JP2018073509A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2018073509A
JP2018073509A JP2016208777A JP2016208777A JP2018073509A JP 2018073509 A JP2018073509 A JP 2018073509A JP 2016208777 A JP2016208777 A JP 2016208777A JP 2016208777 A JP2016208777 A JP 2016208777A JP 2018073509 A JP2018073509 A JP 2018073509A
Authority
JP
Japan
Prior art keywords
outermost
plates
electrode plate
electrode
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016208777A
Other languages
Japanese (ja)
Other versions
JP6802687B2 (en
Inventor
賢志 濱岡
Kenji Hamaoka
賢志 濱岡
雅人 小笠原
Masahito Ogasawara
雅人 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2016208777A priority Critical patent/JP6802687B2/en
Publication of JP2018073509A publication Critical patent/JP2018073509A/en
Application granted granted Critical
Publication of JP6802687B2 publication Critical patent/JP6802687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device capable of improving reliability.SOLUTION: In a power storage device 1, the thickness of outermost electrode plates 11A and 11B arranged on the outermost side in a laminate direction of an electrode plate 11 included in a laminate body 2 is larger than the other electrode plate 11 arranged in an inner side in the laminate direction. That is, the outermost electrode plates 11A and 11B receive a force inducing deformation due to influence of differential pressure of an inner pressure and an atmospheric pressure of the laminate body 2 in a seal part 4 to the outer side in the laminate direction. The thickness of the outermost electrode plates 11A and 11B is higher than that of the other electrode plate 11, and the intensity of them becomes increase. Therefore, the deterioration due to influence of the force acting on the outermost electrode plates 11A and 11B can be suppressed. Thus, reliability of the power storage device 1 can be improved.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電装置に関する。   The present invention relates to a power storage device.

従来の蓄電装置として、電極板の一方面に正極が形成され、他方面に負極が形成されたバイポーラ電極を備えたバイポーラ電池が知られている(特許文献1参照)。バイポーラ電池は、セパレータを介して複数のバイポーラ電極を積層してなる積層体を備えている。積層体には、シール部が設けられ、バイポーラ電極の積層によって形成される側面が保持されるようになっている。   As a conventional power storage device, a bipolar battery including a bipolar electrode in which a positive electrode is formed on one surface of an electrode plate and a negative electrode is formed on the other surface is known (see Patent Document 1). The bipolar battery is provided with a laminate formed by laminating a plurality of bipolar electrodes via a separator. The laminated body is provided with a seal portion so that side surfaces formed by the lamination of bipolar electrodes are held.

特開2007−122977号公報JP 2007-122977 A

上述のような蓄電装置では、積層方向における内側のバイポーラ電極間では、当該バイポーラ電極間の圧力のバランスが保たれることにより、電極板に変形を誘発するような力が作用しない。その一方、積層方向における最も外側の電極板には、積層体の内圧と大気圧との差圧の影響により変形を誘発する力が作用する場合がある。これにより、蓄電装置の信頼性に影響が及ぼされる場合がある。従って、蓄電装置の信頼性を向上することが要請されていた。   In the power storage device as described above, a pressure that induces deformation on the electrode plate does not act between the bipolar electrodes on the inner side in the stacking direction because the pressure balance between the bipolar electrodes is maintained. On the other hand, a force that induces deformation may act on the outermost electrode plate in the stacking direction due to the effect of the differential pressure between the internal pressure of the stack and the atmospheric pressure. This may affect the reliability of the power storage device. Therefore, there has been a demand for improving the reliability of the power storage device.

本発明は、上記課題の解決のためになされたものであり、信頼性を向上することができる蓄電装置を提供することを目的とする。   SUMMARY An advantage of some aspects of the invention is that it provides a power storage device that can improve reliability.

本発明の一側面に係る蓄電装置は、一方面側に正極が形成され、かつ他方面側に負極が形成された電極板で構成されるバイポーラ電極を有する蓄電装置であって、セパレータを介してバイポーラ電極を交互に積層してなる積層体と、積層体のうち、少なくとも電極板の縁部同士の間に形成されたシール部と、を備え、積層体に含まれる電極板のうち、積層方向における最も外側に配置される最外電極板の厚みは、積層方向における内側に配置される他の電極板の厚みよりも大きい。   A power storage device according to one aspect of the present invention is a power storage device having a bipolar electrode composed of an electrode plate having a positive electrode formed on one side and a negative electrode formed on the other side, with a separator interposed therebetween. A laminated body formed by alternately laminating bipolar electrodes, and a seal portion formed between at least the edges of the electrode plates of the laminated body, and the laminating direction of the electrode plates included in the laminated body The thickness of the outermost electrode plate disposed on the outermost side is greater than the thicknesses of the other electrode plates disposed on the inner side in the stacking direction.

この蓄電装置では、積層体に含まれる電極板のうち、積層方向における最も外側に配置される最外電極板の厚みは、積層方向における内側に配置される他の電極板の厚みよりも大きい。すなわち、最外電極板は、シール部内における積層体の内圧と大気圧との差圧の影響によって、積層方向の外側への変形を誘発する力を受けるが、当該最外電極板は、他の電極板に比して厚みが大きく強度が高くなっている。従って、最外電極板に作用する力の影響による変形を抑制することができる。これにより、蓄電装置の信頼性を向上することができる。   In this power storage device, among the electrode plates included in the stacked body, the thickness of the outermost electrode plate disposed on the outermost side in the stacking direction is greater than the thickness of the other electrode plate disposed on the inner side in the stacking direction. That is, the outermost electrode plate receives a force that induces deformation to the outside in the laminating direction due to the influence of the differential pressure between the internal pressure of the laminated body and the atmospheric pressure in the seal portion. Compared with the electrode plate, the thickness is large and the strength is high. Therefore, deformation due to the influence of the force acting on the outermost electrode plate can be suppressed. Thereby, the reliability of the power storage device can be improved.

また、最外電極板は、積層された複数の金属箔によって構成されていてよい。このような構成により、複数の金属箔を積層するだけの作業で容易に最外電極板の厚みを大きくすることができる。また、他の電極板と共通の電極箔を用いて最外電極板の厚みを大きくすることも可能となる。従って、最外電極板の製造容易性を向上できる。   The outermost electrode plate may be composed of a plurality of laminated metal foils. With such a configuration, it is possible to easily increase the thickness of the outermost electrode plate by simply stacking a plurality of metal foils. In addition, it is possible to increase the thickness of the outermost electrode plate by using an electrode foil common to other electrode plates. Therefore, it is possible to improve the manufacturability of the outermost electrode plate.

