JP2018074646A - Motor controller - Google Patents

Motor controller Download PDF

Info

Publication number
JP2018074646A
JP2018074646A JP2016208539A JP2016208539A JP2018074646A JP 2018074646 A JP2018074646 A JP 2018074646A JP 2016208539 A JP2016208539 A JP 2016208539A JP 2016208539 A JP2016208539 A JP 2016208539A JP 2018074646 A JP2018074646 A JP 2018074646A
Authority
JP
Japan
Prior art keywords
temperature
value
rise
outside air
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016208539A
Other languages
Japanese (ja)
Other versions
JP6733494B2 (en
Inventor
中島 信頼
Nobuyori Nakajima
信頼 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016208539A priority Critical patent/JP6733494B2/en
Publication of JP2018074646A publication Critical patent/JP2018074646A/en
Application granted granted Critical
Publication of JP6733494B2 publication Critical patent/JP6733494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a motor controller which appropriately executes a current limitation in the case of reboot while suppressing a dark current during a drive stop period.SOLUTION: A substrate temperature storage unit 32, an outside air temperature storage unit 34 and a rise temperature storage unit 38 store a substrate temperature, an outside temperature and a rise temperature that is estimated by a rise temperature estimation unit 37, in the case of drive stop. In initial control in the case of reboot after drive stop of a motor 80 by a drive circuit 60, an initial rise temperature correction unit 401 uses a corrected substrate temperature difference ΔTs_comp (argument for correction) that is calculated based on a substrate temperature storage value Ts_m, a substrate temperature current value Ts, an outside temperature storage value Tg_m and an outside temperature present value Tg to correct a rise temperature storage value Ti_m and calculates an initial rise temperature correction value Ti_comp. The initial rise temperature correction unit 401 corrects a change from the outside air temperature storage value to the outside air temperature present value in such a manner that the initial rise temperature correction value Ti_comp is made smaller as a reduction degree from the substrate temperature storage value to the substrate temperature present value is relatively greater.SELECTED DRAWING: Figure 1

Description

本発明は、モータの通電を制御するモータ制御装置に関する。   The present invention relates to a motor control device that controls energization of a motor.

従来、モータ又は駆動回路に流れる電流の値より推定した上昇温度に基づいて電流を制限し、モータや駆動回路の素子を保護するモータ制御装置において、駆動停止中の温度推定に着目した技術が知られている。
例えば、特許文献1に開示された電動パワーステアリング装置の制御装置は、イグニッションスイッチがオフ状態となって電源停止信号が入力されても、モータの温度推定値が所定値以下にならない間は、電源を自己保持し、モータの温度推定を継続する。
2. Description of the Related Art Conventionally, in a motor controller that protects a motor or an element of a drive circuit by limiting the current based on a temperature rise estimated from the value of a current flowing through the motor or the drive circuit, a technique that focuses on temperature estimation during drive stop is known. It has been.
For example, the control device for the electric power steering apparatus disclosed in Patent Document 1 is configured so that the estimated temperature value of the motor does not become a predetermined value or less even when the ignition switch is turned off and a power stop signal is input. Is maintained and motor temperature estimation is continued.

特開2002−363393号公報JP 2002-363393 A

特許文献1の従来技術では、駆動電源を停止した後の所定期間、温度推定のための制御電源が保持(すなわち、パワーラッチ)されるため、駆動停止中の暗電流が増加するという問題がある。
また、駆動回路の基板温度等を検出する温度センサを設けた場合、駆動停止期間中に外気温が変化すると温度センサの検出温度が影響を受け、通電により上昇した温度の低下を正しく把握することができなくなる。その結果、駆動停止後の再起動時に、推定温度に基づく電流制限の判断が実状と乖離するおそれがある。すると、電流制限が不要であるにもかかわらず過剰な電流制限によりモータ出力性能を低下させたり、電流制限すべきときに適切な制限値が設定されず、過熱保護が不十分になったりする事態を招くこととなる。
In the prior art of Patent Document 1, since a control power supply for temperature estimation is held (that is, power latch) for a predetermined period after the drive power supply is stopped, there is a problem that dark current during drive stoppage increases. .
In addition, when a temperature sensor that detects the substrate temperature of the drive circuit, etc. is provided, if the outside air temperature changes during the drive stop period, the detected temperature of the temperature sensor will be affected, so that the temperature drop caused by energization can be accurately grasped. Can not be. As a result, there is a risk that the current limit judgment based on the estimated temperature may deviate from the actual state at the time of restart after the drive is stopped. Then, even though the current limit is unnecessary, the motor output performance will be degraded due to excessive current limit, or the appropriate limit value will not be set when the current limit should be set, resulting in insufficient overheat protection. Will be invited.

本発明は上述の課題に鑑みて成されたものであり、その目的は、駆動停止期間中の暗電流を抑制しつつ、再起動時における電流制限を適切に実行するモータ制御装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a motor control device that appropriately executes current limitation during restart while suppressing dark current during a drive stop period. It is in.

本発明の一態様のモータ制御装置は、モータ(80)を駆動する駆動回路(60)と、駆動回路が搭載された基板(20)と、基板温度センサ(71)と、基板温度取得部(31)と、基板温度記憶部(32)と、外気温取得部(33)と、外気温記憶部(34)と、上昇温度推定部(37)と、上昇温度記憶部(38)と、電流制限値演算部(51)と、初回上昇温度補正部(401、403)と、を備える。   A motor control device according to one aspect of the present invention includes a drive circuit (60) that drives a motor (80), a substrate (20) on which the drive circuit is mounted, a substrate temperature sensor (71), and a substrate temperature acquisition unit ( 31), the substrate temperature storage unit (32), the outside air temperature acquisition unit (33), the outside air temperature storage unit (34), the rising temperature estimation unit (37), the rising temperature storage unit (38), and the current A limit value calculation unit (51) and an initial rise temperature correction unit (401, 403) are provided.

基板温度センサは、基板の温度(Ts)を検出する。
基板温度取得部は、基板温度センサが検出した基板温度を取得する。
基板温度記憶部は、基板温度取得部が取得した任意の基準時の基板温度を基板温度記憶値(Ts_m)として記憶する。
外気温取得部は、外気温センサが検出した外気温(Tg)を取得する。
外気温記憶部は、外気温取得部が取得した基準時の外気温を外気温記憶値(Tg_m)として記憶する。
The substrate temperature sensor detects the temperature (Ts) of the substrate.
The substrate temperature acquisition unit acquires the substrate temperature detected by the substrate temperature sensor.
The substrate temperature storage unit stores an arbitrary reference time substrate temperature acquired by the substrate temperature acquisition unit as a substrate temperature storage value (Ts_m).
The outside air temperature acquisition unit acquires the outside air temperature (Tg) detected by the outside air temperature sensor.
The outside air temperature storage unit stores the outside air temperature at the reference time acquired by the outside air temperature acquisition unit as an outside air temperature storage value (Tg_m).

上昇温度推定部は、モータ又は駆動回路に流れる電流の値に基づき、モータ又は駆動回路の素子の上昇温度(Ti)を推定する。
上昇温度記憶部は、上昇温度推定部が推定した上昇温度を上昇温度記憶値(Ti_m)として記憶する。
なお、基板温度記憶部、外気温記憶部及び上昇温度記憶部は、典型的には不揮発性メモリで構成され、制御電源が停止しても記憶を保持することができる。
The rising temperature estimation unit estimates the rising temperature (Ti) of the element of the motor or drive circuit based on the value of the current flowing in the motor or drive circuit.
The rising temperature storage unit stores the rising temperature estimated by the rising temperature estimation unit as a rising temperature storage value (Ti_m).
Note that the substrate temperature storage unit, the outside air temperature storage unit, and the rising temperature storage unit are typically configured by a nonvolatile memory, and can retain the memory even when the control power supply is stopped.

電流制限値演算部は、上昇温度推定部が推定した上昇温度に基づき、上昇温度が大きいほどモータに通電する電流を制限するように電流制限値を演算する。
初回上昇温度補正部は、駆動回路によるモータの駆動停止後の再起動時の初回制御において、基板温度記憶値、基板温度現在値、外気温記憶値及び外気温現在値に基づいて算出した補正用引数を用いて上昇温度記憶値を補正し、初回上昇温度補正値(Ti_comp)を演算する。
そして、初回上昇温度補正部は、外気温記憶値から外気温現在値への変化に対し、基板温度記憶値から基板温度現在値への低下度合いが相対的に大きいほど、初回上昇温度補正値を小さくするように補正する。
The current limit value calculation unit calculates a current limit value based on the temperature rise estimated by the temperature rise estimation unit so as to limit the current supplied to the motor as the temperature rise is larger.
The first rise temperature correction unit is for correction calculated based on the substrate temperature memory value, the substrate temperature current value, the outside air temperature memory value, and the outside air temperature current value in the initial control at the time of restart after the drive of the motor is stopped by the drive circuit. The rising temperature memory value is corrected using the argument, and the initial rising temperature correction value (Ti_comp) is calculated.
The first rise temperature correction unit calculates the first rise temperature correction value as the degree of decrease from the substrate temperature storage value to the substrate temperature current value is relatively large with respect to the change from the outside air temperature storage value to the outside air temperature current value. Correct to make it smaller.

ここで、基板温度及び外気温が記憶される基準時は、典型的には、駆動回路の通電がオフした時、及び、当該通電オフ時における基板温度及び外気温との温度差が実質的に無視可能な時間範囲を含む「駆動停止時」である。
また、補正用引数としては、例えば補正後基板温度差(ΔTs_comp)又は補正後基板温度比(αs_comp)が用いられる。補正後基板温度差は、基板温度記憶値と基板温度現在値との差である基板温度差(ΔTs)、及び、外気温記憶値と外気温現在値との差である外気温差(ΔTg)に基づいて演算される。補正後基板温度比は、基板温度記憶値と基板温度現在値との比である基板温度比(αs)、及び、外気温記憶値と外気温現在値との比である外気温比(αg)に基づいて演算される。
Here, the reference time at which the substrate temperature and the outside air temperature are stored is typically substantially equal to the temperature difference between the substrate temperature and the outside air temperature when the energization of the drive circuit is turned off and when the energization is off. “When driving is stopped” including a negligible time range.
As the correction argument, for example, a corrected substrate temperature difference (ΔTs_comp) or a corrected substrate temperature ratio (αs_comp) is used. The corrected substrate temperature difference includes a substrate temperature difference (ΔTs) that is a difference between the substrate temperature storage value and the substrate temperature current value, and an outside air temperature difference (ΔTg) that is a difference between the outside air temperature storage value and the outside air temperature current value. Is calculated based on The corrected substrate temperature ratio includes a substrate temperature ratio (αs) that is a ratio between the substrate temperature storage value and the substrate temperature current value, and an outside air temperature ratio (αg) that is a ratio between the outside air temperature storage value and the outside air temperature value. Is calculated based on

本発明は、駆動停止期間中に温度推定のための制御電源を保持する必要がないため、特許文献1の従来技術に比べ、暗電流を抑制することができる。
また、初回上昇温度補正部は、駆動停止後の再起動時の初回制御において、基板温度に加え外気温の情報に基づいて上昇温度記憶値を補正し、初回上昇温度補正値を演算する。これにより、外気温の変化による影響を考慮しつつ、再起動時における電流制限を適切に実行することができる。
According to the present invention, since it is not necessary to hold a control power source for temperature estimation during the drive stop period, dark current can be suppressed as compared with the prior art of Patent Document 1.
The first rise temperature correction unit corrects the rise temperature stored value based on the information on the outside air temperature in addition to the substrate temperature in the first control at the time of restart after the drive is stopped, and calculates the first rise temperature correction value. Thereby, the current limitation at the time of restart can be appropriately executed while taking into consideration the influence due to the change in the outside air temperature.

本発明の他の態様のモータ制御装置は、上記の態様のモータ制御装置に対し、基板温度記憶部及び外気温記憶部を備えない。初回上昇温度補正部(405)は、駆動回路によるモータの駆動停止後の再起動時の初回制御において、基板温度現在値から外気温現在値を減じた内外温度値(Tdif)に基づいて上昇温度記憶値を補正し、初回上昇温度補正値(Ti_comp)を演算する。そして、初回上昇温度補正部は、内外温度差が小さいほど、初回上昇温度補正値を小さくするように補正する。
この態様においても、再起動時の外気温の情報に基づいて上昇温度記憶値を補正することで、駆動停止期間中の暗電流を抑制しつつ、再起動時における電流制限を適切に実行することができる。
The motor control device according to another aspect of the present invention does not include the substrate temperature storage unit and the outside air temperature storage unit as compared with the motor control device according to the above aspect. The initial temperature increase correction unit (405) is configured to increase the temperature based on the internal / external temperature value (Tdif) obtained by subtracting the current outside air temperature from the current substrate temperature in the initial control at the time of restart after the drive of the motor is stopped by the drive circuit. The stored value is corrected and the first rise temperature correction value (Ti_comp) is calculated. Then, the first rise temperature correction unit corrects the first rise temperature correction value to be smaller as the inside / outside temperature difference is smaller.
Also in this aspect, by correcting the stored temperature rise based on the information of the outside air temperature at the time of restart, appropriately limiting the current at the time of restart while suppressing the dark current during the drive stop period. Can do.

第1〜第4実施形態のモータ制御装置の全体構成図。The whole block diagram of the motor control apparatus of 1st-4th embodiment. 各実施形態による電流制限マップの例。The example of the current limiting map by each embodiment. 第1、第2実施形態の初回上昇温度補正部のブロック図。The block diagram of the first rise temperature correction | amendment part of 1st, 2nd embodiment. 第1(実線)、第2(破線)実施形態による上昇温度補正率マップの例。The example of the temperature increase correction factor map by 1st (solid line) and 2nd (broken line) embodiment. 各実施形態による駆動停止時記憶処理のフローチャート。The flowchart of the memory | storage process at the time of a drive stop by each embodiment. 駆動停止時における温度記憶のタイミングを説明するタイムチャート。The time chart explaining the timing of the temperature memory at the time of a drive stop. 第1実施形態による再起動時初回処理のフローチャート。The flowchart of the initial process at the time of restart by 1st Embodiment. 第1実施形態の動作例を示すタイムチャート(1)。The time chart (1) which shows the operation example of 1st Embodiment. 第1実施形態の動作例を示すタイムチャート(2)。The time chart (2) which shows the operation example of 1st Embodiment. 第1実施形態の動作例を示すタイムチャート(3)。The time chart (3) which shows the operation example of 1st Embodiment. 第2実施形態による再起動時初回処理のフローチャート。The flowchart of the initial process at the time of restart by 2nd Embodiment. 第3、第4実施形態の初回上昇温度補正部のブロック図。The block diagram of the first rise temperature correction | amendment part of 3rd, 4th embodiment. 第3(実線)、第4(破線)実施形態による上昇温度補正率マップの例。The example of the temperature increase correction factor map by 3rd (solid line) and 4th (dashed line) embodiment. 第3実施形態による再起動時初回処理のフローチャート。The flowchart of the initial process at the time of restart by 3rd Embodiment. 第4実施形態による再起動時初回処理のフローチャート。The flowchart of the initial process at the time of restart by 4th Embodiment. 第5、第6実施形態のモータ制御装置の全体構成図。The whole block diagram of the motor control apparatus of 5th, 6th embodiment. 第5、第6実施形態の初回上昇温度補正部のブロック図。The block diagram of the first rise temperature correction | amendment part of 5th, 6th embodiment. 第5(実線)、第6(破線)実施形態による上昇温度補正率マップの例。The example of the raise temperature correction factor map by 5th (solid line) and 6th (dashed line) embodiment. 第5実施形態による再起動時初回処理のフローチャート。The flowchart of the initial process at the time of restart by 5th Embodiment. 第5実施形態の動作例を示すタイムチャート。The time chart which shows the operation example of 5th Embodiment. 第6実施形態による再起動時初回処理のフローチャート。The flowchart of the initial process at the time of restart by 6th Embodiment.

