JP2018076415A - Thermosetting silicone composition, die bonding material, and optical semiconductor device - Google Patents

Thermosetting silicone composition, die bonding material, and optical semiconductor device Download PDF

Info

Publication number
JP2018076415A
JP2018076415A JP2016218394A JP2016218394A JP2018076415A JP 2018076415 A JP2018076415 A JP 2018076415A JP 2016218394 A JP2016218394 A JP 2016218394A JP 2016218394 A JP2016218394 A JP 2016218394A JP 2018076415 A JP2018076415 A JP 2018076415A
Authority
JP
Japan
Prior art keywords
group
component
silicone composition
siloxane
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016218394A
Other languages
Japanese (ja)
Other versions
JP6622171B2 (en
Inventor
大輔 平野
Daisuke Hirano
大輔 平野
利之 小材
Toshiyuki Kozai
利之 小材
諭 小内
Satoshi Kouchi
諭 小内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2016218394A priority Critical patent/JP6622171B2/en
Priority to KR1020170145665A priority patent/KR102390737B1/en
Priority to TW106138366A priority patent/TWI654255B/en
Priority to CN201711092143.XA priority patent/CN108070261B/en
Publication of JP2018076415A publication Critical patent/JP2018076415A/en
Application granted granted Critical
Publication of JP6622171B2 publication Critical patent/JP6622171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/14Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Led Device Packages (AREA)
  • Die Bonding (AREA)
  • Silicon Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting silicone composition which gives a cured product overcoming uncuring of a surface portion due to oxygen inhibition.SOLUTION: The thermosetting silicone composition contains: 100 pts.mass of an organo(poly)siloxane having a structure represented by formula (1); 0.1-30 pts.mass of an organic peroxide containing a diacyl peroxide or a peroxy ester; 0.1-20 pts.mass of an organohydrogenpolysiloxane containing at least two hydrogen atoms bonded to silicon atoms in one molecule; and 0.01-1,000 ppm of a platinum-based catalyst.SELECTED DRAWING: Figure 1

Description

本発明は、加熱硬化型シリコーン組成物、該組成物からなるダイボンド材及び該ダイボンド材の硬化物を用いた光半導体装置に関する。   The present invention relates to a thermosetting silicone composition, a die bond material comprising the composition, and an optical semiconductor device using a cured product of the die bond material.

発光ダイオード(LED)などの光半導体素子は電力消費量が少ないという優れた特性を有するため、屋外照明用途や自動車用途の光半導体デバイスへの適用が増えてきている。このような光半導体デバイスは、一般に青色光、近紫外光あるいは紫外光を発光する光半導体発光素子から発する光を、波長変換材料である蛍光体によって波長変換して疑似白色が得られるようにした発光装置である。このような光半導体デバイス中、光半導体素子はダイボンド材を用いて筐体に接着・固定されている。   Since an optical semiconductor element such as a light emitting diode (LED) has an excellent characteristic of low power consumption, it is increasingly applied to an optical semiconductor device for outdoor lighting or automobile use. In such an optical semiconductor device, light emitted from an optical semiconductor light emitting element that generally emits blue light, near ultraviolet light, or ultraviolet light is wavelength-converted by a phosphor that is a wavelength conversion material so that a pseudo white color can be obtained. A light emitting device. In such an optical semiconductor device, the optical semiconductor element is bonded and fixed to the housing using a die bond material.

光半導体素子用ダイボンド材組成物としては、従来、接着性や機械的強度に優れるビスフェノールA型エポキシ樹脂と、UV吸収の無いエポキシ樹脂、例えば、水添ビスフェノールA型エポキシ樹脂或いは脂環式エポキシ樹脂と、硬化剤および硬化触媒を含む組成物が多用されてきた。しかしながら、LED素子の輝度及び出力が高くなるのに伴い、LED素子からの紫外光、熱等によって、接着層の変色及びクラックの問題が起きている。   Conventionally, as a die bond material composition for an optical semiconductor element, a bisphenol A type epoxy resin excellent in adhesiveness and mechanical strength and an epoxy resin having no UV absorption, for example, a hydrogenated bisphenol A type epoxy resin or an alicyclic epoxy resin And compositions containing a curing agent and a curing catalyst have been frequently used. However, as the luminance and output of the LED element increase, there are problems of discoloration and cracking of the adhesive layer due to ultraviolet light, heat, etc. from the LED element.

そこで、光半導体素子用ダイボンド材におけるエポキシ樹脂の代替として、シリコーン樹脂を用いることが提案されている(特許文献1,2)。シリコーン樹脂の硬化機構は多岐にわたるが、白金触媒を用いたSiH基とアルケニル基の付加反応が主に用いられる。この際、基材との接着性を向上させる目的で(メタ)アクリル基やエポキシ基等を有する接着性向上剤を添加する場合が多い。接着性向上剤は、添加量が少ないと接着性に乏しいが、多すぎると硬化後物性への寄与が大きくなり、例えば硬度の低下等を招くために多量に用いることが出来ない。   Thus, it has been proposed to use a silicone resin as an alternative to the epoxy resin in the die bond material for optical semiconductor elements (Patent Documents 1 and 2). Although there are various curing mechanisms for silicone resins, the addition reaction of SiH groups and alkenyl groups using a platinum catalyst is mainly used. In this case, an adhesion improver having a (meth) acryl group or an epoxy group is often added for the purpose of improving the adhesion to the substrate. If the addition amount is small, the adhesion improver is poor in adhesion, but if it is too much, the contribution to physical properties after curing increases, and for example, a decrease in hardness can be caused, so that it cannot be used in a large amount.

一方、接着性官能基であるメタクリル基等を用いたパーオキサイド硬化を利用した事例はある(特許文献3、4)が、酸素による硬化阻害のため表面の硬化性が悪くなるという問題があった。また、メタクリル基等をUV照射にて硬化させる際にも酸素による硬化阻害が起こるため、その影響を付加硬化によって解決する方法が提案されている(特許文献5)が、このような方法は、実際にはUV硬化と熱硬化の双方を必要とするため、UV照射が行えないような複雑な装置設計を要する部位への適用は困難であった。   On the other hand, there is an example using peroxide curing using a methacryl group or the like which is an adhesive functional group (Patent Documents 3 and 4), but there is a problem that the surface curability deteriorates due to inhibition of curing by oxygen. . In addition, since curing inhibition by oxygen occurs even when methacrylic groups are cured by UV irradiation, a method for solving the influence by addition curing has been proposed (Patent Document 5). In actuality, both UV curing and thermal curing are required, so that it has been difficult to apply to a site requiring a complicated apparatus design in which UV irradiation cannot be performed.

特開2004−186168号公報JP 2004-186168 A 特開2006−342200号公報JP 2006-342200 A 特開2008−074982号公報JP 2008-074982 A 特開2016−108456号公報Japanese Patent Laid-Open No. 2006-108456 特開2013−203794号公報JP 2013-203794 A

本発明は、上記事情に鑑みなされたもので、酸素阻害による表面部分の未硬化を克服した硬化物を与えることができる加熱硬化型のシリコーン組成物を提供することを目的とする。また、該組成物からなるダイボンド材を提供することを目的とする。さらに、該ダイボンド材の硬化物を有する光半導体装置を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the thermosetting silicone composition which can give the hardened | cured material which overcame the uncured surface part by oxygen inhibition. Moreover, it aims at providing the die-bonding material which consists of this composition. Furthermore, it aims at providing the optical semiconductor device which has the hardened | cured material of this die-bonding material.

上記課題を解決するために、本発明によれば、
(A)下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノ(ポリ)シロキサン:100質量部、

Figure 2018076415
[式中、mは0、1、2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素原子数1〜12の1価の有機基、Zは−R−、−R−O−、−R(CHSi−O−(Rは置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素原子数1〜10の2価の有機基である。]
(B)ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物:0.1〜30質量部、
(C)一分子中にケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン:0.1〜20質量部、
(D)白金系触媒:(A)成分に対して(D)成分中の白金の質量換算で0.01〜1,000ppmとなる量、
を含有することを特徴とする加熱硬化型シリコーン組成物を提供する。 In order to solve the above problems, according to the present invention,
(A) Organo (poly) siloxane having at least one structure represented by the following general formula (1) in the molecule: 100 parts by mass
Figure 2018076415
[Wherein, m is any of 0, 1, 2; R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group; R 2 is a hydrogen atom or a methyl group; and R 3 is substituted or unsubstituted and is the same or A monovalent organic group having 1 to 12 carbon atoms which may be different, Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or Z 2 is an oxygen atom or a substituted or unsubstituted or the same or different carbon atom having 1 to 10 carbon atoms. It is a divalent organic group. ]
(B) Organic peroxide containing at least one selected from diacyl peroxide and peroxyester: 0.1 to 30 parts by mass,
(C) Organohydrogenpolysiloxane containing at least two hydrogen atoms bonded to silicon atoms in one molecule: 0.1 to 20 parts by mass,
(D) platinum-based catalyst: an amount of 0.01 to 1,000 ppm in terms of mass of platinum in component (D) relative to component (A),
The thermosetting silicone composition characterized by containing this is provided.

本発明の加熱硬化型シリコーン組成物は、(メタ)アクリル基の、パーオキサイドによる硬化と、SiH基と不飽和基の付加反応との両方の硬化を行う事で、酸素阻害による表面部分の未硬化を克服した硬化物を与えるものとなる。   The heat-curable silicone composition of the present invention can cure the surface portion due to oxygen inhibition by curing both (meth) acrylic group by peroxide and addition reaction of SiH group and unsaturated group. It gives a cured product that overcomes the curing.

またこの場合、前記(A)成分のオルガノ(ポリ)シロキサンのZが−R−であり、Zが酸素原子であることが好ましい。 In this case, it is preferable that Z 1 of the organo (poly) siloxane of the component (A) is —R 4 — and Z 2 is an oxygen atom.

またこの場合、前記(A)成分のオルガノ(ポリ)シロキサンのZが−R−O−又は、−R(CHSi−O−であり、Zが置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基であることが好ましい。 In this case, Z 1 of the organo (poly) siloxane of the component (A) is —R 4 —O— or —R 4 (CH 3 ) 2 Si—O—, and Z 2 is substituted or unsubstituted. A divalent organic group having 1 to 10 carbon atoms which may be the same or different is preferable.

このようなZ、Zの組み合わせである(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。 If it is a heat-curable silicone composition containing the component (A) that is a combination of Z 1 and Z 2 , the free radical generated when the component (B) decomposes and the component (A) are effective. It can react and can obtain the hardened | cured material which was excellent in adhesive strength and workability | operativity, and excellent in heat resistance, light resistance, and crack resistance.

