクロール型圧縮機構、ベーン型圧縮機構、ローリングピストン型圧縮機構等の各種形式のものを採用することができる。   The intermediate pressure port 11b is connected to the refrigerant discharge port side of the low-stage compression mechanism (that is, the refrigerant suction port side of the high-stage compression mechanism). Various types such as a scroll-type compression mechanism, a vane-type compression mechanism, and a rolling piston-type compression mechanism can be adopted as the low-stage side compression mechanism and the high-stage side compression mechanism.

圧縮機11の電動モータの回転数は、制御装置40から出力される制御信号によって制御される。電動モータとして、交流モータ、直流モータのいずれの形式を採用してもよい。電動モータの回転数制御によって、圧縮機11の冷媒吐出能力が変更される。従って、電動モータは、圧縮機11の吐出能力変更部である。   The rotation speed of the electric motor of the compressor 11 is controlled by a control signal output from the control device 40. As the electric motor, either an AC motor or a DC motor may be adopted. The refrigerant discharge capacity of the compressor 11 is changed by controlling the rotational speed of the electric motor. Therefore, the electric motor is a discharge capacity changing unit of the compressor 11.

本実施形態では、2つの圧縮機構を1つのハウジング内に収容した圧縮機11を採用しているが、圧縮機の形式はこれに限定されない。つまり、中間圧ポート11bから中間圧冷媒を流入させて低圧から高圧への圧縮過程の冷媒に合流させることが可能であれば、ハウジングの内部に、1つの固定容量型の圧縮機構およびこの圧縮機構を回転駆動する電動モータを収容して構成された電動圧縮機であってもよい。   In this embodiment, although the compressor 11 which accommodated two compression mechanisms in one housing is employ | adopted, the format of a compressor is not limited to this. That is, if the intermediate pressure refrigerant can be introduced from the intermediate pressure port 11b and merged with the refrigerant in the compression process from low pressure to high pressure, one fixed capacity type compression mechanism and the compression mechanism are provided inside the housing. An electric compressor configured to accommodate an electric motor that rotationally drives the motor may be used.

2つの圧縮機を直列に接続して、低段側に配置される低段側圧縮機構の吸入口を吸入ポート11aとし、高段側に配置される高段側圧縮機構の吐出口を吐出ポート11cとし、低段側圧縮機構の吐出口と高段側圧縮機構との吸入口とを接続する接続部に中間圧ポート11bを設け、低段側圧縮機構と高段側圧縮機構との双方によって、1つの二段昇圧式の圧縮機を構成してもよい。   Two compressors are connected in series, and the suction port of the low-stage compression mechanism disposed on the low-stage side is defined as the suction port 11a, and the discharge port of the high-stage compression mechanism disposed on the high-stage side is the discharge port. 11c, an intermediate pressure port 11b is provided at a connection portion that connects the discharge port of the low-stage compression mechanism and the suction port of the high-stage compression mechanism, and is provided by both the low-stage compression mechanism and the high-stage compression mechanism. One two-stage booster compressor may be configured.

圧縮機11の吐出ポート11cには、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、車両用空調装置1の室内空調ユニット30の空調ケース31内に配置され、圧縮機11の高段側圧縮機構から吐出された高温高圧冷媒を放熱させる放熱器(換言すれば、高圧側熱交換器)として機能し、室内蒸発器23を通過した空気を加熱する空気加熱用熱交換器である。   The refrigerant inlet side of the indoor condenser 12 is connected to the discharge port 11 c of the compressor 11. The indoor condenser 12 is disposed in the air conditioning case 31 of the indoor air conditioning unit 30 of the vehicle air conditioner 1 and dissipates heat from the high-temperature and high-pressure refrigerant discharged from the high-stage compression mechanism of the compressor 11 (in other words, , An air heating heat exchanger that functions as a high pressure side heat exchanger and heats the air that has passed through the indoor evaporator 23.

室内凝縮器12の冷媒出口側には、高段側膨張弁13の入口側が接続されている。高段側膨張弁13は、室内凝縮器12から流出した高圧冷媒を中間圧冷媒となるまで減圧させる高段側減圧部である。高段側膨張弁13は第1減圧部である。   The inlet side of the high stage side expansion valve 13 is connected to the refrigerant outlet side of the indoor condenser 12. The high-stage expansion valve 13 is a high-stage decompression unit that decompresses the high-pressure refrigerant flowing out of the indoor condenser 12 until it becomes an intermediate-pressure refrigerant. The high stage side expansion valve 13 is a first pressure reducing unit.

高段側膨張弁13は、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成される電気式の可変絞り機構である。   The high-stage side expansion valve 13 is an electrically variable type that includes a valve body that can change the throttle opening degree and an electric actuator that includes a stepping motor that changes the throttle opening degree of the valve body. An aperture mechanism.

高段側膨張弁13は、絞り開度を全開にして冷媒減圧作用を発揮させないようにすることもできる。高段側膨張弁13の作動は、制御装置40から出力される制御信号によって制御される。   The high stage side expansion valve 13 may be configured so that the throttle opening is fully opened and the refrigerant decompression action is not exhibited. The operation of the high stage side expansion valve 13 is controlled by a control signal output from the control device 40.

高段側膨張弁13の出口側には、気液分離器14の冷媒流入ポート14aが接続されている。気液分離器14は、室内凝縮器12から流出して高段側膨張弁13にて減圧された中間圧冷媒の気液を分離する気液分離部である。気液分離器14は、遠心力の作用によって冷媒の気液を分離する遠心分離方式のものである。   A refrigerant inflow port 14 a of the gas-liquid separator 14 is connected to the outlet side of the high stage side expansion valve 13. The gas-liquid separator 14 is a gas-liquid separation unit that separates the gas-liquid of the intermediate pressure refrigerant that has flowed out of the indoor condenser 12 and decompressed by the high-stage expansion valve 13. The gas-liquid separator 14 is of a centrifugal separation type that separates the gas-liquid refrigerant by the action of centrifugal force.

気液分離器14の気相冷媒流出ポート14bには、中間圧冷媒通路15を介して、圧縮機11の中間圧ポート11bが接続されている。この中間圧冷媒通路15には、気相冷媒側開閉弁16が配置されている。中間圧冷媒通路15は、気液分離器14の気相冷媒流出ポート14bから流出した気相冷媒が流れる気相冷媒通路である。   An intermediate pressure port 11 b of the compressor 11 is connected to the gas-phase refrigerant outlet port 14 b of the gas-liquid separator 14 via an intermediate pressure refrigerant passage 15. A gas-phase refrigerant side on-off valve 16 is disposed in the intermediate pressure refrigerant passage 15. The intermediate pressure refrigerant passage 15 is a gas phase refrigerant passage through which the gas phase refrigerant flowing out from the gas phase refrigerant outlet port 14b of the gas-liquid separator 14 flows.

気相冷媒側開閉弁16は、圧力導入通路19の冷媒圧力と中間圧冷媒通路15の冷媒圧力との圧力差によって変位する差圧弁である。気相冷媒側開閉弁16には、圧力導入通路19を介して、室外熱交換器20入口側の冷媒圧力が導かれる。   The gas-phase refrigerant side opening / closing valve 16 is a differential pressure valve that is displaced by a pressure difference between the refrigerant pressure in the pressure introduction passage 19 and the refrigerant pressure in the intermediate pressure refrigerant passage 15. The refrigerant pressure on the inlet side of the outdoor heat exchanger 20 is guided to the gas-phase refrigerant side on-off valve 16 through the pressure introduction passage 19.

具体的には、固定絞り17で冷媒が減圧される場合、圧力導入通路19の冷媒圧力と中間圧冷媒通路15の冷媒圧力との圧力差が大きくなるので、気相冷媒側開閉弁16は中間圧冷媒通路15を開く。   Specifically, when the refrigerant is depressurized by the fixed throttle 17, the pressure difference between the refrigerant pressure in the pressure introduction passage 19 and the refrigerant pressure in the intermediate pressure refrigerant passage 15 becomes large. The pressure refrigerant passage 15 is opened.

液相冷媒側開閉弁18aが固定絞り迂回通路18を開いて冷媒が固定絞り17を迂回して室外熱交換器20側へ導かれて固定絞り17で冷媒が減圧されない場合、圧力導入通路19の冷媒圧力と中間圧冷媒通路15の冷媒圧力との圧力差が小さくなるので、気相冷媒側開閉弁16は中間圧冷媒通路15を閉じる。   When the liquid refrigerant side opening / closing valve 18a opens the fixed throttle bypass passage 18 and the refrigerant bypasses the fixed throttle 17 and is guided to the outdoor heat exchanger 20 side and the refrigerant is not decompressed by the fixed throttle 17, the pressure introduction passage 19 Since the pressure difference between the refrigerant pressure and the refrigerant pressure in the intermediate pressure refrigerant passage 15 becomes small, the gas phase refrigerant side on-off valve 16 closes the intermediate pressure refrigerant passage 15.

気相冷媒側開閉弁16は、中間圧冷媒通路15を開閉することによって、ヒートポンプサイクル10の冷媒流路を切り替える機能を果たす。従って、気相冷媒側開閉弁16は、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。   The gas-phase refrigerant side on-off valve 16 functions to switch the refrigerant flow path of the heat pump cycle 10 by opening and closing the intermediate pressure refrigerant passage 15. Accordingly, the gas-phase refrigerant side on-off valve 16 constitutes a refrigerant flow path switching unit that switches the refrigerant flow path of the refrigerant circulating in the cycle.

一方、気液分離器14の液相冷媒流出ポート14cには、固定絞り17の入口側が接続され、固定絞り17の出口側には、室外熱交換器20の冷媒入口側が接続されている。固定絞り17は、気液分離器14にて分離された液相冷媒を低圧冷媒となるまで減圧させる低段側減圧部である。固定絞り17としては、絞り開度が固定されたノズル、オリフィスを採用できる。   On the other hand, the liquid refrigerant outlet port 14 c of the gas-liquid separator 14 is connected to the inlet side of the fixed throttle 17, and the outlet side of the fixed throttle 17 is connected to the refrigerant inlet side of the outdoor heat exchanger 20. The fixed throttle 17 is a low-stage decompression unit that decompresses the liquid-phase refrigerant separated by the gas-liquid separator 14 until it becomes a low-pressure refrigerant. As the fixed throttle 17, a nozzle or an orifice having a fixed throttle opening can be employed.