また、最外電極板は、金属箔と、金属箔の表面に形成されためっき層と、を備えてよい。このような構成により、めっき層の厚さを調整することで、最外電極板の厚みの調整を容易に行うことができる。   The outermost electrode plate may include a metal foil and a plating layer formed on the surface of the metal foil. With such a configuration, the thickness of the outermost electrode plate can be easily adjusted by adjusting the thickness of the plating layer.

また、最外電極板は、他の電極板を構成する金属箔に比して、厚みが大きい金属箔によって構成されてよい。このような構成により、一枚の金属箔自体の厚みを大きくすることで最外電極板の厚みを大きくすることができるため、複数の金属箔を重ねた場合に生じるような金属箔同士の接触抵抗が生じない。従って、最外電極板での電気的な特性を安定させることができる。   Further, the outermost electrode plate may be made of a metal foil having a thickness larger than that of the metal foil constituting the other electrode plate. With such a configuration, it is possible to increase the thickness of the outermost electrode plate by increasing the thickness of one metal foil itself, so that contact between metal foils as occurs when a plurality of metal foils are stacked. There is no resistance. Therefore, the electrical characteristics at the outermost electrode plate can be stabilized.

また、蓄電装置は、積層体を積層方向における外側から拘束する一対の拘束板を更に備え、拘束板は最外電極板と接触し、且つ、電流を取り出す取出部と接続されていてよい。このような構成により、拘束板は、内圧と大気圧の差圧の影響で積層方向の外側へ変形しようとする最外電極板を支持することができる。従って、拘束板は、最外電極板の変形を抑制することができる。更に、拘束板は、積層体を拘束する機能を有すると共に、積層体で生じる電流を集電する集電機能を兼ねることができる。従って、拘束板は、取出部と最外電極板との間で電流の経路を拡大または収束させるための距離を確保することができる。これにより、バイポーラ電極における発電のムラを低減できる。   The power storage device may further include a pair of restraining plates that restrain the stacked body from the outside in the stacking direction, and the restraining plates may be in contact with the outermost electrode plate and connected to an extraction portion that extracts current. With such a configuration, the constraining plate can support the outermost electrode plate that tends to deform outward in the stacking direction due to the influence of the differential pressure between the internal pressure and the atmospheric pressure. Therefore, the constraining plate can suppress deformation of the outermost electrode plate. Further, the restraint plate has a function of restraining the laminated body and can also serve as a current collecting function for collecting current generated in the laminated body. Therefore, the constraining plate can secure a distance for enlarging or converging the current path between the extraction portion and the outermost electrode plate. Thereby, the nonuniformity of the electric power generation in a bipolar electrode can be reduced.

本発明によれば、蓄電装置の信頼性を向上することができる。   According to the present invention, the reliability of the power storage device can be improved.

本発明の一実施形態に係る蓄電装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the electrical storage apparatus which concerns on one Embodiment of this invention. 最外電極板の構成を示す拡大図である。It is an enlarged view which shows the structure of an outermost electrode plate. 最外電極板及び電極板の概念図である。It is a conceptual diagram of an outermost electrode plate and an electrode plate. 変形例に係る蓄電装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the electrical storage apparatus which concerns on a modification.

以下、図面を参照しながら、本発明の一側面に係る蓄電装置の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of a power storage device according to one aspect of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態に係る蓄電装置の構成を示す概略断面図である。同図に示す蓄電装置1は、バイポーラ電極3の積層体2を備えたバイポーラ電池である。蓄電装置1は、例えばニッケル水素二次電池、リチウムイオン二次電池などの二次電池、或いは電気二重層キャパシタである。蓄電装置1は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリとして用いられる。以下の説明では、ニッケル水素二次電池を例示する。   FIG. 1 is a schematic cross-sectional view illustrating a configuration of a power storage device according to an embodiment of the present invention. The power storage device 1 shown in the figure is a bipolar battery including a laminated body 2 of bipolar electrodes 3. The power storage device 1 is, for example, a secondary battery such as a nickel metal hydride secondary battery or a lithium ion secondary battery, or an electric double layer capacitor. The power storage device 1 is used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles. In the following description, a nickel metal hydride secondary battery is illustrated.

蓄電装置1は、上述したバイポーラ電極3の積層体2と、積層体2を保持するシール部4と、積層体2を拘束する拘束部材5とを備えている。   The power storage device 1 includes the laminate 2 of the bipolar electrode 3 described above, a seal portion 4 that holds the laminate 2, and a restraining member 5 that restrains the laminate 2.

積層体2は、セパレータ6を介して複数のバイポーラ電極3を積層することによって構成されている。バイポーラ電極3のそれぞれは、電極板11と、電極板11の一方面11aに設けられた正極12と、電極板11の他方面11bに設けられた負極13とを有している。積層体2において、一のバイポーラ電極3の正極12は、積層方向に隣り合う一方のバイポーラ電極3の負極13と対向し、一のバイポーラ電極3の負極13は、積層方向に隣り合う他方のバイポーラ電極の正極12と対向している。   The laminate 2 is configured by laminating a plurality of bipolar electrodes 3 with separators 6 interposed therebetween. Each of the bipolar electrodes 3 includes an electrode plate 11, a positive electrode 12 provided on one surface 11 a of the electrode plate 11, and a negative electrode 13 provided on the other surface 11 b of the electrode plate 11. In the laminate 2, the positive electrode 12 of one bipolar electrode 3 faces the negative electrode 13 of one bipolar electrode 3 adjacent in the stacking direction, and the negative electrode 13 of one bipolar electrode 3 is the other bipolar electrode adjacent in the stacking direction. Opposite the positive electrode 12 of the electrode.

