JP2018075512A - Sewage treatment system - Google Patents
Sewage treatment system Download PDFInfo
- Publication number
- JP2018075512A JP2018075512A JP2016217989A JP2016217989A JP2018075512A JP 2018075512 A JP2018075512 A JP 2018075512A JP 2016217989 A JP2016217989 A JP 2016217989A JP 2016217989 A JP2016217989 A JP 2016217989A JP 2018075512 A JP2018075512 A JP 2018075512A
- Authority
- JP
- Japan
- Prior art keywords
- reaction tank
- biological reaction
- sewage treatment
- treatment system
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010865 sewage Substances 0.000 title claims abstract description 73
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 89
- 239000007788 liquid Substances 0.000 claims abstract description 63
- 238000004062 sedimentation Methods 0.000 claims abstract description 42
- 230000003068 static effect Effects 0.000 claims abstract description 41
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000001301 oxygen Substances 0.000 claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- 239000006228 supernatant Substances 0.000 claims abstract description 10
- 239000010802 sludge Substances 0.000 claims description 22
- 241001148470 aerobic bacillus Species 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000012986 modification Methods 0.000 description 26
- 230000004048 modification Effects 0.000 description 26
- 238000005273 aeration Methods 0.000 description 10
- 239000002101 nanobubble Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000012528 membrane Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Abstract
Description
本発明は、生物反応槽で下水を好気性生物処理し、次いで沈降分離処理し、汚泥の一部を生物反応槽に返送する下水処理システムに関する。 The present invention relates to a sewage treatment system in which sewage is subjected to aerobic biological treatment in a biological reaction tank, then subjected to sedimentation separation treatment, and a part of sludge is returned to the biological reaction tank.
従来から実施されている下水処理システムとして特許文献1〜4等に開示されるシステムが一般的である。
従来の下水処理システムは図21に示すように、下水処理場に入ってきた下水はスクリーンなどでごみを除去された後、ポンプで沈砂池から最初沈殿池に落差(水頭圧差)を利用して送られ、最初沈殿池では沈殿し易い汚れは最初沈殿池底部に設置された回転式スクレパーでかき集められて最下部にある収納室に送って分別除去しつつ、原水は生物反応槽に送られる。
The systems disclosed in Patent Documents 1 to 4 and the like are common as sewage treatment systems that have been practiced conventionally.
In the conventional sewage treatment system, as shown in FIG. 21, after the sewage that has entered the sewage treatment plant is removed of dust with a screen or the like, the head uses a drop (water head pressure difference) from the sand basin to the first sedimentation basin. The raw water is sent to the biological reaction tank while the dirt that tends to settle in the first sedimentation basin is collected by the rotary scraper installed at the bottom of the first sedimentation basin and sent to the storage room at the bottom.
生物反応槽では高濃度の微生物(好気性菌)によって有機物の吸着、摂取、消化分解が行われる。生物反応槽からの原水は落差によって最終沈殿池に送られ、最終沈殿池では活性汚泥をゆっくり沈殿させ上澄みを流し、最終沈殿池の活性汚泥はポンプで生物反応槽に送られ再び活動する。 In biological reaction tanks, organic substances are adsorbed, ingested, and digested and decomposed by high-concentration microorganisms (aerobic bacteria). The raw water from the biological reaction tank is sent to the final sedimentation basin by a drop. In the final sedimentation basin, the activated sludge is slowly settled and the supernatant is poured, and the activated sludge in the final sedimentation basin is sent to the biological reaction tank by the pump and reacts again.
この好気性微生物を活動させるには十分な酸素が必要なため、通常は微細な通気孔が無数に配備されている散気管と呼ばれる装置等を、原水の入った生物反応槽の最下部に適宜設置している。この散気管に配管で結ばれたブロワー(送風機)を運転して通気すると散気管目孔から無数の微細気泡が原水中に噴射され(曝気法)、気泡中の酸素が原水中で溶存酸素となって微生物に酸素を供給している。 Since sufficient oxygen is required to activate these aerobic microorganisms, a device called an air diffuser, which is usually equipped with an infinite number of fine ventilation holes, is appropriately installed at the bottom of the bioreactor containing raw water. It is installed. When a blower (blower) connected to the diffuser pipe is operated and ventilated, countless fine bubbles are injected into the raw water from the diffuser pipe holes (aeration method), and oxygen in the bubbles is dissolved with dissolved oxygen in the raw water. It supplies oxygen to microorganisms.
従来の曝気法はほとんどすべてが散気管方式を採用している。この散気管方式の場合は、空気中の酸素を効率的に水に溶存させるため空気のみを散気管に送風して対象となる水槽に微細気泡を放散する技術的手段であるため常に生物反応槽の底部に設置している。 Almost all conventional aeration methods employ a diffuser system. In the case of this air diffuser system, since it is a technical means that blows only air to the air diffuser and diffuses fine bubbles to the target water tank in order to efficiently dissolve oxygen in the air in the water, it is always a biological reaction tank. It is installed at the bottom.
底部に散気管を設置しても、気泡は短時間のうちに水面に達してしまい、酸素の溶存が不十分になる。このため、生物反応槽の深さを深くして気泡の水中での滞留時間を長くすることと水圧効果による溶存促進が行われているが、装置が大掛かりになってしまう不利がある。 Even if a diffuser tube is installed at the bottom, the bubbles reach the water surface in a short time, so that the dissolved oxygen becomes insufficient. For this reason, the biological reaction tank is deepened to increase the residence time of bubbles in water and the dissolution is promoted by the hydraulic effect, but there is a disadvantage that the apparatus becomes large.