ノズル、オリフィス等の固定絞りでは、絞り通路面積が急縮小あるいは急拡大するので、上流側と下流側との圧力差(すなわち出入口間差圧)の変化に伴って、固定絞りを通過する冷媒の流量および固定絞り上流側冷媒の乾き度を自己調整することができる。   In fixed throttles such as nozzles and orifices, the area of the throttle passage is suddenly reduced or expanded rapidly, so that the refrigerant passing through the fixed throttle is changed with the change in the pressure difference between the upstream side and the downstream side (that is, the differential pressure between the inlet and outlet). The flow rate and the dryness of the fixed throttle upstream refrigerant can be self-adjusted.

具体的には、圧力差が比較的大きい場合には、サイクルを循環させる必要のある必要循環冷媒流量が減少するに伴って、固定絞り上流側冷媒の乾き度が大きくなるようにバランスする。一方、圧力差が比較的小さい場合には、必要循環冷媒流量が増加するに伴って、固定絞り上流側冷媒の乾き度が小さくなるようにバランスする。   Specifically, when the pressure difference is relatively large, a balance is made so that the dryness of the fixed throttle upstream side refrigerant increases as the necessary circulating refrigerant flow rate required to circulate the cycle decreases. On the other hand, when the pressure difference is relatively small, it is balanced so that the dryness of the fixed throttle upstream side refrigerant decreases as the required circulating refrigerant flow rate increases.

気液分離器14の液相冷媒流出ポート14cには、気液分離器14にて分離された液相冷媒を固定絞り17を迂回させて室外熱交換器20側へ導く固定絞り迂回通路18が接続されている。固定絞り迂回通路18には液相冷媒側開閉弁18aが配置されている。液相冷媒側開閉弁18aは、固定絞り迂回通路18を開閉する電磁弁であり、制御装置40から出力される制御信号によって、その開閉作動が制御される。   A fixed-throttle bypass passage 18 that guides the liquid-phase refrigerant separated by the gas-liquid separator 14 to the outdoor heat exchanger 20 side is bypassed at the liquid-phase refrigerant outlet port 14c of the gas-liquid separator 14. It is connected. A liquid-phase refrigerant side opening / closing valve 18 a is disposed in the fixed throttle bypass passage 18. The liquid-phase refrigerant side opening / closing valve 18 a is an electromagnetic valve that opens and closes the fixed throttle bypass passage 18, and its opening / closing operation is controlled by a control signal output from the control device 40.

また、冷媒が液相冷媒側開閉弁18aを通過する際に生じる圧力損失は、固定絞り17を通過する際に生じる圧力損失に対して極めて小さい。従って、室内凝縮器12から流出した冷媒は、液相冷媒側開閉弁18aが開いている場合には固定絞り迂回通路18側を介して室外熱交換器20へ流入し、液相冷媒側開閉弁18aが閉じている場合には固定絞り17を介して室外熱交換器20へ流入する。   Further, the pressure loss that occurs when the refrigerant passes through the liquid-phase refrigerant-side on-off valve 18 a is extremely small compared to the pressure loss that occurs when the refrigerant passes through the fixed throttle 17. Accordingly, the refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 20 via the fixed throttle bypass passage 18 side when the liquid phase refrigerant side opening / closing valve 18a is open, and the liquid phase refrigerant side opening / closing valve. When 18 a is closed, it flows into the outdoor heat exchanger 20 through the fixed throttle 17.

これにより、液相冷媒側開閉弁18aは、ヒートポンプサイクル10の冷媒流路を切り替えることができる。従って、本実施形態の液相冷媒側開閉弁18aは、気相冷媒側開閉弁16とともに、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。   Thereby, the liquid phase refrigerant | coolant side on-off valve 18a can switch the refrigerant | coolant flow path of the heat pump cycle 10. FIG. Therefore, the liquid phase refrigerant side opening / closing valve 18a of the present embodiment, together with the gas phase refrigerant side opening / closing valve 16, constitutes a refrigerant channel switching unit that switches the refrigerant channel of the refrigerant circulating in the cycle.

このような冷媒流路切替部としては、気液分離器14の液相冷媒流出ポート14c出口側と固定絞り17入口側とを接続する冷媒回路および液相冷媒流出ポート14c出口側と固定絞り迂回通路18入口側とを接続する冷媒回路を切り替える電気式の三方弁等を採用してもよい。   As such a refrigerant flow switching unit, a refrigerant circuit that connects the liquid phase refrigerant outflow port 14c outlet side of the gas-liquid separator 14 and the fixed throttle 17 inlet side, and the liquid phase refrigerant outflow port 14c outlet side and the fixed throttle bypass. An electric three-way valve or the like that switches the refrigerant circuit connecting the inlet side of the passage 18 may be adopted.

固定絞り迂回通路18および液相冷媒側開閉弁18aは、固定絞り17における冷媒の減圧量を調整する調整機構である。   The fixed throttle detour passage 18 and the liquid-phase refrigerant side opening / closing valve 18 a are adjustment mechanisms that adjust the amount of refrigerant reduced in the fixed throttle 17.

固定絞り17および固定絞り迂回通路18の出口側には、室外熱交換器20の冷媒入口側が接続されている。室外熱交換器20は、ボンネット内に配置されて、内部を流通する冷媒と送風ファン21から送風された外気とを熱交換させるものである。この室外熱交換器20は、少なくとも暖房モード時には、低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、冷房モード時等には、高圧冷媒を放熱させる放熱器として機能する熱交換器である。   The refrigerant inlet side of the outdoor heat exchanger 20 is connected to the outlet side of the fixed throttle 17 and the fixed throttle bypass passage 18. The outdoor heat exchanger 20 is disposed in the hood, and exchanges heat between the refrigerant circulating inside and the outside air blown from the blower fan 21. The outdoor heat exchanger 20 functions as an evaporator that evaporates low-pressure refrigerant and exerts an endothermic action at least in the heating mode, and functions as a radiator that radiates heat from the high-pressure refrigerant in the cooling mode and the like. It is.

室外熱交換器20の冷媒出口側には、第2減圧部としての冷房用膨張弁22の冷媒入口側が接続されている。冷房用膨張弁22は、冷房運転モード時等に室外熱交換器20から流出し、室内蒸発器23へ流入する冷媒を減圧させるものである。この冷房用膨張弁22の基本的構成は、高段側膨張弁13と同様であり、制御装置40から出力される制御信号によって、その作動が制御される。   The refrigerant outlet side of the outdoor heat exchanger 20 is connected to the refrigerant inlet side of the cooling expansion valve 22 as a second pressure reducing unit. The cooling expansion valve 22 depressurizes the refrigerant that flows out of the outdoor heat exchanger 20 and flows into the indoor evaporator 23 in the cooling operation mode or the like. The basic configuration of the cooling expansion valve 22 is the same as that of the high-stage expansion valve 13, and its operation is controlled by a control signal output from the control device 40.

冷房用膨張弁22の出口側には、室内蒸発器23の冷媒入口側が接続されている。室内蒸発器23は、室内空調ユニット30の空調ケース31内のうち、室内凝縮器12の空気流れ上流側に配置され、冷房運転モードおよび除湿暖房運転モード等にその内部を流通する冷媒を蒸発させて吸熱作用を発揮させることにより車室内へ送風される空気を冷却する蒸発器(換言すれば空気冷却用熱交換器)として機能する熱交換器である。   The refrigerant inlet side of the indoor evaporator 23 is connected to the outlet side of the cooling expansion valve 22. The indoor evaporator 23 is disposed on the air flow upstream side of the indoor condenser 12 in the air conditioning case 31 of the indoor air conditioning unit 30, and evaporates the refrigerant that circulates in the cooling operation mode and the dehumidifying heating operation mode. The heat exchanger functions as an evaporator (in other words, an air cooling heat exchanger) that cools the air blown into the vehicle interior by exerting an endothermic action.

室内蒸発器23の出口側には、アキュムレータ24の入口側が接続されている。アキュムレータ24は、その内部に流入した冷媒の気液を分離して余剰冷媒を蓄える低圧側気液分離器である。さらに、アキュムレータ24の気相冷媒出口には、圧縮機11の吸入ポート11aが接続されている。従って、室内蒸発器23は、圧縮機11の吸入ポート11a側へ流出させるように接続されている。   The outlet side of the indoor evaporator 23 is connected to the inlet side of the accumulator 24. The accumulator 24 is a low-pressure side gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator 24 and stores excess refrigerant. Furthermore, the suction port 11 a of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 24. Therefore, the indoor evaporator 23 is connected so as to flow out to the suction port 11 a side of the compressor 11.

さらに、室外熱交換器20の冷媒出口側には、室外熱交換器20から流出した冷媒を冷房用膨張弁22および室内蒸発器23を迂回させてアキュムレータ24の入口側へ導く低圧側迂回通路25が接続されている。この低圧側迂回通路25には、低圧側迂回通路開閉弁26が配置されている。   Further, on the refrigerant outlet side of the outdoor heat exchanger 20, the low-pressure side bypass passage 25 that guides the refrigerant flowing out of the outdoor heat exchanger 20 to the inlet side of the accumulator 24 while bypassing the cooling expansion valve 22 and the indoor evaporator 23. Is connected. A low pressure side bypass passage opening / closing valve 26 is arranged in the low pressure side bypass passage 25.

低圧側迂回通路開閉弁26は、低圧側迂回通路25を開閉する電磁弁であり制御装置40から出力される制御電圧によって、その開閉作動が制御される。また、冷媒が低圧側迂回通路開閉弁26を通過する際に生じる圧力損失は、冷房用膨張弁22を通過する際に生じる圧力損失に対して極めて小さい。   The low pressure side bypass passage opening / closing valve 26 is an electromagnetic valve that opens and closes the low pressure side bypass passage 25, and its opening / closing operation is controlled by a control voltage output from the control device 40. Further, the pressure loss that occurs when the refrigerant passes through the low pressure side bypass passage opening / closing valve 26 is extremely small compared to the pressure loss that occurs when the refrigerant passes through the cooling expansion valve 22.