また、前記(A)成分のオルガノ(ポリ)シロキサンは、該オルガノ(ポリ)シロキサンを構成する全シロキサン単位のうち0.1mol%以上の(SiO)単位を有するものであることが好ましい。 The organo (poly) siloxane as the component (A) preferably has 0.1 mol% or more of (SiO 2 ) units among all siloxane units constituting the organo (poly) siloxane.

このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が更に効果的に反応し、より一層、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。   If it is such a thermosetting silicone composition containing the component (A), the free radical generated when the component (B) decomposes and the component (A) react more effectively, and the adhesive strength is further increased. In addition, a cured product having excellent workability and excellent heat resistance, light resistance, and crack resistance can be obtained.

また本発明では、前記加熱硬化型シリコーン組成物からなるものであることを特徴とするダイボンド材を提供する。   Moreover, in this invention, it consists of the said thermosetting silicone composition, The die-bonding material characterized by the above-mentioned is provided.

本発明の加熱硬化型シリコーン組成物は、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができるため、ダイボンド材として好適に用いることができる。   The heat-curable silicone composition of the present invention is excellent in adhesive strength and workability, and can provide a cured product excellent in heat resistance, light resistance and crack resistance, and therefore can be suitably used as a die bond material. .

また本発明では、前記ダイボンド材を硬化して得られる硬化物を有するものであることを特徴とする光半導体装置を提供する。   The present invention also provides an optical semiconductor device comprising a cured product obtained by curing the die bond material.

このような本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有する光半導体装置は、信頼性の高い光半導体装置となる。   An optical semiconductor device having a cured product obtained by curing a die bond material made of the heat-curable silicone composition of the present invention is a highly reliable optical semiconductor device.

本発明の加熱硬化型シリコーン組成物は、(メタ)アクリル基のパーオキサイドによる硬化と、SiH基と不飽和基の付加反応との両方の硬化を行う事で、酸素阻害による表面部分の未硬化を克服した、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができる。このような本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有する光半導体装置は、信頼性の高い光半導体装置となる。   The thermosetting silicone composition of the present invention is a non-cured surface portion due to oxygen inhibition by performing both curing with (meth) acrylic group peroxide and addition reaction of SiH group and unsaturated group. Therefore, a cured product having excellent adhesive strength and workability and excellent heat resistance, light resistance and crack resistance can be provided. An optical semiconductor device having a cured product obtained by curing a die bond material made of the heat-curable silicone composition of the present invention is a highly reliable optical semiconductor device.

本発明の光半導体装置の一例を示す断面図である。It is sectional drawing which shows an example of the optical semiconductor device of this invention.

本発明者は、上記目的を達成するため鋭意検討を行った結果、下記(A)〜(D)成分を含有するものであることを特徴とする加熱硬化型シリコーン組成物であれば、(メタ)アクリル基の、パーオキサイドによる硬化と、SiH基と不飽和基の付加硬化との両方の硬化により、UV照射を行わなくても、酸素阻害による表面部分の未硬化を克服した硬化物を与えることができる加熱硬化型シリコーン組成物となることを見出し、本発明を完成させた。以下、本発明の加熱硬化型シリコーン組成物、ダイボンド材及び光半導体装置について詳細に説明する。   As a result of intensive studies to achieve the above object, the inventor of the present invention has the following components (A) to (D) and is a thermosetting silicone composition characterized in that it contains (meta) ) By curing both the acrylic group with peroxide and the addition curing of SiH group and unsaturated group, a cured product is obtained that overcomes the uncured surface portion due to oxygen inhibition without UV irradiation. The present invention has been completed by finding that the composition can be a thermosetting silicone composition that can be used. Hereinafter, the thermosetting silicone composition, the die bond material, and the optical semiconductor device of the present invention will be described in detail.

即ち、本発明は、
(A)下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノ(ポリ)シロキサン:100質量部、

Figure 2018076415
[式中、mは0、1、2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素原子数1〜12の1価の有機基、Zは−R−、−R−O−、−R(CHSi−O−(Rは置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素原子数1〜10の2価の有機基である。]
(B)ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物:0.1〜30質量部、
(C)一分子中にケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン:0.1〜20質量部、
(D)白金系触媒:(A)成分に対して(D)成分中の白金の質量換算で0.01〜1,000ppmとなる量、
を含有することを特徴とする加熱硬化型シリコーン組成物を提供する。 That is, the present invention
(A) Organo (poly) siloxane having at least one structure represented by the following general formula (1) in the molecule: 100 parts by mass
Figure 2018076415
[Wherein, m is any of 0, 1, 2; R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group; R 2 is a hydrogen atom or a methyl group; and R 3 is substituted or unsubstituted and is the same or A monovalent organic group having 1 to 12 carbon atoms which may be different, Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or Z 2 is an oxygen atom or a substituted or unsubstituted or the same or different carbon atom having 1 to 10 carbon atoms. It is a divalent organic group. ]
(B) Organic peroxide containing at least one selected from diacyl peroxide and peroxyester: 0.1 to 30 parts by mass,
(C) Organohydrogenpolysiloxane containing at least two hydrogen atoms bonded to silicon atoms in one molecule: 0.1 to 20 parts by mass,
(D) platinum-based catalyst: an amount of 0.01 to 1,000 ppm in terms of mass of platinum in component (D) relative to component (A),
The thermosetting silicone composition characterized by containing this is provided.

(A)成分:オルガノ(ポリ)シロキサン
(A)成分のオルガノ(ポリ)シロキサンは、下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノ(ポリ)シロキサンである。尚、本発明においてオルガノ(ポリ)シロキサンとは、1分子中にシロキサン結合(−Si−O−Si−)が1つであるオルガノシロキサン、及び/又は、1分子中に2つ以上のシロキサン結合を含むオルガノポリシロキサンをいう。

Figure 2018076415
[式中、mは0,1,2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素原子数1〜12の1価の有機基、Zは−R−、−R−O−、−R(CHSi−O−(Rは置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素原子数1〜10の2価の有機基である。] Component (A): Organo (poly) siloxane The organo (poly) siloxane of component (A) is an organo (poly) siloxane having at least one structure represented by the following general formula (1) in the molecule. In the present invention, the organo (poly) siloxane is an organosiloxane having one siloxane bond (-Si-O-Si-) in one molecule and / or two or more siloxane bonds in one molecule. An organopolysiloxane containing
Figure 2018076415
[Wherein, m is any one of 0, 1, 2; R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group; R 2 is a hydrogen atom or a methyl group; and R 3 is substituted or unsubstituted and is the same or A monovalent organic group having 1 to 12 carbon atoms which may be different, Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or Z 2 is an oxygen atom or a substituted or unsubstituted or the same or different carbon atom having 1 to 10 carbon atoms. It is a divalent organic group. ]

(A)成分のオルガノ(ポリ)シロキサン中の、Z、Zの組み合わせとしては、Zが−R−であり、Zが酸素原子であるものや、Zが−R−O−又は、−R(CHSi−O−であり、Zが置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基であるものが好ましい。このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。 As the combination of Z 1 and Z 2 in the organo (poly) siloxane of the component (A), Z 1 is —R 4 —, Z 2 is an oxygen atom, or Z 1 is —R 4 —. O— or —R 4 (CH 3 ) 2 Si—O—, wherein Z 2 is a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms, which may be the same or different, are preferred. . If it is such a thermosetting silicone composition containing the component (A), the free radicals generated when the component (B) decomposes and the component (A) react effectively, resulting in adhesive strength and workability. A cured product having excellent heat resistance, light resistance and crack resistance can be obtained.

また、(A)成分のオルガノ(ポリ)シロキサンを構成する全シロキサン単位のうち、0.1mol%以上の(SiO)単位を有することが好ましい。このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が更に効果的に反応し、より一層、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。 Moreover, it is preferable to have 0.1 mol% or more of (SiO 2 ) units among all the siloxane units constituting the organo (poly) siloxane of the component (A). If it is such a thermosetting silicone composition containing the component (A), the free radical generated when the component (B) decomposes and the component (A) react more effectively, and the adhesive strength is further increased. In addition, a cured product having excellent workability and excellent heat resistance, light resistance, and crack resistance can be obtained.

更に、(A)成分のオルガノ(ポリ)シロキサンが、下記一般式(2)で表される構造を分子中に少なくとも1つ有するものであることが好ましい。このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分がより効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。

Figure 2018076415
(式中、m、R、R、R、Rは上記と同様である。) Furthermore, it is preferable that the organo (poly) siloxane of the component (A) has at least one structure represented by the following general formula (2) in the molecule. If such a thermosetting silicone composition containing the component (A), the free radical generated when the component (B) is decomposed reacts more effectively with the component (A), and the adhesive strength and workability are improved. And a cured product excellent in heat resistance, light resistance and crack resistance can be obtained.
Figure 2018076415
(In the formula, m, R 1 , R 2 , R 3 and R 4 are the same as above.)

(A)成分のオルガノ(ポリ)シロキサンは、25℃での粘度が5mPa・s以上の液状又は固体の分岐状又は三次元網状構造のオルガノポリシロキサンであることが好ましい。   The (A) component organo (poly) siloxane is preferably a liquid or solid branched or three-dimensional network-organopolysiloxane having a viscosity at 25 ° C. of 5 mPa · s or more.

上記式(1)において、Rで示されるケイ素原子に結合した置換又は非置換で同一又は異なってもよい炭素原子数1〜12の1価の有機基としては、好ましくは炭素原子数1〜8程度のものが挙げられ、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。 In the above formula (1), the substituted or unsubstituted monovalent organic group having 1 to 12 carbon atoms which may be the same or different and bonded to the silicon atom represented by R 3 is preferably 1 to 1 carbon atoms. Examples include about 8, specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, Nonyl group, alkyl group such as decyl group, aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group, vinyl group, allyl group, propenyl group, Alkenyl groups such as isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, octenyl group, and hydrogen atoms of these groups Are substituted with a halogen atom such as fluorine, bromine or chlorine, a cyano group, or the like, for example, a halogen-substituted alkyl group such as a chloromethyl group, a chloropropyl group, a bromoethyl group or a trifluoropropyl group, a cyanoethyl group, etc. Is mentioned.