以下、モータ制御装置の複数の実施形態を図面に基づいて説明する。複数の実施形態において、構成図の実質的に同一の構成、又は、フローチャートの実質的に同一のステップには同一の符号又はステップ番号を付して説明を省略する。また、以下の第1〜第6実施形態を包括して「本実施形態」という。
本実施形態のモータ制御装置は、例えば車両の電動パワーステアリング装置において、操舵アシストモータの制御装置として使用される。特に本実施形態は、イグニッションスイッチを備えるエンジン車に搭載されるものとして説明する。
Hereinafter, a plurality of embodiments of a motor control device will be described based on the drawings. In a plurality of embodiments, substantially the same configuration in the configuration diagram or substantially the same step in the flowchart is denoted by the same reference numeral or step number, and description thereof is omitted. The following first to sixth embodiments are collectively referred to as “this embodiment”.
The motor control device of this embodiment is used as a control device for a steering assist motor, for example, in an electric power steering device for a vehicle. In particular, the present embodiment will be described as being mounted on an engine vehicle equipped with an ignition switch.

以下、イグニッションスイッチのON/OFFを「IG−ON/OFF」と記す。モータ制御装置の立場から、IG−ONは、外部からのパワー電源供給指令が入力されたことを意味し、IG−OFFは、パワー電源供給指令が停止されたことを意味する。パワー電源が供給されると、モータの駆動が可能となる。
なお、ハイブリッド自動車や電気自動車に搭載される制御装置の場合、「IG−ON/OFF」を「レディON/OFF」と読み替えればよい。
Hereinafter, ON / OFF of the ignition switch is referred to as “IG-ON / OFF”. From the standpoint of the motor control device, IG-ON means that an external power power supply command is input, and IG-OFF means that the power power supply command is stopped. When power is supplied, the motor can be driven.
In the case of a control device mounted on a hybrid vehicle or an electric vehicle, “IG-ON / OFF” may be read as “ready ON / OFF”.

(第1実施形態)
第1実施形態のモータ制御装置について、図1〜図10を参照して説明する。
図1は、第1〜第4実施形態に共通する全体構成図である。
モータ制御装置101は、基板20、並びに、基板20に搭載された電源リレー21、制御回路30及び駆動回路60を備え、バッテリ15から入力された直流電力を変換してモータ80に出力する。
(First embodiment)
The motor control apparatus of 1st Embodiment is demonstrated with reference to FIGS.
FIG. 1 is an overall configuration diagram common to the first to fourth embodiments.
The motor control device 101 includes a substrate 20, a power relay 21 mounted on the substrate 20, a control circuit 30, and a drive circuit 60. The motor control device 101 converts DC power input from the battery 15 and outputs it to the motor 80.

バッテリ15の電力は、パワー用のPIG電源、及び、制御用のIG電源としてモータ制御装置101に入力される。PIG電源は、電源リレー21を経由して駆動回路60に供給される。駆動回路60は、いわゆるプリドライバとインバータとを含む回路であり、モータ80を駆動する。駆動回路60は、MOSFET等のスイッチング素子や、コンパレータ、抵抗、コンデンサ等の素子で構成される。モータ80は、例えば三相ブラシレスモータである。   The electric power of the battery 15 is input to the motor control device 101 as a power PIG power source and a control IG power source. The PIG power is supplied to the drive circuit 60 via the power relay 21. The drive circuit 60 is a circuit including a so-called pre-driver and an inverter, and drives the motor 80. The drive circuit 60 includes switching elements such as MOSFETs, and elements such as comparators, resistors, and capacitors. The motor 80 is, for example, a three-phase brushless motor.

制御回路30は、典型的にはマイコンで構成され、操舵トルクに応じて、モータ電流Imのフィードバック制御により駆動回路60への指令信号を生成する。図1には、一般的な電流フィードバック制御及びベクトル制御を構成する電流センサや回転角センサの図示を省略する。また、モータ電流Imは、モータ80又は駆動回路60を流れる電流を意味する。図1には、モータ電流Imがモータ80から入力されるように図示されているが、駆動回路60の出力電流を検出し制御回路30にフィードバックしてもよい。   The control circuit 30 is typically composed of a microcomputer, and generates a command signal to the drive circuit 60 by feedback control of the motor current Im according to the steering torque. In FIG. 1, illustration of a current sensor and a rotation angle sensor constituting general current feedback control and vector control is omitted. The motor current Im means a current flowing through the motor 80 or the drive circuit 60. In FIG. 1, the motor current Im is illustrated as being input from the motor 80, but the output current of the drive circuit 60 may be detected and fed back to the control circuit 30.

本実施形態の制御回路30は、モータ電流Imに基づいて駆動回路60の素子の上昇温度Tiを推定し、更に、基板温度Ts及び上昇温度Tiから推定した各素子の推定温度に基づいてモータ80に通電する電流を制限することにより、素子の過熱保護を図る。
また、本実施形態の制御回路30は、基板温度センサ71が検出した基板20の温度Ts、及び、外気温センサ73が検出した外気温Tgを取得する。基板温度センサ71は、例えば基板20に搭載されるサーミスタである。外気温センサ73は、どのようなものであってもよく、車両の他の用途で用いられるものを流用してもよい。
The control circuit 30 of the present embodiment estimates the rising temperature Ti of the elements of the drive circuit 60 based on the motor current Im, and further, based on the estimated temperature of each element estimated from the substrate temperature Ts and the rising temperature Ti, the motor 80. By limiting the current applied to the element, the element is protected from overheating.
In addition, the control circuit 30 of the present embodiment acquires the temperature Ts of the substrate 20 detected by the substrate temperature sensor 71 and the outside air temperature Tg detected by the outside air temperature sensor 73. The substrate temperature sensor 71 is a thermistor mounted on the substrate 20, for example. The outside air temperature sensor 73 may be anything, and may be used for other purposes of the vehicle.

制御回路30は、基板温度取得部31、基板温度記憶部32、外気温取得部33、外気温記憶部34、上昇温度推定部37、上昇温度記憶部38、初回上昇温度補正部401、電流制限値演算部51及び電流フィードバック(図中「FB」)演算部52を含む。
基板温度取得部31は、基板温度センサ71が検出した基板温度Tsを取得する。
基板温度記憶部32は、基板温度取得部31が取得した任意の基準時の基板温度Tsを基板温度記憶値Ts_mとして記憶する。
The control circuit 30 includes a substrate temperature acquisition unit 31, a substrate temperature storage unit 32, an outside air temperature acquisition unit 33, an outside air temperature storage unit 34, a rise temperature estimation unit 37, a rise temperature storage unit 38, an initial rise temperature correction unit 401, and a current limit. A value calculation unit 51 and a current feedback (“FB” in the figure) calculation unit 52 are included.
The substrate temperature acquisition unit 31 acquires the substrate temperature Ts detected by the substrate temperature sensor 71.
The substrate temperature storage unit 32 stores an arbitrary reference substrate temperature Ts acquired by the substrate temperature acquisition unit 31 as a substrate temperature storage value Ts_m.

外気温取得部33は、外気温センサ73が検出した外気温Tgを取得する。
外気温記憶部34は、外気温取得部33が取得した上記基準時の外気温Tgを外気温記憶値Tg_mとして記憶する。
すなわち、基板温度記憶部32及び外気温記憶部34は、同じ基準時の基板温度Ts及び外気温Tgを記憶する。本実施形態では、基準時として、駆動回路60の通電がオフした時、及びその前後の時間範囲を含む「駆動停止時」を想定する。
The outside air temperature acquisition unit 33 acquires the outside air temperature Tg detected by the outside air temperature sensor 73.
The outside air temperature storage unit 34 stores the outside air temperature Tg at the reference time acquired by the outside air temperature acquisition unit 33 as the outside air temperature storage value Tg_m.
That is, the substrate temperature storage unit 32 and the outside air temperature storage unit 34 store the same reference substrate temperature Ts and outside air temperature Tg. In the present embodiment, as a reference time, it is assumed that the drive circuit 60 is de-energized and includes a time range before and after the drive circuit 60 is turned off.

上昇温度推定部37は、通常動作時、モータ電流Imの積算値に基づき、駆動回路60の素子の上昇温度Tiを推定する。この上昇温度Tiの推定は、ジュール熱の式(1)を基本とする。ここで、Qはジュール熱[J]、Rは抵抗[Ω]、Imは電流[A]、tは時間[s]を表す。
Q=R×Im2×t ・・・(1)
通常動作時、上昇温度推定部37が推定した上昇温度Tiは、電流制限値演算部51に通知される。
The rising temperature estimation unit 37 estimates the rising temperature Ti of the elements of the drive circuit 60 based on the integrated value of the motor current Im during normal operation. The estimation of the rising temperature Ti is based on the Joule heat equation (1). Here, Q represents Joule heat [J], R represents resistance [Ω], Im represents current [A], and t represents time [s].
Q = R × Im 2 × t (1)
During the normal operation, the rising temperature Ti estimated by the rising temperature estimation unit 37 is notified to the current limit value calculation unit 51.

上昇温度記憶部38は、上昇温度推定部37が推定した上昇温度Tiを上昇温度記憶値Ti_mとして記憶する。
基板温度記憶部32、外気温記憶部34及び上昇温度記憶部38は、典型的には不揮発性メモリで構成され、制御電源が停止しても記憶を保持することができる。
The rising temperature storage unit 38 stores the rising temperature Ti estimated by the rising temperature estimation unit 37 as a rising temperature storage value Ti_m.
The substrate temperature storage unit 32, the outside air temperature storage unit 34, and the elevated temperature storage unit 38 are typically configured by a non-volatile memory, and can retain the memory even when the control power supply is stopped.

初回上昇温度補正部401は、駆動回路60によるモータ80の駆動停止後の再起動時の初回制御において、通常動作時の上昇温度Tiに代えて、初回上昇温度補正値Ti_compを演算する。
以下、再起動時の初回制御で検出される基板温度Ts及び外気温Tgを「現在値」という。記号Tsは、文脈に応じて、経時変化する基板温度Tsと、基板温度現在値Tsとの両方に用いる。同様に、記号Tgは、文脈に応じて、経時変化する外気温Tgと、外気温現在値Tgとの両方に用いる。
The first rise temperature correction unit 401 calculates the first rise temperature correction value Ti_comp instead of the rise temperature Ti during normal operation in the initial control at the time of restart after the drive of the motor 80 is stopped by the drive circuit 60.
Hereinafter, the substrate temperature Ts and the outside air temperature Tg detected by the initial control at the time of restart are referred to as “current values”. The symbol Ts is used for both the substrate temperature Ts that changes with time and the current substrate temperature value Ts depending on the context. Similarly, the symbol Tg is used for both the outside air temperature Tg that changes with time and the outside air temperature current value Tg depending on the context.

初回上昇温度補正部401は、基板温度記憶値Ts_m、基板温度現在値Ts、外気温記憶値Tg_m及び外気温現在値Tgに基づいて上昇温度記憶値Ti_mを補正し、初回上昇温度補正値Ti_compを演算する。その演算過程の詳細については後述する。
初回上昇温度補正部401が演算した初回上昇温度補正値Ti_compは、上昇温度推定部37を経由して電流制限値演算部51に通知される。
The first rise temperature correction unit 401 corrects the rise temperature storage value Ti_m based on the substrate temperature storage value Ts_m, the substrate temperature current value Ts, the outside air temperature storage value Tg_m, and the outside air temperature current value Tg, and sets the first rise temperature correction value Ti_comp. Calculate. Details of the calculation process will be described later.
The first rise temperature correction value Ti_comp calculated by the first rise temperature correction unit 401 is notified to the current limit value calculation unit 51 via the rise temperature estimation unit 37.

電流制限値演算部51は、通常動作時、随時、式(2.1)により基板温度Tsに上昇温度Tiを加算し、各素子の推定温度Tx_estを算出する。
Tx_est=Ts+Ti ・・・(2.1)
また、電流制限値演算部51は、駆動停止後の再起動時の初回制御のみ、式(2.2)により、基板温度現在値Tsに初回上昇温度補正値Ti_compを加算し、各素子の推定温度Tx_estを算出する。
Tx_est=Ts+Ti_comp ・・・(2.2)
そして、電流制限値演算部51は、例えば、素子推定温度Tx_estと電流制限値Ilimとの関係を規定した電流制限マップを参照して電流制限値Ilimを演算する。
The current limit value calculation unit 51 calculates the estimated temperature Tx_est of each element by adding the rising temperature Ti to the substrate temperature Ts according to Equation (2.1) at any time during normal operation.
Tx_est = Ts + Ti (2.1)
Further, the current limit value calculation unit 51 adds the initial temperature rise correction value Ti_comp to the substrate temperature current value Ts according to the equation (2.2) only for the initial control at the time of restart after the drive is stopped, and estimates each element. A temperature Tx_est is calculated.
Tx_est = Ts + Ti_comp (2.2)
Then, the current limit value calculation unit 51 calculates the current limit value Ilim with reference to, for example, a current limit map that defines the relationship between the element estimated temperature Tx_est and the current limit value Ilim.