従って、室外熱交換器20から流出した冷媒は、低圧側迂回通路開閉弁26が開いている場合には低圧側迂回通路25を介してアキュムレータ24へ流入する。この際、冷房用膨張弁22の絞り開度を全閉としてもよい。   Accordingly, the refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the accumulator 24 through the low pressure side bypass passage 25 when the low pressure side bypass passage opening / closing valve 26 is open. At this time, the throttle opening degree of the cooling expansion valve 22 may be fully closed.

また、低圧側迂回通路開閉弁26が閉じている場合には冷房用膨張弁22を介して室内蒸発器23へ流入する。これにより、低圧側迂回通路開閉弁26は、ヒートポンプサイクル10の冷媒流路を切り替えることができる。従って、本実施形態の低圧側迂回通路開閉弁26は、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。   Further, when the low pressure side bypass passage opening / closing valve 26 is closed, it flows into the indoor evaporator 23 via the cooling expansion valve 22. Thereby, the low pressure side bypass passage opening / closing valve 26 can switch the refrigerant flow path of the heat pump cycle 10. Therefore, the low pressure side bypass passage opening / closing valve 26 of the present embodiment constitutes a refrigerant flow path switching unit that switches the refrigerant flow path of the refrigerant circulating in the cycle.

室内蒸発器23の出口側かつアキュムレータ24の入口側には定圧弁27が配置されている。定圧弁27は、室内蒸発器23の出口側における冷媒の圧力を所定圧力に維持する定圧調整部である。   A constant pressure valve 27 is disposed on the outlet side of the indoor evaporator 23 and on the inlet side of the accumulator 24. The constant pressure valve 27 is a constant pressure adjusting unit that maintains the refrigerant pressure at the outlet side of the indoor evaporator 23 at a predetermined pressure.

高圧側迂回通路28は、室内凝縮器12の出口側から高段側膨張弁13の入口側へ至る範囲の冷媒を、室外熱交換器20の出口側から冷房用膨張弁22の入口側へ至る範囲へ導く冷媒通路である。換言すると、高圧側迂回通路28は、室内凝縮器12から流出した冷媒を、高段側膨張弁13および室外熱交換器20を迂回させて冷房用膨張弁22の入口側へ導く冷媒通路である。   The high-pressure side bypass passage 28 passes the refrigerant in the range from the outlet side of the indoor condenser 12 to the inlet side of the high-stage expansion valve 13 from the outlet side of the outdoor heat exchanger 20 to the inlet side of the cooling expansion valve 22. It is a refrigerant passage leading to the range. In other words, the high-pressure side bypass passage 28 is a refrigerant passage that guides the refrigerant flowing out of the indoor condenser 12 to the inlet side of the cooling expansion valve 22 by bypassing the high-stage side expansion valve 13 and the outdoor heat exchanger 20. .

高圧側迂回通路28には、高圧側迂回通路開閉弁28aが配置されている。この高圧側迂回通路開閉弁28aは、高圧側迂回通路28を開閉する電磁弁であり、制御装置40から出力される制御信号により、その作動が制御される。   A high pressure side bypass passage opening / closing valve 28 a is disposed in the high pressure side bypass passage 28. The high pressure side bypass passage opening / closing valve 28 a is an electromagnetic valve that opens and closes the high pressure side bypass passage 28, and its operation is controlled by a control signal output from the control device 40.

高圧側迂回通路開閉弁28aは、高圧側迂回通路28を開閉することによって、サイクル構成(換言すれば冷媒流路)を切り替える機能を果たす。従って、高圧側迂回通路開閉弁28aは、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。   The high pressure side bypass passage opening / closing valve 28a functions to switch the cycle configuration (in other words, the refrigerant passage) by opening and closing the high pressure side bypass passage 28. Therefore, the high-pressure side bypass passage opening / closing valve 28a constitutes a refrigerant flow path switching unit that switches the refrigerant flow path of the refrigerant circulating in the cycle.

室外熱交換器20の出口側には逆止弁29が配置されている。逆止弁29は、室外熱交換器20の出口側から冷房用膨張弁22の入口側への冷媒の流れを許容し、冷房用膨張弁22の入口側から室外熱交換器20の出口側への冷媒の流れを禁止する逆流防止部である。逆止弁29によって、高圧側迂回通路28を流れた冷媒が室外熱交換器20側へ逆流することを防止できる。   A check valve 29 is disposed on the outlet side of the outdoor heat exchanger 20. The check valve 29 allows the refrigerant to flow from the outlet side of the outdoor heat exchanger 20 to the inlet side of the cooling expansion valve 22 and from the inlet side of the cooling expansion valve 22 to the outlet side of the outdoor heat exchanger 20. It is a backflow prevention part which prohibits the flow of the refrigerant | coolant. The check valve 29 can prevent the refrigerant flowing through the high-pressure side bypass passage 28 from flowing back to the outdoor heat exchanger 20 side.

次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤の内側に配置されて、室内空調ユニット30の外殻を形成するとともに、その内部に車室内に送風される空気の空気通路を形成する空調ケース31を有している。そして、この空気通路に送風機32、室内凝縮器12、室内蒸発器23等が収容されている。   Next, the indoor air conditioning unit 30 will be described. The indoor air conditioning unit 30 is disposed inside the instrument panel at the foremost part of the vehicle interior, forms an outer shell of the indoor air conditioning unit 30, and forms an air passage for air blown into the vehicle interior in the interior. 31. And the air blower 32, the indoor condenser 12, the indoor evaporator 23, etc. are accommodated in this air passage.

空調ケース31の空気流れ最上流側には、内気と外気とを切替導入する内外気切替装置33が配置されている。この内外気切替装置33は、空調ケース31内に内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。   On the most upstream side of the air flow in the air conditioning case 31, an inside / outside air switching device 33 that switches between introduction of inside air and outside air is arranged. The inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, so that the air volume of the inside air and the outside air are adjusted. The air volume ratio with the air volume is continuously changed.

内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機32が配置されている。この送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機であって、制御装置40から出力される制御電圧によって回転数(換言すれば送風量)が制御される。   On the downstream side of the air flow of the inside / outside air switching device 33, a blower 32 that blows air sucked through the inside / outside air switching device 33 toward the vehicle interior is arranged. The blower 32 is an electric blower that drives a centrifugal multiblade fan by an electric motor, and the number of rotations (in other words, the amount of blown air) is controlled by a control voltage output from the control device 40.

送風機32の空気流れ下流側には、室内蒸発器23および室内凝縮器12が、車室内へ送風される空気の流れに対して、室内蒸発器23→室内凝縮器12の順に配置されている。換言すると、室内蒸発器23は、室内凝縮器12に対して、空気流れ上流側に配置されている。   On the downstream side of the air flow of the blower 32, the indoor evaporator 23 and the indoor condenser 12 are arranged in the order of the indoor evaporator 23 → the indoor condenser 12 with respect to the flow of air blown into the vehicle interior. In other words, the indoor evaporator 23 is disposed on the upstream side of the air flow with respect to the indoor condenser 12.

室内蒸発器23と室内凝縮器12との間には、図示しないヒータコアが配置されている。ヒータコアは、エンジン冷却水と室内蒸発器23通過後の空気とを熱交換させることによって、空気を補助的に加熱する補助加熱用熱交換器である。   A heater core (not shown) is disposed between the indoor evaporator 23 and the indoor condenser 12. The heater core is an auxiliary heating heat exchanger that auxiliary heats the air by exchanging heat between the engine coolant and the air that has passed through the indoor evaporator 23.

空調ケース31内には、室内蒸発器23通過後の空気を、ヒータコアおよび室内凝縮器12を迂回して流すバイパス通路35が設けられており、室内蒸発器23の空気流れ下流側であって、かつ、ヒータコアおよび室内凝縮器12の空気流れ上流側には、エアミックスドア34が配置されている。   A bypass passage 35 is provided in the air conditioning case 31 to flow the air that has passed through the indoor evaporator 23, bypassing the heater core and the indoor condenser 12, and is downstream of the air flow of the indoor evaporator 23. In addition, an air mix door 34 is disposed on the upstream side of the air flow of the heater core and the indoor condenser 12.

エアミックスドア34は、室内蒸発器23通過後の空気のうち、ヒータコアおよび室内凝縮器12側を通過する空気の風量とバイパス通路35を通過させる風量との風量割合を調整することによって、室内凝縮器12へ流入する空気の流量(換言すれば風量)を調整する流量調整部であり、室内凝縮器12の熱交換能力を調整する機能を果たす。   The air mix door 34 adjusts the air volume ratio between the air volume passing through the heater core and the indoor condenser 12 and the air volume passing through the bypass passage 35 in the air after passing through the indoor evaporator 23, thereby condensing the indoor air. It is a flow rate adjusting unit that adjusts the flow rate of air flowing into the condenser 12 (in other words, the air volume), and functions to adjust the heat exchange capacity of the indoor condenser 12.

室内凝縮器12およびバイパス通路35の空気流れ下流側には、室内凝縮器12にて冷媒と熱交換して加熱された空気とバイパス通路35を通過して加熱されていない空気とが合流する合流空間36が設けられている。   On the downstream side of the air flow in the indoor condenser 12 and the bypass passage 35, the air heated by exchanging heat with the refrigerant in the indoor condenser 12 and the air that has not been heated through the bypass passage 35 merge. A space 36 is provided.

空調ケース31の空気流れ最下流部には、合流空間36にて合流した空気を、冷却対象空間である車室内へ吹き出す開口穴が配置されている。具体的には、この開口穴としては、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴37a、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴37b、乗員の足元に向けて空調風を吹き出すフット開口穴37cが設けられている。   In the most downstream portion of the air flow of the air conditioning case 31, an opening hole for blowing the air that has joined in the joining space 36 into the vehicle interior that is the space to be cooled is disposed. Specifically, as this opening hole, a defroster opening hole 37a that blows conditioned air toward the inner side surface of the vehicle front window glass, a face opening hole 37b that blows conditioned air toward the upper body of the passenger in the passenger compartment, and the feet of the passenger The foot opening hole 37c which blows air-conditioning wind toward is provided.