水中の気泡を微細にしてその数を多くすれば水との接触面積が増え滞留時間も長くなって溶存酸素量を増やすことができる。そのため、現状では散気管の穴径は平均で300μメータ程度、曝気槽の深さも4〜5m程度が標準となっており、滞留時間は6〜8時間となっている。しかしながら、これでも溶存酸素量は十分とは言えない。また、空気を散気管に送風するブロワーの動力費も無視できないものとなっている。 If the number of bubbles is increased by increasing the number of bubbles in water, the contact area with water is increased and the residence time is increased, so that the amount of dissolved oxygen can be increased. Therefore, at present, the average hole diameter of the diffusing tube is about 300 μm, the depth of the aeration tank is about 4 to 5 m, and the residence time is 6 to 8 hours. However, even this does not have a sufficient amount of dissolved oxygen. In addition, the power cost of the blower that blows air to the air diffuser cannot be ignored.
上記課題を解決するため第1発明に係る下水処理システムは、上流側の沈殿池若しくは嫌気性処理槽から送られてきた被処理水を好気性処理して下流側の沈殿池に送り込む生物反応槽を備えた下水処理システムであって、前記生物反応槽には上流側の沈殿池若しくは上流側の嫌気性処理槽からの被処理水を生物反応槽に送り込む送液管または前記下流側の沈殿池の上澄み液を生物反応槽に送り込む送液管が設けられ、この送液管にはスタティックミキサー等の気液混合装置が設けられ、前記送液管の気液混合装置よりも上流側部分には空気の供給配管が接続され、前記気液混合装置によって酸素(空気)が被処理水中に大量に溶け込んだ気泡混合水を生成し、この気泡混合水を前記生物反応槽中に送り込むようにした。 In order to solve the above problems, the sewage treatment system according to the first aspect of the present invention is a biological reaction tank in which treated water sent from an upstream sedimentation basin or anaerobic treatment tank is aerobically treated and sent to a downstream sedimentation basin. The biological reaction tank has an upstream sedimentation basin or a liquid feed pipe that feeds treated water from an upstream anaerobic treatment tank into the biological reaction tank, or the downstream sedimentation basin A liquid feed pipe for feeding the supernatant liquid into the biological reaction tank is provided, and this liquid feed pipe is provided with a gas-liquid mixing device such as a static mixer, and in the upstream side of the gas-liquid mixing device of the liquid feed pipe An air supply pipe was connected, and the gas-liquid mixing apparatus generated bubble mixed water in which oxygen (air) was dissolved in a large amount in the water to be treated, and the bubble mixed water was fed into the biological reaction tank.
上記課題を解決するため第2発明に係る下水処理システムは、上流側の沈殿池若しくは上流側の嫌気性処理槽から送られてきた被処理水を好気性処理して下流側の沈殿池に送り込む生物反応槽を備えた下水処理システムであって、前記下流側の沈殿池から前記生物反応槽へ汚泥を送り込む汚泥返送管の途中に気液混合装置が設けられ、前記汚泥返送管の気液混合装置よりも上流側部分には空気の供給配管が接続され、前記気液混合装置によって酸素(空気)が汚泥とともに返送される被処理水中に溶け込むことで高濃度の気泡混合水を生成し、この気泡混合水を前記生物反応槽中に送り込むようにした。 In order to solve the above-mentioned problem, the sewage treatment system according to the second aspect of the present invention aerobically treats the treated water sent from the upstream sedimentation basin or the upstream anaerobic treatment tank and sends it to the downstream sedimentation basin. A sewage treatment system including a biological reaction tank, wherein a gas-liquid mixing device is provided in the middle of a sludge return pipe for sending sludge from the downstream sedimentation basin to the biological reaction tank, and the gas-liquid mixing of the sludge return pipe An air supply pipe is connected to the upstream side of the apparatus, and oxygen (air) is dissolved into the treated water that is returned together with sludge by the gas-liquid mixing apparatus to generate high-concentration bubble mixed water. Bubble mixed water was fed into the biological reaction tank.
前記第1発明において、前記送液管は前記生物反応槽の上部に配置したヘッダー管の入口に接続され、このヘッダー管は複数に分岐し各分岐管に気液混合装置が設けられ、また各分岐管の気液混合装置よりも上流側に空気の供給配管が接続された構成とすることができる。 In the first invention, the liquid feeding pipe is connected to an inlet of a header pipe disposed in the upper part of the biological reaction tank, the header pipe is branched into a plurality of parts, and a gas-liquid mixing device is provided in each branch pipe. It can be set as the structure by which the air supply piping was connected to the upstream rather than the gas-liquid mixing apparatus of a branch pipe.
また前記気液混合装置の出口はヘッダー管の入口に接続され、このヘッダー管は複数に分岐され各分岐管出口にノズルが設けた構成とすることができる。 The outlet of the gas-liquid mixing device is connected to the inlet of a header pipe, and this header pipe can be branched into a plurality of nozzles at each branch pipe outlet.
また前記ヘッダー管は前記生物反応槽の側壁を貫通して前記生物反応槽内に噴出口が位置する構成としてもよい。更に前記ヘッダー管の分岐した少なくとも一方の分岐管は前記生物反応槽の側壁の底部近傍部分を貫通して前記生物反応槽内に噴出口が位置する構成としてもよい。 In addition, the header pipe may be configured to penetrate the side wall of the biological reaction tank and have a jet outlet located in the biological reaction tank. Furthermore, at least one branch pipe branched from the header pipe may pass through a portion in the vicinity of the bottom of the side wall of the bioreactor tank, and a jet outlet may be located in the bioreactor tank.
