JP2018073499A - Inspection method of positive electrode active material particle powder - Google Patents

Inspection method of positive electrode active material particle powder Download PDF

Info

Publication number
JP2018073499A
JP2018073499A JP2016208474A JP2016208474A JP2018073499A JP 2018073499 A JP2018073499 A JP 2018073499A JP 2016208474 A JP2016208474 A JP 2016208474A JP 2016208474 A JP2016208474 A JP 2016208474A JP 2018073499 A JP2018073499 A JP 2018073499A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material particles
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016208474A
Other languages
Japanese (ja)
Inventor
哲矢 三村
Tetsuya Mimura
哲矢 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016208474A priority Critical patent/JP2018073499A/en
Publication of JP2018073499A publication Critical patent/JP2018073499A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method of positive electrode active material particle powder based on the relation with a quantity of residual solvent.SOLUTION: Positive electrode active material particles targeted for inspection each have: a shell part composed of a primary particle; a hollow part formed in the shell part; and a through-hole extending through the shell part, provided that the positive electrode active material particles have an average particle diameter D50 of 2.0 to 10.0 μm, and a DBP oil absorption of 34 to 43 mL/100 g. An inspection method comprises: the first step of exposing powder of the positive electrode active material particles to the atmosphere until a change in weight per unit time becomes under 1%; the second step of obtaining a specific surface area of the positive electrode active material particle powder by BET method after the first step; and the third step of performing a quality determination of the positive electrode active material particle powder based on a preset reference value for the specific surface area obtained by the second step.SELECTED DRAWING: Figure 4

Description

本発明は、正極活物質粒子の粉体の検査方法に関する。   The present invention relates to a method for inspecting positive electrode active material particle powder.

特開2015−26456号公報に開示された非水電解質二次電池は、集電体に保持された正極活物質層を有している。ここで、正極活物質層は、中空構造の正極活物質粒子を含んでいる。中空構造の正極活物質粒子は、殻部と、殻部の内部に形成された中空部と、殻部を貫通する貫通孔とを有している。かかる中空構造の正極活物質粒子を含む正極活物質層は、例えば、正極活物質粒子と、必要に応じて導電材、結着材等を適当な溶媒に混合してペースト状またはスラリー状の正極合材を調製する。ここで、正極合材の溶媒の好適例としては、例えば、N−メチル−2−ピロリドン(NMP)が例示される。次に、調製された正極合材を正極集電体に塗付し、乾燥により溶媒を揮発させた後、圧縮(プレス)する。このようにして正極活物質層が集電体上に形成された正極が得られる。なお、中空構造の正極活物質粒子および正極活物質層の形成方法については、例えば、特許文献1により詳しく開示されている。   The non-aqueous electrolyte secondary battery disclosed in Japanese Patent Application Laid-Open No. 2015-26456 has a positive electrode active material layer held by a current collector. Here, the positive electrode active material layer includes positive electrode active material particles having a hollow structure. The positive electrode active material particles having a hollow structure have a shell portion, a hollow portion formed inside the shell portion, and a through-hole penetrating the shell portion. The positive electrode active material layer including the positive electrode active material particles having such a hollow structure is, for example, a positive electrode in a paste or slurry by mixing positive electrode active material particles and, if necessary, a conductive material, a binder or the like in an appropriate solvent. Prepare a mixture. Here, as a suitable example of the solvent of the positive electrode mixture, for example, N-methyl-2-pyrrolidone (NMP) is exemplified. Next, the prepared positive electrode mixture is applied to the positive electrode current collector, and the solvent is volatilized by drying, followed by compression (pressing). In this way, a positive electrode in which the positive electrode active material layer is formed on the current collector is obtained. The method for forming the positive electrode active material particles having a hollow structure and the positive electrode active material layer is disclosed in detail in Patent Document 1, for example.

特開2015−26456号公報JP 2015-26456 A

ところで、本発明者は、中空構造の正極活物質粒子を含む正極活物質層は、特に、正極活物質粒子の中空部に、正極合材に用いられた溶媒が残留しうるとの問題を見出した。本発明者は、正極活物質粒子の中空部に残留する溶媒が少ない方がよいと考えている。しかし、正極活物質粒子の中空部に残留する溶媒の量を予測する方法などは確立されていない。   By the way, the present inventor has found that the positive electrode active material layer containing the positive electrode active material particles having a hollow structure has a problem that the solvent used for the positive electrode mixture can remain particularly in the hollow part of the positive electrode active material particles. It was. The inventor believes that it is better that the amount of the solvent remaining in the hollow portion of the positive electrode active material particles is smaller. However, a method for predicting the amount of the solvent remaining in the hollow part of the positive electrode active material particles has not been established.

ここで提案される正極活物質粒子の粉体の検査方法において、検査対象となる正極活物質粒子は、1次粒子で構成された殻部と、殻部の内部に形成された中空部と、殻部を貫通した貫通孔とを有している。ここで、正極活物質粒子の平均粒径D50は、2.0μm以上10.0μm以下であり、かつ、DBP吸油量が34mL/100g以上43mL/100g以下である。ここで提案される検査方法は、以下の第1工程〜第3工程を含む。
第1工程では、単位時間当たりの重量変化が1%未満となるまで、正極活物質粒子の粉体を大気爆気させる。第2工程では、第1工程後に、BET法にて、正極活物質粒子の粉体の比表面積を得る。第3工程では、第2工程で得られる比表面積に対して、予め設定された基準値に基づいて、正極活物質粒子の粉体の良否判定を行う。
かかる正極活物質粒子の粉体の検査方法によれば、正極活物質層を形成した際の残留溶媒の量を高い精度で評価することができ、正極活物質粒子の粉体を適切に良否判定できる。
In the positive electrode active material particle powder inspection method proposed here, the positive electrode active material particles to be inspected include a shell portion composed of primary particles, a hollow portion formed inside the shell portion, And a through hole penetrating the shell. Here, the average particle diameter D50 of the positive electrode active material particles is 2.0 μm or more and 10.0 μm or less, and the DBP oil absorption is 34 mL / 100 g or more and 43 mL / 100 g or less. The inspection method proposed here includes the following first to third steps.
In the first step, the positive electrode active material particle powder is blown into the atmosphere until the weight change per unit time is less than 1%. In the second step, after the first step, the specific surface area of the positive electrode active material particle powder is obtained by the BET method. In the third step, the quality of the positive electrode active material particle powder is determined based on a preset reference value with respect to the specific surface area obtained in the second step.
According to such a positive electrode active material particle powder inspection method, the amount of residual solvent when the positive electrode active material layer is formed can be evaluated with high accuracy, and the positive electrode active material particle powder is appropriately judged as good or bad. it can.