以下に(A)成分のオルガノ(ポリ)シロキサンを例示する。

Figure 2018076415
Examples of the (A) component organo (poly) siloxane are shown below.
Figure 2018076415

また、(A)成分のオルガノ(ポリ)シロキサンとして、下記式に示す、MA単位、M単位、Q単位が、MA:M:Q=1:4:6の割合で含まれ、分子量がポリスチレン換算重量平均分子量で、5,000であるオルガノポリシロキサン、

Figure 2018076415
In addition, as the organo (poly) siloxane of component (A), MA units, M units, and Q units represented by the following formula are included in a ratio of MA: M: Q = 1: 4: 6, and the molecular weight is converted to polystyrene. An organopolysiloxane having a weight average molecular weight of 5,000,
Figure 2018076415

下記式に示す、MA−D単位、D単位、T単位が、MA−D:D:T=2:6:7の割合で、分子量がポリスチレン換算重量平均分子量で、3500であるオルガノポリシロキサン等が例示される。

Figure 2018076415
An organopolysiloxane having a MA-D unit, a D unit, and a T unit in a ratio of MA-D: D: T = 2: 6: 7 and a molecular weight of 3500 in terms of polystyrene-equivalent weight average molecular weight, etc. Is exemplified.
Figure 2018076415

また、(A)成分のオルガノ(ポリ)シロキサンとして、下記に示される構造を持つオルガノ(ポリ)シロキサン等が例示される。

Figure 2018076415
(式中、p=18,q=180である。) Examples of the organo (poly) siloxane of component (A) include organo (poly) siloxane having the structure shown below.
Figure 2018076415
(In the formula, p = 18 and q = 180.)

Figure 2018076415
(式中、t=18,u=180である。)
Figure 2018076415
(Where t = 18, u = 180)

このような(A)成分の合成方法としては、例えば下記に示すオルガノハイドロジェンシラン、

Figure 2018076415
(式中、m、R、R、R、Zは上記と同様である。)
好ましくは下式に示す化合物、
Figure 2018076415
(式中、m、R、R、R、Z、Zは上記と同様である。)
より具体的には、1,3−ビス(3−メタクリロキシプロピル)テトラメチルジシロキサンと1,1,3,3−テトラメチルジシロキサンを酸触媒存在下で平衡化反応する事によって得られる(3−メタクリロキシプロピル)−1,1,3,3−テトラメチルジシロキサンと、脂肪族不飽和基(例えば、エチレン性不飽和基、及びアセチレン性不飽和基が挙げられる。)を含むオルガノ(ポリ)シロキサンとを、白金触媒存在下でヒドロシリル化反応させるとよく、この方法で本発明に好適なものを製造することができるが、前記の合成方法に制限されるものではない。また、脂肪族不飽和基を含むオルガノ(ポリ)シロキサンは、脂肪族不飽和基を有するオルガノアルコキシシランを含むアルコキシシランの(共)加水分解縮合など公知の方法で製造することができ、市販のものを用いても良い。 As a synthesis method of such a component (A), for example, organohydrogensilane shown below,
Figure 2018076415
(In the formula, m, R 1 , R 2 , R 3 and Z 1 are the same as above.)
Preferably, a compound represented by the following formula:
Figure 2018076415
(In the formula, m, R 1 , R 2 , R 3 , Z 1 and Z 2 are the same as above.)
More specifically, it is obtained by equilibrating 1,3-bis (3-methacryloxypropyl) tetramethyldisiloxane and 1,1,3,3-tetramethyldisiloxane in the presence of an acid catalyst ( 3-Methacryloxypropyl) -1,1,3,3-tetramethyldisiloxane and an organo group containing an aliphatic unsaturated group (for example, an ethylenically unsaturated group and an acetylenically unsaturated group). A poly) siloxane may be subjected to a hydrosilylation reaction in the presence of a platinum catalyst, and a method suitable for the present invention can be produced by this method, but the synthesis method is not limited thereto. An organo (poly) siloxane containing an aliphatic unsaturated group can be produced by a known method such as (co) hydrolysis condensation of an alkoxysilane containing an organoalkoxysilane having an aliphatic unsaturated group, and is commercially available. A thing may be used.

これらの(A)成分は、単一でも、2種以上を併用しても良い。   These components (A) may be used singly or in combination of two or more.

尚、(A)成分には、組成物の粘度や硬化物の硬度を調整する等の目的で、以下に示すようなシリコーンを含む反応性希釈剤や、シリコーンを含まない反応性希釈剤を添加することができる。   In addition, for the purpose of adjusting the viscosity of the composition and the hardness of the cured product, a reactive diluent containing silicone as shown below or a reactive diluent not containing silicone is added to the component (A). can do.

シリコーンを含む反応性希釈剤としては、下記構造を持つオルガノポリシロキサンが挙げられる。

Figure 2018076415
このようなシリコーンを含む反応性希釈剤は単一でも、2種以上を併用しても良い。 Examples of the reactive diluent containing silicone include organopolysiloxane having the following structure.
Figure 2018076415
Such reactive diluents containing silicone may be single or in combination of two or more.

シリコーンを含まない反応性希釈剤としては、HC=CGCOによって示されるような(メタ)アクリレート類があり、上記式中、Gは、水素、ハロゲン、または1〜約4個の炭素原子のアルキルであり;Rは、1〜約16個の炭素原子を有するアルキル、シクロアルキル、アルケニル、シクロアルケニル、アルカリル、アラルキルまたはアリール基から選ばれ、これらのいずれかは、必要に応じ、シラン、ケイ素、酸素、ハロゲン、カルボニル、ヒドロキシル、エステル、カルボン酸、尿素、ウレタン、カルバメート、アミン、アミド、イオウ、スルホネート、スルホン等で置換または遮断し得る。 Silicone-free reactive diluents include (meth) acrylates as shown by H 2 C═CGCO 2 R 5 , where G is hydrogen, halogen, or 1 to about 4 R 5 is selected from alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkaryl, aralkyl, or aryl groups having from 1 to about 16 carbon atoms, any of which are optionally , Silane, silicon, oxygen, halogen, carbonyl, hydroxyl, ester, carboxylic acid, urea, urethane, carbamate, amine, amide, sulfur, sulfonate, sulfone and the like.

反応性希釈剤としてとりわけ望ましいさらに詳細な(メタ)アクリレート類としては、ポリエチレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノール−A(メタ)アクリレート(“EBIPA”または“EBIPMA”)のようなビスフェノール−Aジ(メタ)アクリレート、テトラヒドロフラン(メタ)アクリレートおよびジ(メタ)アクリレート、シトロネリルアクリレートおよびシトロネリルメタクリレート、ヒドロキシプロピル(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート(“HDDA”または“HDDMA”)、トリメチロールプロパントリ(メタ)アクリレート、テトラヒドロジシクロペンタジエニル(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート(“ETTA”)、トリエチレングリコールジアクリレートおよびトリエチレングリコールジメタクリレート(“TRIEGMA”)、イソボルニルアクリレートおよびイソボルニルメタクリレート、並びにこれらに相応するアクリレートエステルがある。もちろん、これらの(メタ)アクリレート類の組合せも反応性希釈剤として使用できる。   More detailed (meth) acrylates that are particularly desirable as reactive diluents include bisphenol-A such as polyethylene glycol di (meth) acrylate, ethoxylated bisphenol-A (meth) acrylate ("EBIPA" or "EBIPMA"). Di (meth) acrylate, tetrahydrofuran (meth) acrylate and di (meth) acrylate, citronellyl acrylate and citronellyl methacrylate, hydroxypropyl (meth) acrylate, hexanediol di (meth) acrylate ("HDDA" or "HDDMA"), Trimethylolpropane tri (meth) acrylate, tetrahydrodicyclopentadienyl (meth) acrylate, ethoxylated trimethylolpropane triacrylate (“ETT "), Triethylene glycol diacrylate and triethylene glycol dimethacrylate (" TRIEGMA "), isobornyl acrylate and isobornyl methacrylate, as well as acrylate ester corresponding thereto. Of course, combinations of these (meth) acrylates can also be used as reactive diluents.

反応性希釈剤を添加する場合の添加量としては、本発明の加熱硬化型シリコーン組成物量に対して0.01〜40質量%の範囲が好ましく、0.05〜20質量%の範囲がより好ましい。   The addition amount in the case of adding a reactive diluent is preferably in the range of 0.01 to 40% by mass, more preferably in the range of 0.05 to 20% by mass with respect to the amount of the thermosetting silicone composition of the present invention. .

(B)ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物
(B)成分のジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物は、本発明の加熱硬化型シリコーン組成物を所望の形状に成形した後に、加熱処理を加えて架橋反応により硬化させるために配合される成分であり、目的とする接続温度、接続時間、ポットライフ等により適宜選択される。
(B) Organic peroxide containing at least one selected from diacyl peroxide and peroxy ester (B) Organic peroxide including at least one selected from diacyl peroxide and peroxy ester of component (B) This is a component that is blended to form a heat-curable silicone composition in a desired shape and then cured by a crosslinking reaction by applying a heat treatment, and is appropriately selected depending on the intended connection temperature, connection time, pot life, etc. Is done.

有機過酸化物は、高い反応性と長いポットライフを両立する観点から、半減期10時間の温度が40℃以上、かつ、半減期1分の温度が200℃以下であることが好ましく、半減期10時間の温度が60℃以上、かつ、半減期1分の温度が180℃以下であることがより好ましい。   From the viewpoint of achieving both high reactivity and a long pot life, the organic peroxide preferably has a half-life temperature of 40 ° C. or more and a half-life temperature of 1 minute is 200 ° C. or less. It is more preferable that the temperature for 10 hours is 60 ° C. or higher and the temperature for half-life of 1 minute is 180 ° C. or lower.

ジアシルパーオキサイドとしては、例えば、イソブチルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン及びベンゾイルパーオキサイドが挙げられる。   Examples of the diacyl peroxide include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, and succinic peroxide. , Benzoylperoxytoluene and benzoyl peroxide.

パーオキシエステルとしては、例えば、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノネート、t−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ビス(m−トルオイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシアセテート及びビス(t−ブチルパーオキシ)ヘキサヒドロテレフタレートが挙げられる。   Examples of peroxyesters include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t -Hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis ( 2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethyl Hexanoate, t-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cyclo Xane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-bis (m- Toluoylperoxy) hexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, t-butylperoxyacetate and bis (t-butylperoxy) Hexahydroterephthalate is mentioned.

これらは1種を単独で又は2種以上を組み合わせて用いられる。   These are used singly or in combination of two or more.

その他の有機過酸化物としては、ジアルキルパーオキサイド、パーオキシジカーボネート、パーオキシケタール、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられる。これらの有機過酸化物を上記ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上と組み合わせて、(B)成分の有機過酸化物として使用することもできる。   Examples of other organic peroxides include dialkyl peroxides, peroxydicarbonates, peroxyketals, hydroperoxides, and silyl peroxides. These organic peroxides can also be used as the organic peroxide of the component (B) in combination with one or more selected from the above-mentioned diacyl peroxides and peroxyesters.

ジアルキルパーオキサイドとしては、例えば、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン及びt−ブチルクミルパーオキサイドが挙げられる。   Examples of the dialkyl peroxide include α, α′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, and t. -Butyl cumyl peroxide is mentioned.

パーオキシジカーボネートとしては、例えば、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシメトキシパーオキシジカーボネート、ビス(2−エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート及びビス(3−メチル−3−メトキシブチルパーオキシ)ジカーボネートが挙げられる。   Examples of peroxydicarbonate include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, Bis (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate and bis (3-methyl-3-methoxybutylperoxy) dicarbonate are mentioned.