従って、エアミックスドア34が、室内凝縮器12を通過させる風量とバイパス通路35を通過させる風量との風量割合を調整することによって、合流空間36内の空気の温度が調整される。なお、エアミックスドア34は、制御装置40から出力される制御信号によって作動が制御される図示しないサーボモータによって駆動される。   Therefore, the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the bypass passage 35, thereby adjusting the temperature of the air in the merge space 36. The air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the control device 40.

さらに、デフロスタ開口穴37a、フェイス開口穴37bおよびフット開口穴37cの空気流れ上流側には、それぞれ、デフロスタ開口穴37aの開口面積を調整するデフロスタドア38a、フェイス開口穴37bの開口面積を調整するフェイスドア38b、フット開口穴37cの開口面積を調整するフットドア38cが配置されている。   Further, on the upstream side of the air flow of the defroster opening hole 37a, the face opening hole 37b, and the foot opening hole 37c, the opening areas of the defroster door 38a and the face opening hole 37b for adjusting the opening area of the defroster opening hole 37a are adjusted. A foot door 38c for adjusting the opening area of the face door 38b and the foot opening hole 37c is disposed.

これらのデフロスタドア38a、フェイスドア38bおよびフットドア38cは、各開口穴37a〜37cを開閉して、吹出口モードを切り替える吹出口モード切替部を構成するものであって、リンク機構等を介して、制御装置40から出力される制御信号によってその作動が制御される図示しないサーボモータによって駆動される。   These defroster door 38a, face door 38b, and foot door 38c constitute an outlet mode switching unit that opens and closes each opening hole 37a to 37c and switches the outlet mode, and through a link mechanism or the like, It is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the control device 40.

また、デフロスタ開口穴37a、フェイス開口穴37bおよびフット開口穴37cの空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口に接続されている。   In addition, the air flow downstream side of the defroster opening hole 37a, the face opening hole 37b, and the foot opening hole 37c is respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages. Connected to the exit.

なお、吹出口モードとしては、フェイス開口穴37bを全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出すフェイスモード、フェイス開口穴37bとフット開口穴37cの両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すバイレベルモード、フット開口穴37cを全開するとともにデフロスタ開口穴37aを小開度だけ開口して、フット吹出口から主に空気を吹き出すフットモード等がある。   As the air outlet mode, the face opening hole 37b is fully opened and air is blown out from the face air outlet toward the upper body of the passenger in the vehicle. Both the face opening hole 37b and the foot opening hole 37c are opened. A bi-level mode that blows air toward the upper body and feet of an indoor occupant, a foot mode in which the foot opening hole 37c is fully opened and the defroster opening hole 37a is opened by a small opening, and air is mainly blown out from the foot outlet. is there.

次に、本実施形態の電気制御部について説明する。制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種空調制御機器(具体的には、圧縮機11、高段側膨張弁13、液相冷媒側開閉弁18a、送風ファン21、冷房用膨張弁22、低圧側迂回通路開閉弁26、高圧側迂回通路開閉弁28a、送風機32等)の作動を制御する。   Next, the electric control unit of this embodiment will be described. The control device 40 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and its peripheral circuits, performs various calculations and processing based on an air conditioning control program stored in the ROM, and is connected to the output side. Various air conditioning control devices (specifically, compressor 11, high stage side expansion valve 13, liquid phase refrigerant side opening / closing valve 18a, blower fan 21, cooling expansion valve 22, low pressure side bypass passage opening / closing valve 26, high pressure side The operation of the bypass passage opening / closing valve 28a, the blower 32 and the like is controlled.

制御装置40の入力側には、車室内温度を検出する内気センサ、外気温を検出する外気センサ、車室内の日射量を検出する日射センサ、室内蒸発器23からの吹出空気温度(換言すれば蒸発器温度)を検出する蒸発器温度センサ、圧縮機11から吐出された高圧冷媒圧力を検出する吐出圧センサ、室内凝縮器12から流出した冷媒の温度を検出する凝縮器温度センサ、圧縮機11へ吸入される吸入冷媒圧力を検出する吸入圧センサ等の種々の空調制御用のセンサ群41が接続されている。   On the input side of the control device 40, there are an inside air sensor that detects the temperature inside the vehicle, an outside air sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation inside the vehicle, and the temperature of air blown from the indoor evaporator 23 (in other words, An evaporator temperature sensor for detecting the evaporator temperature), a discharge pressure sensor for detecting the high-pressure refrigerant pressure discharged from the compressor 11, a condenser temperature sensor for detecting the temperature of the refrigerant flowing out of the indoor condenser 12, and the compressor 11 Various air-conditioning control sensor groups 41 such as a suction pressure sensor for detecting the suction refrigerant pressure sucked in are connected.

制御装置40の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種空調操作スイッチからの操作信号が入力される。操作パネルに設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、冷房運転モード、除湿暖房運転モードおよび暖房運転モードを選択するモード選択スイッチ等が設けられている。   An operation panel (not shown) disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device 40, and operation signals from various air conditioning operation switches provided on the operation panel are input. Specifically, various air conditioning operation switches provided on the operation panel include an operation switch of the vehicle air conditioner 1, a vehicle interior temperature setting switch for setting the vehicle interior temperature, a cooling operation mode, a dehumidifying heating operation mode, and a heating operation mode. A mode selection switch or the like for selecting is provided.

制御装置40は、その出力側に接続された各種空調制御機器の作動を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(具体的にはハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。   The control device 40 is configured such that a control unit that controls the operation of various air-conditioning control devices connected to the output side thereof is integrally configured. However, the control device 40 is configured to control the operation of each control target device (specifically, Hardware and software) constitute a control unit that controls the operation of each control target device.

例えば、本実施形態では、圧縮機11の電動モータの作動を制御する構成(具体的にはハードウェアおよびソフトウェア)が吐出能力制御部を構成している。例えば、本実施形態では、液相冷媒側開閉弁18a、低圧側迂回通路開閉弁26および高圧側迂回通路開閉弁28aの作動を制御する構成(具体的にはハードウェアおよびソフトウェア)が冷媒回路制御部を構成している。もちろん、吐出能力制御部、冷媒回路制御部等を制御装置40に対して別体の制御装置として構成してもよい。   For example, in the present embodiment, a configuration (specifically, hardware and software) that controls the operation of the electric motor of the compressor 11 constitutes the discharge capacity control unit. For example, in the present embodiment, the configuration (specifically, hardware and software) that controls the operation of the liquid-phase refrigerant side opening / closing valve 18a, the low pressure side bypass passage opening / closing valve 26, and the high pressure side bypass passage opening / closing valve 28a is refrigerant circuit control. Part. Of course, the discharge capacity control unit, the refrigerant circuit control unit, and the like may be configured as separate control devices for the control device 40.

次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。本実施形態の車両用空調装置1では、前述の如く、車室内を冷房する冷房運転モード、車室内を暖房する暖房運転モード、および、車室内を除湿しながら暖房する除湿暖房モードに切り替えることができる。   Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described. In the vehicle air conditioner 1 of the present embodiment, as described above, switching to the cooling operation mode for cooling the vehicle interior, the heating operation mode for heating the vehicle interior, and the dehumidification heating mode for heating while dehumidifying the vehicle interior is possible. it can.

これらの各運転モードの切り替えは、空調制御プログラムが実行されることによって行われる。この空調制御プログラムは、操作パネルのオートスイッチが投入(換言すればON)された際に実行される。   Switching between these operation modes is performed by executing an air conditioning control program. This air conditioning control program is executed when the auto switch of the operation panel is turned on (in other words, turned on).

空調制御プログラムのメインルーチンでは、空調制御用のセンサ群の検出信号および各種空調操作スイッチからの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを、以下数式F1に基づいて算出する。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C…(F1)
ここで、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気センサによって検出された車室内温度(換言すれば内気温)、Tamは外気センサによって検出された外気温、Asは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
In the main routine of the air conditioning control program, the detection signals of the air conditioning control sensor group and the operation signals from various air conditioning operation switches are read. And based on the value of the read detection signal and operation signal, the target blowing temperature TAO which is the target temperature of the blowing air which blows off into the vehicle interior is calculated based on the following formula F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C (F1)
Here, Tset is the vehicle interior set temperature set by the temperature setting switch, Tr is the vehicle interior temperature detected by the internal air sensor (in other words, the internal air temperature), Tam is the external air temperature detected by the external air sensor, and As is solar radiation. The amount of solar radiation detected by the sensor. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.

さらに、操作パネルの冷房スイッチが投入された状態で、目標吹出温度TAOが予め定めた冷房基準温度αよりも低くなっている場合には、冷房モードでの運転を実行する。また、操作パネルの冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが予め定めた除湿暖房基準温度βよりも高くなっている場合には、直列除湿暖房モードでの運転を実行する。   Further, in the state where the cooling switch of the operation panel is turned on, when the target blowing temperature TAO is lower than the predetermined cooling reference temperature α, the operation in the cooling mode is executed. Also, when the target switch temperature TAO is equal to or higher than the cooling reference temperature α and the outside air temperature Tam is higher than the predetermined dehumidifying heating reference temperature β with the cooling switch on the operation panel turned on. The operation in the series dehumidifying and heating mode is executed.

また、操作パネルの冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが除湿暖房基準温度β以下になっている場合には、並列除湿暖房モードでの運転を実行する。また、冷房スイッチが投入されていない場合には、暖房モードでの運転を実行する。   Further, when the target switch temperature TAO is equal to or higher than the cooling reference temperature α and the outside air temperature Tam is equal to or lower than the dehumidifying heating reference temperature β in a state where the cooling switch of the operation panel is turned on, the parallel operation is performed. Run in dehumidifying heating mode. When the cooling switch is not turned on, the operation in the heating mode is executed.