図2に例示する電流制限マップによると、素子推定温度Tx_estが臨界温度Txc未満のとき、電流制限値Ilimは、駆動回路60の素子の定格等により定まる最大電流値Imaxに等しく設定される。つまり、実質的に電流制限をしない。また、素子推定温度Tx_estが臨界温度Txc以上のとき、電流制限値Ilimは、素子推定温度T_estが高いほど低く設定される。
このように電流制限値演算部51は、基板温度現在値Tsが同等の条件では、上昇温度Tiが大きいほどモータ80に通電する電流を制限するように電流制限値Ilimを演算することで、素子の過熱保護を図る。
According to the current limit map illustrated in FIG. 2, when the element estimated temperature Tx_est is lower than the critical temperature Txc, the current limit value Ilim is set equal to the maximum current value Imax determined by the rating of the elements of the drive circuit 60. That is, the current is not substantially limited. When the element estimated temperature Tx_est is equal to or higher than the critical temperature Txc, the current limit value Ilim is set lower as the element estimated temperature T_est is higher.
As described above, the current limit value calculation unit 51 calculates the current limit value Ilim so as to limit the current that flows to the motor 80 as the rising temperature Ti increases under the same substrate temperature current value Ts. Overheat protection.

電流フィードバック演算部52は、操舵トルクに応じて、モータ電流Imのフィードバック制御により駆動回路60への指令信号を生成する。指令信号に基づいて駆動回路60が動作することで、本来、モータ80は所望のアシストトルクを出力する。
ここで、モータ80に通電可能な電流は、電流制限値演算部51が演算した電流制限値Ilimにより制限される。要求される電流値に対して電流制限値Ilimが低く設定されると、モータ80は所望のアシストトルクを出力することができず、アシスト性能が低下することとなる。
The current feedback calculation unit 52 generates a command signal to the drive circuit 60 by feedback control of the motor current Im according to the steering torque. By operating the drive circuit 60 based on the command signal, the motor 80 originally outputs a desired assist torque.
Here, the current that can be supplied to the motor 80 is limited by the current limit value Ilim calculated by the current limit value calculation unit 51. If the current limit value Ilim is set lower than the required current value, the motor 80 cannot output a desired assist torque, and the assist performance is degraded.

次に図3を参照し、第1実施形態の初回上昇温度補正部401の構成を説明する。
第1実施形態、及び、次の第2実施形態では、初回上昇温度の補正演算における補正用引数として、補正後基板温度差ΔTs_compを用いる。
初回上昇温度補正部401は、減算器411、413、補正係数乗算器42、減算器43、補正率マップ481、及び補正率乗算器49を有する。
Next, the configuration of the first rise temperature correction unit 401 of the first embodiment will be described with reference to FIG.
In the first embodiment and the next second embodiment, the corrected substrate temperature difference ΔTs_comp is used as a correction argument in the correction calculation of the first rise temperature.
The first temperature rise correction unit 401 includes subtractors 411 and 413, a correction coefficient multiplier 42, a subtractor 43, a correction rate map 481, and a correction rate multiplier 49.

減算器411は、基板温度現在値Tsから基板温度記憶値Ts_mを減じて基板温度差ΔTsを算出する。減算器413は、外気温現在値Tgから外気温記憶値Tg_mを減じて外気温差ΔTgを算出する。補正係数乗算器42は、外気温差ΔTgに正の補正係数kを乗じる。ここで、補正係数kは、外気温Tgの変化が基板温度Tsの変化に及ぼす影響の大きさを示すものであり、基板周辺部品の伝熱特性等に応じて実験やシミュレーションにより求められ、例えば「k=0.5〜1.0」である。   The subtractor 411 calculates the substrate temperature difference ΔTs by subtracting the substrate temperature storage value Ts_m from the substrate temperature current value Ts. The subtractor 413 calculates the outside air temperature difference ΔTg by subtracting the outside air temperature memory value Tg_m from the outside air temperature current value Tg. The correction coefficient multiplier 42 multiplies the outside air temperature difference ΔTg by a positive correction coefficient k. Here, the correction coefficient k indicates the magnitude of the influence of the change in the outside air temperature Tg on the change in the substrate temperature Ts, and is obtained by experiments and simulations according to the heat transfer characteristics of the peripheral components of the substrate. “K = 0.5 to 1.0”.

さらに減算器43は、外気温差ΔTgに補正係数kを乗じた値を基板温度差ΔTsから減じて、補正用引数としての補正後基板温度差ΔTs_compを算出する。
すなわち、初回上昇温度補正部401は、式(3.1)〜(3.3)の演算を行う。
ΔTs=Ts−Ts_m ・・・(3.1)
ΔTg=Tg−Tg_m ・・・(3.2)
ΔTs_comp=ΔTs−kΔTg ・・・(3.3)
Further, the subtractor 43 subtracts a value obtained by multiplying the outside air temperature difference ΔTg by the correction coefficient k from the substrate temperature difference ΔTs to calculate a corrected substrate temperature difference ΔTs_comp as a correction argument.
That is, the first rise temperature correction unit 401 performs the calculations of equations (3.1) to (3.3).
ΔTs = Ts−Ts_m (3.1)
ΔTg = Tg−Tg_m (3.2)
ΔTs_comp = ΔTs−kΔTg (3.3)

補正率マップ481は、補正後基板温度差ΔTs_compと上昇温度補正率pとの関係を規定する。図4に実線で示す第1実施形態の補正率マップ481では、補正後基板温度差Δs_compが基礎値BΔT以上の領域で補正率pは1である。また、補正後基板温度差ΔTs_compが基礎値BΔT未満の領域では、負の補正後基板温度差ΔTs_compが小さくなるほど補正率pは減少し、0に漸近する。 The correction rate map 481 defines the relationship between the corrected substrate temperature difference ΔTs_comp and the rising temperature correction rate p. In the correction factor map 481 of the first embodiment shown by the solid line in FIG. 4, the correction factor p is 1 in the region where the post-correction substrate temperature difference Δs_comp is not less than the basic value B ΔT . In the region where the corrected substrate temperature difference ΔTs_comp is less than the basic value B ΔT , the correction rate p decreases as the negative corrected substrate temperature difference ΔTs_comp decreases, and gradually approaches zero.

図4の補正率マップ481の例では、基礎値BΔTは、0より少し小さい値に設定されている。理論的には、補正後基板温度差ΔTs_compが負であれば、補正率pを1よりも小さくし、電流制限を緩和してよいと考えられる。ただし、温度検出誤差等によるマージンを考慮して、基礎値BΔTを0より小さい値に設定し、補正後基板温度差ΔTs_compが基礎値BΔT未満のとき、電流制限を緩和するようにしている。
基礎値BΔTが0未満であるため、補正後基板温度差ΔTs_compが0又は正の領域では補正率pは1で一定となる。したがって、補正後基板温度差ΔTs_compが正の場合、補正後基板温度差ΔTs_compを0として扱ってもよい。その場合、補正率マップ481において二点鎖線で示す領域が省略され、補正後基板温度差ΔTs_compの上限が0となる。
In the example of the correction factor map 481 in FIG. 4, the basic value B ΔT is set to a value slightly smaller than zero. Theoretically, if the post-correction substrate temperature difference ΔTs_comp is negative, it is considered that the correction rate p may be made smaller than 1 and the current limitation may be relaxed. However, in consideration of a margin due to a temperature detection error or the like, the basic value B ΔT is set to a value smaller than 0, and when the corrected substrate temperature difference ΔTs_comp is less than the basic value B ΔT , the current limit is relaxed. .
Since the base value B ΔT is less than 0, the correction rate p is constant at 1 when the corrected substrate temperature difference ΔTs_comp is 0 or positive. Accordingly, when the corrected substrate temperature difference ΔTs_comp is positive, the corrected substrate temperature difference ΔTs_comp may be treated as zero. In that case, the region indicated by the two-dot chain line in the correction rate map 481 is omitted, and the upper limit of the corrected substrate temperature difference ΔTs_comp becomes zero.

補正率乗算器49は、式(4)により、補正率マップ481から得られた上昇温度補正率pを上昇温度記憶値Ti_mに乗じて初回上昇温度補正値Ti_compを演算する。
Ti_comp=Ti_m×p ・・・(4)
こうして演算された初回上昇温度補正値Ti_compは、上述の通り、上昇温度推定部37を経由して電流制限値演算部51に通知される。
The correction rate multiplier 49 multiplies the rising temperature storage value Ti_m by the rising temperature correction rate p obtained from the correction rate map 481 according to the equation (4) to calculate the first rising temperature correction value Ti_comp.
Ti_comp = Ti_m × p (4)
The first temperature increase correction value Ti_comp calculated in this way is notified to the current limit value calculation unit 51 via the temperature increase estimation unit 37 as described above.

ところで、駆動停止期間中のモータ温度を推定する従来技術として、例えば特許文献1(特開2002−363393号公報)等に開示されたものがある。
特許文献1に開示された電動パワーステアリング装置の制御装置は、イグニッションスイッチがオフ状態となって電源停止信号が入力されても、モータの温度推定値が所定値以下にならない間は、電源を自己保持し、モータの温度推定を継続する。
また、特許第2892899号に開示されたモータ制御装置は、モータへの電源供給遮断後、モータの上昇温度に基づいて、自己保持している電源を遮断するまでの遮断時間を演算する。そして、このモータ制御装置は、演算された遮断時間経過後に電源遮断指令を出力して、自己保持している電源を遮断する。
Incidentally, as a conventional technique for estimating the motor temperature during the drive stop period, for example, there is one disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2002-363393).
The control device for the electric power steering device disclosed in Patent Document 1 does not turn on the power supply as long as the estimated temperature of the motor does not fall below a predetermined value even when the ignition switch is turned off and a power stop signal is input. Hold and continue to estimate motor temperature.
Further, the motor control device disclosed in Japanese Patent No. 2892899 calculates a shut-off time until the self-held power source is shut off based on the rising temperature of the motor after the power supply to the motor is shut off. Then, the motor control device outputs a power shut-off command after the calculated shut-off time has elapsed, and shuts off the self-held power source.

しかし、これらの従来技術では、駆動電源を停止した後の所定期間、温度推定のための制御電源が保持(すなわち、パワーラッチ)されるため、駆動停止中の暗電流が増加するという問題がある。そこで、本実施形態のモータ制御装置101は、駆動停止後に制御電源を保持せず、暗電流を抑制することを目的とする。
図5に、各実施形態に共通する駆動停止時記憶処理のフローチャートを示す。以下のフローチャートの説明で記号Sは「ステップ」を表す。
However, these conventional techniques have a problem that the dark current during driving stoppage increases because the control power supply for temperature estimation is held (that is, power latch) for a predetermined period after the driving power supply is stopped. . Therefore, the motor control device 101 of the present embodiment aims to suppress dark current without holding the control power supply after the drive is stopped.
FIG. 5 shows a flowchart of the storage process at the time of stopping driving common to the respective embodiments. In the following description of the flowchart, the symbol S represents “step”.

ここで、まず「駆動停止時」及び「駆動停止期間」の用語の意味を定義する。
「駆動停止時」は、駆動回路60の通電がオフした時を基準とし、当該通電オフ時における基板温度Ts及び外気温Tgとの温度差が実質的に無視可能な時間範囲を含む比較的短い期間(例えば1秒以内の期間)を意味する。本実施形態では、駆動停止時が、基板温度記憶部32及び外気温記憶部34に基板温度Ts及び外気温Tgが記憶される基準時となる。
「駆動停止期間」は、駆動停止時tqから再起動時Trsまでの、例えば数分から数時間以上に及ぶ比較的長い期間を意味する。
Here, first, the meanings of the terms “when driving is stopped” and “driving stop period” are defined.
“When driving is stopped” is based on the time when energization of the drive circuit 60 is turned off, and is relatively short including a time range in which the temperature difference between the substrate temperature Ts and the outside air temperature Tg when the energization is turned off is substantially negligible. It means a period (for example, a period within 1 second). In the present embodiment, the time when the drive is stopped is a reference time when the substrate temperature Ts and the outside air temperature Tg are stored in the substrate temperature storage unit 32 and the outside air temperature storage unit 34.
The “drive stop period” means a relatively long period from the drive stop time tq to the restarting Trs, for example, from several minutes to several hours or more.

S01では、IGがON状態である通常動作中に、上昇温度推定部37は、モータ電流Imの値に基づき、駆動回路60の素子の上昇温度Tiを推定する。
S02では、IG−OFF、すなわち、駆動停止されたか判断される。S02でNOの場合、S01の処理が繰り返される。S02でYESの場合、S03で、各温度が記憶部32、34、38に記憶される。
In S01, during the normal operation in which the IG is in the ON state, the rising temperature estimation unit 37 estimates the rising temperature Ti of the element of the drive circuit 60 based on the value of the motor current Im.
In S02, it is determined whether IG-OFF, that is, whether the driving is stopped. If NO in S02, the process in S01 is repeated. If YES in S02, each temperature is stored in the storage units 32, 34, and 38 in S03.

具体的に、駆動停止時に基板温度取得部31が取得した基板温度Tsが基板温度記憶値Ts_mとして基板温度記憶部32に記憶され、駆動停止時に外気温取得部33が取得した外気温Tgが外気温記憶値Tg_mとして外気温記憶部34に記憶される。また、駆動停止直前に上昇温度推定部37が推定した上昇温度Tiが上昇温度記憶値Ti_mとして上昇温度記憶部38に記憶される。
S03で各温度が記憶された後、S04で制御電源がオフされる。
Specifically, the substrate temperature Ts acquired by the substrate temperature acquisition unit 31 when the drive is stopped is stored in the substrate temperature storage unit 32 as the substrate temperature storage value Ts_m, and the outside temperature Tg acquired by the outside temperature acquisition unit 33 when the drive is stopped is outside. It is stored in the outside air temperature storage unit 34 as the air temperature memory value Tg_m. Further, the rise temperature Ti estimated by the rise temperature estimation unit 37 immediately before the drive is stopped is stored in the rise temperature storage unit 38 as the rise temperature storage value Ti_m.
After each temperature is stored in S03, the control power supply is turned off in S04.

駆動停止時における温度記憶の詳細なタイミングについて、図6を参照して説明する。各温度が記憶されるタイミングは、IG−OFFの瞬間と厳密に一致する必要はない。
例えば図6(a)に示すように、通電オフ時における基板温度Ts及び外気温Tgとの温度差が実質的に無視可能な時間範囲において、停止時tqから微小時間δ遅れたタイミングで基板温度Ts及び外気温Tgが記憶されてもよい。こうして記憶された記憶値は、再起動時trsに読み込まれる。
The detailed timing of temperature storage when driving is stopped will be described with reference to FIG. The timing at which each temperature is stored need not exactly coincide with the IG-OFF moment.
For example, as shown in FIG. 6A, in the time range in which the temperature difference between the substrate temperature Ts and the outside air temperature Tg when the power is off is substantially negligible, the substrate temperature is delayed by a minute time δ from the stop time tq. Ts and the outside air temperature Tg may be stored. The stored value stored in this way is read at restart trs.