電極板11は、例えばニッケルからなる金属箔である。後述の最外電極板11A,11B以外の電極板11の厚さは、例えば0.1μm〜1000μm程度となっている。正極12を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極13を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。電極板11の他方面11bにおける負極13の形成領域は、電極板11の一方面11aにおける正極12の形成領域に対して一回り大きくてもよい。   The electrode plate 11 is a metal foil made of nickel, for example. The thickness of the electrode plates 11 other than the outermost electrode plates 11A and 11B described later is, for example, about 0.1 μm to 1000 μm. An example of the positive electrode active material constituting the positive electrode 12 is nickel hydroxide. An example of the negative electrode active material constituting the negative electrode 13 is a hydrogen storage alloy. The formation region of the negative electrode 13 on the other surface 11 b of the electrode plate 11 may be slightly larger than the formation region of the positive electrode 12 on the one surface 11 a of the electrode plate 11.

電極板11の縁部11cは、正極活物質及び負極活物質の塗工されない未塗工領域となっており、シール部4の内壁4aに埋没した状態でシール部4に保持されている。これにより、積層方向に隣り合う電極板11,11間には、当該電極板11,11とシール部4の内壁4aとによって仕切られた空間が形成されている。当該空間には、例えば水酸化カリウム水溶液等のアルカリ溶液からなる電解液(不図示)が収容されている。   The edge portion 11 c of the electrode plate 11 is an uncoated region where the positive electrode active material and the negative electrode active material are not applied, and is held by the seal portion 4 while being buried in the inner wall 4 a of the seal portion 4. As a result, a space partitioned by the electrode plates 11 and 11 and the inner wall 4a of the seal portion 4 is formed between the electrode plates 11 and 11 adjacent in the stacking direction. In the space, an electrolytic solution (not shown) made of an alkaline solution such as an aqueous potassium hydroxide solution is accommodated.

積層体2は、当該積層体2に含まれる電極板11のうち、積層方向における最も外側に配置される最外電極板11A及び最外電極板11Bを備えている。最外電極板11Aは、積層体2の一方の積層端(図1における上側の積層端)に設けられている。最外電極板11Aには、積層方向における内側の片面に負極13のみが設けられている。最外電極板11Bは、積層体2の他方の積層端(図1における下側の積層端)に設けられている。最外電極板11Bは、積層方向における内側の片面に正極12のみが設けられている。最外電極板11A,11Bの縁部は、バイポーラ電極3の電極板11と同様に、シール部4の内壁4aに埋没した状態でシール部4に保持されている。なお、最外電極板11A,11Bの構成の詳細については後述する。   The stacked body 2 includes an outermost electrode plate 11A and an outermost electrode plate 11B that are disposed on the outermost side in the stacking direction among the electrode plates 11 included in the stacked body 2. The outermost electrode plate 11 </ b> A is provided at one stacked end (the upper stacked end in FIG. 1) of the stacked body 2. In the outermost electrode plate 11A, only the negative electrode 13 is provided on one inner surface in the stacking direction. The outermost electrode plate 11B is provided at the other stacked end of the stacked body 2 (lower stacked end in FIG. 1). In the outermost electrode plate 11B, only the positive electrode 12 is provided on one inner surface in the stacking direction. The edge portions of the outermost electrode plates 11 </ b> A and 11 </ b> B are held by the seal portion 4 in a state of being buried in the inner wall 4 a of the seal portion 4, similarly to the electrode plate 11 of the bipolar electrode 3. Details of the configuration of the outermost electrode plates 11A and 11B will be described later.

セパレータ6は、例えばシート状に形成されている。セパレータの形成材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。また、セパレータ6は、フッ化ビニリデン樹脂化合物で補強されたものであってもよい。なお、セパレータ6は、シート状に限られず、袋状のものを用いてもよい。   The separator 6 is formed in a sheet shape, for example. Examples of the material for forming the separator include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a nonwoven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like. The separator 6 may be reinforced with a vinylidene fluoride resin compound. The separator 6 is not limited to a sheet shape, and may be a bag shape.

シール部4は、例えば絶縁性の樹脂を用いた射出成形によって矩形の筒状に形成されている。樹脂性のシール部4を構成する樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、変性ポリフェニレンエーテル(変性PPE)又は変性ポリフェニレンサルファイド(変性PPS)などが挙げられる。シール部4は、バイポーラ電極3の積層によって形成される積層体2の側面2aを取り囲んで保持する部材である。より具体的には、シール部4は、バイポーラ電極3の電極板11、及び積層体2の積層端に位置する最外電極板11A,11Bの縁部を保持し、バイポーラ電極3,3間に形成される電解液の収容空間をシールしている。   The seal portion 4 is formed in a rectangular cylindrical shape by, for example, injection molding using an insulating resin. Examples of the resin material constituting the resinous seal portion 4 include polypropylene (PP), polyphenylene sulfide (PPS), modified polyphenylene ether (modified PPE), modified polyphenylene sulfide (modified PPS), and the like. The seal portion 4 is a member that surrounds and holds the side surface 2 a of the stacked body 2 formed by stacking the bipolar electrodes 3. More specifically, the seal portion 4 holds the edge of the electrode plate 11 of the bipolar electrode 3 and the outermost electrode plates 11A and 11B located at the stacking end of the stacked body 2, and between the bipolar electrodes 3 and 3. The space for accommodating the electrolytic solution to be formed is sealed.

拘束部材5は、一対の拘束板21A,21Bと、拘束板21A,21B同士を連結する連結部材(ボルト22及びナット23)と、最外電極板11A,11Bと拘束板21A,21Bとの間に設けられる集電板25A,25Bと、集電板25A,25Bから電流を取り出す取出部26A,26Bと、によって構成されている。拘束板21A,21Bは、平板状に形成されている。拘束板21A,21Bは、例えばナイロン等の絶縁性の材質によって構成されてよい。あるいは、拘束板21A,21Bは、例えば鉄、アルミなどの導電性の材質によって平板状に形成されてもよい。ただし、拘束板21A,21Bが導電性の材質によって構成される場合は、拘束板21A,21Bと集電板25A,25Bとの間に絶縁部材が配置される。拘束板21A,21Bの縁部には、ボルト22を挿通させる挿通孔21aがシール部4よりも外側となる位置に設けられている。ボルト22は、例えば一方の拘束板21A側から他方の拘束板21B側に向かって挿通孔21aに通され、他方の拘束板21Bから突出するボルト22の先端には、ナット23が螺合されている。   The restraint member 5 includes a pair of restraint plates 21A and 21B, a connecting member (bolt 22 and nut 23) for joining the restraint plates 21A and 21B, and the outermost electrode plates 11A and 11B and the restraint plates 21A and 21B. Current collector plates 25A and 25B, and extraction portions 26A and 26B for taking out current from the current collector plates 25A and 25B. The restraint plates 21A and 21B are formed in a flat plate shape. The restraining plates 21A and 21B may be made of an insulating material such as nylon, for example. Alternatively, the restraining plates 21A and 21B may be formed in a flat plate shape with a conductive material such as iron or aluminum. However, when the restraining plates 21A and 21B are made of a conductive material, an insulating member is disposed between the restraining plates 21A and 21B and the current collecting plates 25A and 25B. An insertion hole 21a through which the bolt 22 is inserted is provided at a position on the outer side of the seal portion 4 at the edge of the restraint plates 21A and 21B. For example, the bolt 22 is passed through the insertion hole 21a from one restraint plate 21A side to the other restraint plate 21B side, and a nut 23 is screwed onto the tip of the bolt 22 protruding from the other restraint plate 21B. Yes.