この空調制御プログラムにより、冷房モードは、主に夏季のように比較的外気温が高い場合に実行される。直列除湿暖房モードは、主に春季あるいは秋季に実行される。並列除湿暖房モードは、主に早春季あるいは晩秋季のように直列除湿暖房モードよりも高い加熱能力で空気を加熱する必要のある場合に実行される。さらに、暖房モードは、主に冬季の低外気温時に実行することができる。   With this air conditioning control program, the cooling mode is executed mainly when the outside air temperature is relatively high, such as in summer. The series dehumidifying heating mode is executed mainly in spring or autumn. The parallel dehumidifying heating mode is executed when the air needs to be heated with a higher heating capacity than the serial dehumidifying heating mode, mainly in early spring or late autumn. Furthermore, the heating mode can be executed mainly at low outdoor temperatures in winter.

(a)冷房モード
冷房モードでは、制御装置40が、高段側膨張弁13を全開状態とし、液相冷媒側開閉弁18aを全開状態とし、冷房用膨張弁22を、減圧作用を発揮する絞り状態とし、さらに、低圧側迂回通路開閉弁26を閉弁状態とし、高圧側迂回通路開閉弁28aを閉弁状態とする。
(A) Cooling mode In the cooling mode, the control device 40 opens the high stage side expansion valve 13, opens the liquid phase refrigerant side opening / closing valve 18 a, and opens the cooling expansion valve 22 with a pressure reducing action. Further, the low pressure side bypass passage opening / closing valve 26 is closed, and the high pressure side bypass passage opening / closing valve 28a is closed.

これにより、図1に示すように、冷房モードでは、圧縮機11→室外熱交換器20→冷房用膨張弁22→室内蒸発器23→定圧弁27→アキュムレータ24→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。   Thus, as shown in FIG. 1, in the cooling mode, the refrigerant circulates in the order of the compressor 11 → the outdoor heat exchanger 20 → the cooling expansion valve 22 → the indoor evaporator 23 → the constant pressure valve 27 → the accumulator 24 → the compressor 11. A vapor compression refrigeration cycle is configured.

このサイクル構成で、制御装置40は、室内蒸発器23から吹き出される空気が目標蒸発器温度TEOとなるように、圧縮機11の作動を制御する。目標蒸発器温度TEOは、目標吹出温度TAOの低下に伴って低下するように決定される。目標蒸発器温度TEOは、室内蒸発器23の着霜を抑制可能な範囲で決定される。   With this cycle configuration, the control device 40 controls the operation of the compressor 11 so that the air blown out from the indoor evaporator 23 becomes the target evaporator temperature TEO. The target evaporator temperature TEO is determined so as to decrease as the target outlet temperature TAO decreases. The target evaporator temperature TEO is determined within a range in which frost formation of the indoor evaporator 23 can be suppressed.

また、制御装置40は、冷房用膨張弁22へ流入する冷媒の圧力に基づいて、サイクルのCOPが極大値に近づくように冷房用膨張弁22の作動を制御する。また、制御装置40は、室内凝縮器12側の通風路が全閉となるようにエアミックスドア34を変位させる。   Further, the control device 40 controls the operation of the cooling expansion valve 22 so that the COP of the cycle approaches the maximum value based on the pressure of the refrigerant flowing into the cooling expansion valve 22. Further, the control device 40 displaces the air mix door 34 so that the ventilation path on the indoor condenser 12 side is fully closed.

冷房モードの冷凍サイクル装置では、室外熱交換器20を放熱器として機能させ、室内蒸発器23を蒸発器として機能させる。そして、室内蒸発器23にて冷媒が蒸発する際に空気から吸熱した熱を室外熱交換器20にて外気に放熱する。これにより、空気を冷却することができる。   In the refrigeration cycle apparatus in the cooling mode, the outdoor heat exchanger 20 functions as a radiator, and the indoor evaporator 23 functions as an evaporator. The heat absorbed from the air when the refrigerant evaporates in the indoor evaporator 23 is radiated to the outside air in the outdoor heat exchanger 20. Thereby, air can be cooled.

従って、冷房モードでは、室内蒸発器23にて冷却された空気を車室内に吹き出すことによって、車室内の冷房を行うことができる。   Therefore, in the cooling mode, the vehicle interior can be cooled by blowing the air cooled by the indoor evaporator 23 into the vehicle interior.

(b)直列除湿暖房モード
直列除湿暖房モードでは、制御装置40が、高段側膨張弁13を減圧作用を発揮する絞り状態とし、液相冷媒側開閉弁18aを全開状態とし、冷房用膨張弁22を減圧作用を発揮する絞り状態とし、さらに、低圧側迂回通路開閉弁26を閉弁状態とし、高圧側迂回通路開閉弁28aを閉弁状態とする。
(B) Series dehumidifying and heating mode In the series dehumidifying and heating mode, the control device 40 sets the high-stage expansion valve 13 to a throttled state that exerts a pressure reducing action, sets the liquid-phase refrigerant side on-off valve 18a to a fully open state, and sets the cooling expansion valve 22 is set to a throttle state that exerts a pressure reducing action, the low pressure side bypass passage opening / closing valve 26 is closed, and the high pressure side bypass passage opening / closing valve 28a is closed.

これにより、図1に示すように、直列除湿暖房モードでは、圧縮機11→室内凝縮器12→高段側膨張弁13→室外熱交換器20→冷房用膨張弁22→室内蒸発器23→定圧弁27→アキュムレータ24→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。すなわち、室外熱交換器20と室内蒸発器23が冷媒流れに対して直列的に接続される冷凍サイクルが構成される。   As a result, as shown in FIG. 1, in the series dehumidifying and heating mode, the compressor 11 → the indoor condenser 12 → the high stage side expansion valve 13 → the outdoor heat exchanger 20 → the cooling expansion valve 22 → the indoor evaporator 23 → the constant. A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the pressure valve 27 → accumulator 24 → compressor 11 is configured. That is, a refrigeration cycle in which the outdoor heat exchanger 20 and the indoor evaporator 23 are connected in series to the refrigerant flow is configured.

このサイクル構成で、制御装置40は、冷房モードと同様に圧縮機11の作動を制御する。また、制御装置40は、高段側膨張弁13へ流入する冷媒の圧力に基づいて、サイクルのCOPが極大値に近づくように高段側膨張弁13および冷房用膨張弁22の作動を制御する。この際、制御装置40は、目標吹出温度TAOの上昇に伴って、高段側膨張弁13の絞り開度を減少させ、冷房用膨張弁22の絞り開度を増加させる。また、制御装置40は、室内凝縮器12側の通風路が全開となるようにエアミックスドア34を変位させる。   In this cycle configuration, the control device 40 controls the operation of the compressor 11 as in the cooling mode. Further, the control device 40 controls the operations of the high-stage expansion valve 13 and the cooling expansion valve 22 based on the pressure of the refrigerant flowing into the high-stage expansion valve 13 so that the COP of the cycle approaches the maximum value. . At this time, the control device 40 decreases the throttle opening of the high stage side expansion valve 13 and increases the throttle opening of the cooling expansion valve 22 as the target blowing temperature TAO increases. In addition, the control device 40 displaces the air mix door 34 so that the ventilation path on the indoor condenser 12 side is fully opened.

直列除湿暖房モードでは、室内凝縮器12を放熱器として機能させ、室内蒸発器23を蒸発器として機能させる。さらに、室外熱交換器20における冷媒の飽和温度が外気よりも高い場合には、室外熱交換器20を放熱器として機能させ、室外熱交換器20における冷媒の飽和温度が外気よりも低い場合には、室外熱交換器20を蒸発器として機能させる。   In the series dehumidifying heating mode, the indoor condenser 12 is caused to function as a radiator, and the indoor evaporator 23 is caused to function as an evaporator. Furthermore, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is higher than the outside air, the outdoor heat exchanger 20 is caused to function as a radiator, and the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lower than the outside air. Makes the outdoor heat exchanger 20 function as an evaporator.

このため、室外熱交換器20における冷媒の飽和温度が外気よりも高い場合には、目標吹出温度TAOの上昇に伴って室外熱交換器20の冷媒の飽和温度を低下させて、室外熱交換器20における冷媒の放熱量を減少させることができる。これにより、室内凝縮器12における冷媒の放熱量を増加させて加熱能力を向上させることができる。   For this reason, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is higher than the outside air, the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lowered as the target blowing temperature TAO increases, and the outdoor heat exchanger 20 The amount of heat released from the refrigerant at 20 can be reduced. Thereby, the thermal radiation amount of the refrigerant | coolant in the indoor condenser 12 can be increased, and a heating capability can be improved.

また、室外熱交換器20における冷媒の飽和温度が外気よりも低い場合には、目標吹出温度TAOの上昇に伴って室外熱交換器20の冷媒の飽和温度を低下させて、室外熱交換器20における冷媒の吸熱量を増加させることができる。これにより、室内凝縮器12における冷媒の放熱量を増加させて加熱能力を向上させることができる。   Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lower than the outside air, the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is decreased as the target blowing temperature TAO rises, and the outdoor heat exchanger 20. The amount of heat absorbed by the refrigerant can be increased. Thereby, the thermal radiation amount of the refrigerant | coolant in the indoor condenser 12 can be increased, and a heating capability can be improved.

従って、直列除湿暖房モードでは、室内蒸発器23にて冷却されて除湿された空気を、室内凝縮器12にて再加熱して車室内に吹き出すことによって、車室内の除湿暖房を行うことができる。さらに、高段側膨張弁13および冷房用膨張弁22の絞り開度を調整することによって、室内凝縮器12における空気の加熱能力を調整することができる。   Therefore, in the series dehumidifying heating mode, the air that has been cooled and dehumidified by the indoor evaporator 23 is reheated by the indoor condenser 12 and blown out into the vehicle interior, thereby performing dehumidification heating in the vehicle interior. . Furthermore, the heating capacity of the air in the indoor condenser 12 can be adjusted by adjusting the throttle opening degree of the high stage side expansion valve 13 and the cooling expansion valve 22.

(c)並列除湿暖房モード
並列除湿暖房モードでは、制御装置40が、高段側膨張弁13を減圧作用を発揮する絞り状態とし、液相冷媒側開閉弁18aを全開状態とし、冷房用膨張弁22を減圧作用を発揮する絞り状態とし、さらに、低圧側迂回通路開閉弁26を全開状態とし、高圧側迂回通路開閉弁28aを全開状態とする。
(C) Parallel dehumidifying and heating mode In the parallel dehumidifying and heating mode, the control device 40 sets the high-stage side expansion valve 13 to a throttled state that exerts a pressure reducing action, sets the liquid-phase refrigerant side on-off valve 18a to a fully open state, and sets the cooling expansion valve. 22 is set to a throttle state that exerts a pressure reducing action, the low pressure side bypass passage opening / closing valve 26 is fully opened, and the high pressure side bypass passage opening / closing valve 28a is fully opened.