また、運転者の意図通りIG−OFFされる場合に限らず、不意にバッテリ15が外されたとき等にもモータ80の駆動は停止する。このような不意の駆動停止の場合にも記憶値を残すため、図6(b)に示すように、通常動作中に所定の周期τで各温度を記憶し、更新するようにしてもよい。そして、駆動停止前の最後に記憶、更新された各温度が再起動時trsに読み込まれる。再起動後は、再び所定の周期τで各温度の記憶、更新が繰り返される。   Further, the driving of the motor 80 is stopped not only when the IG-OFF is performed as intended by the driver but also when the battery 15 is unexpectedly removed. In order to retain the stored value even in the case of such an unexpected drive stop, as shown in FIG. 6B, each temperature may be stored and updated at a predetermined cycle τ during normal operation. Then, each temperature stored and updated at the end before the drive is stopped is read in at the time of restarting trs. After restarting, each temperature is stored and updated again at a predetermined cycle τ.

図7に、第1実施形態による再起動時初回処理のフローチャートを示す。
S11では、駆動停止後にIGがONされる。これをトリガーとして、再起動時の初回処理が実行される。
FIG. 7 shows a flowchart of the initial process at the time of restart according to the first embodiment.
In S11, the IG is turned on after the drive is stopped. Using this as a trigger, the initial processing at the time of restart is executed.

初回上昇温度補正部401は、S12で、基板温度Tsの現在値を基板温度取得部31から取得し、外気温Tgの現在値を外気温取得部33から取得する。また、初回上昇温度補正部401は、基板温度記憶値Ts_mを基板温度記憶部32から、外気温記憶値Tg_mを外気温記憶部34から読み込み、さらに上昇温度記憶値Ti_mを上昇温度記憶部38から読み込む。
続いて初回上昇温度補正部401は、S13で、基板温度現在値Tsから基板温度記憶値Ts_mを減じて基板温度差ΔTsを算出し、外気温現在値Tgから外気温記憶値Tg_mを減じて外気温差ΔTgを算出する。そして、初回上昇温度補正部401は、S14で、式(3.3)を用いて補正後基板温度差ΔTs_compを算出する。
In step S <b> 12, the first rise temperature correction unit 401 acquires the current value of the substrate temperature Ts from the substrate temperature acquisition unit 31, and acquires the current value of the outside air temperature Tg from the outside air temperature acquisition unit 33. Further, the first rise temperature correction unit 401 reads the substrate temperature storage value Ts_m from the substrate temperature storage unit 32, reads the outside air temperature storage value Tg_m from the outside air temperature storage unit 34, and further reads the rise temperature storage value Ti_m from the rise temperature storage unit 38. Read.
Subsequently, in S13, the first temperature rise correction unit 401 calculates the substrate temperature difference ΔTs by subtracting the substrate temperature storage value Ts_m from the substrate temperature current value Ts, and subtracts the outside air temperature storage value Tg_m from the outside air temperature current value Tg. The temperature difference ΔTg is calculated. In step S14, the initial temperature rise correction unit 401 calculates the corrected substrate temperature difference ΔTs_comp using the equation (3.3).

次に初回上昇温度補正部401は、S15で、補正率マップ481を参照して上昇温度補正率pを演算し、S16で、上昇温度記憶値Ti_mに補正率pを乗じて初回上昇温度補正値Ti_compを演算する。初回上昇温度補正値Ti_compは、上昇温度推定部37を経由して電流制限値演算部51に通知される。
電流制限値演算部51は、S18で、基板温度現在値Tsに初回上昇温度補正値Ti_compを加算し、各素子の推定温度Tx_estを算出する。そして、電流制限値演算部51は、S19で、図2の電流制限マップを参照し、各素子の推定温度Tx_estに基づき、電流制限値Ilimを演算する。
Next, the first rise temperature correction unit 401 calculates the rise temperature correction rate p with reference to the correction rate map 481 in S15, and multiplies the rise temperature storage value Ti_m by the correction rate p in S16 to obtain the first rise temperature correction value. Calculate Ti_comp. The first temperature rise correction value Ti_comp is notified to the current limit value calculation unit 51 via the temperature rise estimation unit 37.
In S18, the current limit value calculating unit 51 adds the initial temperature rise correction value Ti_comp to the substrate temperature current value Ts to calculate the estimated temperature Tx_est of each element. In S19, the current limit value calculation unit 51 refers to the current limit map of FIG. 2 and calculates the current limit value Ilim based on the estimated temperature Tx_est of each element.

次に図8〜図10のタイムチャートを参照し、第1実施形態の動作例を説明する。各図には、IGがON状態からOFF状態に移行したモータ駆動の停止時tqから、IGが再びONした再起動時trsまでの基板温度Ts及び外気温Tgの変化、並びに、再起動時trsの初回制御で設定される上昇温度補正率p及び電流制限値Ilimを示す。
停止時tq以前の通常動作時、駆動回路60への通電による素子の発熱により、基板温度Tsは上昇しており、随時、モータ電流Imに基づいて上昇温度Tiが演算される。このとき、上昇温度補正率pは1に相当し、電流制限値Ilimは、駆動回路60の素子の定格等により定まる最大電流値Imaxよりも低く設定される。
Next, an operation example of the first embodiment will be described with reference to the time charts of FIGS. Each figure shows changes in the substrate temperature Ts and the outside air temperature Tg from the stop time tq of the motor drive when the IG has shifted from the ON state to the OFF state, and the restart time trs from the restart time trs when the IG is turned ON again. The rising temperature correction factor p and the current limit value Ilim set in the initial control are shown.
During normal operation before the stop time tq, the substrate temperature Ts rises due to heat generation of the element due to energization of the drive circuit 60, and the rise temperature Ti is calculated based on the motor current Im as needed. At this time, the rising temperature correction rate p corresponds to 1, and the current limit value Ilim is set lower than the maximum current value Imax determined by the rating of the elements of the drive circuit 60 and the like.

IGがOFFすると、停止時tqの基板温度Ts及び外気温Tgは、基板温度記憶値Ts_m及び外気温記憶値Tg_mとして記憶される。図8〜図10のいずれにおいても、基板温度記憶値Ts_mは外気温記憶値Tg_mより高い。
停止時tq以後、通電による発熱が無くなるため、基板温度Tsは基本的に低下する。一方、外気温Tgの変化には各種のパターンがあり得る。図8には外気温Tgが変化しないパターン、図9には外気温Tgが上昇するパターン、図10には外気温Tgが低下するパターンを示す。
When IG is turned OFF, the substrate temperature Ts and the outside air temperature Tg at the stop time tq are stored as the substrate temperature memory value Ts_m and the outside air temperature memory value Tg_m. In any of FIGS. 8 to 10, the substrate temperature storage value Ts_m is higher than the outside air temperature storage value Tg_m.
After the stop time tq, the substrate temperature Ts basically decreases because no heat is generated by energization. On the other hand, there are various patterns of changes in the outside air temperature Tg. FIG. 8 shows a pattern in which the outside air temperature Tg does not change, FIG. 9 shows a pattern in which the outside air temperature Tg increases, and FIG. 10 shows a pattern in which the outside air temperature Tg decreases.

また、第1実施形態による制御と対比する比較例として、基板温度差ΔTsを外気温差ΔTgにより補正しない制御構成を想定する。この比較例は、式(3.3)における補正係数kが0の場合と考えてもよい。比較例では、第1実施形態と同様の補正率マップ481を用いて基板温度差ΔTsのみに基づいて上昇温度補正率pを演算する。   As a comparative example for comparison with the control according to the first embodiment, a control configuration in which the substrate temperature difference ΔTs is not corrected by the outside air temperature difference ΔTg is assumed. This comparative example may be considered as a case where the correction coefficient k in Equation (3.3) is zero. In the comparative example, the rising temperature correction rate p is calculated based only on the substrate temperature difference ΔTs using the same correction rate map 481 as in the first embodiment.

図8のパターンでは、再起動時trsにおいて基板温度Tsは外気温Tgと同程度にまで低下している。現実の場面では、駆動停止期間が十分に長かった場合に相当し、停止時tq以前に推定された上昇温度Tiの推定値をゼロクリアして良いと考えられる。
図8において、基板温度差ΔTsは負の値であり、外気温差ΔTgは、ほぼ0である。したがって、補正後基板温度差ΔTs_compは、基板温度差ΔTsとほぼ等しく、負の値となる。
In the pattern of FIG. 8, the substrate temperature Ts drops to the same level as the outside air temperature Tg at the time of restarting trs. In an actual situation, this corresponds to a case where the drive stop period is sufficiently long, and it is considered that the estimated value of the rise temperature Ti estimated before the stop time tq may be cleared to zero.
In FIG. 8, the substrate temperature difference ΔTs is a negative value, and the outside air temperature difference ΔTg is almost zero. Therefore, the corrected substrate temperature difference ΔTs_comp is substantially equal to the substrate temperature difference ΔTs and takes a negative value.

負の基板温度差ΔTsの絶対値が比較的大きいと、補正率マップ481より、上昇温度補正率pは0となる。また、再起動時trsの基板温度Ts自体が比較的低ければ、電流制限は、ほとんど必要ないと判断される。その結果、再起動時trsの初回制御における電流制限値Ilimは、最大電流値Imaxと同程度にまで高く設定される。   When the absolute value of the negative substrate temperature difference ΔTs is relatively large, the rising temperature correction rate p is 0 from the correction rate map 481. Further, if the substrate temperature Ts itself at the time of restarting trs is relatively low, it is determined that almost no current limitation is necessary. As a result, the current limit value Ilim in the initial control at the time of restarting trs is set to be as high as the maximum current value Imax.

これにより、例えば停止時tqの上昇温度記憶値Ti_mを再起動時trsの初回制御にそのまま用いる場合に比べ、過剰な電流制限を抑制することができる。
ただし、図8のパターンでは駆動停止中の外気温差ΔTgがほぼ0であるため、第1実施形態と比較例とで実質的な差が生じない。つまり、図8のパターンでは比較例でも電流制限を抑制することができ、第1実施形態の優位性が明らかに現われない。
Thereby, for example, excessive current limitation can be suppressed as compared with the case where the elevated temperature stored value Ti_m at the time of stop tq is used as it is for the initial control of trs at the time of restart.
However, in the pattern of FIG. 8, since the outside air temperature difference ΔTg during driving stop is substantially 0, no substantial difference occurs between the first embodiment and the comparative example. That is, in the pattern of FIG. 8, the current limitation can be suppressed even in the comparative example, and the superiority of the first embodiment does not clearly appear.

続いて、図9のパターンでは、駆動停止中に外気温Tgが上昇する。基板温度Tsは、外気温Tgに一致するまで低下した後、外気温Tgの上昇に伴って上昇する。
現実の場面では、例えば砂漠や内陸部等の昼夜の寒暖差が激しい地域において、前夜、極低温環境(例えば−10℃)で走行した翌日、高温環境(例えば40℃)でIG−ONする状況を考える。この場合、外気温差ΔTgは+50℃である。一方、基板温度Tsは停止時tqに30℃、再起動時trsに40℃とすると、基板温度差ΔTsは+10℃である。つまり、駆動停止期間が十分に長く、前夜の動作時の通電による素子の発熱は完全に解消されており、上昇温度Tiの推定値をゼロクリアして良いと考えられるにもかかわらず、基板温度Ts自体は上昇するという状況が発生している。
Subsequently, in the pattern of FIG. 9, the outside air temperature Tg rises while driving is stopped. The substrate temperature Ts decreases until it matches the outside air temperature Tg, and then rises as the outside air temperature Tg increases.
In an actual situation, for example, in an area where the temperature difference between day and night is high, such as in the desert or inland, the day after driving in a very low temperature environment (eg -10 ° C) the night before, IG-ON in a high temperature environment (eg 40 ° C) think of. In this case, the outside air temperature difference ΔTg is + 50 ° C. On the other hand, if the substrate temperature Ts is 30 ° C. at the stop tq and 40 ° C. at the restart trs, the substrate temperature difference ΔTs is + 10 ° C. That is, the drive stop period is sufficiently long, and the heat generation of the element due to energization during the previous night operation is completely eliminated, and the estimated value of the rise temperature Ti may be cleared to zero, but the substrate temperature Ts There is a situation where it rises.

このような場面を想定した図9において、再起動時trsにおける基板温度Tsは、基板温度記憶値Ts_mよりも高くなり、基板温度差ΔTsは正の値となる。また、外気温差ΔTgは、基板温度差ΔTsよりも絶対値の大きい正の値となり、「−kΔTg」は負の値となる。補正係数kの値によるが、「−kΔTg」の絶対値が基板温度差ΔTより大きいと仮定すると、補正後基板温度差ΔTs_compは負の値となる。すなわち、補正後基板温度差ΔTs_compは、補正前の基板温度差ΔTsに対し符号が反転する。   In FIG. 9 assuming such a situation, the substrate temperature Ts at the time of restarting trs becomes higher than the substrate temperature storage value Ts_m, and the substrate temperature difference ΔTs becomes a positive value. The outside air temperature difference ΔTg is a positive value having a larger absolute value than the substrate temperature difference ΔTs, and “−kΔTg” is a negative value. Depending on the value of the correction coefficient k, assuming that the absolute value of “−kΔTg” is larger than the substrate temperature difference ΔT, the corrected substrate temperature difference ΔTs_comp is a negative value. That is, the sign of the corrected substrate temperature difference ΔTs_comp is inverted with respect to the uncorrected substrate temperature difference ΔTs.

したがって、補正率マップ481より、上昇温度補正率pは1より小さく0に近い値となる。ただし、再起動時trsの基板温度Ts自体は比較的高めであるため、ある程度の電流制限は必要と判断される。その結果、再起動時trsの初回制御における電流制限値Ilimは、停止時tq直前の値よりは高く、最大電流値Imaxよりはやや低めの値となる。   Therefore, from the correction factor map 481, the rising temperature correction factor p is a value smaller than 1 and close to zero. However, since the substrate temperature Ts itself at the time of restarting trs is relatively high, it is determined that a certain amount of current limitation is necessary. As a result, the current limit value Ilim in the initial control at the time of restarting trs is higher than the value immediately before the stop time tq and slightly lower than the maximum current value Imax.