集電板25A,25Bは、アルミ、ニッケルメッキ鋼板などの導電性の材質によって平板状に構成されている。集電板25Aの積層方向における内側の面は、シール部4の内側の領域にて、最外電極板11Aと接触する。他方の集電板25Bの積層方向における内側の面は、シール部4の内側の領域にて、最外電極板11Bと接触する。   The current collecting plates 25A and 25B are formed in a flat plate shape with a conductive material such as aluminum or nickel-plated steel plate. The inner surface of the current collecting plate 25A in the stacking direction is in contact with the outermost electrode plate 11A in the inner region of the seal portion 4. The inner surface in the stacking direction of the other current collector plate 25B is in contact with the outermost electrode plate 11B in the region inside the seal portion 4.

取出部26Aは、集電板25Aと接続されている。取出部26Aは、集電板25Aの側面に接続されている。取出部26Aは、シール部4を貫通して、当該シール部4の外部に引き出されている。ただし、取出部26Aの接続位置や引き出し位置は特に限定されない。取出部26Bは、集電板25Bと接続されている。取出部26Bは、集電板25Bの側面に接続されている。取出部26Bは、シール部4を貫通して、当該シール部4の外部に引き出されている。ただし、取出部26Bの接続位置や引き出し位置は特に限定されない。   The extraction portion 26A is connected to the current collector plate 25A. The extraction portion 26A is connected to the side surface of the current collector plate 25A. The extraction portion 26 </ b> A penetrates the seal portion 4 and is drawn to the outside of the seal portion 4. However, the connection position and the extraction position of the extraction part 26A are not particularly limited. The extraction portion 26B is connected to the current collector plate 25B. The extraction portion 26B is connected to the side surface of the current collector plate 25B. The take-out part 26 </ b> B penetrates the seal part 4 and is drawn out of the seal part 4. However, the connection position and the extraction position of the extraction part 26B are not particularly limited.

これにより、積層体2、最外電極板11A,11B、及びシール部4が挟持されてユニット化されると共に、拘束荷重が付加される。また、最外電極板11A,11Bは、積層体2で発生した電流を取出部26A,26Bへ出力することができる。   Thereby, the laminate 2, the outermost electrode plates 11A and 11B, and the seal portion 4 are sandwiched and unitized, and a restraining load is applied. Further, the outermost electrode plates 11A and 11B can output the current generated in the multilayer body 2 to the extraction portions 26A and 26B.

続いて、上述した蓄電装置1における最外電極板11A,11Bの構成について、更に詳細に説明する。最外電極板11A,11Bの厚みは、積層方向における内側に配置される他の電極板11の厚みよりも大きい。最外電極板11A,11Bの厚みが他の電極板11の厚みに比してどの程度大きいかは特に限定されない。例えば、最外電極板11A,11Bの厚みは、他の電極板11の厚みに比して2以上の整数倍の大きさであってよい。または、最外電極板11A,11Bの厚みは、他の電極板11の厚みに比して1.5倍以上の大きさであってよい。このような大きさとすることで、最外電極板11A,11Bが積層体2の内圧と大気圧との圧力差に耐えうる強度を有することができる。最外電極板11A,11Bの厚みの上限値は特に限定されないが、例えば、最外電極板11A,11Bの厚みは他の電極板11の厚みの20倍以下であってよい。なお、最外電極板11Aの厚みと最外電極板11Bの厚みとは同一である。ただし、性能に影響が及ぼされない範囲で、最外電極板11Aの厚みと最外電極板11Bの厚みとが異なっていてもよい。   Next, the configuration of the outermost electrode plates 11A and 11B in the power storage device 1 described above will be described in more detail. The thicknesses of the outermost electrode plates 11A and 11B are larger than the thicknesses of the other electrode plates 11 arranged on the inner side in the stacking direction. The extent to which the thicknesses of the outermost electrode plates 11A and 11B are larger than the thicknesses of the other electrode plates 11 is not particularly limited. For example, the thickness of the outermost electrode plates 11 </ b> A and 11 </ b> B may be an integer multiple of 2 or more compared to the thicknesses of the other electrode plates 11. Alternatively, the thickness of the outermost electrode plates 11 </ b> A and 11 </ b> B may be 1.5 times or more the thickness of the other electrode plates 11. By setting it as such a magnitude | size, outermost electrode plate 11A, 11B can have the intensity | strength which can endure the pressure difference of the internal pressure of the laminated body 2 and atmospheric pressure. The upper limit value of the thickness of the outermost electrode plates 11A and 11B is not particularly limited. For example, the thickness of the outermost electrode plates 11A and 11B may be 20 times or less the thickness of the other electrode plates 11. The thickness of the outermost electrode plate 11A and the thickness of the outermost electrode plate 11B are the same. However, the thickness of the outermost electrode plate 11A and the thickness of the outermost electrode plate 11B may be different as long as the performance is not affected.