パーオキシケタールとしては、例えば、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−(t−ブチルパーオキシ)シクロドデカン及び2,2−ビス(t−ブチルパーオキシ)デカンが挙げられる。   Examples of peroxyketals include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis ( t-Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane and 2,2-bis (t-butylperoxy) decane.

ハイドロパーオキサイドとしては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド及びクメンハイドロパーオキサイドが挙げられる。   Examples of the hydroperoxide include diisopropylbenzene hydroperoxide and cumene hydroperoxide.

シリルパーオキサイドとしては、例えば、t−ブチルトリメチルシリルパーオキサイド、ビス(t−ブチル)ジメチルシリルパーオキサイド、t−ブチルトリビニルシリルパーオキサイド、ビス(t−ブチル)ジビニルシリルパーオキサイド、トリス(t−ブチル)ビニルシリルパーオキサイド、t−ブチルトリアリルシリルパーオキサイド、ビス(t−ブチル)ジアリルシリルパーオキサイド及びトリス(t−ブチル)アリルシリルパーオキサイドが挙げられる。   Examples of the silyl peroxide include t-butyltrimethylsilyl peroxide, bis (t-butyl) dimethylsilyl peroxide, t-butyltrivinylsilyl peroxide, bis (t-butyl) divinylsilyl peroxide, tris (t- Butyl) vinylsilyl peroxide, t-butyltriallylsilyl peroxide, bis (t-butyl) diallylsilyl peroxide, and tris (t-butyl) allylsilyl peroxide.

(B)成分の添加量は、(A)成分のオルガノ(ポリ)シロキサン合計量100質量部に対して、0.1〜30質量部、好ましくは0.5〜20質量部である。添加量が、0.1質量部未満の場合、反応が十分に進行せず、目的とする硬化物の硬度が得られないおそれがある。30質量部を超える場合、所望とする硬化後の物性、すなわち十分な耐熱性、耐光性、耐クラック性が得られない可能性があることに加え、着色が発生するおそれがあり変色の原因となる。また、(B)成分が30質量部を超える場合、粘度が著しく低下し、ダイボンド材として使用が不可能になる場合がある。   Component (B) is added in an amount of 0.1 to 30 parts by weight, preferably 0.5 to 20 parts by weight, based on 100 parts by weight of the total amount of organo (poly) siloxane of component (A). When the addition amount is less than 0.1 parts by mass, the reaction does not proceed sufficiently and the desired hardness of the cured product may not be obtained. If it exceeds 30 parts by mass, the desired physical properties after curing, that is, sufficient heat resistance, light resistance, crack resistance may not be obtained, and coloring may occur, causing discoloration. Become. Moreover, when (B) component exceeds 30 mass parts, a viscosity will fall remarkably and use as a die-bonding material may become impossible.

(C)一分子中にケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン
(C)成分のオルガノハイドロジェンポリシロキサンは、架橋剤として作用する成分であり、(A)成分とヒドロシリル化反応を起こし、本組成物の硬化に寄与する。該オルガノハイドロジェンポリシロキサンは、一分子中に少なくとも2個のケイ素原子結合水素原子(すなわち、SiH基)を有し、好ましくは3〜500個、より好ましくは3〜200個、特に好ましくは3〜150個有する。一分子中のケイ素原子数(または重合度)は、好ましくは2〜200個、より好ましくは3〜150個のものが使用される。前記のSiH基は、分子鎖末端および分子鎖非末端のいずれに位置していてもよく、この両方に位置するものであってもよい。
(C) The organohydrogenpolysiloxane of component (C) containing at least two hydrogen atoms bonded to silicon atoms in one molecule is a component that acts as a crosslinking agent, and component (A) Causes a hydrosilylation reaction and contributes to the curing of the composition. The organohydrogenpolysiloxane has at least two silicon-bonded hydrogen atoms (that is, SiH groups) in one molecule, preferably 3 to 500, more preferably 3 to 200, and particularly preferably 3 ~ 150. The number of silicon atoms (or the degree of polymerization) in one molecule is preferably 2 to 200, more preferably 3 to 150. The SiH group may be located at either the molecular chain end or the molecular chain non-terminal, or may be located at both.

このオルガノハイドロジェンポリシロキサン中のケイ素原子に結合している基の具体例としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;3,3,3−トリフルオロプロピル基、3−クロロプロピル基等のハロゲン化アルキル基等の脂肪族不飽和結合を有しない、非置換または置換の、1価炭化水素基等が挙げられ、好ましくは、アルキル基およびアリール基、特に好ましくは、メチル基およびフェニル基が挙げられる。   Specific examples of the group bonded to the silicon atom in the organohydrogenpolysiloxane include, for example, alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group; cyclopentyl group, cyclohexyl A cycloalkyl group such as a phenyl group; an aryl group such as a phenyl group, a tolyl group and a xylyl group; an aralkyl group such as a benzyl group and a phenethyl group; a halogenated group such as a 3,3,3-trifluoropropyl group and a 3-chloropropyl group Examples thereof include an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond such as an alkyl group, preferably an alkyl group and an aryl group, and particularly preferably a methyl group and a phenyl group. .

(C)成分の23℃における粘度は0.5〜100,000mPa・sであることが好ましく、特に、10〜5,000mPa・sであることが好ましい。このようなオルガノハイドロジェンポリシロキサンの分子構造は限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、環状、三次元網状等が挙げられる。該オルガノハイドロジェンポリシロキサンは、単一種のシロキサン単位からなる単独重合体でも、2種以上のシロキサン単位からなる共重合体でも、これらの混合物でもよい。   The viscosity of component (C) at 23 ° C. is preferably 0.5 to 100,000 mPa · s, and particularly preferably 10 to 5,000 mPa · s. The molecular structure of such an organohydrogenpolysiloxane is not limited, and examples thereof include linear, branched, partially branched linear, cyclic, and three-dimensional network. The organohydrogenpolysiloxane may be a homopolymer composed of a single type of siloxane unit, a copolymer composed of two or more types of siloxane units, or a mixture thereof.

該オルガノハイドロジェンポリシロキサンとしては、例えば、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、メチルハイドロジェンシロキサン環状重合体、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(CSiO1/2単位とからなる共重合体等が挙げられる。これらの中でも、ジメチルシロキサン単位を(C)成分中のシロキサン単位全体の1mol%以上含有するものが好ましく、より好ましくは1〜100mol%含有するものである。 Examples of the organohydrogenpolysiloxane include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, methylhydrogensiloxane cyclic polymer, and methylhydrogensiloxane.・ Dimethylsiloxane cyclic copolymer, molecular chain both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane, methylhydrogen Siloxane copolymer, dimethylhydrogensiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer with both ends of the molecular chain, methylhydrogensiloxane capped with trimethylsiloxy group at both ends Phenyl siloxane copolymers, both end trimethylsiloxy-blocked methylhydrogensiloxane-diphenylsiloxane-dimethylsiloxane copolymers, both end dimethylhydrogensiloxy group-blocked methylhydrogensiloxane-dimethylsiloxane-diphenylsiloxane copolymers, (CH 3 ) a copolymer comprising 2 HSiO 1/2 units, (CH 3 ) 3 SiO 1/2 units and SiO 4/2 units, and (CH 3 ) 2 HSiO 1/2 units and SiO 4/2 units. And a copolymer composed of (CH 3 ) 2 HSiO 1/2 units, SiO 4/2 units, and (C 6 H 5 ) 3 SiO 1/2 units. Among these, what contains 1 mol% or more of the whole siloxane unit in (C) component of a dimethylsiloxane unit is preferable, More preferably, it contains 1-100 mol%.

本組成物において、(C)成分の含有量は、(A)成分100質量部に対して0.1〜20質量部、好ましくは0.5〜20質量部、特に好ましくは1〜10質量部である。   In the present composition, the content of the component (C) is 0.1 to 20 parts by mass, preferably 0.5 to 20 parts by mass, particularly preferably 1 to 10 parts by mass with respect to 100 parts by mass of the component (A). It is.

(C)成分の含有量が0.1質量部未満であると、本組成物が十分に硬化し難く、硬化物表面が固まらない場合が起こってしまう。20質量部を超えると、本組成物が(B)成分により硬化しなくなり、パーオキサイドによる硬化性能が薄れてしまう。なお、この(C)成分の配合量は、上記の理由により、本組成物中の全アルケニル基含有オルガノ(ポリ)シロキサン中のケイ素原子結合アルケニル基の総量に対する(C)成分中のケイ素原子結合水素原子(即ち、SiH基)のモル比−(A)成分以外の成分が前記アルケニル基を有しない場合には、(A)成分中のケイ素原子結合アルケニル基に対する(B)成分中のケイ素原子結合水素原子のモル比−が0.01〜4.0mol/mol、好ましくは0.05〜2.5mol/mol、特に好ましくは0.1〜1.0mol/molとなるように配合することもできる。   When the content of the component (C) is less than 0.1 parts by mass, the present composition is not sufficiently cured and the cured product surface may not be hardened. If it exceeds 20 parts by mass, the present composition will not be cured by the component (B), and the curing performance by peroxide will be reduced. In addition, the compounding quantity of this (C) component is the silicon atom bond in (C) component with respect to the total amount of the silicon atom bond alkenyl group in all the alkenyl group containing organo (poly) siloxane in this composition for said reason. Molar ratio of hydrogen atom (that is, SiH group)-When components other than component (A) do not have the alkenyl group, silicon atom in component (B) relative to silicon atom-bonded alkenyl group in component (A) It may be blended so that the molar ratio of bonded hydrogen atoms is 0.01 to 4.0 mol / mol, preferably 0.05 to 2.5 mol / mol, particularly preferably 0.1 to 1.0 mol / mol. it can.

(D)白金系触媒
(D)成分の白金系触媒は、本組成物の硬化を促進するための触媒であり、例えば、白金および白金化合物が挙げられ、具体例としては、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体、白金のカルボニル錯体等が挙げられる。本組成物における(D)成分の含有量は、有効量でよく、具体的には、(A)成分に対して(D)成分中の白金金属成分が白金換算にして、質量基準0.01〜1,000ppm、好ましくは0.1〜500ppmとなる量である。
(D) Platinum-based catalyst The platinum-based catalyst of component (D) is a catalyst for accelerating the curing of the present composition, and examples thereof include platinum and platinum compounds. Specific examples include chloroplatinic acid, chloride Examples include platinum acid alcohol solutions, platinum olefin complexes, platinum alkenylsiloxane complexes, platinum carbonyl complexes, and the like. The content of the component (D) in the present composition may be an effective amount. Specifically, the platinum metal component in the component (D) is converted to platinum with respect to the component (A) and is 0.01 on a mass basis. It is a quantity which becomes -1,000 ppm, Preferably it is 0.1-500 ppm.