また、前記ヘッダー管の分岐管の一部は前記生物反応槽の底部近傍まで伸びて、上方に向かって気泡混合水を噴出し、他の分岐管は前記生物反応槽の途中まで伸びて、下方に向かって気泡混合水を噴出するようにしてもよい。 Further, a part of the branch pipe of the header pipe extends to the vicinity of the bottom of the biological reaction tank, and the bubble mixed water is jetted upward, and the other branch pipe extends to the middle of the biological reaction tank, The bubble mixed water may be ejected toward the head.
更に、前記分岐管の一部は前記生物反応槽の底部近傍まで伸び、他の分岐管は前記生物反応槽の途中まで伸び、それぞれの分岐管に気液混合装置と空気供給管が設けられた構成としてもよい。 Furthermore, a part of the branch pipe extends to the vicinity of the bottom of the biological reaction tank, and the other branch pipe extends to the middle of the biological reaction tank, and a gas-liquid mixing device and an air supply pipe are provided in each branch pipe. It is good also as a structure.
気液混合装置として例えば、スタティックミキサーを用いて水と空気の双方を強制混合すれば、添加した空気の全量がミキサー内を通過する極めて短い時間内にミキサー出口においてナノバブル、マイクロバルブなどの未溶解の微細気泡が存在するものの飽和濃度或いはそれに近い高濃度の気泡混合水となっており、実質的には十分な気泡混合水を生成した状態と考えることができる。 For example, if a static mixer is used to forcibly mix both water and air as a gas-liquid mixing device, the nanobubbles, microvalves, etc. are not dissolved at the mixer outlet within a very short time when the total amount of added air passes through the mixer. However, it can be considered that a sufficient amount of bubble mixed water is generated.
そのため、生物反応槽の上部より水槽中に向けて噴射しても気泡上昇の問題が全くない。
気泡混合水は前記したように未溶解の多くのナノバブルが混在しているが、このナノバブルは気泡混合水の水流に同伴して流下するので下方に行けば行くほど水圧で加圧されてナノバブルがさらに小さくなり酸素の溶解が促進されることになるので、むしろ水槽上部から水槽底部に向けて気泡混合水を噴射するほうがより理に適っている。
Therefore, there is no problem of bubbles rising even when sprayed from the upper part of the biological reaction tank into the water tank.
As described above, a large amount of undissolved nanobubbles are mixed in the bubble mixed water, but these nanobubbles flow along with the water flow of the bubble mixed water. Since it is further reduced and oxygen dissolution is promoted, it is more reasonable to inject the bubble mixed water from the upper part of the water tank toward the bottom of the water tank.
また、酸素溶存水を水槽下部に向けて噴射すると、この水流は重力加速度の効果を得ることができ、生物反応槽(曝気槽)の深さにもよるが槽底部に衝突して槽内底部で反転流と乱流を引き起こし、汚泥等の槽内沈殿及びフロック化を防止できる。特に従来にあっては、通常の曝気層の液の滞留時間は6〜8時間が標準になっているが、そのため液の流れがとても遅く、微細気泡上昇流の力ではフロックを破壊することはできず、無数の汚泥のフロック化が問題となっているが、 気液混合装置としてスタティックミキサーを用いた場合には、スタティックミキサー内でデフロックを瞬時に行いつつ酸素を溶解させるため、散気管方式と比較して最終的には全体平均の空気添加量が1/6程度と少なくて済むため非常に効率的である。
そのため、生物反応槽の上部より水槽中に向けて噴射し混在する気泡上昇の問題があっても、すでにミキサー出口では実用上の濃度(4ppm程度)以上を確保した酸素水となっており全く問題ない。
散気方式の場合は装置を反応槽の底部に設置しているので、散気方式からの空気は目孔を通して生成されたマイクロバブル(平均で300ミクロンメータ)は地から天方向に向けて噴射されるばかりか、気泡の浮力作用も手伝って急速に液面に上昇するため気泡の液に対する接触時間が極めて短くなるとともに加圧による溶存効果も反比例するため理に適っているとは思われない。
ところで、ナノバブル対マイクロバブルの表面積単純比較例は以下の通りである。
・バブルサイズでは1ミクロンメータ以下はナノバブル
ナノバブルの最大公約値は概略0.99マイクロメータ
・球の表面積=(π/6)*D3 (D:球の直径)
の公式から気泡同士の表面積を単純比較した場合、D3 に比例する。
∴ 最大公約値ナノバブル表面積=(0.99)3
=0.97ミクロンm≒1ミクロンメータ
300ミクロンメータバブル表面積
=(300)3=27,000,000ミクロンメータ
この結果から、マイクロバブルの表面積は、ナノバブルと比較して27,000,000.倍も大きくなる。
因みに、窒素ガスによるナノバブルを測定してところ、代表的数値として200ナノミクロンメータバブルが1億個/ml計測されており、200ナノ=0.2ミクロンだから、上記計算からナノはマイクロに対し3,375,000、000.(33.7億倍)も小さくなる。
更に、生物反応槽の水圧を効果的に利用するため、前記気液混合装置から排出された気泡混合水を水面上層部若しくは中間部から下層部に放出し、気泡を微細に縮合させることができる。
Also, when oxygen-dissolved water is sprayed toward the bottom of the water tank, this water flow can obtain the effect of gravitational acceleration, and depending on the depth of the biological reaction tank (aeration tank), it collides with the tank bottom and the bottom of the tank Inverted flow and turbulent flow can be prevented, and sludge sedimentation and flocation can be prevented. In particular, in the past, the normal aeration layer liquid residence time is 6 to 8 hours as standard, but the liquid flow is very slow. However, when a static mixer is used as a gas-liquid mixing device, oxygen is dissolved while instantaneously deflocking in the static mixer. Compared to the above, the overall average air addition amount is about 1/6, which is very efficient.