図2を参照して、最外電極板11A,11Bの厚みを大きくするための構成について説明する。図2(a)に示すように、最外電極板11A,11Bは、他の電極板11を構成する金属箔36に比して、厚みが大きい金属箔36によって構成されてよい。すなわち、最外電極板11A,11Bが、複数の金属箔36の重ね合わせではなく、一枚の金属箔36によって構成されており、当該一枚の金属箔36の厚み自体が、他の電極板11の一枚の金属箔36の厚みより大きい。このような構成によれば、最外電極板11A,11Bが、一枚の金属箔36によって構成されているため、複数の金属箔36を重ねた場合の金属箔36同士の接触抵抗が生じない。従って、最外電極板11A,11Bでの電気的な特性を安定させることができる。   A configuration for increasing the thickness of the outermost electrode plates 11A and 11B will be described with reference to FIG. As shown in FIG. 2A, the outermost electrode plates 11 </ b> A and 11 </ b> B may be configured by a metal foil 36 that is thicker than the metal foil 36 that configures the other electrode plate 11. That is, the outermost electrode plates 11A and 11B are not formed by superimposing a plurality of metal foils 36 but by a single metal foil 36, and the thickness of the one metal foil 36 itself is the other electrode plate. 11 greater than the thickness of one metal foil 36. According to such a configuration, since the outermost electrode plates 11A and 11B are configured by a single metal foil 36, contact resistance between the metal foils 36 when a plurality of metal foils 36 are stacked does not occur. . Therefore, the electrical characteristics of the outermost electrode plates 11A and 11B can be stabilized.

また、図2(b)に示すように、最外電極板11A,11Bは、金属箔36と、金属箔36の表面に形成されためっき層37と、を備えてよい。めっき層37は、金属箔36の表面に一体的に形成された層である。例えば、めっき層37は、スズやニッケルなどの材料によって構成されてよい。スズめっきを形成する場合、電解めっき法によって、金属箔36の表面に形成されてよい。この場合、金属箔36の片面にめっき層37を形成してよい。ニッケルめっきを形成する場合、電解めっき法、無電解めっき法を採用してよい。従って、めっき層37付きの金属箔36は、単に金属箔36の表面に他の部材を積層させただけの構成とは異なるものである。特に、めっき層37の材質は、金属箔36の材質と強度が類似した物が好ましい。なお、めっき層37は、図2(b)では金属箔36の片面に形成されているが、両面に形成されてもよい。なお、金属箔36の材料がニッケルであり、めっきの材料がニッケルの場合は、同じ材料で構成されることにより図2(a)のような断面となる場合もある。このような構成により、めっき層37の厚さを調整することで、最外電極板11A,11Bの厚みの調整を容易に行うことができる。   As shown in FIG. 2B, the outermost electrode plates 11 </ b> A and 11 </ b> B may include a metal foil 36 and a plating layer 37 formed on the surface of the metal foil 36. The plating layer 37 is a layer integrally formed on the surface of the metal foil 36. For example, the plating layer 37 may be made of a material such as tin or nickel. When forming tin plating, it may be formed on the surface of the metal foil 36 by electrolytic plating. In this case, the plating layer 37 may be formed on one side of the metal foil 36. When forming nickel plating, an electrolytic plating method or an electroless plating method may be employed. Therefore, the metal foil 36 with the plating layer 37 is different from a configuration in which another member is simply laminated on the surface of the metal foil 36. In particular, the material of the plating layer 37 is preferably a material whose strength is similar to that of the metal foil 36. The plated layer 37 is formed on one side of the metal foil 36 in FIG. 2B, but may be formed on both sides. In addition, when the material of the metal foil 36 is nickel and the material of plating is nickel, it may have a cross section as shown in FIG. With such a configuration, by adjusting the thickness of the plating layer 37, the thickness of the outermost electrode plates 11A and 11B can be easily adjusted.

また、図2(c)に示すように、最外電極板11A,11Bは、積層された複数の金属箔36によって構成されていてよい。このような構成により、複数の金属箔36を積層するだけの作業で容易に最外電極板11A,11Bの厚みを大きくすることができる。図2(c)では、最外電極板11A,11Bは2枚の金属箔36によって構成されている。一枚当たりの金属箔36として、他の電極板11の金属箔36を用いた場合、容易に他の電極板11の2倍の厚みを有する最外電極板11A,11Bを製造することができる。また、他の電極板11と共通の部品を用いて最外電極板11A,11Bの厚みを大きくすることができる。従って、最外電極板11A,11Bの製造容易性を向上できる。   Moreover, as shown in FIG.2 (c), outermost electrode plate 11A, 11B may be comprised by the some metal foil 36 laminated | stacked. With such a configuration, it is possible to easily increase the thickness of the outermost electrode plates 11A and 11B only by stacking the plurality of metal foils 36. In FIG. 2C, the outermost electrode plates 11 </ b> A and 11 </ b> B are constituted by two metal foils 36. When the metal foil 36 of the other electrode plate 11 is used as the metal foil 36 per sheet, the outermost electrode plates 11A and 11B having a thickness twice that of the other electrode plate 11 can be easily manufactured. . Further, the thickness of the outermost electrode plates 11A and 11B can be increased by using components common to the other electrode plates 11. Accordingly, the ease of manufacturing the outermost electrode plates 11A and 11B can be improved.

なお、図2に最外電極板11A,11Bの厚みを大きくするための三つの構成を例示したが、いずれかの構成、又は全ての構成を互いに組み合わせてもよい。   2 illustrates three configurations for increasing the thickness of the outermost electrode plates 11A and 11B, but any configuration or all configurations may be combined with each other.

次に、本実施形態に係る蓄電装置1の作用・効果について説明する。   Next, the operation and effect of the power storage device 1 according to this embodiment will be described.

この蓄電装置1では、積層体2に含まれる電極板11のうち、積層方向における最も外側に配置される最外電極板11A,11Bの厚みは、積層方向における内側に配置される他の電極板11の厚みよりも大きい。すなわち、最外電極板11A,11Bは、シール部4内における積層体2の内圧と大気圧との差圧の影響によって、積層方向の外側への変形を誘発する力を受けるが、当該最外電極板11A,11Bは、他の電極板11に比して厚みが大きく強度が高くなっている。従って、最外電極板11A,11Bに作用する力の影響による変形を抑制することができる。これにより、蓄電装置1の信頼性を向上することができる。   In this power storage device 1, among the electrode plates 11 included in the stacked body 2, the thicknesses of the outermost electrode plates 11 </ b> A and 11 </ b> B disposed on the outermost side in the stacking direction are the other electrode plates disposed on the inner side in the stacking direction. It is larger than 11 thickness. That is, the outermost electrode plates 11A and 11B receive a force that induces deformation outward in the stacking direction due to the influence of the differential pressure between the internal pressure and the atmospheric pressure of the stacked body 2 in the seal portion 4, The electrode plates 11 </ b> A and 11 </ b> B are thicker and stronger than the other electrode plates 11. Therefore, deformation due to the influence of the force acting on the outermost electrode plates 11A and 11B can be suppressed. Thereby, the reliability of the power storage device 1 can be improved.