その他の成分
本発明の加熱硬化型シリコーン組成物は、特定の用途において所望されるような硬化または未硬化特性を改変させる他の成分も含ませ得る。例えば、(メタ)アクリロキシプロピルトリメトキシシラン、トリアルキル−またはトリアリル−イソシアヌレート、グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のような接着促進剤を、約20質量%までの量で含ませ得る。他の任意成分としては、約30質量%までの量の非(メタ)アクリルシリコーン希釈剤または可塑剤を含ませ得る。非(メタ)アクリルシリコーン類としては、100〜500cspの粘度を有するトリメチルシリル末端化オイル、およびシリコーンゴムが挙げられる。非(メタ)アクリルシリコーン類は、ビニル基のような共硬化性基を含み得る。
Other Components The heat curable silicone composition of the present invention may also include other components that modify the cured or uncured properties as desired in a particular application. For example, an adhesion promoter such as (meth) acryloxypropyltrimethoxysilane, trialkyl- or triallyl-isocyanurate, glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, etc. in an amount up to about 20% by weight. Can be included. Other optional ingredients may include non- (meth) acrylic silicone diluents or plasticizers in amounts up to about 30% by weight. Non- (meth) acryl silicones include trimethylsilyl-terminated oils having a viscosity of 100 to 500 csp, and silicone rubber. Non- (meth) acryl silicones may contain co-curable groups such as vinyl groups.

また、本発明の加熱硬化型シリコーン組成物の強度を向上、粘度調整、チキソ性付与等を目的として、更に、ヒュームドシリカ、ナノアルミナ等の無機質充填剤を配合してもよい。必要に応じて、本発明の加熱硬化型シリコーン組成物に、染料、顔料、難燃剤等を配合してもよい。   Further, for the purpose of improving the strength of the thermosetting silicone composition of the present invention, adjusting the viscosity, imparting thixotropy, etc., an inorganic filler such as fumed silica or nano alumina may be further blended. As needed, you may mix | blend dye, a pigment, a flame retardant, etc. with the thermosetting silicone composition of this invention.

また、作業性を改善する目的で溶剤等を添加して使用することも可能である。溶剤の種類は特に制限されるものでなく、硬化前の加熱硬化型シリコーン組成物を溶解し、前記無機質充填剤等を良好に分散させ、均一なダイボンド材あるいは接着剤等を提供できる溶剤を使用することができる。該溶剤の配合割合はダイボンド材等を使用する作業条件、環境、使用時間等に応じて適宜調整すればよい。溶剤は2種以上を併用してもよい。このような溶剤としては、ブチルカルビトールアセテート、カルビトールアセテート、メチルエチルケトン、α−テルピネオール、及びセロソルブアセテート等が挙げられる。   It is also possible to add a solvent or the like for the purpose of improving workability. The type of the solvent is not particularly limited, and a solvent that dissolves the heat-curable silicone composition before curing, disperses the inorganic filler and the like, and provides a uniform die-bonding material or adhesive is used. can do. What is necessary is just to adjust suitably the mixture ratio of this solvent according to the working conditions, environment, use time, etc. which use a die-bonding material. Two or more solvents may be used in combination. Examples of such a solvent include butyl carbitol acetate, carbitol acetate, methyl ethyl ketone, α-terpineol, and cellosolve acetate.

また、本発明の組成物には、接着性向上剤を配合してもよい。接着性向上剤としては、シランカップリング剤やそのオリゴマー、シランカップリング剤と同様の反応性基を有するシリコーン等が例示される。   Moreover, you may mix | blend an adhesive improvement agent with the composition of this invention. Examples of the adhesion improver include silane coupling agents and oligomers thereof, and silicone having a reactive group similar to the silane coupling agent.

接着性向上剤としては、分子内に1個以上のエポキシ含有基を有するシラン化合物又はシロキサン化合物が好ましい。例えば、エポキシ基を含有するシランカップリング剤やその加水分解縮合物等が例示される。エポキシ基を含有するシランカップリング剤やその加水分解縮合物としては、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン等のシラン化合物やその加水分解縮合物等を挙げることができる。   As the adhesion improver, a silane compound or a siloxane compound having one or more epoxy-containing groups in the molecule is preferable. For example, a silane coupling agent containing an epoxy group and a hydrolysis condensate thereof are exemplified. Examples of the silane coupling agent containing an epoxy group and its hydrolysis condensate include silane compounds such as glycidoxypropyltrimethoxysilane and glycidoxypropyltriethoxysilane, and their hydrolysis condensates.

接着性向上剤は、本発明の加熱硬化型シリコーン組成物及びその硬化物の基材に対する接着性を向上させるために該組成物に配合される任意的成分である。ここで、基材とは、金、銀、銅、ニッケルなどの金属材料、酸化アルミニウム、窒化アルミニウム、酸化チタンなどのセラミック材料、シリコーン樹脂、エポキシ樹脂などの高分子材料を指す。接着性向上剤は、1種単独でも2種以上を組み合わせても使用することができる。   The adhesion improver is an optional component blended in the composition for improving the adhesion of the heat-curable silicone composition of the present invention and the cured product to the substrate. Here, the base material refers to metal materials such as gold, silver, copper, and nickel, ceramic materials such as aluminum oxide, aluminum nitride, and titanium oxide, and polymer materials such as silicone resin and epoxy resin. The adhesion improver can be used alone or in combination of two or more.

接着性向上剤の配合量は、上記(A)成分と(B)の合計100質量部に対し、好ましくは1〜30質量部であり、より好ましくは、5〜20質量部である。該配合量が5〜20質量部であると、本発明の加熱硬化型シリコーン組成物及びその硬化物は、基材に対する接着性が効果的に向上し、また、着色しにくい。   The compounding amount of the adhesion improver is preferably 1 to 30 parts by mass, and more preferably 5 to 20 parts by mass with respect to 100 parts by mass in total of the component (A) and (B). When the blending amount is 5 to 20 parts by mass, the heat-curable silicone composition of the present invention and the cured product thereof are effectively improved in adhesion to the substrate and are not easily colored.

接着性向上剤の好適な具体例としては、下記が挙げられるが、これらに限定されるものではない。

Figure 2018076415
Specific examples of suitable adhesive improvers include, but are not limited to, the following.
Figure 2018076415

Figure 2018076415
Figure 2018076415

Figure 2018076415
(a,rは0〜50の整数、b、s、tは1〜50の整数である。)
Figure 2018076415
(A and r are integers of 0 to 50, and b, s, and t are integers of 1 to 50.)

また、ポットライフを確保するために、3−メチル−1−ドデシン−3−オール、1−エチニルシクロヘキサノール、3,5−ジメチル−1−ヘキシン−3−オール等の付加反応制御剤を配合することができる。   Moreover, in order to ensure pot life, an addition reaction control agent such as 3-methyl-1-dodecin-3-ol, 1-ethynylcyclohexanol, 3,5-dimethyl-1-hexyn-3-ol is blended. be able to.

硬化物の着色、酸化劣化等の発生を抑えるために、2,6−ジ−t−ブチル−4−メチルフェノール等の従来公知の酸化防止剤を本発明の加熱硬化型シリコーン組成物に配合することができる。また、光劣化に対する抵抗性を付与するために、ヒンダードアミン系安定剤等の光安定剤を本発明の加熱硬化型シリコーン組成物に配合することもできる。   In order to suppress the occurrence of coloring and oxidative deterioration of the cured product, a conventionally known antioxidant such as 2,6-di-t-butyl-4-methylphenol is blended in the heat-curable silicone composition of the present invention. be able to. Moreover, in order to provide the resistance with respect to photodegradation, light stabilizers, such as a hindered amine stabilizer, can also be mix | blended with the heat-curable silicone composition of this invention.

本発明の加熱硬化型シリコーン組成物は、上記各成分を、公知の混合方法、例えば、ミキサー、ロール等を用いて混合することによって製造することができる。また、本発明の加熱硬化型シリコーン組成物は、回転粘度計、例えば、E型粘度計を用いて23℃で測定した粘度が10〜1,000,000mPa・s、特には100〜1,000,000mPa・sであることが好ましい。   The heat-curable silicone composition of the present invention can be produced by mixing the above-described components using a known mixing method such as a mixer or a roll. The thermosetting silicone composition of the present invention has a viscosity of 10 to 1,000,000 mPa · s, particularly 100 to 1,000, measured at 23 ° C. using a rotational viscometer, for example, an E type viscometer. 1,000 mPa · s is preferable.

本発明の加熱硬化型シリコーン組成物は、公知の硬化条件下で公知の硬化方法により硬化させることができる。具体的には、通常、80〜200℃、好ましくは100〜160℃で加熱することにより、該組成物を硬化させることができる。加熱時間は、0.5分〜5時間程度、特に1分〜3時間程度でよい。作業条件、生産性、発光素子及び筐体耐熱性とのバランスから適宜選定することができる。   The heat-curable silicone composition of the present invention can be cured by a known curing method under known curing conditions. Specifically, the composition can be cured usually by heating at 80 to 200 ° C, preferably 100 to 160 ° C. The heating time may be about 0.5 minutes to 5 hours, particularly about 1 minute to 3 hours. It can be selected as appropriate from the balance of working conditions, productivity, light emitting element and housing heat resistance.

本発明の加熱硬化型シリコーン組成物は、(メタ)アクリル基の、パーオキサイドによる硬化と、SiH基と不飽和基の付加反応との両方の硬化を行う事で、酸素阻害による表面部分の未硬化を克服した硬化物を与えることが可能となる。また、本発明の加熱硬化型シリコーン組成物は、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができる。   The heat-curable silicone composition of the present invention can cure the surface portion due to oxygen inhibition by curing both (meth) acrylic group by peroxide and addition reaction of SiH group and unsaturated group. It becomes possible to give a cured product that overcomes the curing. Moreover, the heat-curable silicone composition of the present invention can give a cured product excellent in adhesive strength and workability, and excellent in heat resistance, light resistance and crack resistance.

また、本発明では、上記本発明の加熱硬化型シリコーン組成物からなるものであるダイボンド材を提供する。特には、半導体素子を配線板に接続するために使用することができるダイボンド材が挙げられる。   Moreover, in this invention, the die-bonding material which consists of the thermosetting silicone composition of the said invention is provided. In particular, a die bond material that can be used for connecting a semiconductor element to a wiring board is used.

本発明の加熱硬化型シリコーン組成物は、LEDチップをパッケージに固定するために好適に用いることができる。また、その他有機電界発光素子(有機EL)、レーザーダイオード、及びLEDアレイ等の光半導体素子にも好適に用いることができる。   The thermosetting silicone composition of the present invention can be suitably used for fixing an LED chip to a package. Moreover, it can use suitably also for optical semiconductor elements, such as an organic electroluminescent element (organic EL), a laser diode, and an LED array.