一方、三角印で示す比較例では、補正前の正の基板温度差ΔTsに基づき、上昇温度補正率pは1となり、電流制限が維持される。そのため、外気温Tgの上昇に伴って基板温度Tsが上昇しているに過ぎないにもかかわらず、過剰な電流制限がされるため、モータ出力性能が十分に発揮されなくなる。例えば電動パワーステアリング装置では、アシスト性能の低下を招くこととなる。   On the other hand, in the comparative example indicated by the triangle mark, the rising temperature correction rate p is 1 based on the positive substrate temperature difference ΔTs before correction, and the current limitation is maintained. Therefore, although the substrate temperature Ts is only increased with the increase in the outside air temperature Tg, excessive current limitation is performed, so that the motor output performance is not sufficiently exhibited. For example, in an electric power steering device, the assist performance is reduced.

図10のパターンでは、駆動停止中に外気温Tgが低下する。しかも、その低下度合いは基板温度Tsの低下度合いよりも大きい。言い換えれば、基板温度Tsは外気温Tgほどに低下しておらず、放熱性能が劣っていると考えられる。したがって、基板温度Tsが低下しているとはいえ、保護の観点から注意を要する状況である。
このとき、基板温度差ΔTsは負の値である。外気温差ΔTgは、基板温度差ΔTsよりも絶対値の大きい負の値であり、「−kΔTg」は正の値となる。補正係数kの値によるが、「−kΔTg」の絶対値が基板温度差ΔTsの絶対値よりも大きいと仮定すると、補正後基板温度差ΔTs_compは正の値となる。すなわち、補正後基板温度差ΔTs_compは、補正前の基板温度差ΔTsに対し符号が反転する。
In the pattern of FIG. 10, the outside air temperature Tg decreases while driving is stopped. In addition, the degree of decrease is greater than the degree of decrease in the substrate temperature Ts. In other words, the substrate temperature Ts is not lowered as much as the outside air temperature Tg, and it is considered that the heat dissipation performance is inferior. Therefore, although the substrate temperature Ts is lowered, it is a situation that requires attention from the viewpoint of protection.
At this time, the substrate temperature difference ΔTs is a negative value. The outside air temperature difference ΔTg is a negative value having a larger absolute value than the substrate temperature difference ΔTs, and “−kΔTg” is a positive value. Depending on the value of the correction coefficient k, assuming that the absolute value of “−kΔTg” is larger than the absolute value of the substrate temperature difference ΔTs, the corrected substrate temperature difference ΔTs_comp becomes a positive value. That is, the sign of the corrected substrate temperature difference ΔTs_comp is inverted with respect to the uncorrected substrate temperature difference ΔTs.

したがって、補正率マップ481より、四角印で示すように上昇温度補正率pは1となる。その結果、再起動時trsの初回制御における電流制限値Ilimは、停止時tqの直前の値が維持される。つまり、基板温度Tsは低下しているが、外気温Tgの低下度合いとの比較から、素子の過熱保護を優先する思想で電流制限値Ilimが決められる。
一方、三角印で示す比較例では、補正前の負の基板温度差ΔTsに基づき、上昇温度補正率pは1より小さい値となり、電流制限を抑制する方向に働く。そのため、放熱性能が劣っている基板20上の素子を十分に保護できないおそれがある。
Therefore, from the correction rate map 481, the temperature increase correction rate p is 1 as indicated by the square marks. As a result, the current limit value Ilim in the initial control at the time of restarting trs is maintained at the value immediately before the stop time tq. That is, although the substrate temperature Ts is lowered, the current limit value Ilim is determined based on a concept that gives priority to overheating protection of the element from the comparison with the degree of decrease in the outside air temperature Tg.
On the other hand, in the comparative example indicated by the triangle mark, the temperature rise correction rate p becomes a value smaller than 1 based on the negative substrate temperature difference ΔTs before correction, and works to suppress the current limitation. Therefore, there is a possibility that an element on the substrate 20 having poor heat dissipation performance cannot be sufficiently protected.

(効果)
以上のように、第1実施形態のモータ制御装置101は、駆動停止期間中に温度推定のための制御電源を保持する必要がないため、特許文献1の従来技術に比べ、暗電流を抑制することができる。
また、初回上昇温度補正部401は、駆動停止後の再起動時の初回制御において、基板温度Tsに加え外気温Tgの情報に基づいて上昇温度記憶値Ti_mを補正し、初回上昇温度補正値Ti_compを演算する。これにより、外気温Tgの変化による影響を考慮しつつ、再起動時における電流制限を適切に実行することができる。
(effect)
As described above, the motor control device 101 according to the first embodiment does not need to hold a control power source for temperature estimation during the drive stop period, and therefore suppresses dark current as compared with the conventional technique of Patent Document 1. be able to.
In addition, the initial temperature rise correction unit 401 corrects the temperature rise value Ti_m based on the information on the outside air temperature Tg in addition to the substrate temperature Ts in the initial control at the time of restart after the drive is stopped, and the initial temperature rise correction value Ti_comp. Is calculated. Thereby, the current limitation at the time of restart can be appropriately executed while considering the influence of the change in the outside air temperature Tg.

詳しくは、外気温記憶値Tg_mから外気温現在値Tgへの変化に対し、「基板温度記憶値Ts_mから基板温度現在値Tsへの低下度合いが相対的に大きい」とき、初回上昇温度補正値Ti_compを小さくするように補正する。第1実施形態では、負の補正後基板温度差ΔTs_compがより小さいことが、「基板温度記憶値Ts_mから基板温度現在値Tsへの低下度合いが相対的に大きい」ことに相当する。
より具体的には、図9、図10のパターンのように、基板温度差ΔTsを外気温差ΔTgにより補正し補正後基板温度差ΔTs_compを算出することで、外気温Tgの変化に対する基板温度Tsの相対的な低下度合いを評価することができる。
Specifically, when the degree of decrease from the substrate temperature storage value Ts_m to the substrate temperature current value Ts is relatively large with respect to the change from the outside air temperature storage value Tg_m to the outside air temperature current value Tg, the initial rise temperature correction value Ti_comp Correct to reduce. In the first embodiment, a smaller negative post-correction substrate temperature difference ΔTs_comp corresponds to “the degree of decrease from the substrate temperature storage value Ts_m to the substrate temperature current value Ts is relatively large”.
More specifically, as shown in the patterns of FIGS. 9 and 10, the substrate temperature difference ΔTs is corrected by the outside air temperature difference ΔTg and the corrected substrate temperature difference ΔTs_comp is calculated, whereby the substrate temperature Ts with respect to the change in the outside air temperature Tg. It is possible to evaluate the degree of relative decrease in.

これにより、再起動時trsの初回制御における電流制限の必要性をより適切に判断することができる。図9のパターンでは、過剰な電流制限が回避され、モータ出力性能が有効に発揮される。例えば電動パワーステアリング装置のアシストモータの駆動制御では、良好なアシスト性能を確保することができる。一方、図10のパターンでは、外気温Tgの変化に対する基板温度の低下度合いが相対的に小さいため、電流制限を実施し、素子の過熱保護を図る。よって、素子の過熱保護とモータ出力性能の確保とを好適に両立させることができる。   Thereby, it is possible to more appropriately determine the necessity of current limitation in the initial control at the time of restarting trs. In the pattern of FIG. 9, excessive current limitation is avoided and the motor output performance is effectively exhibited. For example, in the drive control of the assist motor of the electric power steering device, good assist performance can be ensured. On the other hand, in the pattern of FIG. 10, since the degree of decrease in the substrate temperature with respect to the change in the outside air temperature Tg is relatively small, current limiting is performed to protect the element from overheating. Therefore, it is possible to suitably achieve both overheating protection of the element and ensuring of the motor output performance.

例えば電動パワーステアリング装置の操舵アシストモータは、定常回転用のモータに比べ、大きなトルクを急激に出力するニーズがある。また、モータ制御装置101が設置される場所は、一般にスペースの制約が厳しく、放熱に不利な環境である。しかも、高い信頼性が要求されるため、素子の故障を適切に防止することと、モータ80の出力を可能な限り確保することとの両立が特に重要となる。したがって、本実施形態のモータ制御装置101により、素子の過熱保護とモータ出力性能の確保とを好適に両立させる効果が有効に発揮される。   For example, a steering assist motor of an electric power steering apparatus has a need to output a large torque abruptly as compared with a motor for steady rotation. Further, the place where the motor control device 101 is installed is generally an environment that is severely limited in space and disadvantageous for heat dissipation. In addition, since high reliability is required, it is particularly important to properly prevent the failure of the element and ensure the output of the motor 80 as much as possible. Therefore, the motor control device 101 according to the present embodiment effectively exhibits the effect of suitably achieving both overheating protection of the element and ensuring of the motor output performance.

(第2実施形態)
第2実施形態は、初回上昇温度補正部による上昇温度補正率pの演算方法が第1実施形態と異なる。第1実施形態では、補正用引数である補正後基板温度差ΔTs_compに応じて連続的に変化する補正率マップ481を参照して補正率pを演算する。これに対し第2実施形態では、補正後基板温度差ΔTs_compと、0以下の値である温度差臨界値CΔTとの比較により、二値で規定される補正率pを選択する。
なお、二値選択の演算では必ずしもマップを使用しなくてもよいが、第1実施形態との対比の都合上、二値マップとして、図4に破線で記載する。後述の第4、第6実施形態についても同様とする。
(Second Embodiment)
The second embodiment is different from the first embodiment in the method of calculating the rising temperature correction rate p by the first rising temperature correction unit. In the first embodiment, the correction rate p is calculated with reference to the correction rate map 481 that continuously changes according to the corrected substrate temperature difference ΔTs_comp that is a correction argument. On the other hand, in the second embodiment, a correction rate p defined by two values is selected by comparing the corrected substrate temperature difference ΔTs_comp with a temperature difference critical value C ΔT which is a value equal to or less than zero.
Note that the map does not necessarily need to be used in the binary selection calculation, but for convenience of comparison with the first embodiment, a binary map is indicated by a broken line in FIG. The same applies to fourth and sixth embodiments described later.

この二値マップでは、補正後基板温度差ΔTs_compが温度差臨界値CΔT未満のとき、補正率pは0であり、補正後基板温度差ΔTs_compが温度差臨界値CΔT以上のとき、補正率pは1である。
上昇温度記憶値Ti_mに補正率pが乗算されることで、補正後基板温度差ΔTs_compが温度差臨界値CΔT未満のとき、初回上昇温度補正値Ti_compは、0に設定される。また、補正後基板温度差ΔTs_compが温度差臨界値CΔT以上のとき、初回上昇温度補正値Ti_compは、上昇温度記憶値Ti_mに等しく設定される。
In this binary map, when the corrected substrate temperature difference ΔTs_comp is less than the temperature difference critical value C ΔT , the correction rate p is 0, and when the corrected substrate temperature difference ΔTs_comp is greater than or equal to the temperature difference critical value C ΔT , the correction rate p is 1.
By multiplying the temperature rise value Ti_m by the correction factor p, the initial temperature rise correction value Ti_comp is set to 0 when the corrected substrate temperature difference ΔTs_comp is less than the temperature difference critical value C ΔT . When the post-correction substrate temperature difference ΔTs_comp is equal to or greater than the temperature difference critical value C ΔT , the initial temperature increase correction value Ti_comp is set equal to the temperature increase stored value Ti_m.

図11のフローチャートに示すように、第2実施形態による再起動時初回処理では、図7のS15及びS16に代えてS25−S27のステップを含む。
補正後基板温度差ΔTs_compが温度差臨界値CΔT未満のとき、S25でYESと判断され、S26で初回上昇温度補正値Ti_compが0に設定される。
補正後基板温度差ΔTs_compが温度差臨界値CΔT以上のとき、S25でNOと判断され、S27で初回上昇温度補正値Ti_compが上昇温度記憶値Ti_mに等しく設定される。
第2実施形態は、基本的に第1実施形態と同様の作用効果を奏する他、上昇温度補正率pの演算を二値選択とすることで、処理を単純化し、演算負荷を低減することができる。
As shown in the flowchart of FIG. 11, the initial process at the time of restart according to the second embodiment includes steps S25 to S27 instead of S15 and S16 of FIG. 7.
When the corrected substrate temperature difference ΔTs_comp is less than the temperature difference critical value C ΔT , YES is determined in S25, and the initial rise temperature correction value Ti_comp is set to 0 in S26.
When the post-correction substrate temperature difference ΔTs_comp is equal to or greater than the temperature difference critical value C ΔT , NO is determined in S25, and the initial rising temperature correction value Ti_comp is set equal to the rising temperature storage value Ti_m in S27.
The second embodiment basically has the same effects as those of the first embodiment, and the calculation of the rising temperature correction factor p is made binary selection, thereby simplifying the processing and reducing the calculation load. it can.

(第3、第4実施形態)
第3、第4実施形態について、図12〜図15を参照して説明する。第3、第4実施形態は、第1、第2実施形態に対し、初回上昇温度の補正演算における補正用引数として、補正後基板温度比αs_compを用いる。
図12に示すように、初回上昇温度補正部403は、温度換算部44、除算器451、453、46、補正率マップ483、及び補正率乗算器49を有する。
(Third and fourth embodiments)
Third and fourth embodiments will be described with reference to FIGS. The third and fourth embodiments use the post-correction substrate temperature ratio αs_comp as a correction argument in the first rising temperature correction calculation as compared to the first and second embodiments.
As shown in FIG. 12, the first rise temperature correction unit 403 includes a temperature conversion unit 44, dividers 451, 453, 46, a correction rate map 483, and a correction rate multiplier 49.

温度換算部44は、初回上昇温度補正部403に入力された基板温度現在値Ts、基板温度記憶値Ts_m、外気温現在値Tg、外気温記憶値Tg_mから一律に基準温度Toを減じることにより温度値を換算する。基準温度Toは、基板温度Ts及び外気温Tgについて所定の処理対象温度範囲、すなわち、想定され得る最小温度から最大温度までの温度範囲の範囲外の温度が設定される。例えば処理対象温度範囲が−40℃〜80℃とすると、基準温度Toは、最小温度より低い−50℃、或いは、最高温度より高い100℃等の温度に設定可能である。
以下では、基準温度Toを処理対象温度範囲の低温側、すなわち最小温度より低い温度に設定する場合について説明する。なお、温度単位に絶対温度を用いる場合は、基準温度Toを0K(すなわち−273℃)に設定する場合に相当する。
The temperature conversion unit 44 uniformly subtracts the reference temperature To from the current substrate temperature value Ts, the substrate temperature storage value Ts_m, the outside air temperature current value Tg, and the outside air temperature storage value Tg_m input to the first rise temperature correction unit 403. Convert the value. The reference temperature To is set to a predetermined processing target temperature range for the substrate temperature Ts and the outside air temperature Tg, that is, a temperature outside the temperature range from the minimum temperature to the maximum temperature that can be assumed. For example, when the processing target temperature range is −40 ° C. to 80 ° C., the reference temperature To can be set to a temperature such as −50 ° C. lower than the minimum temperature or 100 ° C. higher than the maximum temperature.
Hereinafter, a case where the reference temperature To is set to the low temperature side of the processing target temperature range, that is, a temperature lower than the minimum temperature will be described. Note that the case where the absolute temperature is used as the temperature unit corresponds to the case where the reference temperature To is set to 0K (that is, −273 ° C.).