また、最外電極板11A,11Bの厚みが大きいため、当該最外電極板11A,11Bにて、電流の経路を拡大または収束させるための距離を確保することができる。図1に示す構成では、積層体2で発生した電流が、最外電極板11B及び集電板25Bを流れて取出部31Bへ向かって収束する。このとき、最外電極板11Bの厚みが大きいため、電流が収束するのに十分な距離を確保できる。また、取出部31Aから流れてきた電流が、最外電極板11A及び集電板25Aを流れて積層体へ向けて拡散する。このとき、最外電極板11Aの厚みが大きいため、電流が拡大するのに十分な距離を確保できる。以上により、バイポーラ電極3における発電のムラを低減できる。   Moreover, since the thickness of the outermost electrode plates 11A and 11B is large, the outermost electrode plates 11A and 11B can secure a distance for enlarging or converging the current path. In the configuration shown in FIG. 1, the current generated in the laminated body 2 flows through the outermost electrode plate 11B and the current collector plate 25B and converges toward the extraction portion 31B. At this time, since the thickness of the outermost electrode plate 11B is large, a sufficient distance can be secured for the current to converge. Further, the current flowing from the extraction portion 31A flows through the outermost electrode plate 11A and the current collector plate 25A and diffuses toward the laminate. At this time, since the thickness of the outermost electrode plate 11A is large, it is possible to secure a sufficient distance for the current to expand. As described above, power generation unevenness in the bipolar electrode 3 can be reduced.

なお、最外電極板11A,11Bは集電板25A,25B(又は後述の拘束板21A,21B)で支持されることで、破損を生じるような変形を防止することができる。このような場合であっても、最外電極板11A,11Bの厚みを大きくすることのメリットについて、図3を参照して説明する。図3に示すように、変形前の状態(図3の上段側の状態)の最外電極板11A,11Bと電極板11との横方向に等しい大きさであったとしても、内圧と大気圧の差圧の影響で変形したときに、厚みの大きい最外電極板11A,11Bの方が横方向への突出量が大きくなる(図3の下段側の状態を参照)。これによって、シール部4へ食い込むシール長が最外電極板11A,11Bの方が電極板11よりも大きくなる。これにより、最外電極板11A,11Bのシール性を向上することができる。   The outermost electrode plates 11A and 11B are supported by the current collecting plates 25A and 25B (or the restraining plates 21A and 21B described later), so that deformation that causes breakage can be prevented. Even in such a case, the merit of increasing the thickness of the outermost electrode plates 11A and 11B will be described with reference to FIG. As shown in FIG. 3, even if the outermost electrode plates 11A and 11B and the electrode plate 11 in the state before deformation (the upper stage side in FIG. 3) have the same size in the lateral direction, the internal pressure and the atmospheric pressure. The outermost electrode plates 11A and 11B having a larger thickness have a larger amount of lateral protrusion when deformed due to the differential pressure (see the state on the lower side of FIG. 3). As a result, the outermost electrode plates 11 </ b> A and 11 </ b> B have a longer seal length that bites into the seal portion 4 than the electrode plate 11. Thereby, the sealing performance of the outermost electrode plates 11A and 11B can be improved.

本発明は、上記実施形態に限られるものではない。例えば、拘束板21A,21Bは拘束機能と集電機能とを兼ね備えてよい。   The present invention is not limited to the above embodiment. For example, the restraining plates 21A and 21B may have a restraining function and a current collecting function.

具体的には、図4に示すように、蓄電装置100の拘束部材5は、一対の拘束板21A,21Bと、拘束板21A,21B同士を連結する連結部材(ボルト22及びナット23)と、拘束板21A,21Bから電流を取り出す取出部31A,31Bと、によって構成されている。拘束板21A,21Bは、例えば鉄、アルミなどの導電性の材質によって平板状に形成されている。拘束板21A,21Bの縁部には、ボルト22を挿通させる挿通孔21aがシール部4よりも外側となる位置に設けられている。挿通孔21aは、拘束板21A,21Bに円筒状の絶縁部材32を埋設することによって形成されている。   Specifically, as shown in FIG. 4, the restraining member 5 of the power storage device 100 includes a pair of restraining plates 21A and 21B, and a connecting member (bolt 22 and nut 23) that connects the restraining plates 21A and 21B. It is comprised by extraction part 31A, 31B which takes out an electric current from restraint board 21A, 21B. The restraint plates 21A and 21B are formed in a flat plate shape with a conductive material such as iron or aluminum. An insertion hole 21a through which the bolt 22 is inserted is provided at a position on the outer side of the seal portion 4 at the edge of the restraint plates 21A and 21B. The insertion hole 21a is formed by embedding a cylindrical insulating member 32 in the restraining plates 21A and 21B.

ここで、拘束板21A,21Bは、積層体2を拘束する拘束機能と、積層体2が発生する電流を集電する集電機能とを兼ねている。従って、一方の拘束板21Aの積層方向における内側の面21bは、シール部4の内側の領域にて、最外電極板11Aと接触する。他方の拘束板21Bの積層方向における内側の面21bは、シール部4の内側の領域にて、最外電極板11Aと接触する。ここで、挿通孔21aは絶縁部材32に形成されているため、ボルト22(ボルト22の頭部22aを含む)及びナット23と、拘束板21A,21Bとは電気的に絶縁されている。なお、ボルト22側に絶縁部材32が設けられており、拘束時に、当該絶縁部材32を拘束板21A,21Bに取り付ける構成であってもよい。   Here, the restraining plates 21 </ b> A and 21 </ b> B have both a restraining function for restraining the stacked body 2 and a current collecting function for collecting current generated by the stacked body 2. Accordingly, the inner surface 21 b in the stacking direction of the one restraining plate 21 </ b> A is in contact with the outermost electrode plate 11 </ b> A in the inner region of the seal portion 4. The inner surface 21b in the stacking direction of the other restraining plate 21B is in contact with the outermost electrode plate 11A in the inner region of the seal portion 4. Here, since the insertion hole 21a is formed in the insulating member 32, the bolt 22 (including the head portion 22a of the bolt 22) and the nut 23 are electrically insulated from the restraining plates 21A and 21B. The insulating member 32 may be provided on the bolt 22 side, and the insulating member 32 may be attached to the restraining plates 21A and 21B when restraining.