図1は、正極活物質粒子の顕微鏡画像である。FIG. 1 is a microscopic image of positive electrode active material particles. 図2は、正極活物質粒子の断面SEM画像である。FIG. 2 is a cross-sectional SEM image of the positive electrode active material particles. 図3は、大気暴露の時間と、正極活物質粒子の粉体の単位時間当たりの重量変化を示すグラフである。FIG. 3 is a graph showing the time of exposure to the atmosphere and the change in weight per unit time of the positive electrode active material particle powder. 図4は、比表面積と残留するNMPの量との相関関係を示すグラフである。FIG. 4 is a graph showing the correlation between the specific surface area and the amount of remaining NMP. 図5は、上述した第2工程で得られる比表面積と、1次粒子面積相当径(μm)×アスペクト比との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the specific surface area obtained in the second step and the primary particle area equivalent diameter (μm) × aspect ratio.

以下、ここで提案される正極活物質粒子の粉体の検査方法の一実施形態を説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。本発明は、特に言及されない限りにおいて、ここで説明される実施形態に限定されない。   Hereinafter, an embodiment of a method for inspecting powder of positive electrode active material particles proposed here will be described. The embodiments described herein are, of course, not intended to limit the present invention in particular. The invention is not limited to the embodiments described herein unless specifically stated.

ここで提案される検査方法の検査対象は、1次粒子で構成された殻部と、殻部の内部に形成された中空部と、殻部を貫通した貫通孔とを有する、いわゆる中空構造の正極活物質粒子である。かかる正極活物質粒子は、例えば、層状のリチウム遷移金属酸化物で構成されている。リチウム遷移金属酸化物の一好適例として、例えば、Ni,CoおよびMnの全てを含むリチウム遷移金属酸化物が挙げられる。なお、かかる中空構造の正極活物質粒子について製造方法も含めて、例えば、特許文献1の段落0014から0068に詳細に開示されている。また、特許文献1には、例えば、段落0071から0076に、かかる中空構造の正極活物質粒子を用いた正極の製造方法が開示されている。また特許文献1には、さらに非水電解質二次電池の製造方法についても開示されている。ここでは、かかる中空構造の正極活物質粒子および当該正極活物質粒子を含む正極活物質層を保持した集電体について、適宜に重複する説明を省略する。   The inspection target of the inspection method proposed here is a so-called hollow structure having a shell part composed of primary particles, a hollow part formed inside the shell part, and a through-hole penetrating the shell part. Positive electrode active material particles. Such positive electrode active material particles are composed of, for example, a layered lithium transition metal oxide. As a suitable example of the lithium transition metal oxide, for example, a lithium transition metal oxide containing all of Ni, Co, and Mn can be given. The hollow-structure positive electrode active material particles including the manufacturing method are disclosed in detail in, for example, paragraphs 0014 to 0068 of Patent Document 1. Patent Document 1 discloses, for example, paragraphs 0071 to 0076, a method for producing a positive electrode using positive electrode active material particles having such a hollow structure. Patent Document 1 also discloses a method for manufacturing a nonaqueous electrolyte secondary battery. Here, the description which overlaps suitably about the collector which hold | maintained the positive electrode active material particle containing this positive electrode active material particle and the said positive electrode active material particle of the said hollow structure is abbreviate | omitted suitably.

ここで開示されているように、非水電解質二次電池用正極活物質の製造方法は、例えば、複合水酸化物粒子に、所定量のリチウム化合物を加えて混合し、リチウム混合物を得る混合工程と、このリチウム混合物を、所定条件の下で焼成して、正極活物質を構成するリチウム複合酸化物粒子を得る焼成工程とを備えている。さらに追加的に、所定の晶析工程、熱処理工程および/または解砕工程を備えている。   As disclosed herein, a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery includes, for example, a mixing step of adding a predetermined amount of a lithium compound to a composite hydroxide particle and mixing to obtain a lithium mixture And a firing step of firing the lithium mixture under predetermined conditions to obtain lithium composite oxide particles constituting the positive electrode active material. In addition, a predetermined crystallization process, a heat treatment process and / or a crushing process are provided.

ここで、図1は、正極活物質粒子の顕微鏡画像である。正極活物質粒子100は、例えば、図1に示すように、2次粒子であり、外見上の幾何学的形態から判断して、単位粒子(ultimate particle)と考えられる粒子形態を有する1次粒子110の凝集体である。なお、1次粒子110は、さらにリチウム遷移金属酸化物の結晶子の集合物である。   Here, FIG. 1 is a microscopic image of the positive electrode active material particles. The positive electrode active material particles 100 are, for example, secondary particles as shown in FIG. 1, and primary particles having a particle form that is considered to be a unit particle (ultimate particle) as judged from an apparent geometric form. 110 aggregates. Note that the primary particles 110 are a collection of crystallites of a lithium transition metal oxide.

図2は、正極活物質粒子の断面SEM画像である。かかる中空構造の正極活物質粒子は、例えば、図2に示すように、1次粒子で構成された殻部の内部に形成された中空部を有している。1次粒子で構成された殻部には、殻部を貫通した貫通孔120が形成されている。かかる貫通孔120は、多くの場合、1次粒子間の隙間に形成されている。正極活物質粒子は、好適には、図1および図2に示すように、1次粒子が略球形に凝集した中空構造を有しているとよい。   FIG. 2 is a cross-sectional SEM image of the positive electrode active material particles. For example, as shown in FIG. 2, the positive electrode active material particles having a hollow structure have a hollow portion formed inside a shell portion made of primary particles. A through-hole 120 penetrating the shell is formed in the shell made of primary particles. Such through-holes 120 are often formed in the gaps between the primary particles. The positive electrode active material particles preferably have a hollow structure in which primary particles are aggregated in a substantially spherical shape, as shown in FIGS. 1 and 2.