ここで、例えば換算前の基板温度Tsに対する換算後の基板温度を[Ts]のように記す。各温度は、式(5.1)〜(5.4)で表される。
[Ts]=Ts−To ・・・(5.1)
[Ts_m]=Ts_m−To ・・・(5.2)
[Tg]=Tg−To ・・・(5.3)
[Tg_m]=Tg_m−To ・・・(5.4)
例えば寒冷期の外気温Tgは0℃以下となる場合があるが、換算後の各温度は全て正の値となる。これにより、除算におけるゼロ割りや符号反転による不連続の発生が防止される。つまり、この温度換算処理は、除算の準備としての意義を有する。
Here, for example, the substrate temperature after conversion with respect to the substrate temperature Ts before conversion is expressed as [Ts]. Each temperature is represented by the formulas (5.1) to (5.4).
[Ts] = Ts−To (5.1)
[Ts_m] = Ts_m-To (5.2)
[Tg] = Tg−To (5.3)
[Tg_m] = Tg_m-To (5.4)
For example, the outside air temperature Tg in the cold season may be 0 ° C. or less, but all the temperatures after conversion are positive values. This prevents the occurrence of discontinuity due to zero division or sign inversion in division. That is, this temperature conversion process has significance as preparation for division.

除算器451は、換算後の基板温度現在値[Ts]を基板温度記憶値[Ts_m]で除して基板温度比αsを算出する。除算器453は、換算後の外気温現在値[Tg]を外気温記憶値[Tg_m]で除して外気温比αgを算出する。さらに除算器46は、基板温度比αsを外気温比αgで除して補正後基板温度比αs_compを算出する。
すなわち、初回上昇温度補正部403は、式(6.1)〜(6.3)の演算を行う。
αs=[Ts]/[Ts_m] ・・・(6.1)
αg=[Tg]/[Tg_m] ・・・(6.2)
αs_comp=αs/αg ・・・(6.3)
The divider 451 divides the converted substrate temperature current value [Ts] by the substrate temperature storage value [Ts_m] to calculate the substrate temperature ratio αs. The divider 453 calculates the outside air temperature ratio αg by dividing the converted outside air temperature present value [Tg] by the outside air temperature memory value [Tg_m]. Furthermore, the divider 46 calculates the corrected substrate temperature ratio αs_comp by dividing the substrate temperature ratio αs by the outside air temperature ratio αg.
That is, the first rise temperature correction unit 403 performs calculations of equations (6.1) to (6.3).
αs = [Ts] / [Ts_m] (6.1)
αg = [Tg] / [Tg_m] (6.2)
αs_comp = αs / αg (6.3)

補正率マップ483は、補正後基板温度比αs_compと上昇温度補正率pとの関係を規定する。図13に実線で示す第3実施形態の補正率マップ483では、補正後基板温度比αs_compが基礎値Bα以上の領域で補正率pは1である。また、補正後基板温度比αs_compが基礎値Bα未満の領域で、補正後基板温度比αs_compが小さくなるほど補正率pは減少し、0に漸近する。 The correction rate map 483 defines the relationship between the corrected substrate temperature ratio αs_comp and the rising temperature correction rate p. In the correction factor map 483 of the third embodiment indicated by the solid line in FIG. 13, the correction factor p is 1 in the region where the post-correction substrate temperature ratio αs_comp is equal to or greater than the basic value B α . Further, the corrected substrate temperature ratio αs_comp is in the region of less than basal values B alpha, as the correction factor p is the corrected substrate temperature ratio αs_comp smaller decreases asymptotically to zero.

図13の補正率マップ483の例では、基礎値Bαは、1より少し小さい値に設定されている。その理由は、第1実施形態の補正率マップ481における基礎値BΔTが0より小さい値に設定されている理由と同様である。基礎値Bαが1未満であるため、補正後基板温度比αs_compが1以上の領域では補正率pは1で一定となる。したがって、補正後基板温度比αs_compが1より大きい場合、補正後基板温度比αs_compを1として扱ってもよい。その場合、補正率マップ483において二点鎖線で示す領域が省略され、補正後基板温度比αs_compの上限が1となる。 In the example of the correction factor map 483 in FIG. 13, the basic value is set to a value slightly smaller than 1. The reason is the same as the reason why the basic value B ΔT in the correction factor map 481 of the first embodiment is set to a value smaller than 0. For basal values B alpha is less than 1, the correction factor p is 1 or more regions corrected substrate temperature ratio αs_comp becomes constant at 1. Accordingly, when the corrected substrate temperature ratio αs_comp is larger than 1, the corrected substrate temperature ratio αs_comp may be handled as 1. In this case, the region indicated by the two-dot chain line in the correction rate map 483 is omitted, and the upper limit of the corrected substrate temperature ratio αs_comp is 1.

図14に、第3実施形態による再起動時初回処理のフローチャートを示す。
初回上昇温度補正部403は、S12後のS33で、基板温度現在値Ts、基板温度記憶値Ts_m、外気温現在値Tg、外気温記憶値Tg_mを換算した後、基板温度比αs及び外気温比αgを算出し、S34で、補正後基板温度比αs_compを算出する。
そして、初回上昇温度補正部403は、S35で、補正後基板温度比αs_compに基づき、補正率マップ483を参照して上昇温度補正率pを演算する。
以後のS16、S18、S19は、図7と同様である。
FIG. 14 shows a flowchart of the initial process at the time of restart according to the third embodiment.
The first rise temperature correction unit 403 converts the substrate temperature current value Ts, the substrate temperature storage value Ts_m, the outside air temperature current value Tg, and the outside air temperature storage value Tg_m in S33 after S12, and then converts the substrate temperature ratio αs and the outside air temperature ratio. αg is calculated, and the corrected substrate temperature ratio αs_comp is calculated in S34.
In step S35, the initial temperature rise correction unit 403 calculates the temperature rise correction rate p with reference to the correction rate map 483 based on the corrected substrate temperature ratio αs_comp.
Subsequent S16, S18, and S19 are the same as those in FIG.

第3実施形態では、補正後基板温度比αs_compが1より小さく0に近いことが、「外気温記憶値Tg_mから外気温現在値Tgへの変化に対し、基板温度記憶値Ts_mから基板温度現在値Tsへの低下度合いが相対的に大きい」ことに相当する。また、補正後基板温度比αs_compが小さいほど、初回上昇温度補正値Ti_compを小さくするように補正することにより、第1実施形態と同様の作用効果を奏する。   In the third embodiment, the post-correction substrate temperature ratio αs_comp is smaller than 1 and close to 0 indicates that “the substrate temperature stored value Ts_m is changed to the substrate temperature current value with respect to the change from the outside air temperature stored value Tg_m to the outside air temperature current value Tg. This corresponds to “the degree of decrease in Ts is relatively large”. Further, the smaller the substrate temperature ratio after correction αs_comp is, the smaller the initial temperature rise correction value Ti_comp is corrected, so that the same effects as the first embodiment can be obtained.

第4実施形態は、第3実施形態に対し、上昇温度補正率pの演算を二値選択としたものである。
図13に破線で示す第4実施形態の二値マップでは、補正後基板温度比αs_compが1以下の値である温度比臨界値Cα未満のとき、補正率pは0であり、補正後基板温度比αs_compが温度比臨界値Cα以上のとき、補正率pは1である。
上昇温度記憶値Ti_mに補正率pが乗算されることで、補正後基板温度比αs_compが温度比臨界値Cα未満のとき、初回上昇温度補正値Ti_compは、0に設定される。また、補正後基板温度比αs_compが温度比臨界値Cα以上のとき、初回上昇温度補正値Ti_compは、上昇温度記憶値Ti_mに等しく設定される。
In the fourth embodiment, the calculation of the rising temperature correction rate p is a binary selection with respect to the third embodiment.
In the binary map of the fourth embodiment shown by the broken line in FIG. 13, when the corrected substrate temperature ratio αs_comp is less than the temperature ratio critical value C α which is 1 or less, the correction rate p is 0, and the corrected substrate when the temperature ratio αs_comp is above the temperature ratio threshold value C alpha, correction factor p is 1.
By correction factor p to increase the temperature stored value Ti_m are multiplied, the corrected substrate temperature ratio αs_comp the time below the temperature ratio threshold C alpha, initial rise temperature correction value Ti_comp is set to 0. Further, the corrected substrate temperature ratio αs_comp is when the above temperature ratio threshold value C alpha, initial rise temperature correction value Ti_comp is set equal to the rising temperature storage value Ti_m.

図15のフローチャートに示すように、第4実施形態による再起動時初回処理では、図14のS35及びS36に代えてS45−S47のステップを含む。
補正後基板温度比αs_compが温度比臨界値Cα未満のとき、S45でYESと判断され、S46で初回上昇温度補正値Ti_compが0に設定される。
補正後基板温度比αs_compが温度比臨界値Cα以上のとき、S45でNOと判断され、S47で初回上昇温度補正値Ti_compが上昇温度記憶値Ti_mに等しく設定される。
第4実施形態は、基本的に第3実施形態と同様の作用効果を奏する他、上昇温度補正率pの演算を二値選択とすることで、処理を単純化し、演算負荷を低減することができる。
As shown in the flowchart of FIG. 15, the initial process at the time of restart according to the fourth embodiment includes steps S45 to S47 instead of S35 and S36 of FIG.
When the corrected substrate temperature ratio αs_comp is less than the temperature ratio threshold C alpha, YES is determined in S45, the first elevated temperature correction value Ti_comp is set to 0 in S46.
When the corrected substrate temperature ratio αs_comp is above the temperature ratio threshold value C alpha, NO is determined in S45, the first elevated temperature correction value Ti_comp is set equal to the rising temperature storage value Ti_m at S47.
The fourth embodiment basically has the same effects as those of the third embodiment, and the calculation of the rising temperature correction rate p is selected as a binary value, thereby simplifying the processing and reducing the calculation load. it can.

(第5、第6実施形態)
第5、第6実施形態について、図16〜図21を参照して説明する。第5、第6実施形態では、内外温度差Tdifを用いて初回上昇温度補正値Ti_compを演算する。
図16に示すように、第5実施形態のモータ制御装置105は、図1に示すモータ制御装置101に対し、基板温度記憶部32及び外気温記憶部34を備えない。初回上昇温度補正部405は、駆動回路60の動作停止後の再起動時の初回制御において、基板温度Ts及び外気温Tgの現在値のみに基づいて上昇温度記憶値Ti_mを補正し、初回上昇温度補正値Ti_compを演算する。
(Fifth and sixth embodiments)
Fifth and sixth embodiments will be described with reference to FIGS. In the fifth and sixth embodiments, the first rise temperature correction value Ti_comp is calculated using the inside / outside temperature difference Tdif.
As shown in FIG. 16, the motor control device 105 of the fifth embodiment does not include the substrate temperature storage unit 32 and the outside air temperature storage unit 34 compared to the motor control device 101 shown in FIG. 1. The first rise temperature correction unit 405 corrects the rise temperature storage value Ti_m based on only the current values of the substrate temperature Ts and the outside air temperature Tg in the initial control at the time of restart after the operation of the drive circuit 60 is stopped. The correction value Ti_comp is calculated.

図17に示すように、初回上昇温度補正部405の減算器475は、基板温度現在値Tsから外気温現在値Tgを減じて内外温度差Tdif(=Ts−Tg)を算出する。補正率マップ485は、内外温度差Tdifと上昇温度補正率pとの関係を規定する。
図18に実線で示す第5実施形態の補正率マップ485では、内外温度差Tdifが0のとき補正率pは0であり、内外温度差Tdifが0から大きくなるほど補正率pは増加し、1に漸近する。
As shown in FIG. 17, the subtractor 475 of the first rise temperature correction unit 405 calculates an internal / external temperature difference Tdif (= Ts−Tg) by subtracting the external air temperature current value Tg from the substrate temperature current value Ts. The correction rate map 485 defines the relationship between the internal / external temperature difference Tdif and the rising temperature correction rate p.
In the correction rate map 485 of the fifth embodiment shown by the solid line in FIG. 18, the correction rate p is 0 when the internal / external temperature difference Tdif is 0, and the correction rate p increases as the internal / external temperature difference Tdif increases from 0. Asymptotically.

図19に、第5実施形態による再起動時初回処理のフローチャートを示す。
初回上昇温度補正部405は、S11後のS52で、基板温度Ts及び外気温Tgの現在値を取得するとともに、上昇温度記憶部38から上昇温度記憶値Ti_mを読み込む。
初回上昇温度補正部405は、S54で、内外温度差Tdif(=Ts−Tg)を算出し、S55で、補正率マップ485を参照して上昇温度補正率pを演算する。
以後のS16、S18、S19は、図7等と同様である。
FIG. 19 shows a flowchart of the initial process at the time of restart according to the fifth embodiment.
The first rise temperature correction unit 405 obtains the current values of the substrate temperature Ts and the outside air temperature Tg and reads the rise temperature storage value Ti_m from the rise temperature storage unit 38 in S52 after S11.
The first rise temperature correction unit 405 calculates the internal / external temperature difference Tdif (= Ts−Tg) in S54, and calculates the rise temperature correction rate p with reference to the correction rate map 485 in S55.
Subsequent S16, S18, and S19 are the same as those in FIG.

次に図20のタイムチャートを参照し、第5実施形態の動作例を説明する。
駆動停止時tqには基板温度Tsは外気温Tgより高く、駆動停止中に基板温度Ts、外気温Tgとも低下する。このとき、外気温Tgの低下量に比べ基板温度Tsの低下量が大きいため、内外温度差Tdifは徐々に減少し、再起動時trsには0に近い値となっている。したがって、補正率マップ485より補正率pは0に近い値となる。その結果、電流制限はほとんど不要と判断され、再起動時の初回制御における電流制限値Ilimは、電流最大値Imaxに近い値に設定される。
Next, an operation example of the fifth embodiment will be described with reference to a time chart of FIG.
When the drive is stopped, the substrate temperature Ts is higher than the outside air temperature Tg, and both the substrate temperature Ts and the outside air temperature Tg are lowered during the drive stop. At this time, since the amount of decrease in the substrate temperature Ts is larger than the amount of decrease in the external temperature Tg, the internal / external temperature difference Tdif gradually decreases, and the value at the time of restarting trs is close to zero. Therefore, the correction rate p is close to 0 from the correction rate map 485. As a result, it is determined that the current limit is almost unnecessary, and the current limit value Ilim in the initial control at the time of restart is set to a value close to the maximum current value Imax.