本発明の加熱硬化型シリコーン組成物は、透明性が高く、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができる。従って、上記加熱硬化型シリコーン組成物からなるダイボンド材であれば、LEDチップを配線板に搭載するためのダイボンド材として好適に用いることができる。   The heat-curable silicone composition of the present invention can give a cured product having high transparency, excellent adhesive strength and workability, and excellent heat resistance, light resistance and crack resistance. Therefore, if it is a die-bonding material consisting of the said thermosetting silicone composition, it can be conveniently used as a die-bonding material for mounting an LED chip on a wiring board.

ダイボンド材を塗布する方法は特に制限されず、例えば、スピンコーティング、印刷、及び圧縮成形等が挙げられる。ダイボンド材の厚みは適宜選択すればよく、通常5〜50μm、特には10〜30μmである。例えば、ディスペンス装置を用いて23℃の温度、0.5〜5kgf/cmの圧力で吐出することで容易に塗布ができる。また、スタンピング装置を用いることで、所定の量のダイボンド材を基板に転写することでも容易にできる。 A method for applying the die bond material is not particularly limited, and examples thereof include spin coating, printing, and compression molding. What is necessary is just to select the thickness of a die-bonding material suitably, and is 5-50 micrometers normally, Especially it is 10-30 micrometers. For example, it can be easily applied by discharging at a temperature of 23 ° C. and a pressure of 0.5 to 5 kgf / cm 2 using a dispensing device. Further, by using a stamping device, a predetermined amount of die bond material can be easily transferred to the substrate.

光半導体素子の搭載方法は特に制限されず、例えば、ダイボンダーが挙げられる。ダイボンド材の厚みを決定する要素は、前述のダイボンド材の粘度に加え、光半導体素子の圧着荷重、圧着時間、圧着温度が挙げられる。これら条件は、光半導体素子の外形形状、目的とするダイボンド材厚みに応じて適宜選択すればよく、圧着荷重は一般的に1gf以上1kgf以下である。好ましくは10gf以上100gf以下である。1gf以上の圧着荷重であれば、ダイボンド材を十分に圧着することができる。また1kgf以下の圧着荷重を用いれば、光半導体素子表面の発光層にダメージを与えることがない。圧着時間は工程の生産性との兼ね合いで適宜選択すればよく、一般的に0msecを超え1sec以下である。好ましくは1msec以上30msecである。1sec以下であれば生産性の点で好ましい。圧着温度は特に制限はなく、ダイボンド材の使用温度範囲に従えばよいが、一般的に15℃以上100℃以下であると好ましい。ダイボンダーの圧着ステージに加温設備が無い場合は室温付近での温度帯で使用すればよい。15℃以上であれば、ダイボンド材の粘度が高くなりすぎないため十分に圧着することができる。100℃以下であれば、ダイボンド材の硬化が始まることがないため、目的とするダイボンド材の厚さに到達することができる。   The method for mounting the optical semiconductor element is not particularly limited, and examples thereof include a die bonder. Factors that determine the thickness of the die bond material include the pressure of the optical semiconductor element, the pressure bonding time, and the pressure bonding temperature in addition to the viscosity of the die bond material. These conditions may be appropriately selected according to the outer shape of the optical semiconductor element and the target die bond material thickness, and the pressure bonding load is generally 1 gf or more and 1 kgf or less. Preferably they are 10 gf or more and 100 gf or less. If the pressure bonding load is 1 gf or more, the die bond material can be sufficiently bonded. Further, if a pressure bonding load of 1 kgf or less is used, the light emitting layer on the surface of the optical semiconductor element is not damaged. The crimping time may be appropriately selected in consideration of the productivity of the process, and generally exceeds 0 msec and is 1 sec or less. Preferably, it is 1 msec or more and 30 msec. 1 sec or less is preferable in terms of productivity. There is no restriction | limiting in particular in the crimping | compression-bonding temperature, Although what is necessary is just to follow the operating temperature range of die-bonding material, Generally it is preferable in it being 15 to 100 degreeC. If there is no heating equipment on the die bonder crimping stage, it can be used in the temperature range near room temperature. If it is 15 degreeC or more, since the viscosity of a die-bonding material does not become high too much, it can fully crimp. If it is 100 degrees C or less, since hardening of a die-bonding material will not start, the thickness of the target die-bonding material can be reached | attained.

更に本発明では、上記本発明のダイボンド材を硬化して得られる硬化物を有するものである光半導体装置を提供する。   Furthermore, the present invention provides an optical semiconductor device having a cured product obtained by curing the die bond material of the present invention.

本発明の光半導体装置は、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有するため、表面部分の未硬化を克服された、耐熱性、耐光性及び耐クラック性に優れた硬化物を有する光半導体装置となる。   Since the optical semiconductor device of the present invention has a cured product obtained by curing the die-bonding material comprising the heat-curable silicone composition of the present invention, the unhardened surface portion is overcome, and the heat resistance, light resistance, and resistance. An optical semiconductor device having a cured product with excellent cracking properties is obtained.

本発明の光半導体装置は、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を基板に塗布した後、従来公知の方法に従い光半導体素子をダイボンディングすることにより製造することができる。   The optical semiconductor device of the present invention can be manufactured by applying a die bonding material made of the thermosetting silicone composition of the present invention to a substrate and then die-bonding an optical semiconductor element according to a conventionally known method.

以下、本発明の光半導体装置の一態様について図面を参照して説明する。図1は、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有する光半導体装置の一例を示す断面図である。図1に示す光半導体装置10は、パッケージ基板の筐体1の第1のリード電極3上に、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物5を有し、この硬化物5の上に光半導体素子2が搭載されたものである。この光半導体素子2の電極は、金線6によって第1のリード電極3と電気的に接続されている。また、この光半導体素子2の電極は、金線7によって第2のリード電極4と電気的に接続されている。また、この光半導体素子2は、封止樹脂8で封止されている。   Hereinafter, one mode of an optical semiconductor device of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of an optical semiconductor device having a cured product obtained by curing a die bond material made of the thermosetting silicone composition of the present invention. An optical semiconductor device 10 shown in FIG. 1 has a cured product 5 obtained by curing a die bond material made of the thermosetting silicone composition of the present invention on a first lead electrode 3 of a housing 1 of a package substrate. The optical semiconductor element 2 is mounted on the cured product 5. The electrode of the optical semiconductor element 2 is electrically connected to the first lead electrode 3 by a gold wire 6. The electrode of the optical semiconductor element 2 is electrically connected to the second lead electrode 4 by a gold wire 7. The optical semiconductor element 2 is sealed with a sealing resin 8.

図1の光半導体装置10の製造方法としては、以下の方法を例示できる。
まず、パッケージ基板の筐体1の第1のリード電極3上に、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を定量転写し、その上に光半導体素子2を搭載する。次に、ダイボンド材を加熱硬化させて硬化物5とする。次に、光半導体素子2の電極と第1のリード電極3を金線6を用いて電気的に接続し、光半導体素子2の電極と第2のリード電極4を金線7を用いて電気的に接続し、光半導体素子2が搭載されたパッケージ基板を得る。次いで、封止樹脂8を定量塗布し、塗布された封止樹脂を公知の硬化条件下で公知の硬化方法により、硬化させることによってパッケージ基板を封止することができる。本発明のダイボンド材を硬化して得られる硬化物を有する光半導体デバイスとしては、例えば、LED、半導体レーザー、フォトダイオード、フォトトランジスタ、太陽電池、CCD等が挙げられる。
As a manufacturing method of the optical semiconductor device 10 of FIG.
First, the die bond material made of the thermosetting silicone composition of the present invention is quantitatively transferred onto the first lead electrode 3 of the housing 1 of the package substrate, and the optical semiconductor element 2 is mounted thereon. Next, the die bond material is cured by heating to obtain a cured product 5. Next, the electrode of the optical semiconductor element 2 and the first lead electrode 3 are electrically connected using a gold wire 6, and the electrode of the optical semiconductor element 2 and the second lead electrode 4 are electrically connected using a gold wire 7. To obtain a package substrate on which the optical semiconductor element 2 is mounted. Next, the package substrate can be sealed by applying the sealing resin 8 quantitatively and curing the applied sealing resin under a known curing condition by a known curing method. Examples of the optical semiconductor device having a cured product obtained by curing the die bonding material of the present invention include an LED, a semiconductor laser, a photodiode, a phototransistor, a solar cell, and a CCD.

以下に実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

(実施例1〜8、比較例1〜5)
下記成分を用意し、表1、2に示す組成のシリコーン組成物を調製した。
(A−1)
下記シロキサン単位からなり、

Figure 2018076415
MA:M:Q=1:4:6の割合で、分子量がGPCによるポリスチレン換算の重量平均分子量で、5,000であり、25℃で固体のオルガノポリシロキサン (Examples 1-8, Comparative Examples 1-5)
The following components were prepared and silicone compositions having the compositions shown in Tables 1 and 2 were prepared.
(A-1)
Consists of the following siloxane units:
Figure 2018076415
MA: M: Q = 1: 4: 6, a weight average molecular weight of 5,000 in terms of polystyrene by GPC, and a solid organopolysiloxane at 25 ° C.

(A−2)
下記構造式で表される、25℃での粘度が7mPa・sのオルガノシロキサン

Figure 2018076415
(A-2)
Organosiloxane having a viscosity of 7 mPa · s at 25 ° C. represented by the following structural formula
Figure 2018076415

(B−1)
ジアシルパーオキサイドとしてDi−(3−methylbenzoyl)peroxide, Benzoyl(3−methylbenzoyl)peroxide and Dibenzol peroxideの40%キシレン溶液(商品名:ナイパーBMT−K40、日本油脂株式会社製)をそのまま用いた。
(B-1)
As a diacyl peroxide, a 40% xylene solution of Di- (3-methylbenzoyl) peroxide, Benzoyl (3-methylbenzoyl) peroxide and Dibenzol peroxide (trade name: Nyper BMT-K40, manufactured by NOF Corporation) was used as it was.

(B−2)
パーオキシエステルとしてt−Butyl peroxybenzoate(商品名:パーブチルZ、日本油脂株式会社製)をそのまま用いた。
(B-2)
As the peroxyester, t-Butyl peroxybenzoate (trade name: Perbutyl Z, manufactured by NOF Corporation) was used as it was.

(C) 架橋剤
下記シロキサン単位からなり、
M:(CHSiO1/2
D:(CHSiO2/2
:(CH)SiHO2/2
M:D:D=2:32:66で表される、25℃での粘度が150mPa・sの直鎖状オルガノポリシロキサン
(C) Crosslinking agent consisting of the following siloxane units:
M: (CH 3 ) 3 SiO 1/2
D: (CH 3 ) 2 SiO 2/2
D H : (CH 3 ) SiHO 2/2
A linear organopolysiloxane represented by M: D: DH = 2: 32: 66 and having a viscosity at 25 ° C. of 150 mPa · s.