かかる正極活物質粒子は、例えば、溶媒としてのN−メチル−2−ピロリドン(以下、N−メチル−2−ピロリドンは、適宜に「NMP」と称する。)と混錬して正極ペーストが作製される。そして、正極集電体(厚さ15μmのアルミニウム箔)に塗布し、乾燥させることによって、正極活物質層が得られる。正極活物質層は、その後、圧延プレスにて圧延され、密度が調整される。このように作製される正極活物質層は、正極ペーストを乾燥させる工程において正極ペースト中の溶媒成分が揮発する。しかし、中空構造の正極活物質粒子では、正極活物質粒子の中空部に正極ペーストの溶媒成分が残留しうる。中空構造の正極活物質粒子では、中空部に電解液が入り込み、電解液との接触面積が広く確保され、電池性能が向上する利点がある。本発明者は、電池性能を向上させるために、かかる正極活物質粒子の中空部に残留する溶媒が少ない方がよいと考えている。   Such positive electrode active material particles are kneaded with, for example, N-methyl-2-pyrrolidone as a solvent (hereinafter, N-methyl-2-pyrrolidone is appropriately referred to as “NMP”) to produce a positive electrode paste. The And a positive electrode active material layer is obtained by apply | coating to a positive electrode collector (15-micrometer-thick aluminum foil), and making it dry. The positive electrode active material layer is then rolled with a rolling press to adjust the density. In the positive electrode active material layer thus produced, the solvent component in the positive electrode paste is volatilized in the step of drying the positive electrode paste. However, in the positive electrode active material particles having a hollow structure, the solvent component of the positive electrode paste may remain in the hollow part of the positive electrode active material particles. In the positive electrode active material particles having a hollow structure, there is an advantage that the electrolytic solution enters the hollow portion, a wide contact area with the electrolytic solution is ensured, and the battery performance is improved. The present inventor believes that in order to improve battery performance, it is better that the amount of the solvent remaining in the hollow portion of the positive electrode active material particles is smaller.

ここでは、正極活物質粒子の中空部に残留しうる溶媒の量を少なくするとの観点において、正極活物質粒子の良否を検査する方法を提案する。かかる検査方法は、例えば、リチウムイオン二次電池を製造する際に、用いられる正極活物質粒子のサンプルを検査することによって、正極活物質層(具体的には、正極活物質粒子の中空部)に残留しうる溶媒の量を少なくするとの観点において、正極活物質粒子の適否を判定できる。かかる検査を経た正極活物質粒子を用いて二次電池を製造することによって、正極活物質粒子の中空部に残留しうる溶媒の量が多い正極が作製されるのを減らすことができる。これによって正極の不良品を減らすことができる。さらには二次電池の品質を安定させることができる。   Here, in view of reducing the amount of the solvent that can remain in the hollow part of the positive electrode active material particles, a method for inspecting the quality of the positive electrode active material particles is proposed. Such an inspection method includes, for example, inspecting a sample of positive electrode active material particles to be used when manufacturing a lithium ion secondary battery, so that a positive electrode active material layer (specifically, a hollow part of positive electrode active material particles). From the viewpoint of reducing the amount of the solvent that can remain in the electrode, it is possible to determine whether the positive electrode active material particles are suitable. By producing a secondary battery using the positive electrode active material particles that have undergone such inspection, it is possible to reduce the production of a positive electrode with a large amount of solvent that can remain in the hollow portion of the positive electrode active material particles. This can reduce the number of defective positive electrodes. Furthermore, the quality of the secondary battery can be stabilized.

ここで提案される正極活物質粒子の粉体の検査方法は、上述した中空構造の正極活物質粒子のうち、2次粒子の平均粒径D50が2.0μm以上10.0μm以下であり、かつ、DBP吸油量が34mL/100g以上43mL/100g以下である正極活物質粒子について、特に、好適に適用されうる。   The positive electrode active material particle powder inspection method proposed here has a secondary particle average particle diameter D50 of 2.0 μm or more and 10.0 μm or less among the positive electrode active material particles having the hollow structure described above, and The positive electrode active material particles having a DBP oil absorption of 34 mL / 100 g or more and 43 mL / 100 g or less can be particularly preferably applied.

ここで、正極活物質粒子の平均粒径D50は、当該分野で公知の方法、例えばレーザ回折散乱法に基づく測定による体積基準のメジアン径(D50:50%体積平均粒径)として求められる。また、例えば、電子顕微鏡写真によって少なくとも30個以上(例えば30〜100個)の正極活物質粒子を観察し、画像を2値化処理して粒子を特定し、それぞれ粒径を得る。そして、得られた粒径の算術平均値を採用してもよい。電子顕微鏡には、例えば、走査型または透過型のいずれも使用可能である。好ましくは透過型電子顕微鏡を用いるとよい。
DBP吸収量は、正極活物質粒子と溶媒との親和性を表す量として把握され得る。DBP吸収量の測定方法としては、例えば、JIS K−6217(ゴム用カーボンブラックの基本性能の試験方法)に規定されるA法に準じた方法を利用することができる。
Here, the average particle diameter D50 of the positive electrode active material particles is obtained as a volume-based median diameter (D50: 50% volume average particle diameter) measured by a method known in the art, for example, a laser diffraction scattering method. Further, for example, at least 30 or more (for example, 30 to 100) positive electrode active material particles are observed with an electron micrograph, and the image is binarized to identify the particles, thereby obtaining the particle sizes. And you may employ | adopt the arithmetic mean value of the obtained particle size. For the electron microscope, for example, either a scanning type or a transmission type can be used. Preferably, a transmission electron microscope is used.
The DBP absorption amount can be grasped as an amount representing the affinity between the positive electrode active material particles and the solvent. As a method for measuring the DBP absorption amount, for example, a method according to JIS K-6217 (method for testing basic performance of carbon black for rubber) can be used.