これにより、図2に示すように、並列除湿暖房モードでは、圧縮機11→室内凝縮器12→高段側膨張弁13→室外熱交換器20→アキュムレータ24→圧縮機11の順に冷媒が循環するとともに、圧縮機11→室内凝縮器12→冷房用膨張弁22→室内蒸発器23→定圧弁27→アキュムレータ24→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。すなわち、室外熱交換器20と室内蒸発器23が冷媒流れに対して並列的に接続される冷凍サイクルが構成される。   As a result, as shown in FIG. 2, in the parallel dehumidifying heating mode, the refrigerant circulates in the order of the compressor 11 → the indoor condenser 12 → the high stage side expansion valve 13 → the outdoor heat exchanger 20 → the accumulator 24 → the compressor 11. At the same time, a vapor compression refrigeration cycle is formed in which the refrigerant circulates in the order of the compressor 11 → the indoor condenser 12 → the cooling expansion valve 22 → the indoor evaporator 23 → the constant pressure valve 27 → the accumulator 24 → the compressor 11. That is, a refrigeration cycle in which the outdoor heat exchanger 20 and the indoor evaporator 23 are connected in parallel to the refrigerant flow is configured.

このサイクル構成で、制御装置40は、冷房モードと同様に圧縮機11の作動を制御する。また、制御装置40は、高段側膨張弁13へ流入する冷媒の圧力に基づいて、サイクルのCOPが極大値に近づくように高段側膨張弁13および冷房用膨張弁22の作動を制御する。この際、制御装置40は、目標吹出温度TAOの上昇に伴って、高段側膨張弁13の絞り開度を減少させ、冷房用膨張弁22の絞り開度を増加させる。また、制御装置40は、室内凝縮器12側の通風路が全開となるようにエアミックスドア34を変位させる。   In this cycle configuration, the control device 40 controls the operation of the compressor 11 as in the cooling mode. Further, the control device 40 controls the operations of the high-stage expansion valve 13 and the cooling expansion valve 22 based on the pressure of the refrigerant flowing into the high-stage expansion valve 13 so that the COP of the cycle approaches the maximum value. . At this time, the control device 40 decreases the throttle opening of the high stage side expansion valve 13 and increases the throttle opening of the cooling expansion valve 22 as the target blowing temperature TAO increases. In addition, the control device 40 displaces the air mix door 34 so that the ventilation path on the indoor condenser 12 side is fully opened.

並列除湿暖房モードでは、室内凝縮器12を放熱器として機能させ、室外熱交換器20および室内蒸発器23を蒸発器として機能させる。このため、目標吹出温度TAOの上昇に伴って室外熱交換器20の冷媒の飽和温度を低下させて、室外熱交換器20における冷媒の吸熱量を増加させることができる。これにより、室内凝縮器20における冷媒の放熱量を増加させて加熱能力を向上させることができる。   In the parallel dehumidifying and heating mode, the indoor condenser 12 is caused to function as a radiator, and the outdoor heat exchanger 20 and the indoor evaporator 23 are caused to function as an evaporator. For this reason, the refrigerant | coolant saturation temperature of the outdoor heat exchanger 20 can be lowered | hung with the raise of the target blowing temperature TAO, and the heat absorption amount of the refrigerant | coolant in the outdoor heat exchanger 20 can be increased. Thereby, the thermal radiation amount of the refrigerant | coolant in the indoor condenser 20 can be increased, and a heating capability can be improved.

従って、並列除湿暖房モードでは、室内蒸発器23にて冷却されて除湿された空気を、室内凝縮器12にて再加熱して車室内に吹き出すことによって、車室内の除湿暖房を行うことができる。さらに、室外熱交換器20における冷媒の飽和温度(換言すれば蒸発温度)を、室内蒸発器23における冷媒の飽和温度(換言すれば蒸発温度)よりも低下させることができるので、直列除湿暖房モードよりも空気の加熱能力を増加させることができる。   Accordingly, in the parallel dehumidifying and heating mode, the air that has been cooled and dehumidified by the indoor evaporator 23 is reheated by the indoor condenser 12 and blown out into the vehicle interior, thereby performing dehumidification heating in the vehicle interior. . Furthermore, the refrigerant saturation temperature (in other words, the evaporation temperature) in the outdoor heat exchanger 20 can be made lower than the refrigerant saturation temperature (in other words, the evaporation temperature) in the indoor evaporator 23. The air heating capacity can be increased.

(d)暖房モード
暖房モードでは、制御装置40が、高段側膨張弁13を減圧作用を発揮する絞り状態とし、液相冷媒側開閉弁18aを閉弁状態とし、冷房用膨張弁22を閉弁状態とし、さらに、低圧側迂回通路開閉弁26を全開状態とし、高圧側迂回通路開閉弁28aを閉弁状態とする。
(D) Heating Mode In the heating mode, the control device 40 sets the high stage side expansion valve 13 to a throttle state that exerts a pressure reducing action, sets the liquid phase refrigerant side on-off valve 18a to a closed state, and closes the cooling expansion valve 22. Further, the low pressure side bypass passage opening / closing valve 26 is fully opened, and the high pressure side bypass passage opening / closing valve 28a is closed.

これにより、図3に示すように、暖房モードでは、圧縮機11の吐出ポート11c→室内凝縮器12→高段側膨張弁13→気液分離器14の液相冷媒流出ポート14c→固定絞り17→室外熱交換器20→圧縮機11の吸入ポート11aの順に冷媒が循環するとともに、気液分離器14の気相冷媒流出ポート14b→圧縮機11の中間圧ポート11bの順に冷媒が循環する、いわゆるガスインジェクションサイクルが構成される。   Thus, as shown in FIG. 3, in the heating mode, the discharge port 11 c of the compressor 11 → the indoor condenser 12 → the high-stage side expansion valve 13 → the liquid-phase refrigerant outflow port 14 c of the gas-liquid separator 14 → the fixed throttle 17. The refrigerant circulates in the order of the outdoor heat exchanger 20 → the suction port 11 a of the compressor 11, and the refrigerant circulates in the order of the gas-phase refrigerant outflow port 14 b of the gas-liquid separator 14 → the intermediate pressure port 11 b of the compressor 11. A so-called gas injection cycle is configured.

このサイクル構成で、制御装置40は、室内凝縮器12へ流入する冷媒が目標凝縮器温度TCOとなるように、圧縮機11の作動を制御する。目標凝縮器温度TCOは、目標吹出温度TAOの上昇に伴って上昇するように決定される。さらに、制御装置40は、高段側膨張弁13へ流入する冷媒の圧力に基づいて、サイクルのCOPが極大値に近づくように高段側膨張弁13の作動を制御する。また、制御装置40は、室内凝縮器12側の通風路が全開となるようにエアミックスドア34を変位させる。   With this cycle configuration, the control device 40 controls the operation of the compressor 11 so that the refrigerant flowing into the indoor condenser 12 reaches the target condenser temperature TCO. The target condenser temperature TCO is determined so as to increase as the target blowing temperature TAO increases. Furthermore, the control device 40 controls the operation of the high stage side expansion valve 13 so that the COP of the cycle approaches the maximum value based on the pressure of the refrigerant flowing into the high stage side expansion valve 13. In addition, the control device 40 displaces the air mix door 34 so that the ventilation path on the indoor condenser 12 side is fully opened.

暖房モードの冷凍サイクル装置では、室内凝縮器12を放熱器として機能させ、室外熱交換器20を蒸発器として機能させる。そして、室外熱交換器20にて冷媒が蒸発する際に外気から吸熱した熱を室内凝縮器12にて空気に放熱する。これにより、空気を加熱することができる。   In the refrigeration cycle apparatus in the heating mode, the indoor condenser 12 functions as a radiator, and the outdoor heat exchanger 20 functions as an evaporator. Then, the heat absorbed from the outside air when the refrigerant evaporates in the outdoor heat exchanger 20 is radiated to the air in the indoor condenser 12. Thereby, air can be heated.

従って、暖房モードでは、室内凝縮器12にて加熱された空気を車室内に吹き出すことによって、車室内の暖房を行うことができる。   Therefore, in the heating mode, the vehicle interior can be heated by blowing the air heated by the indoor condenser 12 into the vehicle interior.

本実施形態の車両用空調装置1では、上記の如く、ヒートポンプサイクル10の冷媒流路を切り替えることによって、種々のサイクル構成を実現して、車室内の適切な冷房、暖房および除湿暖房を実現できる。   In the vehicle air conditioner 1 of the present embodiment, as described above, by switching the refrigerant flow path of the heat pump cycle 10, various cycle configurations can be realized, and appropriate cooling, heating, and dehumidifying heating in the vehicle interior can be realized. .

さらに、本実施形態のようにハイブリッド車両に適用される車両用空調装置1では、エンジン廃熱が暖房用熱源として不充分となることがある。従って、本実施形態のヒートポンプサイクル10のように、暖房運転モード時に暖房負荷によらず高いCOPを発揮できることは、極めて有効である。   Furthermore, in the vehicle air conditioner 1 applied to a hybrid vehicle as in this embodiment, engine waste heat may be insufficient as a heating heat source. Therefore, it is extremely effective that a high COP can be exhibited regardless of the heating load in the heating operation mode as in the heat pump cycle 10 of the present embodiment.

本実施形態では、気相冷媒側開閉弁16として、圧力差によって変位する差圧弁を採用しているので、気相冷媒側開閉弁16を変位させるための電磁機構等を設ける必要がなく、液相冷媒側開閉弁18aの作動を制御することによって、容易に気相冷媒側開閉弁16を変位させて中間圧冷媒通路15を開閉することができる。   In the present embodiment, since a differential pressure valve that is displaced by a pressure difference is employed as the gas-phase refrigerant side on-off valve 16, there is no need to provide an electromagnetic mechanism or the like for displacing the gas-phase refrigerant side on-off valve 16. By controlling the operation of the phase refrigerant side on / off valve 18a, the gas phase refrigerant side on / off valve 16 can be easily displaced to open and close the intermediate pressure refrigerant passage 15.