(D)白金系触媒:
白金含有量が0.5質量%の、白金1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液
(D) Platinum-based catalyst:
Toluene solution of platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex having a platinum content of 0.5% by mass

その他の任意成分
粘度調整剤:ヒュームドシリカ(商品名レオシロールDM−30S トクヤマ社製)
接着性向上剤: 側鎖にエポキシ基を含有する環状シリコーンオイル(商品名:X−40−2670、信越化学工業株式会社製)
反応制御剤:3−メチル−1−ドデシン−3−オール
Other optional component viscosity modifiers: fumed silica (trade name Reosirol DM-30S manufactured by Tokuyama Corporation)
Adhesion improver: Cyclic silicone oil containing an epoxy group in the side chain (trade name: X-40-2670, manufactured by Shin-Etsu Chemical Co., Ltd.)
Reaction control agent: 3-methyl-1-dodecin-3-ol

Figure 2018076415
Figure 2018076415
Figure 2018076415
Figure 2018076415

[硬度の測定]
得られた組成物を2mm厚みのセルに流し込み、150℃×2時間の条件で硬化し、硬化物を調製した。その後、上島製作所製デュロメータタイプDにより硬度を測定した。
[Measurement of hardness]
The obtained composition was poured into a cell having a thickness of 2 mm and cured under conditions of 150 ° C. × 2 hours to prepare a cured product. Thereafter, the hardness was measured with a durometer type D manufactured by Ueshima Seisakusho.

[表面タックの評価]
得られた組成物をアルミシャーレに流し込み、150℃×2時間の条件で大気下で硬化し、硬化物を調製した。得られた硬化物の表面タックを指触にて評価した。
[Evaluation of surface tack]
The obtained composition was poured into an aluminum petri dish and cured in the air at 150 ° C. for 2 hours to prepare a cured product. The surface tack of the obtained cured product was evaluated by finger touch.

[光半導体パッケージの作製]
LED用パッケージ基板として、光半導体素子を載置する凹部を有し、その底部に銀メッキされた第1のリード電極と第2のリード電極が設けられたLED用パッケージ基板[SMD5050(I−CHIUN PRECISION INDUSTRY CO.,社製、樹脂部PPA(ポリフタルアミド))]、光半導体素子として、Bridgelux社製 BXCD33を、それぞれ用意した。
[Production of optical semiconductor package]
The LED package substrate [SMD5050 (I-CHIUN] having a concave portion for placing an optical semiconductor element and provided with a silver-plated first lead electrode and a second lead electrode on the bottom thereof. PRECISION INDUSTRY CO., Ltd., resin part PPA (polyphthalamide))], and BXCD33 manufactured by Bridgegelux were prepared as optical semiconductor elements.

ダイボンダー(ASM社製 AD−830)を用いて、パッケージ基板の銀メッキされた第1のリード電極に、表1、2に示す各組成物をスタンピングにより定量転写し、その上に光半導体素子を搭載した。このときの光半導体素子の搭載条件は、圧着時間13msec、圧着荷重60gfであり、加温装置を用いず室温25℃の環境で行った。次に、パッケージ基板をオーブンに投入し各ダイボンド材を加熱硬化させた(実施例1〜8、比較例2および比較例4は150℃、4時間、比較例1は170℃、1時間)。次に、光半導体素子の電極と第1のリード電極を金ワイヤー(田中電子工業社製 FA 25μm)を用いて電気的に接続し、光半導体素子の電極と第2のリード電極を金ワイヤー(田中電子工業社製 FA 25μm)を用いて電気的に接続した。これにより、光半導体素子が搭載されたLED用パッケージ基板各1枚(パッケージ数にして120個)を得た。   Using a die bonder (AD-830 manufactured by ASM), each composition shown in Tables 1 and 2 is quantitatively transferred to the first lead electrode plated with silver on the package substrate by stamping, and an optical semiconductor element is placed thereon. equipped. The mounting conditions of the optical semiconductor element at this time were a pressure bonding time of 13 msec and a pressure bonding load of 60 gf, and were performed in an environment at room temperature of 25 ° C. without using a heating device. Next, the package substrate was put into an oven to heat and cure each die bond material (Examples 1 to 8, Comparative Example 2 and Comparative Example 4 were 150 ° C. for 4 hours, and Comparative Example 1 was 170 ° C. for 1 hour). Next, the electrode of the optical semiconductor element and the first lead electrode are electrically connected using a gold wire (FA 25 μm manufactured by Tanaka Denshi Kogyo Co., Ltd.), and the electrode of the optical semiconductor element and the second lead electrode are connected to the gold wire ( Electrical connection was made using a Tanaka Denshi Kogyo FA 25 μm). As a result, one LED package substrate (120 in number of packages) on which the optical semiconductor elements were mounted was obtained.

上記のようにして、ダイボンド材の異なる光半導体パッケージを作製し、以下の試験に用いた。   As described above, optical semiconductor packages with different die-bonding materials were produced and used for the following tests.

[ダイシェア試験]
上記の方法で得られた光半導体パッケージのうち10個を、25℃の室内でボンドテスター(Dage社製 Series4000)を用いてダイシェア強度の測定を行い、得られた測定値の平均値をMPaで示した。
[Die share test]
Ten of the optical semiconductor packages obtained by the above method were measured for die shear strength using a bond tester (Series 4000 manufactured by Dage) in a room at 25 ° C., and the average value of the measured values was measured in MPa. Indicated.

[酸素による表面硬化阻害の評価]
上記の方法で得られた光半導体パッケージにおいて、25℃の室内で、先端の尖った針にてチップ周辺をこすり、酸素による表面硬化阻害の有無を確認した。
得られた結果を表3、4に示す。
[Evaluation of surface hardening inhibition by oxygen]
In the optical semiconductor package obtained by the above method, the periphery of the chip was rubbed with a needle with a sharp tip in a room at 25 ° C. to confirm whether or not surface hardening was inhibited by oxygen.
The obtained results are shown in Tables 3 and 4.

Figure 2018076415
Figure 2018076415
Figure 2018076415
Figure 2018076415

表3に示すように、本発明の範囲を満たす加熱硬化型シリコーン組成物をダイボンド材として用いた実施例1〜実施例8では、いずれも高硬度、かつ表面タックの無い、酸素阻害による表面部分の未硬化を克服した硬化物が得られた。更に、ダイシェア測定の結果、接着力が高く信頼性の高い光半導体デバイスを製造できることがわかった。   As shown in Table 3, in Examples 1 to 8 in which the thermosetting silicone composition satisfying the scope of the present invention was used as a die-bonding material, the surface portion due to oxygen inhibition was high in hardness and free from surface tack. A cured product overcoming the uncured product was obtained. Furthermore, as a result of die shear measurement, it was found that an optical semiconductor device having high adhesive strength and high reliability can be manufactured.

一方、C、D成分を含まない比較例1、2ではいずれも高硬度、かつ高いダイシェアが観測されたものの、表面タックがあり、酸素による表面硬化阻害が確認された。なお、比較例2から明らかなように、この表面硬化阻害はパーオキサイドの量を増加させたとしても防ぐことが出来なかった。B成分の量が過剰な場合(比較例3)、粘度が顕著に低下し、スタンピングが出来なくなった。また、C成分が過剰な場合(比較例4)、酸素による表面硬化阻害は防止できたもののダイシェアが低下する結果となった。B成分を含まず、白金触媒のみで硬化させた比較例5では硬度が顕著に低下し、また、粘度の上昇によりスタンピング不能となった。   On the other hand, in Comparative Examples 1 and 2 that did not contain C and D components, although high hardness and high die shear were observed, there was surface tack and inhibition of surface hardening by oxygen was confirmed. As is clear from Comparative Example 2, this inhibition of surface hardening could not be prevented even if the amount of peroxide was increased. When the amount of component B was excessive (Comparative Example 3), the viscosity was remarkably lowered and stamping was not possible. Moreover, when C component was excessive (Comparative Example 4), although the surface hardening inhibition by oxygen could be prevented, the die share decreased. In Comparative Example 5, which did not contain the B component and was cured with only the platinum catalyst, the hardness was remarkably reduced, and stamping became impossible due to the increase in viscosity.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に含有される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. It is contained in the technical range.

1…筐体、 2…光半導体素子、 3…第1のリード電極、 4…第2のリード電極、
5…ダイボンド材(硬化物)、 6、7…金線、 8…封止樹脂、 10…光半導体装置。
DESCRIPTION OF SYMBOLS 1 ... Housing | casing 2 ... Optical-semiconductor element 3 ... 1st lead electrode, 4 ... 2nd lead electrode,
DESCRIPTION OF SYMBOLS 5 ... Die bond material (hardened | cured material) 6, 7 ... Gold wire, 8 ... Sealing resin, 10 ... Optical semiconductor device.

Claims (6)