ところで、本発明者の知見では、形成された正極活物質層にペースト溶媒(例えば、N−メチル−2−ピロリドン(NMP))が残留する場合がある。また、顕微鏡写真などで観察した結果、粒径や貫通孔の大きさなどが同じような形状の正極活物質粒子の粉体を用いた場合でも、ペースト溶媒の残留の程度に違いが見られた。この事象についてさらに検討したところ、正極活物質粒子の粉体の表面に炭酸リチウムなどが付着している場合があった。炭酸リチウムが正極活物質粒子の表面に付着すると正極活物質粒子の空隙や貫通孔の形状が微妙に変化する。その結果、付着物が貫通孔を塞ぐ割合が大きくなればなるほど、ペースト材料を強制乾燥させる際に、ペースト溶媒が正極活物質粒子中に残留しやすくなる。本発明者は、電池性能を向上させるために、かかる正極活物質粒子の中空部に残留する溶媒が少ない方がよいと考えている。このため、ペースト溶媒が正極活物質粒子中に残留するかとの観点において、正極活物質層を形成する前に、正極活物質粒子の粉体を適切に評価したいと考えている。   By the way, according to the knowledge of the present inventors, a paste solvent (for example, N-methyl-2-pyrrolidone (NMP)) may remain in the formed positive electrode active material layer. In addition, as a result of observation with a micrograph or the like, there was a difference in the degree of residual paste solvent even when the positive electrode active material particles having the same particle size and through-hole size were used. . When this phenomenon was further examined, lithium carbonate or the like sometimes adhered to the surface of the powder of the positive electrode active material particles. When lithium carbonate adheres to the surface of the positive electrode active material particles, the shapes of the voids and through holes of the positive electrode active material particles change slightly. As a result, the larger the proportion of deposits blocking the through-holes, the easier it is for the paste solvent to remain in the positive electrode active material particles when the paste material is forcibly dried. The present inventor believes that in order to improve battery performance, it is better that the amount of the solvent remaining in the hollow portion of the positive electrode active material particles is smaller. For this reason, from the viewpoint of whether the paste solvent remains in the positive electrode active material particles, it is desired to appropriately evaluate the powder of the positive electrode active material particles before forming the positive electrode active material layer.

ところで、本発明者の知見では、正極活物質粒子は、例えば、リチウム遷移金属酸化物であり、製造工程において炭酸リチウムが用いられる。しかし、製造工程において用いられる炭酸リチウムは、その後、焼成される。このため、製造直後の正極活物質粒子の粉末には、炭酸リチウムはほとんど含まれていないものと考えている。しかしながら、例えば、正極活物質粒子の保管状態によっては空気中の水分が正極活物質粒子の中空部などに入り込む。そして、空気中の水分が、粒子中のリチウムイオンと反応して炭酸リチウムなどが生じ、正極活物質粒子の表面に付着するものと考えられる。   By the way, according to the knowledge of the present inventor, the positive electrode active material particles are, for example, a lithium transition metal oxide, and lithium carbonate is used in the manufacturing process. However, the lithium carbonate used in the manufacturing process is then fired. For this reason, it is thought that lithium carbonate is hardly contained in the powder of the positive electrode active material particles immediately after manufacture. However, for example, depending on the storage state of the positive electrode active material particles, moisture in the air enters the hollow portions of the positive electrode active material particles. And it is thought that the water | moisture content in air reacts with the lithium ion in particle | grains, lithium carbonate etc. arise, and it adheres to the surface of positive electrode active material particle | grains.

炭酸リチウムが生じる反応式の例は、以下の通りに想定している。
LiO+HO→2LiOH
2LiOH・HO+CO→LiCO+3H
なお、ここでは主たる付着物として炭酸リチウムを例示している。正極活物質粒子の組成によっては炭酸リチウムの他にも付着物が生じうる。
The example of the reaction formula which produces lithium carbonate is assumed as follows.
Li 2 O + H 2 O → 2LiOH
2LiOH.H 2 O + CO 2 → Li 2 CO 3 + 3H 2 O
Here, lithium carbonate is illustrated as the main deposit. Depending on the composition of the positive electrode active material particles, deposits may occur in addition to lithium carbonate.

ここで提案される検査方法は、以下の第1工程から第3工程を含んでいる。
第1工程は、単位時間当たりの重量変化が1%未満となるまで、正極活物質粒子の粉体を大気爆気させる工程である。
第2工程は、第1工程後に、BET法にて、正極活物質粒子の粉体の比表面積を得る工程である。
第3工程は、第2工程で得られる比表面積に対して、予め設定された基準値に基づいて、正極活物質粒子の粉体の良否判定を行う工程である。
The inspection method proposed here includes the following first to third steps.
The first step is a step in which the positive electrode active material particle powder is blown into the atmosphere until the change in weight per unit time is less than 1%.
The second step is a step of obtaining the specific surface area of the positive electrode active material particle powder by the BET method after the first step.
The third step is a step of determining the quality of the positive electrode active material particle powder based on a preset reference value with respect to the specific surface area obtained in the second step.

第1工程において、大気爆気は、正極活物質粒子の粉体を積極的に空気に曝す処理である。例えば、正極活物質粒子の粉体を漏斗に入れ、濾過瓶の上に配置し、濾過瓶を減圧するとよい。この際、正極活物質粒子の粉体に炭酸リチウムなどが含まれる場合には、乾燥雰囲気に曝され、正極活物質粒子の表面に付着する。   In the first step, atmospheric explosion is a process in which the positive electrode active material particle powder is actively exposed to air. For example, the powder of the positive electrode active material particles may be placed in a funnel, placed on a filter bottle, and the filter bottle may be decompressed. At this time, when the positive electrode active material particle powder contains lithium carbonate or the like, it is exposed to a dry atmosphere and adheres to the surface of the positive electrode active material particle.

この際、大気暴露によって生じた表面付着物によって、正極活物質粒子の表面が部分的に覆われる。正極活物質粒子の表面に付着する表面付着物によって、正極活物質粒子の貫通孔や表面細孔径が経時的に変化する。図3は、大気暴露の時間と、正極活物質粒子の粉体の単位時間当たりの重量変化を示すグラフである。図3のグラフに示すように、大気暴露によって正極活物質粒子の粉体の重量は徐々に増えていく。ある程度の時間が経過すると、正極活物質粒子の粉体の単位時間当たりの重量変化が小さくなり、ほとんど重量が変化しなくなる。この検査方法では、第1工程では、例えば、単位時間当たりの重量変化が1%未満となるまで、正極活物質粒子の粉体を大気爆気させる。図3に示す例では、例えば、6時間以上、正極活物質粒子の粉体を大気爆気させるとよい。図3の縦軸は、大気暴露前時点(大気暴露開始時)での活物質の重量(ここでは、約20g)を0%とし、その後の大気暴露(吸湿)によって活物質の重量が何%増加したかが示されている。   At this time, the surface of the positive electrode active material particles is partially covered by surface deposits generated by exposure to the atmosphere. Due to surface deposits adhering to the surface of the positive electrode active material particles, the through-holes and surface pore diameters of the positive electrode active material particles change over time. FIG. 3 is a graph showing the time of exposure to the atmosphere and the change in weight per unit time of the positive electrode active material particle powder. As shown in the graph of FIG. 3, the weight of the powder of the positive electrode active material particles gradually increases by exposure to the atmosphere. When a certain amount of time elapses, the change in weight of the positive electrode active material particles per unit time becomes small, and the weight hardly changes. In this inspection method, in the first step, for example, the positive electrode active material particle powder is blown into the atmosphere until the change in weight per unit time is less than 1%. In the example shown in FIG. 3, for example, the positive electrode active material particles may be blown into the atmosphere for 6 hours or longer. The vertical axis in FIG. 3 represents the active material weight (about 20 g in this case) at the time before exposure to the atmosphere (at the start of exposure) as 0%, and the weight of the active material by the subsequent exposure to the atmosphere (moisture absorption). It shows how it increased.