Therefore, even if there is a problem of air bubbles rising from the upper part of the bioreactor into the water tank, oxygen water with a practical concentration (about 4 ppm) or more has already been secured at the mixer outlet. Absent.
In the case of the diffuser system, the device is installed at the bottom of the reaction tank, so the air from the diffuser system is microbubbles (300 micrometer on average) generated through the eye holes and jets from the ground toward the sky. Not only that, but the buoyancy effect of the bubbles rises rapidly to the liquid level, so the contact time of the bubbles with the liquid is extremely short and the dissolved effect due to pressurization is inversely proportional, so it does not seem reasonable .
By the way, the surface area simple comparison example of nanobubble vs. microbubble is as follows.
・ Bubble size is 1 micrometer or less, nanobubbles The maximum common value of nanobubbles is approximately 0.99 micrometers ・ Surface area = (π / 6) * D 3 (D: sphere diameter)
When the surface area of the bubbles is simply compared from the above formula, it is proportional to D 3 .
∴ Maximum common value Nano bubble surface area = (0.99) 3
= 0.97 micron m ≒ 1 micrometer 300 micrometer bubble surface area
= (300) 3 = 27,000,000 micrometer From this result, the surface area of the microbubbles is 27,000,000. Double the size.
By the way, when measuring nanobubbles by nitrogen gas, 200 nanometer meter bubbles are measured as a representative value of 100 million / ml, and 200 nano = 0.2 micron. 375,000,000. (33.77 billion times) will be smaller.
Furthermore, in order to effectively use the water pressure of the biological reaction tank, the bubble mixed water discharged from the gas-liquid mixing device can be discharged from the upper layer portion or the middle portion of the water surface to the lower layer portion, and the bubbles can be condensed finely. .
出願人が所有するスタティックミキサーは、水道水を使った実験では水温19℃、水量10L/分当たり空気添加量は5〜6L/分、ミキサーの圧損が300kPa.G〜400kPa.G程度で、ミキサー入口の気泡混合水1.1ppmのものがミキサー出口においてほぼ飽和濃度に近い高濃度溶存酸素(8.6〜8.8ppm)を生成することが実験で確認している。
さらには、水深における効果を排除するため水道水(常温)を使った比較になるが、水道水を亜硫酸ナトリウムにて0.1ppmの低濃度酸素水のサンプル水を準備し、メンブレン方式(公称300ミクロン気泡生成能力)と、出願人が保有するスタティックミキサーとの水深6cmにおけるサンプル水ワンパス実験では、メンブレン式では水量に対し3倍の空気添加量で2.9ppm、スタティックミキサー式では水量50%(0.5倍)の空気量で4.7ppmとなり、水量に対する空気添加量比較ではスタティックミキサーの方が1/6減の空気添加量であっても溶存酸素値は1.9ppm程高い数値がえられたことを確認している。
In the experiment using tap water, the static mixer owned by the applicant has a water temperature of 19 ° C., an air addition amount of 5 to 6 L / min per 10 L / min of water, and a mixer pressure loss of 300 kPa. G to 400 kPa. It has been confirmed by experiments that a gas mixture of 1.1 ppm at the inlet of the mixer produces high-concentration dissolved oxygen (8.6 to 8.8 ppm) close to a saturation concentration at the mixer outlet.
Furthermore, in order to eliminate the effect at the water depth, it is a comparison using tap water (room temperature). Sample water of 0.1 ppm low-concentration oxygen water is prepared with sodium sulfite as the tap water, and the membrane method (300 nominal) In a sample water one-pass experiment at a water depth of 6 cm with a static mixer owned by the applicant and a static mixer owned by the applicant, the membrane type is 2.9 ppm with an air addition amount three times the amount of water, and the static mixer type is 50% water ( 0.5 times), the amount of air added is 4.7 ppm. In comparison of the amount of air added to the amount of water, the static mixer has a higher oxygen value of about 1.9 ppm even if the amount of air added is reduced by 1/6. It has been confirmed that.
一例として、関東地区の行政が管理している排水処理場の例では、メンブレン散気管曝気式生物反応槽原水処理量として、
原水処理量:100,000m3
空気使用量:327,000m3
原水対空気消費比率=327,000/100,000=3.27倍
水道水を使ったスタティックミキサーでの実験では、
水量:10L/分
空気添加量:6L/分
水対空気消費比率=6/10=0.6倍
両者を単純に比較した場合、(0.6/3.27)×100≒18%
となり、スタティックミキサー方式ではメンブレン方式と比較して、82%の空気使用量が削減可能となる。
As an example, in the example of a wastewater treatment plant managed by the administration in the Kanto region, the membrane aeration tube aeration type biological reaction tank raw water treatment amount,
Raw water treatment amount: 100,000 m 3
Air consumption: 327,000m 3
Raw water to air consumption ratio = 327,000 / 100,000 = 3.27 times In an experiment with a static mixer using tap water,
Water amount: 10 L / min Air addition amount: 6 L / min Water to air consumption ratio = 6/10 = 0.6 times When simply comparing both, (0.6 / 3.27) × 100≈18%
Thus, the static mixer method can reduce air consumption by 82% compared to the membrane method.