取出部31Aは、拘束板21Aと接続されている。取出部31Aは、拘束板21Aの積層方向における外側の面21cに接続されている。また、取出部31Aは、拘束板21Aの面21cにおける中央位置に接続されている。ただし、取出部31Aの接続位置は特に限定されず、面21cのどの位置であってもよく、拘束板21Aの側面など、面21c以外の位置に設けられてもよい。取出部31Bは、拘束板21Bと接続されている。取出部31Bは、拘束板21Bの積層方向における外側の面21cに接続されている。また、取出部31Bは、拘束板21Bの面21cにおける中央位置に接続されている。ただし、取出部31Bの接続位置は特に限定されず、面21cのどの位置であってもよく、拘束板21Bの側面など、面21c以外の位置に設けられてもよい。   The extraction portion 31A is connected to the restraining plate 21A. The extraction portion 31A is connected to the outer surface 21c in the stacking direction of the restraining plate 21A. Further, the take-out portion 31A is connected to the center position on the surface 21c of the restraining plate 21A. However, the connection position of the extraction portion 31A is not particularly limited, and may be any position on the surface 21c, or may be provided at a position other than the surface 21c, such as the side surface of the restraining plate 21A. The extraction part 31B is connected to the restraint plate 21B. The take-out portion 31B is connected to the outer surface 21c in the stacking direction of the restraining plate 21B. Further, the take-out part 31B is connected to the center position on the surface 21c of the restraining plate 21B. However, the connection position of the extraction portion 31B is not particularly limited, and may be any position on the surface 21c, and may be provided at a position other than the surface 21c, such as the side surface of the restraint plate 21B.

これにより、積層体2、最外電極板11A,11B、及びシール部4が挟持されてユニット化されると共に、拘束荷重が付加される。また、最外電極板11A,11Bは、積層体2で発生した電流を取出部31A,31Bへ出力することができる。   Thereby, the laminate 2, the outermost electrode plates 11A and 11B, and the seal portion 4 are sandwiched and unitized, and a restraining load is applied. Further, the outermost electrode plates 11A and 11B can output the current generated in the multilayer body 2 to the extraction portions 31A and 31B.

以上より、変形例に係る蓄電装置100は、積層体2を積層方向における外側から拘束する一対の拘束板21A,21Bを更に備え、拘束板21A,21Bは最外電極板11A,11Bと接触し、且つ、電流を取り出す取出部31A,31Bと接続されていている。このような構成により、拘束板21A,21Bは、内圧と大気圧の差圧の影響で積層方向の外側へ変形しようとする最外電極板11A,11Bを支持することができる。従って、拘束板21A,21Bは、最外電極板11A,11Bの変形を抑制することができる。   As described above, the power storage device 100 according to the modification further includes the pair of restraining plates 21A and 21B that restrain the stacked body 2 from the outside in the stacking direction, and the restraining plates 21A and 21B are in contact with the outermost electrode plates 11A and 11B. In addition, it is connected to extraction portions 31A and 31B for extracting current. With such a configuration, the restraint plates 21A and 21B can support the outermost electrode plates 11A and 11B that are to be deformed outward in the stacking direction due to the influence of the differential pressure between the internal pressure and the atmospheric pressure. Therefore, the restraining plates 21A and 21B can suppress deformation of the outermost electrode plates 11A and 11B.

拘束板21A,21Bは、積層体2を拘束する機能を有すると共に、積層体で生じる電流を集電する集電機能を兼ねることができる。拘束板21A,21Bは、拘束機能を有するために、ある程度の厚みを有する部材である。従って、拘束板21A,21Bは、取出部31A,31Bと最外電極板11A,11Bとの間で電流の経路を拡大または収束させるための距離を確保することができる。これにより、バイポーラ電極3における発電のムラを低減できる。図4に示す構成では、積層体2で発生した電流が、最外電極板11B及び拘束板21Bを流れて取出部31Bへ向かって収束する。このとき、最外電極板11B及び拘束板21Bの厚みが大きいため、電流が収束するのに十分な距離を確保できる。また、取出部31Aから流れてきた電流が、最外電極板11A及び拘束板21Aを流れて積層体へ向けて拡散する。このとき、最外電極板11A及び拘束板21Aの厚みが大きいため、電流が拡大するのに十分な距離を確保できる。以上により、バイポーラ電極3における発電のムラを低減できる。   The constraining plates 21A and 21B have a function of constraining the stacked body 2 and can also serve as a current collecting function of collecting current generated in the stacked body. The restraining plates 21A and 21B are members having a certain thickness in order to have a restraining function. Therefore, the restraining plates 21A and 21B can secure a distance for enlarging or converging the current path between the extraction portions 31A and 31B and the outermost electrode plates 11A and 11B. Thereby, the nonuniformity of the electric power generation in the bipolar electrode 3 can be reduced. In the configuration shown in FIG. 4, the current generated in the stacked body 2 flows through the outermost electrode plate 11 </ b> B and the restraining plate 21 </ b> B and converges toward the extraction portion 31 </ b> B. At this time, since the thickness of the outermost electrode plate 11B and the restraint plate 21B is large, a sufficient distance can be secured for the current to converge. Further, the current flowing from the extraction portion 31A flows through the outermost electrode plate 11A and the restraint plate 21A and diffuses toward the laminate. At this time, since the thickness of the outermost electrode plate 11A and the restraint plate 21A is large, it is possible to secure a sufficient distance for the current to expand. As described above, power generation unevenness in the bipolar electrode 3 can be reduced.

1,100…蓄電装置、3…バイポーラ電極、4…シール部、6…セパレータ、11…電極板、11A,11B…最外電極板、12…正極、13…負極、21A,21B…拘束板、31A,31B…取出部。   DESCRIPTION OF SYMBOLS 1,100 ... Power storage device, 3 ... Bipolar electrode, 4 ... Seal part, 6 ... Separator, 11 ... Electrode plate, 11A, 11B ... Outermost electrode plate, 12 ... Positive electrode, 13 ... Negative electrode, 21A, 21B ... Restraint plate, 31A, 31B ... Extracting section.

Claims (5)

一方面側に正極が形成され、かつ他方面側に負極が形成された電極板で構成されるバイポーラ電極を有する蓄電装置であって、
セパレータを介して前記バイポーラ電極を交互に積層してなる積層体と、
前記積層体のうち、少なくとも電極板の縁部同士の間に形成されたシール部、を備え、
前記積層体に含まれる前記電極板のうち、積層方向における最も外側に配置される最外電極板の厚みは、前記積層方向における内側に配置される他の電極板の厚みよりも大きい、蓄電装置。
A power storage device having a bipolar electrode composed of an electrode plate having a positive electrode formed on one side and a negative electrode formed on the other side,
A laminate formed by alternately laminating the bipolar electrodes via separators;
Of the laminate, at least a seal portion formed between the edges of the electrode plates,
Of the electrode plates included in the stacked body, the thickness of the outermost electrode plate disposed on the outermost side in the stacking direction is larger than the thickness of other electrode plates disposed on the inner side in the stacking direction. .
前記最外電極板は、積層された複数の金属箔によって構成されている、請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein the outermost electrode plate includes a plurality of laminated metal foils. 前記最外電極板は、金属箔と、前記金属箔の表面に形成されためっき層と、を備える、請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein the outermost electrode plate includes a metal foil and a plating layer formed on a surface of the metal foil. 前記最外電極板は、前記他の電極板を構成する金属箔に比して、厚みが大きい金属箔によって構成される、請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein the outermost electrode plate is configured by a metal foil having a thickness larger than that of the metal foil configuring the other electrode plate. 前記積層体を前記積層方向における外側から拘束する一対の拘束板を更に備え、
前記拘束板は前記最外電極板と接触し、且つ、電流を取り出す取出部と接続されている、請求項1〜4の何れか一項に記載の蓄電装置。
A pair of restraining plates for restraining the laminate from outside in the stacking direction;
5. The power storage device according to claim 1, wherein the constraining plate is in contact with the outermost electrode plate and is connected to an extraction unit that extracts current.
JP2016208777A 2016-10-25 2016-10-25 Power storage device Active JP6802687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016208777A JP6802687B2 (en) 2016-10-25 2016-10-25 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208777A JP6802687B2 (en) 2016-10-25 2016-10-25 Power storage device

Publications (2)

Publication Number Publication Date
JP2018073509A true JP2018073509A (en) 2018-05-10
JP6802687B2 JP6802687B2 (en) 2020-12-16

Family

ID=62112787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208777A Active JP6802687B2 (en) 2016-10-25 2016-10-25 Power storage device

Country Status (1)

Country Link
JP (1) JP6802687B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030945A (en) * 2018-08-22 2020-02-27 株式会社豊田自動織機 Power storage module
JP2020140767A (en) * 2019-02-26 2020-09-03 株式会社豊田自動織機 Power storage module
WO2021192574A1 (en) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 Battery
CN114981907A (en) * 2020-01-09 2022-08-30 株式会社丰田自动织机 Electricity storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139775A (en) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd Laminated battery, battery pack and vehicle
JP2005005163A (en) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd Bipolar battery
JP2005174691A (en) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd Bipolar battery
JP2007122977A (en) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd Battery module and battery pack
JP2007149400A (en) * 2005-11-24 2007-06-14 Nissan Motor Co Ltd Battery structure, battery pack, and vehicle mounted with same
JP2010092662A (en) * 2008-10-06 2010-04-22 Nissan Motor Co Ltd Secondary battery, battery pack of the secondary battery, and vehicle using them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139775A (en) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd Laminated battery, battery pack and vehicle
JP2005005163A (en) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd Bipolar battery
JP2005174691A (en) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd Bipolar battery
JP2007122977A (en) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd Battery module and battery pack
JP2007149400A (en) * 2005-11-24 2007-06-14 Nissan Motor Co Ltd Battery structure, battery pack, and vehicle mounted with same
JP2010092662A (en) * 2008-10-06 2010-04-22 Nissan Motor Co Ltd Secondary battery, battery pack of the secondary battery, and vehicle using them

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030945A (en) * 2018-08-22 2020-02-27 株式会社豊田自動織機 Power storage module
JP2020140767A (en) * 2019-02-26 2020-09-03 株式会社豊田自動織機 Power storage module
JP7217173B2 (en) 2019-02-26 2023-02-02 株式会社豊田自動織機 storage module
CN114981907A (en) * 2020-01-09 2022-08-30 株式会社丰田自动织机 Electricity storage device
CN114981907B (en) * 2020-01-09 2023-10-10 株式会社丰田自动织机 Power storage device
WO2021192574A1 (en) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 Battery

Also Published As

Publication number Publication date
JP6802687B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6683084B2 (en) Power storage device
JP2018125142A (en) Power storge module
JP6802687B2 (en) Power storage device
JP2018133201A (en) Power storage module
JP2018018698A (en) Power storage device and method for manufacturing power storage device
JP2018106962A (en) Power storage module and manufacturing method thereof
JP2018049801A (en) Power storage device
JP2018106967A (en) Power storage device and manufacturing method thereof
WO2018123502A1 (en) Power storage module and manufacturing method for power storage module
JP6683089B2 (en) Power storage device
JP7123687B2 (en) BIPOLAR BATTERY AND METHOD OF MANUFACTURING BIPOLAR BATTERY
JP2018018666A (en) Power storage device and method for manufacturing power storage device
JP2018073508A (en) Power storage device and manufacturing method of power storage device
JP6824777B2 (en) Power storage device
JP2020030985A (en) Power storage module
JP2020024828A (en) Bipolar battery and manufacturing method of bipolar battery
JP7420566B2 (en) Power storage device
JP6926509B2 (en) Power storage device
JP2018073583A (en) Power storage device
JP7070279B2 (en) Power storage module
JP7060956B2 (en) Power storage module
JP7056167B2 (en) Power storage module and manufacturing method of power storage module
JP6888516B2 (en) Power storage module
JP6959514B2 (en) Power storage module, manufacturing method of power storage module, and manufacturing method of power storage device
JP2020030984A (en) Power storage module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R150 Certificate of patent or registration of utility model

Ref document number: 6802687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250