なお、図3では、正極活物質粒子の粉体の試料20g程度を採取し、漏斗の上に取り付けられた濾紙に移す。この状態で濾過瓶を吸引することによって、積極的に大気暴露させ、限界量程度まで表面付着物を生じさせる。ここでは、表面付着物は、主として炭酸リチウムであった。また、図3は、27℃、湿度58%±5%、標準大気圧下で大気暴露が実施されたグラフである。   In FIG. 3, about 20 g of a powder sample of positive electrode active material particles is collected and transferred to a filter paper attached on a funnel. By sucking the filter bottle in this state, it is actively exposed to the atmosphere, and surface deposits are generated up to the limit amount. Here, the surface deposit was mainly lithium carbonate. FIG. 3 is a graph in which atmospheric exposure was performed at 27 ° C., humidity 58% ± 5%, and standard atmospheric pressure.

第2工程では、第1工程後に、BET法にて、正極活物質粒子の粉体の比表面積が得られる。ここでは、測定装置は特に限定されないが、例えば、マイクロトラック・ベル株式会社製のBELSORP−miniが用いられうる。ここで、比表面積の測定条件は、例えば、吸着温度を77K、吸着質をN、断面積0.162nm、平衡待ち時間500s、飽和蒸気圧を実測値とするとよい。上記の測定結果よりBET法によって比表面積が作製されうる。 In the second step, the specific surface area of the positive electrode active material particle powder is obtained by the BET method after the first step. Here, the measuring apparatus is not particularly limited, but, for example, BELSORP-mini manufactured by Microtrack Bell Co., Ltd. can be used. Here, the measurement conditions of the specific surface area may be, for example, an adsorption temperature of 77 K, an adsorbate of N 2 , a cross-sectional area of 0.162 nm 2 , an equilibrium waiting time of 500 s, and a saturated vapor pressure as measured values. From the above measurement results, the specific surface area can be produced by the BET method.

第3工程では、第2工程で得られる比表面積に対して予め設定された基準値が得られる。ここで、基準値は、任意に定められ得る。この実施形態では、当該正極活物質粒子の粉体を用いてペーストを作製し、塗布、乾燥を経て正極活物質層を形成する。ここでは、形成された正極活物質層に残留するペースト溶媒の量を評価するための基準値が採用されている。   In the third step, a reference value preset for the specific surface area obtained in the second step is obtained. Here, the reference value can be arbitrarily determined. In this embodiment, a paste is produced using the powder of the positive electrode active material particles, and a positive electrode active material layer is formed through coating and drying. Here, a reference value for evaluating the amount of paste solvent remaining in the formed positive electrode active material layer is employed.

ここで、本発明者は、特許文献1に開示される方法にて得られる正極活物質粒子の粉体を用意し、N−メチル−2−ピロリドン(NMP)をペースト溶媒としている。例えば、第2工程によって正極活物質粒子の粉体の比表面積を測定するとともに、当該正極活物質粒子の粉体を用いて予め定められた方法で正極活物質層を形成する。そして、正極活物質層に残留するペースト溶媒(この実施形態では、NMP)の量を測定する。例えば、正極活物質層の単位体積当たりに残留するNMPの量として測定されうる。かかる比表面積の測定と残留するNMPの量の測定を繰り返し、比表面積と残留するNMPの量との相関関係を得る。   Here, this inventor prepares the powder of the positive electrode active material particle obtained by the method disclosed in Patent Document 1, and uses N-methyl-2-pyrrolidone (NMP) as a paste solvent. For example, the specific surface area of the powder of the positive electrode active material particles is measured in the second step, and the positive electrode active material layer is formed by a predetermined method using the powder of the positive electrode active material particles. Then, the amount of paste solvent (NMP in this embodiment) remaining in the positive electrode active material layer is measured. For example, it can be measured as the amount of NMP remaining per unit volume of the positive electrode active material layer. The measurement of the specific surface area and the measurement of the amount of remaining NMP are repeated to obtain a correlation between the specific surface area and the amount of remaining NMP.

ここでは、正極活物質粒子の粉体を用いて予め定められた方法で正極シートを作製する。例えば、予め定められた条件で正極ペーストを用意する。そして、用意された正極ペーストを、正極集電箔(ここでは厚さが凡そ15μmの帯状のアルミニウム箔)の表面に、予め定められた条件で塗布、乾燥、プレスすることによって、正極活物質層が形成された正極シートを得る。その後、予め定められた形状に正極シートを切り取る。そして、切り取られた正極シートに残留している溶媒を検出する。ここで、残留溶媒を検出する装置としては、ガスクロマトグラフィ検査器(例えば、株式会社島津製作所製GCMS−QP2010)を用いるとよい。株式会社島津製作所製GCMS−QP2010を用い、残留溶媒(ここでは、NMP)の量を分析する手順および条件の一例を、以下のA.〜D.に説明する。なお、残留溶媒は、NMPに限定されない。また、残留溶媒の検出方法は、ここで例示される方法に限定されない。   Here, the positive electrode sheet is prepared by a predetermined method using the powder of the positive electrode active material particles. For example, a positive electrode paste is prepared under predetermined conditions. Then, the prepared positive electrode paste is applied, dried, and pressed on the surface of a positive electrode current collector foil (here, a strip-shaped aluminum foil having a thickness of about 15 μm) under predetermined conditions, whereby a positive electrode active material layer A positive electrode sheet on which is formed is obtained. Thereafter, the positive electrode sheet is cut into a predetermined shape. Then, the solvent remaining in the cut positive electrode sheet is detected. Here, as a device for detecting the residual solvent, a gas chromatography tester (for example, GCMS-QP2010 manufactured by Shimadzu Corporation) may be used. An example of the procedure and conditions for analyzing the amount of residual solvent (NMP in this case) using GCMS-QP2010 manufactured by Shimadzu Corporation is as follows. ~ D. Explained. The residual solvent is not limited to NMP. Moreover, the detection method of a residual solvent is not limited to the method illustrated here.