前項のケースにおいて、このミキサー設置に伴う動力費アップ分を1例として算出すると、ミキサー入口流速2.0m/秒、空気添加量5L/分、ミキサー圧損(差圧)30kPa.G、でミキサーを運転した場合、通常の散気管式あるいはメンブレン式曝気装置の空気使用量の1/4又は以下の電気代削減に相当しているのでスタティックミキサー設置による動力アップ分を差し引いても、結果的には従来式散気管方式における空気使用量は少なくとも2/4(半分)に相当する空気を節約できることとなる。
空気の使用量とブロワー空気生成に伴う動力費はほぼ比例している関係から、大幅な動力費削減が期待できる。現状では、下水処理に伴う従来式式曝気装置が大量の空気を消費するため、このためのブロワーの電気代削減が大きな社会的なテーマになっているがその解決のための有効な手段となる。
ところで、以上の態様を満たすスタティックミキサーの運転条件の概略は、ミキサー入口流速:1.5〜2.5m/秒、被処理流体ミキサー通過時間:0.1〜1.0秒、ミキサー運転差圧(圧損):20〜50kPa.G、通水量に対する空気添加量:0.2〜1.0倍となる。
In the case of the preceding paragraph, if the increase in power cost due to the mixer installation is calculated as an example, the mixer inlet flow rate is 2.0 m / sec, the air addition amount is 5 L / min, the mixer pressure loss (differential pressure) is 30 kPa. When the mixer is operated at G, it corresponds to 1/4 of the air usage of a normal diffuser tube type or membrane type aeration device, or less electricity cost reduction. As a result, air corresponding to at least 2/4 (half) of the amount of air used in the conventional diffuser system can be saved.
Since the amount of air used is almost proportional to the power cost associated with blower air generation, a significant reduction in power cost can be expected. At present, the conventional aeration equipment used for sewage treatment consumes a large amount of air. Therefore, reducing the electricity cost of the blower is a major social theme, but it is an effective means for solving this problem. .
By the way, the outline of the operating conditions of the static mixer that satisfies the above-described aspects are as follows: mixer inlet flow velocity: 1.5 to 2.5 m / sec, fluid mixer passing time: 0.1 to 1.0 sec, mixer operating differential pressure (Pressure loss): 20 to 50 kPa. G, the amount of air added to the amount of water flow: 0.2 to 1.0 times.
本発明に係る下水処理システムは、上流側から下流側に向かって、最初沈殿槽1、好気性処理を行う生物反応槽(曝気槽)2、最終沈殿槽3を配置している。本発明に係る下水処理システムとしては、最初沈殿槽1と生物反応槽2との間に嫌気性処理槽を配置するものも含む。 The sewage treatment system according to the present invention includes an initial sedimentation tank 1, a biological reaction tank (aeration tank) 2 for performing an aerobic treatment, and a final sedimentation tank 3 from the upstream side toward the downstream side. The sewage treatment system according to the present invention includes one in which an anaerobic treatment tank is initially disposed between the settling tank 1 and the biological reaction tank 2.
最初沈殿槽1の下部には回転式のスクレパーが配置され、このスクレパーにより沈殿物がかき集められ最初沈殿槽1の底部から取り出される。 A rotary scraper is disposed in the lower part of the initial sedimentation tank 1, and the sediment is collected by the scraper and taken out from the bottom of the initial sedimentation tank 1.
最初沈殿槽1内の被処理水はポンプを備えた送液管4によって生物反応槽2に送りこまれる。この送液管4の途中には気液混合装置の一例としてのスタティックミキサー5が設けられ、このスタティックミキサー5よりも上流側の送液管4には空気の供給配管6が接続されている。 First, the water to be treated in the sedimentation tank 1 is sent to the biological reaction tank 2 through a liquid feed pipe 4 equipped with a pump. A static mixer 5 as an example of a gas-liquid mixing device is provided in the middle of the liquid feeding pipe 4, and an air supply pipe 6 is connected to the liquid feeding pipe 4 upstream of the static mixer 5.
また、スタティックミキサー5の出口には予め生物反応槽2の上部に配置されたヘッダー管7が接続され、このヘッダー管7は複数(図では3本)の分岐管7aに分かれ、各分岐管の下端には下向きのノズル8が取付けられている。 In addition, a header pipe 7 arranged in advance on the biological reaction tank 2 is connected to the outlet of the static mixer 5, and the header pipe 7 is divided into a plurality of (three in the figure) branch pipes 7a. A downward nozzle 8 is attached to the lower end.
また、最終沈殿槽3の底部からは汚泥返送管9が設けられ、この汚泥返送管9を使って最終沈殿槽3内に溜まった汚泥の一部が生物反応槽2に戻される。 A sludge return pipe 9 is provided from the bottom of the final sedimentation tank 3, and a part of the sludge accumulated in the final sedimentation tank 3 is returned to the biological reaction tank 2 using the sludge return pipe 9.
而して、スタティックミキサー5において、水と空気が強制混合され、添加した空気のほぼ全量がスタティックミキサー内を通過する極めて短い時間内に被処理水中に混合され、結果として高濃度の気泡混合水が生成される。この気泡混合水は、前記ノズル8から生物反応槽2内に下方に噴出され、生物反応槽2内に撹拌流を形成する。この撹拌流によって生物反応槽2内の好気性微生物に十分な酸素が供給される。 Thus, in the static mixer 5, water and air are forcibly mixed, and almost all of the added air is mixed in the water to be treated within a very short time passing through the static mixer. Is generated. The bubble mixed water is ejected downward from the nozzle 8 into the biological reaction tank 2 to form a stirring flow in the biological reaction tank 2. Sufficient oxygen is supplied to the aerobic microorganisms in the biological reaction tank 2 by this stirring flow.