(A)下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノ(ポリ)シロキサン:100質量部、
Figure 2018076415
[式中、mは0、1、2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素原子数1〜12の1価の有機基、Zは−R−、−R−O−、−R(CHSi−O−(Rは置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素原子数1〜10の2価の有機基である。]
(B)ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物:0.1〜30質量部、
(C)一分子中にケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン:0.1〜20質量部、
(D)白金系触媒:(A)成分に対して(D)成分中の白金の質量換算で0.01〜1,000ppmとなる量、
を含有することを特徴とする加熱硬化型シリコーン組成物。
(A) Organo (poly) siloxane having at least one structure represented by the following general formula (1) in the molecule: 100 parts by mass
Figure 2018076415
[Wherein, m is any of 0, 1, 2; R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group; R 2 is a hydrogen atom or a methyl group; and R 3 is substituted or unsubstituted and is the same or A monovalent organic group having 1 to 12 carbon atoms which may be different, Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or Z 2 is an oxygen atom or a substituted or unsubstituted or the same or different carbon atom having 1 to 10 carbon atoms. It is a divalent organic group. ]
(B) Organic peroxide containing at least one selected from diacyl peroxide and peroxyester: 0.1 to 30 parts by mass,
(C) Organohydrogenpolysiloxane containing at least two hydrogen atoms bonded to silicon atoms in one molecule: 0.1 to 20 parts by mass,
(D) platinum-based catalyst: an amount of 0.01 to 1,000 ppm in terms of mass of platinum in component (D) relative to component (A),
A heat-curable silicone composition comprising:
前記(A)成分のオルガノ(ポリ)シロキサンのZが−R−であり、Zが酸素原子であることを特徴とする請求項1に記載の加熱硬化型シリコーン組成物。 2. The thermosetting silicone composition according to claim 1, wherein Z 1 of the organo (poly) siloxane as the component (A) is —R 4 —, and Z 2 is an oxygen atom. 前記(A)成分のオルガノ(ポリ)シロキサンのZが−R−O−又は、−R(CHSi−O−であり、Zが置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基であることを特徴とする請求項1に記載の加熱硬化型シリコーン組成物。 Z 1 of the organo (poly) siloxane of the component (A) is —R 4 —O— or —R 4 (CH 3 ) 2 Si—O—, and Z 2 is substituted or unsubstituted and is the same or different. The heat-curable silicone composition according to claim 1, which is a divalent organic group having 1 to 10 carbon atoms. 前記(A)成分のオルガノ(ポリ)シロキサンは、該オルガノ(ポリ)シロキサンを構成する全シロキサン単位のうち0.1mol%以上の(SiO)単位を有するものであることを特徴とする請求項1から請求項3のいずれか1項に記載の加熱硬化型シリコーン組成物。 The organo (poly) siloxane of the component (A) has 0.1 mol% or more of (SiO 2 ) units among all siloxane units constituting the organo (poly) siloxane. The heat-curable silicone composition according to any one of claims 1 to 3. 請求項1から請求項4のいずれか1項に記載の加熱硬化型シリコーン組成物からなるものであることを特徴とするダイボンド材。   A die-bonding material comprising the thermosetting silicone composition according to any one of claims 1 to 4. 請求項5に記載のダイボンド材を硬化して得られる硬化物を有するものであることを特徴とする光半導体装置。   An optical semiconductor device comprising a cured product obtained by curing the die bond material according to claim 5.
JP2016218394A 2016-11-08 2016-11-08 Heat curable silicone composition, die bond material and optical semiconductor device Active JP6622171B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016218394A JP6622171B2 (en) 2016-11-08 2016-11-08 Heat curable silicone composition, die bond material and optical semiconductor device
KR1020170145665A KR102390737B1 (en) 2016-11-08 2017-11-03 Heat-curable silicone composition, die bond material, and optical semiconductor device
TW106138366A TWI654255B (en) 2016-11-08 2017-11-07 Heat-curable polysilicon composition, chip soldering material, and optical semiconductor device
CN201711092143.XA CN108070261B (en) 2016-11-08 2017-11-08 Heat-curable silicon-oxygen composition, die-bonding material, and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218394A JP6622171B2 (en) 2016-11-08 2016-11-08 Heat curable silicone composition, die bond material and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2018076415A true JP2018076415A (en) 2018-05-17
JP6622171B2 JP6622171B2 (en) 2019-12-18

Family

ID=62150356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218394A Active JP6622171B2 (en) 2016-11-08 2016-11-08 Heat curable silicone composition, die bond material and optical semiconductor device

Country Status (4)

Country Link
JP (1) JP6622171B2 (en)
KR (1) KR102390737B1 (en)
CN (1) CN108070261B (en)
TW (1) TWI654255B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143246A (en) * 2019-03-08 2020-09-10 信越化学工業株式会社 Resin composition for wafer-level optical semiconductor device and optical semiconductor device
WO2020202932A1 (en) * 2019-04-02 2020-10-08 信越化学工業株式会社 Addition-curable silicone adhesive composition
WO2021229944A1 (en) * 2020-05-11 2021-11-18 信越化学工業株式会社 Photocurable silicone composition, adhesive, and cured silicone product
WO2022172614A1 (en) * 2021-02-09 2022-08-18 信越化学工業株式会社 Curable silicone composition, and adhesive
TWI801654B (en) * 2018-08-28 2023-05-11 日商信越化學工業股份有限公司 Addition hardening polysiloxane composition and semiconductor device
WO2023248760A1 (en) * 2022-06-23 2023-12-28 スタンレー電気株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026855A (en) * 1973-07-09 1975-03-19
JP2008074982A (en) * 2006-09-22 2008-04-03 Shin Etsu Chem Co Ltd Thermosetting silicone composition and light emission diode element using the same
JP2013203794A (en) * 2012-03-27 2013-10-07 Shin-Etsu Chemical Co Ltd Organopolysiloxane composition, method for curing organopolysiloxane composition and light-emitting diode
JP2016108456A (en) * 2014-12-08 2016-06-20 信越化学工業株式会社 Thermosetting silicone composition, die-bonding material comprising the same composition and optical semiconductor device using cured product of the die-bonding material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186168A (en) 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd Silicone resin composition for light emitting diode element
JP4660182B2 (en) * 2004-12-20 2011-03-30 東レ・ダウコーニング株式会社 Activated energy ray-curable silicone composition and negative pattern forming method using the same
JP4648099B2 (en) 2005-06-07 2011-03-09 信越化学工業株式会社 Silicone resin composition for die bonding
JP4789663B2 (en) 2006-03-17 2011-10-12 信越化学工業株式会社 Thermosetting composition and film provided with a layer obtained from the composition
JP2009155442A (en) * 2007-12-26 2009-07-16 Nippon Steel Chem Co Ltd Resin composition for lens and its cured material
JP2013232580A (en) * 2012-05-01 2013-11-14 Dow Corning Toray Co Ltd Thermosetting film-like silicone sealing material
JP6096087B2 (en) * 2012-12-21 2017-03-15 信越化学工業株式会社 Curable silicone resin composition, cured product thereof and optical semiconductor device
JP6285346B2 (en) * 2014-12-08 2018-02-28 信越化学工業株式会社 Transparent resin composition, adhesive comprising the composition, die-bonding material comprising the composition, conductive connection method using the composition, and optical semiconductor device obtained by the method
US10604612B2 (en) * 2014-12-26 2020-03-31 Dow Toray Co., Ltd. Curable organopolysiloxane composition, semiconductor sealant comprising same, and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026855A (en) * 1973-07-09 1975-03-19
JP2008074982A (en) * 2006-09-22 2008-04-03 Shin Etsu Chem Co Ltd Thermosetting silicone composition and light emission diode element using the same
JP2013203794A (en) * 2012-03-27 2013-10-07 Shin-Etsu Chemical Co Ltd Organopolysiloxane composition, method for curing organopolysiloxane composition and light-emitting diode
JP2016108456A (en) * 2014-12-08 2016-06-20 信越化学工業株式会社 Thermosetting silicone composition, die-bonding material comprising the same composition and optical semiconductor device using cured product of the die-bonding material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI801654B (en) * 2018-08-28 2023-05-11 日商信越化學工業股份有限公司 Addition hardening polysiloxane composition and semiconductor device
JP2020143246A (en) * 2019-03-08 2020-09-10 信越化学工業株式会社 Resin composition for wafer-level optical semiconductor device and optical semiconductor device
JP7296748B2 (en) 2019-03-08 2023-06-23 信越化学工業株式会社 Resin composition for wafer-level optical semiconductor device, and optical semiconductor device
WO2020202932A1 (en) * 2019-04-02 2020-10-08 信越化学工業株式会社 Addition-curable silicone adhesive composition
JP2020169254A (en) * 2019-04-02 2020-10-15 信越化学工業株式会社 Addition reaction curing type silicone adhesive composition
WO2021229944A1 (en) * 2020-05-11 2021-11-18 信越化学工業株式会社 Photocurable silicone composition, adhesive, and cured silicone product
CN115516038A (en) * 2020-05-11 2022-12-23 信越化学工业株式会社 Photocurable silicone composition, adhesive, and silicone cured product
JP2021178883A (en) * 2020-05-11 2021-11-18 信越化学工業株式会社 Photocurable silicone composition, adhesive, and silicone cured product
JP7411500B2 (en) 2020-05-11 2024-01-11 信越化学工業株式会社 Photocurable silicone compositions, adhesives, cured silicone products
CN115516038B (en) * 2020-05-11 2024-01-16 信越化学工业株式会社 Photocurable silicone composition, adhesive, and silicone cured product
JP2022122017A (en) * 2021-02-09 2022-08-22 信越化学工業株式会社 Curable silicone composition, and adhesive agent
WO2022172614A1 (en) * 2021-02-09 2022-08-18 信越化学工業株式会社 Curable silicone composition, and adhesive
JP7446250B2 (en) 2021-02-09 2024-03-08 信越化学工業株式会社 Curable silicone compositions and adhesives
WO2023248760A1 (en) * 2022-06-23 2023-12-28 スタンレー電気株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device

Also Published As

Publication number Publication date
TWI654255B (en) 2019-03-21
KR102390737B1 (en) 2022-04-26
CN108070261A (en) 2018-05-25
KR20180051392A (en) 2018-05-16
CN108070261B (en) 2021-06-18
TW201829630A (en) 2018-08-16
JP6622171B2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
JP6622171B2 (en) Heat curable silicone composition, die bond material and optical semiconductor device
JP5505991B2 (en) High adhesion silicone resin composition and optical semiconductor device using the composition
TWI504683B (en) A hardened silicon oxide composition, a hardened product thereof, and an optical semiconductor device
KR101758384B1 (en) Low gas permeable silicone resin composition and optical semiconductor device
JP5534977B2 (en) Curable organopolysiloxane composition and optical semiconductor device
JP5680889B2 (en) Curable organopolysiloxane composition and optical semiconductor device
CN105121556B (en) Curable silicone composition, cured product thereof, and optical semiconductor device
KR20130105429A (en) Curable silicone resin composition, cured product thereof and optical semiconductor device
KR20160104559A (en) Addition-curable silicone resin composition and die attach material for optical semiconductor device
JP2010065161A (en) Self-adhesive polyorganosiloxane composition
KR102340593B1 (en) Transparent resin composition, adhesive comprising composition, die bond material comprising composition, conductive connection method using composition, and optical semiconductor device obtained using method
WO2018155131A1 (en) Curable organopolysiloxane composition and semiconductor device
CN110268019B (en) Curable silicone composition
JP6272747B2 (en) Heat-curable silicone composition, die-bonding material comprising the composition, and optical semiconductor device using a cured product of the die-bonding material
CN112480681A (en) Addition-curable silicone composition, cured product thereof, light-reflecting material, and optical semiconductor device
KR101657528B1 (en) Heat-curable conductive silicone composition, conductive adhesive comprising the composition, conductive die-bonding material comprising the composition, and optical semiconductor device having cured product of the die-bonding material
CN111138860B (en) Addition-curable silicone resin composition, cured product thereof, and optical semiconductor device
JP2007180284A (en) Light emitting device
CN111117256B (en) Addition-curable silicone resin composition, cured product thereof, and optical semiconductor device
TWI752226B (en) Curable polysiloxane composition, optical semiconductor element encapsulation material and optical semiconductor device
JP2013047354A (en) Self-adhesive polyorganosiloxane composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191121

R150 Certificate of patent or registration of utility model

Ref document number: 6622171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150