A.標準溶液の調整
標準溶液は、以下の手順によって調整される。
(1)所定のNMPにアセトンを希釈してA液を得る。
ここで、NMPとアセトンの量から、NMP濃度(A)が求められる。
(2)A液にアセトンを加えてに希釈して秤量し、基準溶液を得る。
ここで、A液と、加えるアセトンの量、およびA液のNMP濃度(A)を基に、基準溶液のNMP濃度(B)が求められる。
(3)基準溶液を(2)の方法にてさらに希釈して検量線用の標準溶液を調整する。
ここで、標準溶液のNMP濃度(C)=基準溶液g÷[基準溶液g+アセトン量g]×基準溶液のNMP濃度(B)の式によって、標準溶液のNMP濃度(C)が求められる。
検量線用の標準溶液は、例えば、試料のNMP濃度に応じて、NMP濃度が異なるものを複数用意するとよい。また、試料の濃度が予め用意された標準溶液の濃度から外れる場合には、適した標準溶液を追加するとよい。
(4)所定量の標準溶液をGC-MS用スクリューバイアルに注ぐ。
A. Preparation of standard solution The standard solution is prepared by the following procedure.
(1) A solution is obtained by diluting acetone in a predetermined NMP.
Here, the NMP concentration (A) is determined from the amounts of NMP and acetone.
(2) Acetone is added to the solution A, diluted and weighed to obtain a reference solution.
Here, the NMP concentration (B) of the reference solution is determined based on the A solution, the amount of acetone to be added, and the NMP concentration (A) of the A solution.
(3) The standard solution is further diluted by the method of (2) to prepare a standard solution for the calibration curve.
Here, the NMP concentration (C) of the standard solution is obtained by the following formula: NMP concentration (C) of the standard solution = reference solution g ÷ [reference solution g + acetone amount g] × NMP concentration (B) of the reference solution.
For example, a plurality of standard solutions for the calibration curve may be prepared with different NMP concentrations according to the NMP concentration of the sample. In addition, when the concentration of the sample deviates from the concentration of the standard solution prepared in advance, a suitable standard solution may be added.
(4) A predetermined amount of standard solution is poured into a screw vial for GC-MS.

B.NMPの抽出
(1)正極シートを、試料打ち抜き機(例えば、株式会社ウイスタ製のトリミングカッター)を用いて所定の形状に切り取る。この場合に切り取られた正極シートの形状を基に、正極の打ち抜き面積(D)が求められる。切り取られた正極シートは、セラミック製のはさみで、所定の大きさに裁断される。打ち抜きおよび裁断時に発生した切り粉は、裁断された正極シートと一緒に試料として扱われる。
(2)(1)で得られた試料をサンプル管に入れ、所定量のアセトンをサンプル管に注入し、秤量する。このとき注入されたアセトンの量を基に、抽出溶媒アセトンの質量(E)が得られる。
(3)サンプル管の蓋口部にシールテープを巻き、超音波抽出機を用いて所定時間抽出する。
(4)抽出溶液をシリンジフィルターで濾過しながらGC−MS用のスクリューバイアルに全量注ぐ。
B. Extraction of NMP (1) The positive electrode sheet is cut into a predetermined shape using a sample punching machine (for example, a trimming cutter manufactured by Wister Co., Ltd.). In this case, the punching area (D) of the positive electrode is determined based on the shape of the positive electrode sheet cut out. The cut-out positive electrode sheet is cut into a predetermined size with ceramic scissors. Chips generated during punching and cutting are treated as a sample together with the cut positive electrode sheet.
(2) Put the sample obtained in (1) into a sample tube, inject a predetermined amount of acetone into the sample tube, and weigh it. Based on the amount of acetone injected at this time, the mass (E) of the extraction solvent acetone is obtained.
(3) A seal tape is wound around the lid opening of the sample tube, and extraction is performed for a predetermined time using an ultrasonic extractor.
(4) Pour the entire amount of the extracted solution into a GC-MS screw vial while filtering with a syringe filter.

C.GC−MS測定
(1)標準溶液と抽出溶液の入ったスクリューバイアルをGC−MSのオートサンプラーにセットし、所定の装置条件にてGS−MS測定を行なう。
C. GC-MS Measurement (1) A screw vial containing a standard solution and an extraction solution is set in a GC-MS autosampler, and GS-MS measurement is performed under predetermined apparatus conditions.

D.NMP量の定量計算
(1)標準溶液のピーク面積値をx、NMP濃度をyにして検量線(原点を通らない一次近似式)を導く。
(2)一次近似式(x)に試料のピーク面積値をあて、NMP濃度(F)を導く。ここで、NMP濃度(F)は、以下の式によって導かれる。
NMP濃度(F)=a(勾配)×x(試料のピーク面積)+b(切片)
(3)NMP全量(G)を求める。ここで、NMP全量(G)は、以下の式で求められる。
NMP全量(G)=NMP濃度(F)×抽出溶媒アセトンの質量(E)
(4)正極1cmあたりのNMP量(H)を求める。ここで、正極1cmあたりのNMP量(H)は、以下の式で求められる。
正極1cmあたりのNMP量(H)=NMP全量(G)÷正極の打ち抜き面積(D)
(5)合材1mg当たりのNMP量(I)を求める。
合材1mg当たりのNMP量(I)=正極1cmあたりのNMP量(H)÷目付量
D. Quantitative calculation of NMP amount (1) A standard curve (primary approximation not passing through the origin) is derived by setting the peak area value of the standard solution to x and the NMP concentration to y.
(2) The peak area value of the sample is assigned to the linear approximation formula (x) to derive the NMP concentration (F). Here, the NMP concentration (F) is derived by the following equation.
NMP concentration (F) = a (gradient) × x (sample peak area) + b (intercept)
(3) Obtain the total amount of NMP (G). Here, the NMP total amount (G) is obtained by the following equation.
NMP total amount (G) = NMP concentration (F) × mass of extraction solvent acetone (E)
(4) The amount of NMP (H) per 1 cm 2 of the positive electrode is obtained. Here, the NMP amount (H) per 1 cm 2 of the positive electrode is obtained by the following equation.
NMP amount per 1 cm 2 of positive electrode (H) = NMP total amount (G) ÷ Punching area of positive electrode (D)
(5) The amount of NMP (I) per 1 mg of the composite material is determined.
Amount of NMP per 1 mg of composite material (I) = Amount of NMP per 1 cm 2 of positive electrode (H) ÷ Amount of basis weight