図2は、第1実施例の変形例に係る下水処理システムの全体図を示し、この変形例では、下流側の最終沈殿槽3の上澄み液を生物反応槽2に戻す送液管10を設け、この送液管10にスタティックミキサー5を設けるとともにその上流側に吸気供給管6を接続している。 FIG. 2 shows an overall view of a sewage treatment system according to a modification of the first embodiment. In this modification, a liquid feed pipe 10 is provided for returning the supernatant of the downstream final sedimentation tank 3 to the biological reaction tank 2. The liquid feed pipe 10 is provided with a static mixer 5 and an intake air supply pipe 6 is connected upstream thereof.
図2に示す変形例の場合も図1と場合と同様に、気泡混合水が、ヘッダー管7を構成する分岐管7aの下端から噴出し、生物反応槽2内に循環流を形成し、好気性菌に十分な酸素が供給される。 In the case of the modification shown in FIG. 2, as in the case of FIG. 1, the bubble mixed water is ejected from the lower end of the branch pipe 7a constituting the header pipe 7 to form a circulating flow in the biological reaction tank 2, Sufficient oxygen is supplied to the aerial bacteria.
図3は、第2実施例に係る下水処理システムの全体図を示し、この実施例では、
送液管4にヘッダー管7が接続され、このヘッダー管7を構成する各分岐管7aにスタティックミキサー5を設け、更に各分岐管7aに空気の供給配管6を接続している。この実施例の場合には、多数のスタティックミキサー5を配置することで、撹拌流の向きなどをコントロールすることができる。
FIG. 3 shows an overall view of the sewage treatment system according to the second embodiment. In this embodiment,
A header pipe 7 is connected to the liquid feeding pipe 4, a static mixer 5 is provided in each branch pipe 7a constituting the header pipe 7, and an air supply pipe 6 is connected to each branch pipe 7a. In the case of this embodiment, the direction of the stirring flow can be controlled by arranging a large number of static mixers 5.
図4は、第2実施例の変形例に係る下水処理システムの全体図を示し、この変形例では、図2の変形例と同様に、下流側の最終沈殿槽3の上澄み液を生物反応槽2に戻す送液管10を設け、この送液管10にスタティックミキサー5を設けている。 FIG. 4 shows an overall view of a sewage treatment system according to a modification of the second embodiment. In this modification, as in the modification of FIG. 2, the supernatant of the downstream final sedimentation tank 3 is used as a biological reaction tank. 2 is provided, and the static mixer 5 is provided in the liquid supply tube 10.
図5は、第3実施例に係る下水処理システムの全体図を示し、この実施例では、ヘッダー管7を構成する分岐管7aを生物反応槽2の側壁上部を貫通して生物反応槽2内に臨ませている。
このように生物反応槽2の側壁を貫通させる構成とすることで、既存のシステムに本システムを適用することが容易になる。
FIG. 5 shows an overall view of the sewage treatment system according to the third embodiment. In this embodiment, the branch pipe 7a constituting the header pipe 7 passes through the upper side wall of the bioreaction tank 2 and enters the bioreaction tank 2. To face.
Thus, by setting it as the structure which penetrates the side wall of the biological reaction tank 2, it becomes easy to apply this system to the existing system.
図6は、第3実施例の変形例に係る下水処理システムの全体図を示し、この変形例では、図2の変形例と同様に、下流側の最終沈殿槽3の上澄み液を生物反応槽2に戻す送液管10を設け、この送液管10にスタティックミキサー5を設けている。 FIG. 6 shows an overall view of a sewage treatment system according to a modified example of the third embodiment. In this modified example, as in the modified example of FIG. 2 is provided, and the static mixer 5 is provided in the liquid supply tube 10.
図7は、第4実施例に係る下水処理システムの全体図を示し、この実施例では、ヘッダー管7を構成する分岐管7aを生物反応槽2の側壁上部を貫通して生物反応槽2内に臨ませ、更に各分岐管7aにスタティックミキサー5を設けている。 FIG. 7 shows an overall view of the sewage treatment system according to the fourth embodiment. In this embodiment, the branch pipe 7a constituting the header pipe 7 passes through the upper side wall of the biological reaction tank 2 and enters the biological reaction tank 2. Further, a static mixer 5 is provided in each branch pipe 7a.
図8は、第4実施例の変形例に係る下水処理システムの全体図を示し、この変形例では、図2の変形例と同様に、下流側の最終沈殿槽3の上澄み液を生物反応槽2に戻す送液管10を設け、この送液管10にスタティックミキサー5を設けている。 FIG. 8 shows an overall view of a sewage treatment system according to a modification of the fourth embodiment. In this modification, the supernatant of the downstream final sedimentation tank 3 is used as a biological reaction tank, as in the modification of FIG. 2 is provided, and the static mixer 5 is provided in the liquid supply tube 10.
図9は、第5実施例に係る下水処理システムの全体図を示し、この実施例では、ヘッダー管7を構成する分岐管7aを生物反応槽2の側壁下部を貫通して生物反応槽2内に臨ませ、生物反応槽2内の底部に沿って気泡混合水を噴出する構成となっている。
このように生物反応槽2の底部に沿って気泡混合水を送り込むことで、好気性菌に十分な量の酸素を供給することができる。
FIG. 9 shows an overall view of the sewage treatment system according to the fifth embodiment. In this embodiment, the branch pipe 7a constituting the header pipe 7 passes through the lower part of the side wall of the biological reaction tank 2 and enters the biological reaction tank 2. The bubble mixed water is ejected along the bottom of the biological reaction tank 2.
In this way, by feeding the bubble mixed water along the bottom of the biological reaction tank 2, a sufficient amount of oxygen can be supplied to the aerobic bacteria.
図10は、第5実施例の変形例に係る下水処理システムの全体図を示し、この変形例では、図2の変形例と同様に、下流側の最終沈殿槽3の上澄み液を生物反応槽2に戻す送液管10を設け、この送液管10にスタティックミキサー5を設けている。 FIG. 10 shows an overall view of a sewage treatment system according to a modified example of the fifth embodiment. In this modified example, as in the modified example of FIG. 2 is provided, and the static mixer 5 is provided in the liquid supply tube 10.
図11は、第6実施例に係る下水処理システムの全体図を示し、この実施例では、第5実施例では送液管4にスタティックミキサー5を設けていたが、各分岐管7aにスタティックミキサー5を設けた構成としている。 FIG. 11 shows an overall view of the sewage treatment system according to the sixth embodiment. In this embodiment, the static mixer 5 is provided in the liquid feeding pipe 4 in the fifth embodiment, but each branch pipe 7a has a static mixer. 5 is provided.
図12は、第6実施例の変形例に係る下水処理システムの全体図を示し、この変形例では、図2の変形例と同様に、下流側の最終沈殿槽3の上澄み液を生物反応槽2に戻す送液管10を設け、この送液管10にスタティックミキサー5を設けている。 FIG. 12 shows an overall view of a sewage treatment system according to a modified example of the sixth embodiment. In this modified example, the supernatant of the downstream final sedimentation tank 3 is used as a biological reaction tank, as in the modified example of FIG. 2 is provided, and the static mixer 5 is provided in the liquid supply tube 10.
図13は、第7実施例に係る下水処理システムの全体図を示し、この実施例では、ヘッダー管7を構成する分岐管7aを第1群の分岐管と第2群の分岐管に分け、これら第1群の分岐管と第2群の分岐管の生物反応槽2内での高さ位置をことならせ、上方位置の分岐管から下向きに気泡混合水が噴出し、下方位置の分岐管から下向きに気泡混合水が噴出するようにし、噴出した気泡混合水が生物反応槽2内でぶつかるようにしている。このような構成とすることでデフロック効果が高くなる。 FIG. 13 shows an overall view of the sewage treatment system according to the seventh embodiment. In this embodiment, the branch pipe 7a constituting the header pipe 7 is divided into a first group of branch pipes and a second group of branch pipes, The height of the first group branch pipe and the second group branch pipe in the biological reaction tank 2 is differentiated, and the bubble mixed water is jetted downward from the upper branch pipe, and the lower branch pipe. The bubble mixed water is ejected downward from the water, and the ejected bubble mixed water collides with the biological reaction tank 2. By adopting such a configuration, the differential lock effect is enhanced.
図14は、第7実施例の変形例に係る下水処理システムの全体図を示し、この変形例では、図2の変形例と同様に、下流側の最終沈殿槽3の上澄み液を生物反応槽2に戻す送液管10を設け、この送液管10にスタティックミキサー5を設けている。 FIG. 14 shows an overall view of a sewage treatment system according to a modified example of the seventh embodiment. In this modified example, as in the modified example of FIG. 2 is provided, and the static mixer 5 is provided in the liquid supply tube 10.
図15は、第8実施例に係る下水処理システムの全体図を示し、第7実施例では送液管4にスタティックミキサー5を設けていたが、この実施例では各分岐管7aにスタティックミキサー5を設けた構成としている。 FIG. 15 shows an overall view of the sewage treatment system according to the eighth embodiment. In the seventh embodiment, the static mixer 5 is provided in the liquid feeding pipe 4, but in this embodiment, the static mixer 5 is provided in each branch pipe 7a. It is set as the structure which provided.
図16は、第8実施例の変形例に係る下水処理システムの全体図を示し、この変形例では、図2の変形例と同様に、下流側の最終沈殿槽3の上澄み液を生物反応槽2に戻す送液管10を設け、この送液管10にスタティックミキサー5を設けている。 FIG. 16 shows an overall view of a sewage treatment system according to a modification of the eighth embodiment. In this modification, the supernatant of the downstream final sedimentation tank 3 is used as a biological reaction tank, as in the modification of FIG. 2 is provided, and the static mixer 5 is provided in the liquid supply tube 10.
図17は、第9実施例に係る下水処理システムの全体図を示し、この実施例では、下流側の最終沈殿槽3の底部から伸びる汚泥返送管9の途中から分岐し、この分岐管にスタティックミキサー5を設け、前記汚泥返送管9のスタティックミキサー5よりも上流側部分に空気の供給配管6を接続し、前記スタティックミキサー5によって酸素(空気)が汚泥とともに返送される被処理水中に混合された気泡混合水を生成し、この気泡混合水を前記生物反応槽2中に送り込むようにしている。
このような構成とすることで、デフロックが従来よりも効果的に行われる。
FIG. 17 shows an overall view of the sewage treatment system according to the ninth embodiment. In this embodiment, the sludge return pipe 9 branches from the bottom of the final sedimentation tank 3 on the downstream side, and the branch pipe is statically A mixer 5 is provided, and an air supply pipe 6 is connected to a portion upstream of the static mixer 5 of the sludge return pipe 9, and oxygen (air) is mixed by the static mixer 5 into the treated water to be returned together with the sludge. The bubble mixed water is generated and the bubble mixed water is fed into the biological reaction tank 2.
By adopting such a configuration, the diff lock is more effectively performed than in the past.