より詳細には、液相冷媒側開閉弁18aが固定絞り迂回通路18を開いた際には、室内凝縮器12および室外熱交換器20のうち少なくとも一方を、冷媒を放熱させる放熱器として機能させるとともに、室内蒸発器23を冷媒を蒸発させる蒸発器として機能させるサイクル構成に切り替えることができる。   More specifically, when the liquid-phase refrigerant side on-off valve 18a opens the fixed throttle bypass passage 18, at least one of the indoor condenser 12 and the outdoor heat exchanger 20 functions as a radiator that radiates the refrigerant. At the same time, the indoor evaporator 23 can be switched to a cycle configuration that functions as an evaporator for evaporating the refrigerant.

一方、液相冷媒側開閉弁18aが固定絞り迂回通路18を閉じた際には、室内凝縮器12を冷媒を放熱させる放熱器として機能させるとともに、室外熱交換器20を冷媒を蒸発させる蒸発器として機能させるガスインジェクションサイクルとしてのサイクル構成に切替可能に構成されたヒートポンプサイクルを容易に構成できる。   On the other hand, when the liquid-phase refrigerant-side on-off valve 18a closes the fixed throttle bypass passage 18, the indoor condenser 12 functions as a radiator that radiates the refrigerant, and the outdoor heat exchanger 20 evaporates the refrigerant. It is possible to easily configure a heat pump cycle configured to be switchable to a cycle configuration as a gas injection cycle that functions as a gas injection cycle.

制御装置40は、暖房モードにおいてヒートポンプサイクル10の運転を停止させることが決定された場合、圧縮機11の停止を遅延させる圧縮機停止遅延制御を行う。ヒートポンプサイクル10の運転を停止させることが決定された場合とは、例えば操作パネルの空調停止スイッチが押された場合や、車両のイグニッションスイッチがオフされた場合等である。   When it is determined to stop the operation of the heat pump cycle 10 in the heating mode, the control device 40 performs compressor stop delay control for delaying the stop of the compressor 11. The case where it is determined to stop the operation of the heat pump cycle 10 is, for example, a case where the air conditioning stop switch on the operation panel is pressed, or a case where the ignition switch of the vehicle is turned off.

具体的には、図4のタイムチャートに示すように、制御装置40は、暖房モードにおいてヒートポンプサイクル10の運転を停止させることが決定された場合、まず液相冷媒側開閉弁18aを開弁する。これにより、気液分離器14で分離された液相冷媒が固定絞り17を迂回して固定絞り迂回通路18を流れて室外熱交換器20へ流れるので、圧力導入流路19の冷媒圧力が上昇して中間圧冷媒通路15の冷媒圧力と圧力導入流路19の冷媒圧力との差圧が小さくなる。その結果、気相冷媒側開閉弁16の開度が小さくなる。   Specifically, as shown in the time chart of FIG. 4, when it is determined that the operation of the heat pump cycle 10 is stopped in the heating mode, the control device 40 first opens the liquid-phase refrigerant side on-off valve 18a. . As a result, the liquid-phase refrigerant separated by the gas-liquid separator 14 bypasses the fixed throttle 17, flows through the fixed throttle bypass passage 18, and flows to the outdoor heat exchanger 20, so that the refrigerant pressure in the pressure introduction passage 19 increases. Thus, the differential pressure between the refrigerant pressure in the intermediate pressure refrigerant passage 15 and the refrigerant pressure in the pressure introduction passage 19 is reduced. As a result, the opening degree of the gas-phase refrigerant side opening / closing valve 16 is reduced.

そして、液相冷媒側開閉弁18aを開弁してから所定時間経過した後に圧縮機11を停止させる。これにより、圧縮機11を停止させても、気液分離器14で分離された気相冷媒が気相冷媒側開閉弁16を通って中間圧ポート11bから圧縮機11に流入して吸入ポート11a側へ逆流してしまうことを抑制できる。   The compressor 11 is stopped after a predetermined time has elapsed since the liquid-phase refrigerant side opening / closing valve 18a was opened. Thereby, even if the compressor 11 is stopped, the gas-phase refrigerant separated by the gas-liquid separator 14 passes through the gas-phase refrigerant-side on-off valve 16 and flows into the compressor 11 from the intermediate pressure port 11b, and the suction port 11a. Backflowing to the side can be suppressed.

例えば、所定時間は600msである。所定時間を長くするほど中間圧冷媒通路15の冷媒圧力と圧力導入流路19の冷媒圧力との差圧が小さくなるので、圧縮機11における冷媒の逆流を一層抑制できる。   For example, the predetermined time is 600 ms. Since the differential pressure between the refrigerant pressure in the intermediate pressure refrigerant passage 15 and the refrigerant pressure in the pressure introduction passage 19 becomes smaller as the predetermined time is longer, the reverse flow of the refrigerant in the compressor 11 can be further suppressed.

制御装置40は、圧縮機停止遅延制御を行っている際(具体的には、液相冷媒側開閉弁18aを開弁してから所定時間経過するまでの間)に圧縮機11に異常が発生した場合、圧縮機11を緊急停止させる。例えば、圧縮機11の駆動電圧が正常範囲から外れた場合、圧縮機11に異常が発生したと判定する。   The control device 40 has an abnormality in the compressor 11 during the compressor stop delay control (specifically, from when the liquid-phase refrigerant side on-off valve 18a is opened until a predetermined time elapses). In such a case, the compressor 11 is stopped urgently. For example, when the drive voltage of the compressor 11 is out of the normal range, it is determined that an abnormality has occurred in the compressor 11.

これによると、圧縮機11の停止を遅延させることに対して安全機能を設けることができる。例えば、メンテナンス時に操作パネルの空調停止スイッチが押されたり、車両のイグニッションスイッチがオフされたことによって圧縮機11が直ぐに停止したと勘違いして圧縮機11やその周辺の機器に触ってしまうおそれがあるため、そのような場合、圧縮機11を緊急停止させることによって安全を確保することができる。   According to this, a safety function can be provided against delaying the stop of the compressor 11. For example, when the air conditioning stop switch on the operation panel is pressed during maintenance or the ignition switch of the vehicle is turned off, the compressor 11 may be mistakenly stopped and may touch the compressor 11 or its peripheral devices. Therefore, in such a case, safety can be ensured by urgently stopping the compressor 11.

本実施形態では、制御装置40は、圧縮機11を停止させることが決定された場合、圧縮機停止遅延制御を行う。具体的には、制御装置40は、圧縮機停止遅延制御では、冷媒の減圧量が減少するように液相冷媒側開閉弁18aを制御した後に圧縮機11を停止させる。例えば、制御装置40は、圧縮機停止遅延制御では、冷媒の減圧量が減少するように液相冷媒側開閉弁18aを制御してから所定時間が経過したら圧縮機11を停止させる。   In the present embodiment, the control device 40 performs compressor stop delay control when it is determined to stop the compressor 11. Specifically, in the compressor stop delay control, the control device 40 stops the compressor 11 after controlling the liquid-phase refrigerant side on-off valve 18a so that the amount of decompression of the refrigerant decreases. For example, in the compressor stop delay control, the control device 40 stops the compressor 11 when a predetermined time elapses after controlling the liquid-phase refrigerant side opening / closing valve 18a so that the amount of decompression of the refrigerant decreases.

これによると、固定絞り17における冷媒の減圧量が減少することによって、吸入ポート11a側の低圧冷媒の圧力が高くなるので、中間圧ポート11bと吸入ポート11aとの圧力差が小さくなる。   According to this, since the pressure reduction of the refrigerant in the fixed throttle 17 is reduced, the pressure of the low-pressure refrigerant on the suction port 11a side is increased, so that the pressure difference between the intermediate pressure port 11b and the suction port 11a is reduced.

そのため、圧縮機11を停止させたときに、気液分離器14で分離された気相冷媒が差圧弁16を通って圧縮機11の低圧側に流れることを抑制できる。その結果、圧縮機11が逆回転して振動や異音が発生することを抑制できる。   Therefore, when the compressor 11 is stopped, it is possible to suppress the gas-phase refrigerant separated by the gas-liquid separator 14 from flowing through the differential pressure valve 16 to the low pressure side of the compressor 11. As a result, it is possible to prevent the compressor 11 from rotating backward and generating vibrations and abnormal noise.

本実施形態では、制御装置40は、圧縮機停止遅延制御を行っている際に圧縮機11に異常が発生した場合、圧縮機11を緊急停止させる。これによると、圧縮機11の停止を遅延させることに対して安全機能を設けることができる。   In the present embodiment, the control device 40 urgently stops the compressor 11 when an abnormality occurs in the compressor 11 during the compressor stop delay control. According to this, a safety function can be provided against delaying the stop of the compressor 11.

(他の実施形態)
上述の実施形態を、以下のように種々変形可能である。
(Other embodiments)
The above-described embodiment can be variously modified as follows.

(1)上述の実施形態では、ヒートポンプサイクル10をハイブリッド車両の車両用空調装置1に適用した例を説明したが、ヒートポンプサイクル10は、例えば、本実施形態では、ヒートポンプサイクル10を、車両走行用電動モータから車両走行用の駆動力を得る電気自動車の車両用空調装置1に適用してもよい。ヒートポンプサイクル10を据置型空調装置等に適用してもよい。   (1) Although the example which applied the heat pump cycle 10 to the vehicle air conditioner 1 of a hybrid vehicle was demonstrated in the above-mentioned embodiment, the heat pump cycle 10 is used for vehicle travel in this embodiment, for example. You may apply to the vehicle air conditioner 1 of the electric vehicle which obtains the driving force for vehicle travel from an electric motor. The heat pump cycle 10 may be applied to a stationary air conditioner or the like.

(2)上述の実施形態において、気液分離器14、気相冷媒側開閉弁16、固定絞り17、固定絞り迂回通路18、液相冷媒側開閉弁18aおよび圧力導入通路19を一体的に構成した統合弁を採用してもよい。   (2) In the above-described embodiment, the gas-liquid separator 14, the gas-phase refrigerant side on-off valve 16, the fixed throttle 17, the fixed throttling bypass passage 18, the liquid-phase refrigerant side on-off valve 18 a, and the pressure introduction passage 19 are integrally configured. The integrated valve may be used.