一方、図20の例に対し、再起動時trsの内外温度差Tdifが比較的大きい場合には、補正率pは1に近い値となり、初回上昇温度補正値Ti_compは、上昇温度記憶値Ti_mに近い値となる。その結果、再起動時の初回制御における電流制限値Ilimは、停止時tq直前と同等の値に設定される。
第5実施形態もまた、再起動時の外気温Tgの情報に基づいて上昇温度記憶値Ti_mを補正することで、駆動停止期間中の暗電流を抑制しつつ、再起動時における電流制限を適切に実行することができる。また、上記第1〜第4実施形態に対し、基板温度記憶部32及び外気温記憶部34を不要とすることができる。
On the other hand, in the example of FIG. 20, when the internal / external temperature difference Tdif of the restarting trs is relatively large, the correction rate p becomes a value close to 1, and the initial rise temperature correction value Ti_comp becomes the rise temperature storage value Ti_m. A close value. As a result, the current limit value Ilim in the initial control at the time of restart is set to a value equivalent to that immediately before the stop time tq.
Also in the fifth embodiment, by correcting the elevated temperature memory value Ti_m based on the information of the outside air temperature Tg at the time of restart, the current limit at the time of restart is appropriately controlled while suppressing the dark current during the drive stop period. Can be executed. Moreover, the board | substrate temperature storage part 32 and the external temperature memory | storage part 34 can be made unnecessary with respect to the said 1st-4th embodiment.

第6実施形態は、第5実施形態に対し、上昇温度補正率pの演算を二値選択としたものである。
図18に破線で示す第6実施形態の二値マップでは、内外温度差Tdifが内外温度差臨界値Cdif未満のとき、補正率pは0であり、内外温度差Tdifが内外温度差臨界値Cdif以上のとき、補正率pは1である。
上昇温度記憶値Ti_mに補正率pが乗算されることで、内外温度差Tdifが内外温度差臨界値Cdif未満のとき、初回上昇温度補正値Ti_compは、0に設定される。また、内外温度差Tdifが内外温度差臨界値Cdif以上のとき、初回上昇温度補正値Ti_compは、上昇温度記憶値Ti_mに等しく設定される。
In the sixth embodiment, the calculation of the rising temperature correction rate p is a binary selection with respect to the fifth embodiment.
In the binary map of the sixth embodiment shown by the broken line in FIG. 18, when the internal / external temperature difference Tdif is less than the internal / external temperature difference critical value Cdif, the correction rate p is 0, and the internal / external temperature difference Tdif is the internal / external temperature difference critical value Cdif. At the above time, the correction rate p is 1.
By multiplying the rise temperature memory value Ti_m by the correction factor p, the initial rise temperature correction value Ti_comp is set to 0 when the inside / outside temperature difference Tdif is less than the inside / outside temperature difference critical value Cdif. When the internal / external temperature difference Tdif is equal to or greater than the internal / external temperature difference critical value Cdif, the initial temperature increase correction value Ti_comp is set equal to the temperature increase stored value Ti_m.

図21のフローチャートに示すように、第6実施形態による再起動時初回処理では、図19のS55及びS16に代えてS65−S67のステップを含む。
内外温度差Tdifが内外温度差臨界値Cdif未満のとき、S65でYESと判断され、S66で初回上昇温度補正値Ti_compが0に設定される。
内外温度差Tdifが内外温度差臨界値Cdif以上のとき、S65でNOと判断され、S67で初回上昇温度補正値Ti_compが上昇温度記憶値Ti_mに等しく設定される。
第6実施形態は、基本的に第5実施形態と同様の作用効果を奏する他、上昇温度補正率pの演算を二値選択とすることで、処理を単純化し、演算負荷を低減することができる。
As shown in the flowchart of FIG. 21, the initial process at the time of restart according to the sixth embodiment includes steps S65 to S67 instead of S55 and S16 of FIG.
When the internal / external temperature difference Tdif is less than the internal / external temperature difference critical value Cdif, YES is determined in S65, and the initial rise temperature correction value Ti_comp is set to 0 in S66.
When the internal / external temperature difference Tdif is equal to or greater than the internal / external temperature difference critical value Cdif, NO is determined in S65, and the initial temperature increase correction value Ti_comp is set equal to the temperature increase stored value Ti_m in S67.
The sixth embodiment basically has the same effect as that of the fifth embodiment, and the calculation of the rising temperature correction factor p is made binary selection, thereby simplifying the processing and reducing the calculation load. it can.

(その他の実施形態)
(a)第1、第2実施形態の初回上昇温度補正部401の演算において、基板温度差ΔTs及び外気温差ΔTgの算出式を、上記の式(3.1)、(3.2)とは逆に、式(7.1)、(7.2)のように定義してもよい。
ΔTs=Ts_m−Ts ・・・(7.1)
ΔTg=Tg_m−Tg ・・・(7.2)
(Other embodiments)
(A) In the calculation of the first rise temperature correction unit 401 in the first and second embodiments, the calculation formulas for the substrate temperature difference ΔTs and the outside air temperature difference ΔTg are the above formulas (3.1) and (3.2). On the contrary, they may be defined as in equations (7.1) and (7.2).
ΔTs = Ts_m−Ts (7.1)
ΔTg = Tg_m−Tg (7.2)

この場合、上昇温度補正率マップは、図4のマップに対し「ΔTs_comp=0」の位置を対称として横軸が正負反転して表される。正の補正後基板温度差ΔTs_compが大きいほど、上昇温度補正率pが1から小さくなり、0に漸近する。つまり、初回上昇温度補正部は、補正後基板温度差ΔTs_compが大きいほど初回上昇温度補正値Ti_compを小さくするように補正する。
また、補正率マップは、補正後基板温度差ΔTs_compの下限を0とし、補正率pが1で一定となる「ΔTs_comp<0」の領域を省略してもよい。
In this case, the temperature increase correction rate map is represented by inverting the horizontal axis between positive and negative with respect to the map of FIG. 4 with the position of “ΔTs_comp = 0” being symmetric. As the positive post-correction substrate temperature difference ΔTs_comp is larger, the rising temperature correction rate p is decreased from 1 and gradually approaches 0. That is, the first temperature rise correction unit corrects the first temperature rise correction value Ti_comp to be smaller as the corrected substrate temperature difference ΔTs_comp is larger.
In the correction rate map, the lower limit of the corrected substrate temperature difference ΔTs_comp may be set to 0, and the region of “ΔTs_comp <0” where the correction rate p is constant at 1 may be omitted.

第2実施形態に対応する二値マップでは、補正後基板温度差ΔTs_compが温度差臨界値CΔTより大きいとき補正率pが0となり、補正後基板温度差ΔTs_compが温度差臨界値CΔT以下のとき補正率pが1となる。
このように、式の正負を逆に定義することで大小関係が反転するに過ぎない形態は、特許請求の範囲に記載された発明の技術的範囲に含まれるものと解釈する。
In the binary map corresponding to the second embodiment, when the corrected substrate temperature difference ΔTs_comp is larger than the temperature difference critical value C ΔT, the correction rate p becomes 0, and the corrected substrate temperature difference ΔTs_comp is equal to or lower than the temperature difference critical value C ΔT . Sometimes the correction factor p is 1.
Thus, a form in which the magnitude relationship is merely reversed by defining the positive and negative of the expression in reverse is interpreted as being included in the technical scope of the invention described in the claims.

(b)第3、第4実施形態の初回上昇温度補正部403の演算において、基板温度比αs及び外気温比αgの算出式を、上記の式(6.1)、(6.2)とは逆に、式(8.1)、(8.2)のように定義してもよい。
αs=[Ts_m]/[Ts] ・・・(8.1)
αg=[Tg_m]/[Tg] ・・・(8.2)
(B) In the calculation of the first rise temperature correction unit 403 of the third and fourth embodiments, the calculation formulas for the substrate temperature ratio αs and the outside air temperature ratio αg are the above formulas (6.1) and (6.2). On the contrary, they may be defined as in equations (8.1) and (8.2).
αs = [Ts_m] / [Ts] (8.1)
αg = [Tg_m] / [Tg] (8.2)

この場合、上昇温度補正率マップは、図13のマップに対し「αs_comp=1」の位置を基準として横軸が逆数の関係に表される。補正後基板温度比αs_compが1より大きいほど、上昇温度補正率pが1から小さくなり、0に漸近する。つまり、初回上昇温度補正部は、補正後基板温度比αs_compが大きいほど初回上昇温度補正値Ti_compを小さくするように補正する。
また、補正率マップは、補正後基板温度比αs_compの下限を1とし、補正率pが1で一定となる「αs_comp<1」の領域を省略してもよい。
In this case, the rising temperature correction factor map is represented by a reciprocal relationship on the horizontal axis with respect to the map of FIG. 13 with the position of “αs_comp = 1” as a reference. As the post-correction substrate temperature ratio αs_comp is larger than 1, the rising temperature correction rate p decreases from 1 and gradually approaches 0. That is, the first temperature rise correction unit corrects the first temperature rise correction value Ti_comp to be smaller as the post-correction substrate temperature ratio αs_comp is larger.
In the correction rate map, the lower limit of the post-correction substrate temperature ratio αs_comp may be set to 1, and the region of “αs_comp <1” where the correction rate p is constant at 1 may be omitted.

第4実施形態に対応する二値マップでは、補正後基板温度比αs_compが温度比臨界値Cαより大きいとき補正率pが0となり、補正後基板温度比αs_compが温度比臨界値Cα以下のとき補正率pが1となる。
このように、式の分母、分子を逆に定義することで大小関係が反転するに過ぎない形態は、特許請求の範囲に記載された発明の技術的範囲に含まれるものと解釈する。
なお、温度換算における基準温度Toを処理対象温度範囲の高温側に設定する場合にも演算値の大小関係が反転する。この形態も同様に、特許請求の範囲に記載された発明の技術的範囲に含まれるものと解釈する。
The binary map corresponding to the fourth embodiment, the corrected substrate temperature ratio αs_comp is next zero correction factor p when the temperature ratio is greater than a critical value C alpha, corrected substrate temperature ratio αs_comp temperature ratio threshold C alpha following Sometimes the correction factor p is 1.
As described above, a form in which the magnitude relationship is merely reversed by defining the denominator and the numerator in reverse is interpreted as being included in the technical scope of the invention described in the claims.
Note that the magnitude relationship of the calculated values is also reversed when the reference temperature To in the temperature conversion is set to the high temperature side of the processing target temperature range. This form is also interpreted as being included in the technical scope of the invention described in the claims.

(c)上記実施形態の初回上昇温度補正部は、補正用引数から求めた上昇温度補正率pを上昇温度記憶値Ti_mに乗ずることにより、初回上昇温度補正値Ti_compを演算している。他の実施形態では、補正率pを用いず、上昇温度記憶値Ti_m毎に補正用引数と初回上昇温度補正値Ti_compとの関係を直接規定した複数のマップにより、上昇温度記憶値Ti_mを補正するようにしてもよい。   (C) The first rise temperature correction unit of the above embodiment calculates the first rise temperature correction value Ti_comp by multiplying the rise temperature storage value Ti_m by the rise temperature correction rate p obtained from the correction argument. In another embodiment, the corrected temperature p is not used, and the increased temperature stored value Ti_m is corrected by a plurality of maps that directly define the relationship between the correction argument and the initial increased temperature corrected value Ti_comp for each increased temperature stored value Ti_m. You may do it.

(d)モータ制御装置の駆動回路、及び、駆動されるモータは、上記実施形態で例示したインバータ及び三相ブラシレスモータに限らず、Hブリッジ回路及びDCモータ等であってもよい。
(e)本発明のモータ制御装置は、電動パワーステアリング装置の操舵アシストモータに限らず、どのようなモータを駆動する装置として適用されてもよい。特に駆動停止期間中の外気温の変化が比較的大きい車載用モータ等の制御装置として有効である。
以上、本発明はこのような実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の形態で実施することができる。
(D) The drive circuit of the motor control device and the motor to be driven are not limited to the inverter and the three-phase brushless motor exemplified in the above embodiment, but may be an H bridge circuit, a DC motor, or the like.
(E) The motor control device of the present invention is not limited to the steering assist motor of the electric power steering device, and may be applied as a device for driving any motor. In particular, it is effective as a control device for a vehicle-mounted motor or the like in which the change in the outside air temperature during the drive stop period is relatively large.
As mentioned above, this invention is not limited to such embodiment, In the range which does not deviate from the meaning of invention, it can implement with a various form.

101、105・・・モータ制御装置、
20・・・基板、
31・・・基板温度取得部、 32・・・基板温度記憶部、
33・・・外気温取得部、 34・・・外気温記憶部、
37・・・上昇温度推定部、 38・・・上昇温度記憶部、
401、403、405・・・初回上昇温度補正部、
51・・・電流制限値演算部、
60・・・駆動回路、
71・・・基板温度センサ、 73・・・外気温センサ、
80・・・モータ。
101, 105 ... motor control device,
20 ... substrate,
31 ... Substrate temperature acquisition unit, 32 ... Substrate temperature storage unit,
33 ... Outside temperature acquisition unit, 34 ... Outside temperature storage unit,
37 ... rising temperature estimation unit, 38 ... rising temperature storage unit,
401, 403, 405 ... first rise temperature correction unit,
51 ... Current limit value calculation unit,
60 ... Drive circuit,
71 ... Substrate temperature sensor, 73 ... Outside air temperature sensor,
80: Motor.