図18は、第9実施例の変形例に係る下水処理システムの全体図を示し、この変形例では、汚泥返送管9にスタティックミキサー5を設けるとともに、図2の変形例と同様に、下流側の最終沈殿槽3の上澄み液を生物反応槽2に戻す送液管10を設け、この送液管10にスタティックミキサー5を設けている。 FIG. 18 shows an overall view of a sewage treatment system according to a modification of the ninth embodiment. In this modification, the sludge return pipe 9 is provided with a static mixer 5 and, similarly to the modification of FIG. A liquid feeding pipe 10 for returning the supernatant of the final sedimentation tank 3 to the biological reaction tank 2 is provided, and a static mixer 5 is provided in the liquid feeding pipe 10.
図19は第9実施例の変形例に係る下水処理システムの全体図を示し、この変形例では、汚泥返送管9が生物反応槽2の側面を貫通して生物反応槽2内に臨む構成となっており、図20に示す変形例にあっては、汚泥返送管9のスタティックミキサー5よりも下流側を上下2段に分け、それぞれの配管が生物反応槽2の側面を貫通して生物反応槽2内に臨む構成となっている。このような構成とすることで、撹拌効果が向上する。 FIG. 19 shows an overall view of a sewage treatment system according to a modified example of the ninth embodiment. In this modified example, the sludge return pipe 9 penetrates the side surface of the biological reaction tank 2 and faces the biological reaction tank 2. 20, the downstream side of the sludge return pipe 9 from the static mixer 5 is divided into two upper and lower stages, and each pipe penetrates the side surface of the biological reaction tank 2 for biological reaction. It is configured to face the tank 2. By setting it as such a structure, the stirring effect improves.
本発明に係る下水処理システムは新たに下水処理システムを構築する場合に限らず、既存の下水処理システムにもそのまま適用することができる。 The sewage treatment system according to the present invention is not limited to the case of newly constructing a sewage treatment system, but can be applied to an existing sewage treatment system as it is.
1…最初沈殿槽、2…好気性処理を行う生物反応槽、3…最終沈殿槽、4…送液管、5…スタティックミキサー、6…空気の供給配管、7…ヘッダー管、7a…分岐管、8…ノズル、9…汚泥返送管、10…送液管。 DESCRIPTION OF SYMBOLS 1 ... First sedimentation tank, 2 ... Biological reaction tank which performs aerobic treatment, 3 ... Final sedimentation tank, 4 ... Liquid feeding pipe, 5 ... Static mixer, 6 ... Air supply piping, 7 ... Header pipe, 7a ... Branch pipe 8 ... Nozzle, 9 ... Sludge return pipe, 10 ... Liquid feed pipe.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016217989A JP2018075512A (en) | 2016-11-08 | 2016-11-08 | Sewage treatment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016217989A JP2018075512A (en) | 2016-11-08 | 2016-11-08 | Sewage treatment system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018075512A true JP2018075512A (en) | 2018-05-17 |
Family
ID=62149940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016217989A Pending JP2018075512A (en) | 2016-11-08 | 2016-11-08 | Sewage treatment system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018075512A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200080888A (en) * | 2018-12-27 | 2020-07-07 | (주) 영동엔지니어링 | Biologic advanced watertreatment system of sewage omitted Blower |
-
2016
- 2016-11-08 JP JP2016217989A patent/JP2018075512A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200080888A (en) * | 2018-12-27 | 2020-07-07 | (주) 영동엔지니어링 | Biologic advanced watertreatment system of sewage omitted Blower |
KR102202456B1 (en) * | 2018-12-27 | 2021-01-13 | (주) 영동엔지니어링 | Biologic advanced water treatment system by utilizing pressure tank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010107077A1 (en) | Microbubble generator, activated sludge aeration system, and ballast water sterilizing system | |
CN109304108B (en) | Micro-nano bubble generation device and method and application of micro-nano bubble generation device and method in dye wastewater treatment | |
JP5144549B2 (en) | Water treatment apparatus and water treatment method | |
KR101128679B1 (en) | Ultra-fine bubble generator and the method thereof for advanced water treatment | |
CN102992471A (en) | Liquid treatment device | |
KR101371366B1 (en) | Apparatus for generating micro bubble and lake purification apparatus having the same | |
TWI503289B (en) | Gas dispersion apparatus for improved gas-liquid mass transfer | |
US20160200607A1 (en) | Eductor-based membrane bioreactor | |
US20170152168A1 (en) | Low-pressure aeration treatment of biological wastewater | |
CN104876375A (en) | Deep oxidization water treatment method and deep oxidization water treatment device | |
KR100841795B1 (en) | Apparatus for biological advanced treatment of sewageand wastewater using nano-burble high density oxygen dissolved water | |
CN102774921B (en) | Nanometer (NM) gas floating system device | |
KR101371367B1 (en) | Apparatus for generating micro bubble and water treatment facility having the same | |
WO2015008346A1 (en) | Water treatment device | |
CA3213619C (en) | Method and systems for oxygenation of water bodies | |
JP2018075512A (en) | Sewage treatment system | |
JP5108226B2 (en) | Microbubble supply method and apparatus and system thereof | |
KR101203944B1 (en) | Denitrification system using micro bubble floating device | |
HRP20220213B1 (en) | A system for saturating liquids with gas and a method for saturating liquids with gas using this system | |
WO2009091442A1 (en) | System and process for forming micro bubbles in liquid | |
US20220080371A1 (en) | Device for injecting fluid into a liquid, method for cleaning said device, and effluent treatment installation | |
US20160326018A1 (en) | Process | |
CN219907202U (en) | Intensive equipment for strengthening ozone coupling micro-nano control | |
Murtazayev et al. | ANALYSIS OF WASTEWATER AERATION METHODS IN AERATION TANKS | |
US20080237108A1 (en) | Acid mine water demineralizer |