ここで、図4は、第2工程で得られる比表面積と、残留するNMPの量との相関関係を示すグラフである。図4には、測定された比表面積と残留するNMPの量との関係を示すグラフに適合する回帰直線K1が描かれている。かかる回帰直線K1の決定係数Rは凡そ0.92であり、測定された比表面積と残留するNMPの量とが、高い相関を有していることが伺える。この場合、第3工程で得られる基準値には、例えば、形成された正極活物質層を備えた正極を用いて、さらに試験用の電池を組み、所定の試験を行って電池性能を評価する。その結果、電池性能に影響を与えない程度において、正極活物質層に残留するペースト溶媒の量の基準値が定められるとよい。このように第3工程では、第2工程で得られる比表面積に対して、予め設定された基準値に基づいて、正極活物質粒子の粉体の良否判定が行われるとよい。図4に示す例では、良否判定の基準値は、残留NMPの量が300ppmに設定されており、比表面積が凡そ1.21m/g以上であれば良品として判定されている。 Here, FIG. 4 is a graph showing the correlation between the specific surface area obtained in the second step and the amount of remaining NMP. FIG. 4 depicts a regression line K1 that fits a graph showing the relationship between the measured specific surface area and the amount of remaining NMP. The coefficient of determination R 2 of such regression line K1 is 0.92 approximately, the amount of NMP remaining the measured specific surface area, suggests that have a high correlation. In this case, for the reference value obtained in the third step, for example, using a positive electrode provided with the formed positive electrode active material layer, a test battery is further assembled, and a predetermined test is performed to evaluate the battery performance. . As a result, a reference value for the amount of paste solvent remaining in the positive electrode active material layer may be determined to the extent that battery performance is not affected. As described above, in the third step, the quality of the positive electrode active material particle powder may be determined based on a preset reference value with respect to the specific surface area obtained in the second step. In the example shown in FIG. 4, the reference value for the pass / fail determination is determined as a non-defective product if the amount of residual NMP is set to 300 ppm and the specific surface area is approximately 1.21 m 2 / g or more.

なお、正極活物質粒子は、製造方法を少し変えると、1次粒子径の大きさや形状(針状、塊状など)が変わりうる。本発明者が鋭意研究したところでは、正極活物質粒子の1次粒子の大きさや形状が異なると、正極活物質層に残留しうる溶媒の量が異なる。例えば、1次粒子の形状が針状に近ければ近いほど、正極活物質粒子の貫通孔が大きくなりやすい傾向がある。反対に、1次粒子の形状が塊状に近ければ近いほど、正極活物質粒子の貫通孔が小さくなりやすい傾向がある。また、1次粒子の粒径が小さければ小さいほど、正極活物質粒子の貫通孔が大きくなりやすい傾向がある。反対に、1次粒子の粒径が大きければ大きいほど、正極活物質粒子の貫通孔が小さくなりやすい傾向がある。そして、正極活物質粒子の貫通孔が大きければ大きいほど、内部の溶媒が揮発しやすい傾向がある。反対に、正極活物質粒子の貫通孔が小さければ小さいほど、正極活物質粒子の内部に溶媒が残留しやすい傾向がある。   In addition, the positive electrode active material particles can change the size and shape (needle shape, lump shape, etc.) of the primary particle diameter when the production method is slightly changed. As a result of intensive studies by the present inventors, the amount of the solvent that can remain in the positive electrode active material layer differs depending on the size and shape of the primary particles of the positive electrode active material particles. For example, the closer the shape of the primary particles is to a needle shape, the larger the through holes of the positive electrode active material particles tend to be. On the contrary, the closer the shape of the primary particles is to the lump shape, the smaller the through holes of the positive electrode active material particles tend to be. Further, the smaller the particle size of the primary particles, the larger the through holes of the positive electrode active material particles tend to be larger. On the other hand, the larger the particle size of the primary particles, the smaller the through holes of the positive electrode active material particles tend to be. And the larger the through hole of the positive electrode active material particles, the more the internal solvent tends to volatilize. On the other hand, the smaller the through hole of the positive electrode active material particles, the more likely the solvent will remain inside the positive electrode active material particles.

図5は、上述した第2工程で得られる比表面積と、1次粒子面積相当径(μm)×アスペクト比との関係を示している。図5にように、第2工程で得られる比表面積は、1次粒子面積相当径(μm)×アスペクト比とも高い相関を示す。図5には、測定された比表面積と、1次粒子面積相当径(μm)×アスペクト比との関係を示すグラフに適合する回帰直線K2が描かれている。かかる回帰直線K2の決定係数Rは、凡そ0.8954であり、測定された比表面積と、1次粒子面積相当径(μm)×アスペクト比とが、高い相関を有していることが伺える。 FIG. 5 shows the relationship between the specific surface area obtained in the second step and the primary particle area equivalent diameter (μm) × aspect ratio. As shown in FIG. 5, the specific surface area obtained in the second step shows a high correlation with primary particle area equivalent diameter (μm) × aspect ratio. FIG. 5 shows a regression line K2 that fits a graph showing the relationship between the measured specific surface area and the equivalent primary particle area diameter (μm) × aspect ratio. The coefficient of determination R 2 of such regression line K2 is 0.8954 about the measured specific surface area, primary particle area equivalent diameter ([mu] m) × aspect ratio and are, suggests that have a high correlation .

以上のとおり、ここで提案される検査方法によれば、上述のように正極活物質粒子の粉体を大気暴露させ、付着物を十分に生じさせた後で、ガス吸着試験で比表面積を測定している。そして、正極活物質層を形成した際の残留溶媒の量と比表面積との相関関係に基づいて比表面積に対して基準値を設定し、当該基準値を基に、正極活物質粒子の粉体の良否を判定している。この検査方法によれば、正極活物質層を形成した際の残留溶媒の量を高い精度で評価することができる。   As described above, according to the inspection method proposed here, after the cathode active material particle powder is exposed to the atmosphere as described above and sufficient deposits are generated, the specific surface area is measured by a gas adsorption test. doing. Then, a reference value is set for the specific surface area based on the correlation between the amount of the residual solvent and the specific surface area when the positive electrode active material layer is formed, and the powder of the positive electrode active material particles is based on the reference value. It is judged whether or not. According to this inspection method, the amount of residual solvent when the positive electrode active material layer is formed can be evaluated with high accuracy.

以上、ここで提案される検査方法について、種々説明したが、特に言及されない限りにおいて、ここで挙げられた実施形態および実施例は、本発明を限定しない。   As mentioned above, although the inspection method proposed here was variously demonstrated, unless it mentions especially, embodiment and the example which were mentioned here do not limit this invention.

例えば、上述した実施例では、残留溶媒として、NMPが挙げられているが、残留溶媒は、正極ペーストの溶媒に応じて適宜に変更され、NMPに限定されない。   For example, in the embodiment described above, NMP is cited as the residual solvent, but the residual solvent is appropriately changed according to the solvent of the positive electrode paste, and is not limited to NMP.

100 正極活物質粒子
110 1次粒子
120 細孔(貫通孔)
100 Positive electrode active material particles 110 Primary particles 120 Fine pores (through holes)

Claims (1)

正極活物質粒子の粉体の検査方法であって、
検査対象となる正極活物質粒子は、
1次粒子で構成された殻部と、
前記殻部の内部に形成された中空部と、
前記殻部を貫通した貫通孔と
を有し、
平均粒径D50が2.0μm以上10.0μm以下であり、かつ、
DBP吸油量が34mL/100g以上43mL/100g以下であり、
当該検査方法は、
単位時間当たりの重量変化が1%未満となるまで、前記正極活物質粒子の粉体を大気爆気させる第1工程と、
前記第1工程後に、BET法にて、前記正極活物質粒子の粉体の比表面積を得る第2工程と、
前記第2工程で得られる比表面積に対して、予め設定された基準値に基づいて、前記正極活物質粒子の粉体の良否判定を行う第3工程と
を含む、正極活物質粒子の粉体の検査方法。
A method for inspecting powder of positive electrode active material particles,
The positive electrode active material particles to be inspected are
A shell composed of primary particles;
A hollow portion formed inside the shell,
A through hole penetrating the shell,
The average particle diameter D50 is 2.0 μm or more and 10.0 μm or less, and
DBP oil absorption is 34 mL / 100 g or more and 43 mL / 100 g or less,
The inspection method is
A first step in which the powder of the positive electrode active material particles is blown into the atmosphere until the weight change per unit time is less than 1%;
A second step of obtaining a specific surface area of the powder of the positive electrode active material particles by the BET method after the first step;
A positive electrode active material particle powder comprising: a third step of determining the quality of the positive electrode active material particle powder based on a predetermined reference value with respect to the specific surface area obtained in the second step; Inspection method.
JP2016208474A 2016-10-25 2016-10-25 Inspection method of positive electrode active material particle powder Pending JP2018073499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016208474A JP2018073499A (en) 2016-10-25 2016-10-25 Inspection method of positive electrode active material particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208474A JP2018073499A (en) 2016-10-25 2016-10-25 Inspection method of positive electrode active material particle powder

Publications (1)

Publication Number Publication Date
JP2018073499A true JP2018073499A (en) 2018-05-10

Family

ID=62115564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208474A Pending JP2018073499A (en) 2016-10-25 2016-10-25 Inspection method of positive electrode active material particle powder

Country Status (1)

Country Link
JP (1) JP2018073499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194228A1 (en) 2018-04-05 2019-10-10 株式会社Nttドコモ User device and base station device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194228A1 (en) 2018-04-05 2019-10-10 株式会社Nttドコモ User device and base station device

Similar Documents

Publication Publication Date Title
Friesen et al. Influence of temperature on the aging behavior of 18650-type lithium ion cells: A comprehensive approach combining electrochemical characterization and post-mortem analysis
Kuenzel et al. Complementary strategies toward the aqueous processing of high‐voltage LiNi0. 5Mn1. 5O4 lithium‐ion cathodes
JP7140480B2 (en) Lithium ion secondary battery, graphite material for negative electrode of the battery, and method for producing the same
US10707487B2 (en) Hydrophilic surface-modified carbonaceous particulate material
EP3780169A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2017018099A1 (en) Nonaqueous electrolyte secondary battery positive electrode active material and nonaqueous electrolyte secondary battery
Huttner et al. Increased moisture uptake of NCM622 cathodes after calendering due to particle breakage
TWI633700B (en) Carbon material for non-aqueous electrolyte secondary battery negative electrode
EP4037015A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9719905B2 (en) Methods of measuring electrode density and electrode porosity
Heidrich et al. Quantitative determination of solid electrolyte interphase and cathode electrolyte interphase homogeneity in multi-layer lithium ion cells
US20190393504A1 (en) Method for manufacturing activated carbon using coffee bean extract and electrode for battery comprising same
Heugel et al. Thickness change and jelly roll deformation and its impact on the aging and lifetime of commercial 18650 cylindrical Li-ion cells with silicon containing anodes and nickel-rich cathodes
JP2018073499A (en) Inspection method of positive electrode active material particle powder
Bryntesen et al. Structured aqueous processed lignin-based NMC cathodes for energy-dense LIBs with improved rate capability
Ates et al. Elucidating the Role of Microstructure in Thiophosphate Electrolytes–a Combined Experimental and Theoretical Study of β‐Li3PS4
Weber et al. Model studies on solid electrolyte interphase formation on graphite electrodes in ethylene carbonate and dimethyl carbonate II: Graphite powder electrodes
EP4275240A1 (en) Computer-supported method for analyzing an electrode layer of a battery cell using a ki engine, method for training a ki engine, method for producing a battery storage device, and production unit
JP2018129131A (en) Method for inspection of positive electrode active material particles
JP2019083163A (en) Method for evaluating carbon
JP2018092747A (en) Inspection method of powder of positive electrode active material particles
JP2017152160A (en) Method of inspecting positive electrode active material particle
JPWO2019235133A1 (en) Membrane evaluation method and quality control method
Yang et al. High-performance metal-oxide gas sensors based on hierarchical core–shell ZnFe 2 O 4 microspheres for detecting 2-chloroethyl ethyl sulfide
CN107369861B (en) The detection method of nickelic ternary material denaturation degrees