この統合弁は、ヒートポンプサイクル10をガスインジェクションサイクルとして機能させるために必要な構成機器の一部を一体的に構成したものであり、さらに、サイクルを循環する冷媒の冷媒回路を切り替える冷媒回路切替部としての機能を果たすものである。   This integrated valve is an integral part of the components required to make the heat pump cycle 10 function as a gas injection cycle, and further, a refrigerant circuit switching unit that switches a refrigerant circuit of refrigerant circulating in the cycle It fulfills the function as.

(3)上述の実施形態では、空調制御プログラムを実行することによって、各運転モードを切り替えた例を説明したが、各運転モードの切り替えはこれに限定されない。例えば、目標吹出温度TAOおよび外気温Tamに基づいて、予め制御装置に記憶された制御マップを参照して、各運転モードを切り替えてもよい。   (3) In the above-described embodiment, the example in which each operation mode is switched by executing the air conditioning control program has been described. However, the switching of each operation mode is not limited to this. For example, each operation mode may be switched on the basis of the target blowing temperature TAO and the outside air temperature Tam with reference to a control map stored in advance in the control device.

また、操作パネルに各運転モードを設定する運転モード設定スイッチを設け、当該運転モード設定スイッチの操作信号に応じて、冷房モード、直列除湿暖房モード、並列除湿暖房モードおよび暖房モードを切り替えるようにしてもよい。   In addition, an operation mode setting switch for setting each operation mode is provided on the operation panel, and the cooling mode, the series dehumidifying heating mode, the parallel dehumidifying heating mode, and the heating mode are switched according to an operation signal of the operation mode setting switch. Also good.

(4)上述の実施形態の圧縮機停止遅延制御では、液相冷媒側開閉弁18aを開弁してから所定時間経過した後に圧縮機11を停止させるが、液相冷媒側開閉弁18aを開弁した後、中間圧冷媒通路15の冷媒圧力と圧力導入流路19の冷媒圧力との差圧が閾値よりも小さくなったら圧縮機11を停止させるようにしてもよい。   (4) In the compressor stop delay control of the above-described embodiment, the compressor 11 is stopped after a predetermined time has elapsed since the liquid-phase refrigerant side opening / closing valve 18a is opened, but the liquid-phase refrigerant side opening / closing valve 18a is opened. After the valve operation, the compressor 11 may be stopped when the differential pressure between the refrigerant pressure in the intermediate pressure refrigerant passage 15 and the refrigerant pressure in the pressure introduction flow path 19 becomes smaller than a threshold value.

11 圧縮機
11a 吸入ポート
11b 中間圧ポート
11c 吐出ポート
12 室内凝縮器(高圧側熱交換器)
13 高段側膨張弁(高圧側減圧部)
14 気液分離器(気液分離部)
15 気相冷媒通路
16 気相冷媒側開閉弁(差圧弁)
17 固定絞り(低段側減圧部)
18 固定絞り迂回通路(低段側減圧部、調整機構)
18a 液相冷媒側開閉弁(低段側減圧部、調整機構)
20 室外熱交換器(蒸発器)
40 制御装置(制御部)
11 Compressor 11a Suction port 11b Intermediate pressure port 11c Discharge port 12 Indoor condenser (high-pressure side heat exchanger)
13 High stage expansion valve (High pressure side pressure reducing part)
14 Gas-liquid separator (gas-liquid separator)
15 Gas Phase Refrigerant Passage 16 Gas Phase Refrigerant Side Open / Close Valve (Differential Pressure Valve)
17 Fixed throttle (low-stage decompression section)
18 Fixed-throttle bypass passage (low-stage decompression section, adjustment mechanism)
18a Liquid-phase refrigerant-side on-off valve (low-stage decompression section, adjustment mechanism)
20 Outdoor heat exchanger (evaporator)
40 Control device (control unit)

Claims (3)

吸入ポート(11a)から冷媒を吸入して圧縮し、吐出ポート(11c)から吐出する圧縮機(11)と、
前記吐出ポートから吐出された前記冷媒を熱交換させる高圧側熱交換器(12)と、
前記高圧側熱交換器から流出した前記冷媒を減圧させる高段側減圧部(13)と、
前記高段側減圧部にて減圧された前記冷媒の気液を分離する気液分離部(14)と、
前記気液分離部にて分離された液相の前記冷媒を減圧させる低段側減圧部(17、18、18a)と、
前記低段側減圧部にて減圧された前記冷媒を蒸発させる蒸発器(20)と、
前記気液分離部にて分離された気相の前記冷媒が流れる気相冷媒通路(15)と、
前記低段側減圧部にて減圧された前記冷媒と前記気相冷媒通路を流れる前記冷媒との圧力差によって前記気相冷媒通路を開閉する差圧弁(16)とを備え、
前記圧縮機は、前記気相冷媒通路を流れた前記冷媒を流入させる中間圧ポート(11b)を有し、前記中間圧ポートから流入した前記冷媒を、前記吸入ポートから吸入された圧縮過程の冷媒に合流させるようになっており、
前記低段側減圧部は、前記冷媒の減圧量を調整する調整機構(18、18a)を有しており、
さらに、前記圧縮機を停止させることが決定された場合、前記冷媒の減圧量が減少するように前記低段側減圧部を制御した後に前記圧縮機を停止させる圧縮機停止遅延制御を行う制御部(40)を備える冷凍サイクル装置。
A compressor (11) that sucks and compresses refrigerant from the suction port (11a) and discharges it from the discharge port (11c);
A high pressure side heat exchanger (12) for exchanging heat of the refrigerant discharged from the discharge port;
A high-stage decompression section (13) for decompressing the refrigerant flowing out of the high-pressure heat exchanger,
A gas-liquid separator (14) for separating the gas-liquid of the refrigerant decompressed by the high-stage decompression unit;
A lower-stage decompression section (17, 18, 18a) for decompressing the refrigerant in the liquid phase separated by the gas-liquid separation section;
An evaporator (20) for evaporating the refrigerant decompressed in the low-stage decompression unit;
A gas-phase refrigerant passage (15) through which the gas-phase refrigerant separated by the gas-liquid separation unit flows;
A differential pressure valve (16) for opening and closing the gas-phase refrigerant passage by a pressure difference between the refrigerant decompressed by the low-stage decompression section and the refrigerant flowing through the gas-phase refrigerant passage;
The compressor has an intermediate pressure port (11b) through which the refrigerant that has flowed through the gas-phase refrigerant passage flows, and the refrigerant that has flowed from the intermediate pressure port is sucked from the suction port. To join
The low-stage decompression unit has an adjustment mechanism (18, 18a) for adjusting the decompression amount of the refrigerant,
Further, when it is determined to stop the compressor, a control unit that performs compressor stop delay control that stops the compressor after controlling the low-stage decompression unit so that the amount of decompression of the refrigerant decreases. A refrigeration cycle apparatus comprising (40).
前記制御部は、前記圧縮機停止遅延制御では、前記冷媒の減圧量が減少するように前記低段側減圧部を制御してから所定時間が経過したら前記圧縮機を停止させる請求項1に記載の冷凍サイクル装置。   2. The control unit according to claim 1, wherein, in the compressor stop delay control, the control unit stops the compressor when a predetermined time elapses after controlling the low-stage decompression unit so that the decompression amount of the refrigerant decreases. Refrigeration cycle equipment. 前記制御部は、前記圧縮機停止遅延制御を行っている際に前記圧縮機に異常が発生した場合、前記圧縮機を緊急停止させる請求項1または2に記載の冷凍サイクル装置。   3. The refrigeration cycle apparatus according to claim 1, wherein, when an abnormality occurs in the compressor while the compressor stop delay control is performed, the control unit urgently stops the compressor.
JP2016218792A 2016-11-09 2016-11-09 Refrigeration cycle device Pending JP2018077004A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016218792A JP2018077004A (en) 2016-11-09 2016-11-09 Refrigeration cycle device
PCT/JP2017/033618 WO2018088033A1 (en) 2016-11-09 2017-09-18 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218792A JP2018077004A (en) 2016-11-09 2016-11-09 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2018077004A true JP2018077004A (en) 2018-05-17

Family

ID=62110231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218792A Pending JP2018077004A (en) 2016-11-09 2016-11-09 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2018077004A (en)
WO (1) WO2018088033A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6711249B2 (en) 2016-11-25 2020-06-17 株式会社デンソー Vehicle air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130850A (en) * 2000-10-26 2002-05-09 Hitachi Ltd Refrigerating plant
JP5772764B2 (en) * 2011-10-05 2015-09-02 株式会社デンソー Integrated valve and heat pump cycle

Also Published As

Publication number Publication date
WO2018088033A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP5949648B2 (en) Refrigeration cycle equipment
JP6304407B2 (en) Integrated valve and heat pump cycle
US10661631B2 (en) Heat pump cycle
JP6295676B2 (en) Heat pump cycle
US9581370B2 (en) Refrigerant cycle device
JP6361830B2 (en) Heat pump cycle
JP6277888B2 (en) Refrigeration cycle equipment
JP6011507B2 (en) Refrigeration cycle equipment
US10538138B2 (en) Air conditioning device for vehicle
US11117445B2 (en) Vehicle air conditioning device
JP2018091536A (en) Refrigeration cycle device
WO2018088034A1 (en) Refrigeration cycle device
JP6428937B2 (en) Air conditioning controller
JP6070418B2 (en) Heat pump cycle
JP6390431B2 (en) Refrigeration cycle equipment
JP5853918B2 (en) Air conditioner for vehicles
WO2018088033A1 (en) Refrigeration cycle device
WO2020095638A1 (en) Refrigeration cycle device
JP2016008792A (en) Heat pump cycle device
JP6897185B2 (en) Air conditioner
JP6672999B2 (en) Air conditioner
JP2023046604A (en) heat pump cycle device
WO2018003352A1 (en) Refrigeration cycle device
JP2014000905A (en) Heat pump cycle