Claims (12)

モータ(80)を駆動する駆動回路(60)と、
前記駆動回路が搭載された基板(20)と、
前記基板の温度(Ts)を検出する基板温度センサ(71)と、
前記基板温度センサが検出した基板温度を取得する基板温度取得部(31)と、
前記基板温度取得部が取得した任意の基準時の基板温度を基板温度記憶値(Ts_m)として記憶する基板温度記憶部(32)と、
外気温センサ(73)が検出した外気温(Tg)を取得する外気温取得部(33)と、
前記外気温取得部が取得した前記基準時の外気温を外気温記憶値(Tg_m)として記憶する外気温記憶部(34)と、
前記モータ又は前記駆動回路に流れる電流の値に基づき、前記駆動回路の素子の上昇温度(Ti)を推定する上昇温度推定部(37)と、
前記上昇温度推定部が推定した上昇温度を上昇温度記憶値(Ti_m)として記憶する上昇温度記憶部(38)と、
前記上昇温度推定部が推定した前記上昇温度に基づき、前記上昇温度が大きいほど前記モータに通電する電流を制限するように電流制限値を演算する電流制限値演算部(51)と、
前記駆動回路による前記モータの駆動停止後の再起動時の初回制御において、前記基板温度記憶値、基板温度現在値、前記外気温記憶値及び外気温現在値に基づいて算出した補正用引数を用いて前記上昇温度記憶値を補正し、初回上昇温度補正値(Ti_comp)を演算する初回上昇温度補正部(401、403)と、
を備え、
前記初回上昇温度補正部は、前記外気温記憶値から外気温現在値への変化に対し、前記基板温度記憶値から基板温度現在値への低下度合いが相対的に大きいほど、前記初回上昇温度補正値を小さくするように補正するモータ制御装置。
A drive circuit (60) for driving the motor (80);
A substrate (20) on which the drive circuit is mounted;
A substrate temperature sensor (71) for detecting the temperature (Ts) of the substrate;
A substrate temperature acquisition unit (31) for acquiring a substrate temperature detected by the substrate temperature sensor;
A substrate temperature storage unit (32) for storing an arbitrary reference substrate temperature acquired by the substrate temperature acquisition unit as a substrate temperature storage value (Ts_m);
An outside air temperature acquisition unit (33) for acquiring the outside air temperature (Tg) detected by the outside air temperature sensor (73);
An outside air temperature storage unit (34) for storing the outside air temperature at the reference time acquired by the outside air temperature acquisition unit as an outside air temperature memory value (Tg_m);
A temperature rise estimation unit (37) for estimating a temperature rise (Ti) of an element of the drive circuit based on a value of a current flowing through the motor or the drive circuit;
A rise temperature storage section (38) for storing the rise temperature estimated by the rise temperature estimation section as a rise temperature storage value (Ti_m);
A current limit value calculation unit (51) that calculates a current limit value so as to limit a current to be supplied to the motor as the temperature rises, based on the rise temperature estimated by the rise temperature estimation unit;
In the initial control at the time of restart after the drive of the motor is stopped by the drive circuit, the correction argument calculated based on the substrate temperature memory value, the substrate temperature current value, the outside air temperature memory value, and the outside air temperature current value is used. First temperature rise correction unit (401, 403) for correcting the rise temperature memory value and calculating the first temperature rise correction value (Ti_comp);
With
The first rise temperature correction unit corrects the first rise temperature correction as the degree of decrease from the substrate temperature storage value to the substrate temperature current value is relatively large with respect to the change from the outside temperature storage value to the outside air temperature current value. Motor control device that corrects the value to be smaller.
前記基準時は、前記駆動回路の通電がオフした時、及び、当該通電オフ時における基板温度及び外気温との温度差が実質的に無視可能な時間範囲を含む駆動停止時である請求項1に記載のモータ制御装置。   2. The reference time is when the drive circuit is turned off, and when the drive is stopped including a time range in which a temperature difference between the substrate temperature and the outside air temperature at the time of turning off the current is substantially negligible. The motor control device described in 1. 前記初回上昇温度補正部(401)は、
前記基板温度記憶値と基板温度現在値との差である基板温度差(ΔTs)、及び、前記外気温記憶値と外気温現在値との差である外気温差(ΔTg)に基づいて、前記補正用引数である補正後基板温度差(ΔTs_comp)を演算する請求項1または2に記載のモータ制御装置。
The first rise temperature correction unit (401)
Based on the substrate temperature difference (ΔTs) that is the difference between the substrate temperature stored value and the substrate temperature current value, and the outside air temperature difference (ΔTg) that is the difference between the outside air temperature stored value and the outside air temperature current value, The motor control device according to claim 1 or 2, wherein a corrected substrate temperature difference (ΔTs_comp) that is a correction argument is calculated.
基板温度現在値から前記基板温度記憶値を減じた値を前記基板温度差と定義し、外気温現在値から前記外気温記憶値を減じた値を前記外気温差と定義したとき、
前記初回上昇温度補正部は、前記外気温差に正の補正係数(k)を乗じた値を前記基板温度差から減じて前記補正後基板温度差を算出し、前記補正後基板温度差が小さいほど前記初回上昇温度補正値を小さくするように補正する請求項3に記載のモータ制御装置。
A value obtained by subtracting the substrate temperature memory value from the substrate temperature current value is defined as the substrate temperature difference, and a value obtained by subtracting the outside air temperature memory value from the outside air temperature current value is defined as the outside air temperature difference.
The first rise temperature correction unit calculates the corrected substrate temperature difference by subtracting a value obtained by multiplying the outside air temperature difference by a positive correction coefficient (k) from the substrate temperature difference, and the corrected substrate temperature difference is small. The motor control device according to claim 3, wherein the correction is performed so that the initial temperature rise correction value is decreased.
前記初回上昇温度補正部は、前記補正後基板温度差が正の場合、前記補正後基板温度差を0として扱う請求項4に記載のモータ制御装置。   5. The motor control device according to claim 4, wherein the first temperature rise correction unit treats the post-correction substrate temperature difference as 0 when the post-correction substrate temperature difference is positive. 前記初回上昇温度補正部は、
前記補正後基板温度差が0以下の値である温度差臨界値(CΔT)未満のとき、前記初回上昇温度補正値を0に設定し、
前記補正後基板温度差が前記温度差臨界値以上のとき、前記初回上昇温度補正値を前記上昇温度記憶値に等しく設定する請求項4または5に記載のモータ制御装置。
The initial temperature rise correction unit is
When the substrate temperature difference after correction is less than the temperature difference critical value (C ΔT ) which is a value of 0 or less, the initial temperature increase correction value is set to 0;
6. The motor control device according to claim 4, wherein when the corrected substrate temperature difference is equal to or greater than the temperature difference critical value, the initial temperature increase correction value is set equal to the temperature increase stored value.
前記初回上昇温度補正部(403)は、
前記基板温度記憶値、基板温度現在値、前記外気温記憶値及び外気温現在値について、所定の処理対象温度範囲外の基準温度(To)からの差分で表される温度値に換算し
前記基板温度記憶値と基板温度現在値との比である基板温度比(αs)、及び、前記外気温記憶値と外気温現在値との比である外気温比(αg)に基づいて、前記補正用引数である補正後基板温度比(αs_comp)を演算する請求項1または2に記載のモータ制御装置。
The first rise temperature correction unit (403)
The substrate temperature storage value, the substrate temperature current value, the outside air temperature storage value, and the outside air temperature current value are converted into a temperature value represented by a difference from a reference temperature (To) outside a predetermined processing target temperature range. Based on the substrate temperature ratio (αs), which is the ratio between the temperature memory value and the substrate temperature current value, and the outside air temperature ratio (αg), which is the ratio between the outside air temperature memory value and the outside air temperature current value, The motor control device according to claim 1, wherein the corrected substrate temperature ratio (αs_comp) as an argument is calculated.
前記基準温度は、前記処理対象温度範囲の低温側に設定され、
基板温度現在値を前記基板温度記憶値で除した値を前記基板温度比と定義し、外気温現在値を前記外気温記憶値で除した値を前記外気温比と定義したとき、
前記初回上昇温度補正部は、前記基板温度比を前記外気温比で除して前記補正後基板温度比を算出し、前記補正後基板温度比が小さいほど前記初回上昇温度補正値を小さくするように補正する請求項7に記載のモータ制御装置。
The reference temperature is set on the low temperature side of the processing target temperature range,
A value obtained by dividing the substrate temperature current value by the substrate temperature stored value is defined as the substrate temperature ratio, and a value obtained by dividing the current outside air temperature value by the outside air temperature stored value is defined as the outside air temperature ratio.
The initial temperature rise correction unit calculates the corrected substrate temperature ratio by dividing the substrate temperature ratio by the outside air temperature ratio, and decreases the initial temperature rise correction value as the corrected substrate temperature ratio decreases. The motor control device according to claim 7, wherein
前記初回上昇温度補正部は、前記補正後基板温度比が1より大きい場合、前記補正後基板温度比を1として扱う請求項8に記載のモータ制御装置。   The motor control device according to claim 8, wherein the first temperature rise correction unit treats the post-correction substrate temperature ratio as 1 when the post-correction substrate temperature ratio is greater than one. 前記初回上昇温度補正部は、
前記補正後基板温度比が1以下の値である温度比臨界値(Cα)未満のとき、前記初回上昇温度補正値を0に設定し、
前記補正後基板温度比が前記温度比臨界値以上のとき、前記初回上昇温度補正値を前記上昇温度記憶値に等しく設定する請求項8または9に記載のモータ制御装置。
The initial temperature rise correction unit is
When the corrected substrate temperature ratio is less than the temperature ratio critical value (C α ) which is a value of 1 or less, the initial temperature rise correction value is set to 0;
10. The motor control device according to claim 8, wherein when the post-correction substrate temperature ratio is equal to or greater than the temperature ratio critical value, the initial temperature increase correction value is set equal to the temperature increase memory value.
モータ(80)を駆動する駆動回路(60)と、
前記駆動回路が搭載された基板(20)と、
前記基板の温度(Ts)を検出する基板温度センサ(71)と、
前記基板温度センサが検出した基板温度を取得する基板温度取得部(31)と、
外気温センサ(73)が検出した外気温(Tg)を取得する外気温取得部(33)と、
前記モータ又は前記駆動回路に流れる電流の値に基づき、前記駆動回路の素子の上昇温度(Ti)を推定する上昇温度推定部(37)と、
前記上昇温度推定部が推定した上昇温度を上昇温度記憶値(Ti_m)として記憶する上昇温度記憶部(38)と、
前記上昇温度推定部が推定した前記上昇温度に基づき、前記上昇温度が大きいほど前記モータに通電する電流を制限するように電流制限値を演算する電流制限値演算部(51)と、
前記駆動回路による前記モータの駆動停止後の再起動時の初回制御において、基板温度現在値から外気温現在値を減じた内外温度値(Tdif)に基づいて前記上昇温度記憶値を補正し、初回上昇温度補正値(Ti_comp)を演算する初回上昇温度補正部(405)と、
を備え、
前記初回上昇温度補正部は、前記内外温度差が小さいほど、前記初回上昇温度補正値を小さくするように補正するモータ制御装置。
A drive circuit (60) for driving the motor (80);
A substrate (20) on which the drive circuit is mounted;
A substrate temperature sensor (71) for detecting the temperature (Ts) of the substrate;
A substrate temperature acquisition unit (31) for acquiring a substrate temperature detected by the substrate temperature sensor;
An outside air temperature acquisition unit (33) for acquiring the outside air temperature (Tg) detected by the outside air temperature sensor (73);
A temperature rise estimation unit (37) for estimating a temperature rise (Ti) of an element of the drive circuit based on a value of a current flowing through the motor or the drive circuit;
A rise temperature storage section (38) for storing the rise temperature estimated by the rise temperature estimation section as a rise temperature storage value (Ti_m);
A current limit value calculation unit (51) that calculates a current limit value so as to limit a current to be supplied to the motor as the temperature rises, based on the rise temperature estimated by the rise temperature estimation unit;
In the initial control at the time of restart after the drive of the motor is stopped by the drive circuit, the elevated temperature memory value is corrected based on the internal / external temperature value (Tdif) obtained by subtracting the current outside air temperature from the current substrate temperature. An initial temperature rise correction unit (405) for calculating a temperature rise correction value (Ti_comp);
With
The first temperature rise correction unit corrects the first temperature rise correction value to be smaller as the internal / external temperature difference is smaller.
前記初回上昇温度補正部は、前記内外温度差が内外温度差臨界値(Cdif)未満のとき、前記初回上昇温度補正値を0に設定し、
前記内外温度差が前記内外温度差臨界値以上のとき、前記初回上昇温度補正値を前記上昇温度記憶値に等しく設定する請求項11に記載のモータ制御装置。
The first rise temperature correction unit sets the first rise temperature correction value to 0 when the inside / outside temperature difference is less than the inside / outside temperature difference critical value (Cdif),
12. The motor control device according to claim 11, wherein when the internal / external temperature difference is equal to or greater than the internal / external temperature difference critical value, the initial temperature increase correction value is set equal to the temperature increase memory value.
JP2016208539A 2016-10-25 2016-10-25 Motor controller Expired - Fee Related JP6733494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016208539A JP6733494B2 (en) 2016-10-25 2016-10-25 Motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208539A JP6733494B2 (en) 2016-10-25 2016-10-25 Motor controller

Publications (2)

Publication Number Publication Date
JP2018074646A true JP2018074646A (en) 2018-05-10
JP6733494B2 JP6733494B2 (en) 2020-07-29

Family

ID=62115967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208539A Expired - Fee Related JP6733494B2 (en) 2016-10-25 2016-10-25 Motor controller

Country Status (1)

Country Link
JP (1) JP6733494B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932603A (en) * 2019-11-22 2020-03-27 北京北斗银河科技有限公司 Control method and control device for anti-interference restarting of motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932603A (en) * 2019-11-22 2020-03-27 北京北斗银河科技有限公司 Control method and control device for anti-interference restarting of motor

Also Published As

Publication number Publication date
JP6733494B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US10029727B2 (en) Rotating electric machine control device
JP6488089B2 (en) Motor control device and control method
JP6500566B2 (en) Control system for vehicle drive motor
CN106936367B (en) Motor control device
JP6683116B2 (en) Motor control device
JP7047964B2 (en) Inverter controller
US10486737B2 (en) Steering control device
JP6072290B2 (en) Inverter protection device for vehicle
JPWO2018142952A1 (en) Motor control device
JP6733494B2 (en) Motor controller
JP2009254138A (en) Motor control device
JP2013238234A (en) Method for cooling internal combustion engine with range extender and device for cooling internal combustion engine with range extender
WO2019021469A1 (en) Apparatus protection device and apparatus protection method
JP2013127411A (en) Computing device of temperature of switching element in occurrence of motor lock
JP6459229B2 (en) Electric power steering device
WO2018198740A1 (en) Motor drive device, and electric power steering device
JP3430907B2 (en) Inverter thermal protection device and thermal protection method for conductive heating element
JP5134042B2 (en) Electric power steering device
JP2021158788A (en) Driving device and control method of the driving device
JP5983546B2 (en) Nonvolatile memory control device
WO2019189648A1 (en) Method for estimating temperature of power source coil
JP7180793B1 (en) Motor control method and motor control device
JP6925313B2 (en) Power converter
JP2022037283A (en) Power conversion apparatus and control apparatus
JP6020160B2 (en) Inverter warm-up control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R151 Written notification of patent or utility model registration

Ref document number: 6733494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees