JP2018072665A - Manufacturing method of reflection type mask blank and reflection type mask blank - Google Patents

Manufacturing method of reflection type mask blank and reflection type mask blank Download PDF

Info

Publication number
JP2018072665A
JP2018072665A JP2016214308A JP2016214308A JP2018072665A JP 2018072665 A JP2018072665 A JP 2018072665A JP 2016214308 A JP2016214308 A JP 2016214308A JP 2016214308 A JP2016214308 A JP 2016214308A JP 2018072665 A JP2018072665 A JP 2018072665A
Authority
JP
Japan
Prior art keywords
defect
mask blank
reflective layer
layer
multilayer reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016214308A
Other languages
Japanese (ja)
Inventor
一晃 松井
Kazuaki Matsui
一晃 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2016214308A priority Critical patent/JP2018072665A/en
Publication of JP2018072665A publication Critical patent/JP2018072665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a high quality reflection type mask blank without generating phase defect.SOLUTION: There is provided a manufacturing method of a reflection type mask blank including following 1) to 6) processes in the order. 1) a process for making a multilayer reflection layer having less layer than final layer number. 2) a process for defect inspecting a surface shape of the multilayer reflection layer having less layer than the final layer number. 3) a process for removing area including defects detected by the defect inspection in the multilayer reflection layer made in the 1) process. 4) a process for correcting projection shaped or recess shaped defects exposed in the 3) process, which cause defects detected in the 2) process. 5) a process for additionally making the multilayer reflection layer. 6) a process for polishing removing an area of the multilayer reflection layer having more layers than the final layer number.SELECTED DRAWING: Figure 2

Description

本発明は、極端紫外線(Extreme Ultra Violet;EUV)などを光源とするリソグラフィで使用する反射型マスクを作製するための反射型マスクブランクの製造方法及び反射型マスクブランクに関する。   The present invention relates to a reflective mask blank manufacturing method and a reflective mask blank for producing a reflective mask used in lithography using extreme ultraviolet (EUV) as a light source.

(EUVリソグラフィの説明)
近年、半導体デバイスの微細化に伴い、波長が13.5nm近傍のEUV光源を用いるEUVリソグラフィが提案されている。EUVリソグラフィは光源波長が短く光吸収性が非常に高いため、露光装置の真空チャンバー内で転写が行われる必要がある。またEUVの波長領域においては、ほとんどの物質の屈折率は1よりもわずかに小さい値である。このため、EUVリソグラフィにおいては従来から用いられてきた透過型の屈折光学系を使用することができず、反射光学系となる。従って、原版となるフォトマスク(以下マスク)も、従来の透過型のマスクは使用できず、反射型のマスクとする必要がある。
(Description of EUV lithography)
In recent years, with the miniaturization of semiconductor devices, EUV lithography using an EUV light source having a wavelength of around 13.5 nm has been proposed. Since EUV lithography has a short light source wavelength and very high light absorption, it is necessary to perform transfer in a vacuum chamber of an exposure apparatus. In the EUV wavelength region, the refractive index of most substances is slightly smaller than 1. For this reason, the EUV lithography cannot use a transmission type refractive optical system which has been used conventionally, and becomes a reflection optical system. Accordingly, a conventional photomask (hereinafter referred to as a mask) cannot be used as a photomask (hereinafter referred to as a mask) and must be a reflective mask.

(反射型マスクブランクとマスクの構造の説明)
前記のような反射型マスクの元となる反射型マスクブランク500は、図8に示すようであり、低熱膨張基板(以下適宜、基板と記す)50の上に光源波長に対して高い反射率を示す多層反射層51(M)と光源波長の吸収膜55が、通常スパッタリング法により順次形成されている。反射型マスクブランク500から反射型マスク560へ加工する際には、EB(電子線)やレーザリソグラフィとエッチング技術により吸収膜55を部分的に除去し、吸収膜パターン55aと高反射部57からなる回路パターン56を形成する。このように作製された反射型マスク560によって反射された光像が反射光学系を経て半導体基板(以下ウェハ)上に転写される。
(Description of reflective mask blank and mask structure)
A reflective mask blank 500 as a base of the reflective mask as described above is as shown in FIG. 8, and has a high reflectance with respect to the light source wavelength on a low thermal expansion substrate (hereinafter referred to as a substrate as appropriate) 50. A multilayer reflective layer 51 (M) and an absorption film 55 having a light source wavelength are sequentially formed by a normal sputtering method. When processing from the reflective mask blank 500 to the reflective mask 560, the absorption film 55 is partially removed by EB (electron beam), laser lithography and etching techniques, and the absorption film pattern 55a and the high reflection portion 57 are formed. A circuit pattern 56 is formed. The optical image reflected by the reflective mask 560 thus manufactured is transferred onto a semiconductor substrate (hereinafter referred to as a wafer) through a reflective optical system.

尚、多層反射層上にキャッピング膜(保護膜)、またキャッピング膜上に吸収膜、キャッピング膜と吸収膜間に緩衝膜(バッファー膜)を形成した形態、さらに吸収膜上にリソグラフィ用のレジストを形成した形態をブランクと呼ぶ場合があるが、本発明では低熱膨張基板上に多層反射層までを形成した形態を、特に反射型マスクブランクと呼称する。   A capping film (protective film) on the multilayer reflective layer, an absorption film on the capping film, and a buffer film (buffer film) formed between the capping film and the absorption film, and a lithography resist on the absorption film Although the formed form may be called a blank, in the present invention, a form in which up to a multilayer reflective layer is formed on a low thermal expansion substrate is particularly called a reflective mask blank.

(反射型マスクブランクに発生する欠陥)
EUVリソグラフィ用の反射型マスクの回路パターン線幅は数十nm程度と非常に小さく、反射型マスクに発生する欠陥の影響を受け易い。反射型マスクの欠陥とは、反射型マスクブランクから反射型マスクへ加工する際に回路パターンに発生するパターン欠陥と、反射型マスクブランクを作製する際に低熱膨張基板の研磨により基板表面に発生する凹凸、あるいは基板上や多層反射層形成中に発生するパーティクルや異物などに起因する位相欠陥の二種類が存在する。
(Defects that occur in reflective mask blanks)
The circuit pattern line width of a reflective mask for EUV lithography is very small, about several tens of nm, and is easily affected by defects generated in the reflective mask. The defect of the reflective mask is a pattern defect generated in the circuit pattern when processing from the reflective mask blank to the reflective mask, and is generated on the substrate surface by polishing of the low thermal expansion substrate when manufacturing the reflective mask blank. There are two types of phase defects due to irregularities or particles or foreign matter generated on the substrate or during the formation of the multilayer reflective layer.

パターン欠陥については回路パターンを形成した後、フォトマスク用修正機を用いて、FIB(Focused Ion Beam=集束イオンビーム)やEB等を特定ガス雰囲気中で照射し、エッチングやデポジッション(部分的成膜)を行うことにより修復が可能である。一方、位相欠陥は、多層膜の界面反射の干渉により生成する反射光の、正常部と欠陥部の波面の位相ずれが重ね合わされる現象であるため、その修復は非常に困難である。   For pattern defects, after forming a circuit pattern, a photomask correction machine is used to irradiate FIB (Focused Ion Beam = focused ion beam) or EB in a specific gas atmosphere to perform etching or deposition (partial formation). The film can be repaired. On the other hand, the phase defect is a phenomenon in which the phase shift of the wave fronts of the normal part and the defective part of the reflected light generated by the interference of the interface reflection of the multilayer film is superimposed, so that the repair is very difficult.

図1は、反射型フォトマスクブランクの位相欠陥となる凸状欠陥(ここでは断面視矩形で代表させている)が、図1(a)は基板上にある場合(13a)、図1(b)は多層反
射層中にある場合(13b)の模式断面図であり、図1(c)は、それらの欠陥の高さを横軸として、正常部反射光Rと欠陥部反射光Rの位相差を計算した結果を示す特性図である。ここで、多層反射層は、EUVマスクブランクで一般的なSi(シリコン:4.2nm厚)とMo(モリブデン:2.8nm厚)を交互に40ペア(80層)積層したもの、凸型位相欠陥の原因となる基板凸状欠陥12a、多層膜中凸状欠陥12bはいずれもSiパーティクル、基板材料は低熱膨張基板に近い石英、波長は13.5nmとして計算している。また、計算で用いる材料の光学定数は、後述の計算も含め、表1の値を使用している。
FIG. 1 shows a case where a convex defect (represented by a rectangular cross-section in this case) that is a phase defect of a reflective photomask blank is present on the substrate (13a), FIG. ) is a schematic sectional view of (13b) in the multilayer reflective layer, FIG. 1 (c), the height of those defects as horizontal axis, normal portion reflected light R 0 and defect reflected light R d It is a characteristic view which shows the result of having calculated the phase difference of. Here, the multilayer reflective layer is an EUV mask blank obtained by alternately stacking 40 pairs (80 layers) of Si (silicon: 4.2 nm thickness) and Mo (molybdenum: 2.8 nm thickness) alternately. The substrate convex defect 12a and the convex defect 12b in the multilayer film that cause the defect are both calculated as Si particles, the substrate material is quartz close to a low thermal expansion substrate, and the wavelength is 13.5 nm. Moreover, the value of Table 1 is used for the optical constant of the material used by calculation including the calculation mentioned later.

図1(c)で実線Aは基板上にSiパーティクルがあり、その上に多層反射層を40ペア積層した場合、一点鎖線Bは多層反射層を20ペア積層した上にSiパーティクルがあり、その上に多層反射層を20ペア積層した場合、点線Cは多層反射層を30ペア積層した上にSiパーティクルがあり、その上に多層反射層を10ペア積層した場合を示している。Siパーティクルが基板から遠く多層反射層の表面に近づくほど、位相差は小さくなるが、いずれもSiパーティクルの高さとともに大きな位相差を発生することが分る。   In FIG. 1 (c), the solid line A has Si particles on the substrate, and when 40 pairs of multilayer reflective layers are laminated thereon, the alternate long and short dash line B has Si particles on which 20 pairs of multilayer reflective layers are laminated. When 20 pairs of multilayer reflective layers are stacked, dotted line C indicates a case where 30 pairs of multilayer reflective layers are stacked, Si particles are present, and 10 pairs of multilayer reflective layers are stacked thereon. It can be seen that the phase difference decreases as the Si particles move away from the substrate and approaches the surface of the multilayer reflective layer, but in any case, a large phase difference is generated with the height of the Si particles.

(Defect Avoidance技術による位相欠陥の無効化)
位相欠陥の影響を回避する手法の一つに、位相欠陥部分を避けて回路パターンを作製するDefect Avoidanceと呼ばれる手法が存在する(例えば特許文献1)。この方法では、基板にアライメントとなるマーキングを施し、その後多層反射層を成膜する。その後、反射型マスクブランクに発生している位相欠陥のアライメントからの相対座標を読み取り、位相欠陥座標を避けるように回路パターンデータを90度、180度、270度と回転させたり、回路パターンデータを僅かに平行移動させたり、回路パターンデータを変更する等の方法により、位相欠陥箇所に重要な回路パターンが来ないように調整する。しかし、この方法で回避可能な位相欠陥の数は数点であり、複雑な回路パターンに対しては対応不可能である。
(Invalidation of phase defect by Defect Avoidance technology)
As one of techniques for avoiding the influence of phase defects, there is a technique called Defect Avoidance that creates a circuit pattern while avoiding a phase defect portion (for example, Patent Document 1). In this method, an alignment marking is applied to the substrate, and then a multilayer reflective layer is formed. Thereafter, the relative coordinates from the alignment of the phase defect occurring in the reflective mask blank are read, and the circuit pattern data is rotated by 90 degrees, 180 degrees, 270 degrees to avoid the phase defect coordinates, or the circuit pattern data is Adjustment is made so that an important circuit pattern does not come to the phase defect portion by a method such as slightly translating or changing circuit pattern data. However, the number of phase defects that can be avoided by this method is several, and it is impossible to deal with complicated circuit patterns.

(コンペンセーショナルリペア技術による位相欠陥の修復)
位相欠陥の影響を回避する別の手法として、位相欠陥部分のEUV光反射率が低下する特性に着目し、位相欠陥に隣接する吸収膜パターンをエッチング修正することにより、位相欠陥の影響を光学的にキャンセルし、ウェハ上に転写される回路パターンを改善するコンペンセーショナルリペアと呼ばれる手法も提案されている(特許文献2)。
(Repair of phase defects using compensation repair technology)
As another method to avoid the influence of the phase defect, paying attention to the characteristic that the EUV light reflectance of the phase defect portion is lowered, the effect of the phase defect is optically corrected by etching correction of the absorption film pattern adjacent to the phase defect. In other words, a method called compensation repair has been proposed that cancels the process and improves the circuit pattern transferred onto the wafer (Patent Document 2).

しかしながら、前記特許文献2の方法では、回路パターンの例えばLine&Spaceにおいて2本以上のLineにまたがるサイズの位相欠陥が発生した場合は、原理的に修正が困難である。また、コンペンセーショナルリペアには露光転写後のウェハへの影響をシミュレーションし、吸収膜パターンのエッチング量を決定する工程が必要であるため、反射型マスクの生産性の低下が懸念される。更にシミュレーションソフトウェア等のインフラを整備する必要が有るため、コストの増加も懸念される。   However, in the method of Patent Document 2, if a phase defect having a size that extends over two or more lines occurs in a circuit pattern, for example, Line & Space, it is difficult to correct in principle. Further, since the compensation repair requires a process of simulating the influence on the wafer after exposure transfer and determining the etching amount of the absorption film pattern, there is a concern that the productivity of the reflective mask is lowered. In addition, since it is necessary to develop infrastructure such as simulation software, there is a concern about an increase in cost.

特開2013−179270号公報JP 2013-179270 A 特表2002−532738号公報Japanese translation of PCT publication No. 2002-532738

本発明は上記課題を解決するためになされたものであり、その目的とするところは、反射型マスクブランクの作製時に、低熱膨張基板作製時の研磨により発生した基板の凹凸、あるいは低熱膨張基板上や多層反射層形成中に発生するパーティクルや異物などの位相欠陥となる要因を除去し、高品質な反射型マスクブランクを作製して、反射型マスクの作製時にDefect Avoidanceやコンペンセーショナルリペア等の複雑な工程を必要とせず、生産性の高い反射型マスクの作製を可能とする反射型マスクブランクの製造方法及び反射型マスクブランクを提供することである。   The present invention has been made in order to solve the above-described problems, and the object of the present invention is to provide an uneven surface of a substrate caused by polishing during the production of a reflective mask blank, or on a low thermal expansion substrate. In addition, the cause of phase defects such as particles and foreign matters generated during the formation of a multilayer reflective layer is removed, and a high-quality reflective mask blank is manufactured. When a reflective mask is manufactured, such as Defect Aviation and Compensatory Repair It is an object of the present invention to provide a reflective mask blank manufacturing method and a reflective mask blank that do not require a complicated process and enable production of a reflective mask with high productivity.

上述の問題を解決するために、請求項1に記載の発明は、基板上に多層反射層を備える反射型マスクブランクの製造方法であって、次の1)〜6)の工程を順次含むことを特徴とする反射型マスクブランクの製造方法としたものである。
1)最終的な層数よりも少ない多層反射層を成膜する工程。
2)前記最終的な層数よりも少ない多層反射層の表面形状を欠陥検査する工程。
3)1)の工程で成膜した多層反射層の、前記欠陥検査により検出された欠陥を含む領域を除去する工程。
4)2)の工程で検出された欠陥の原因となっており、3)の工程で露出した凸状または凹状の欠陥を修正する工程。
5)多層反射層を追加成膜する工程。
6)最終的な層数よりも多くなった多層反射層の領域を研磨除去する工程。
In order to solve the above-mentioned problem, the invention described in claim 1 is a method of manufacturing a reflective mask blank having a multilayer reflective layer on a substrate, and sequentially includes the following steps 1) to 6). This is a method for manufacturing a reflective mask blank characterized by the following.
1) A step of forming a multilayer reflective layer fewer than the final number of layers.
2) A step of inspecting the surface shape of the multilayer reflective layer that is less than the final number of layers.
3) The process of removing the area | region containing the defect detected by the said defect inspection of the multilayer reflection layer formed into the film of 1).
4) A step of correcting the convex or concave defect that is the cause of the defect detected in the step 2) and is exposed in the step 3).
5) A step of additionally forming a multilayer reflective layer.
6) A step of polishing and removing a region of the multilayer reflective layer that has become larger than the final number of layers.

請求項2に記載の発明は、前記1)〜5)の工程を繰り返すことを特徴とする請求項1に記載の反射型マスクブランクの製造方法としたものである。   The invention according to claim 2 is the method for producing a reflective mask blank according to claim 1, wherein the steps 1) to 5) are repeated.

請求項3に記載の発明は、前記4)の工程における凸状または凹状の欠陥の修正は、電子線、集束イオンビーム、レーザー、プローブのいずれかを用いることを特徴とする請求項1、または2)に記載の反射型マスクブランクの製造方法としたものである。   The invention according to claim 3 is characterized in that any one of an electron beam, a focused ion beam, a laser, and a probe is used to correct the convex or concave defect in the step 4). This is a manufacturing method of the reflective mask blank described in 2).

請求項4に記載の発明は、基板上に多層反射層を備える反射型マスクブランクであって、多層反射層の表面に回転状の研磨痕を有する事を特徴とする反射型マスクブランクとしたものである。   The invention according to claim 4 is a reflective mask blank having a multilayer reflective layer on a substrate, wherein the reflective mask blank has a rotational polishing mark on the surface of the multilayer reflective layer. It is.

本発明によれば、請求項1に規定する工程を含む反射型マスクブランクの製造方法としたので、低熱膨張基板作製時の研磨により発生した基板の凹凸、あるいは低熱膨張基板上や多層反射層形成中に発生するパーティクルや異物などの位相欠陥となる要因が除去され、位相欠陥を発生しない高品質な反射型マスクブランクが作製でき、反射型マスクの作製時にDefect Avoidanceやコンペンセーショナルリペア等の複雑な工程を必要としないので、反射型マスク製造のコスト低減、及び生産性の向上が見込まれる。   According to the present invention, since the reflective mask blank manufacturing method includes the process as defined in claim 1, unevenness of the substrate generated by polishing during the production of the low thermal expansion substrate, or formation of the multilayer reflective layer on the low thermal expansion substrate The cause of phase defects such as particles and foreign matters generated inside is removed, and a high-quality reflective mask blank that does not generate phase defects can be manufactured, and complex defects such as Defect Aviation and Compensatory Repair can be used when manufacturing reflective masks. Therefore, it is possible to reduce the cost of manufacturing the reflective mask and improve the productivity.

反射型フォトマスクブランクの凸状欠陥が、(a)基板上にある場合、(b)多層反射層中にある場合の模式断面図、及び(c)欠陥の高さに対する正常部反射光と欠陥部反射光の位相差を計算した特性図である。When the convex defect of the reflective photomask blank is (a) on the substrate, (b) a schematic cross-sectional view when in the multilayer reflective layer, and (c) normal part reflected light and defect with respect to the height of the defect It is the characteristic view which computed the phase difference of the partial reflected light. 本発明の反射型マスクブランクの製造工程フロー図である。It is a manufacturing process flowchart of the reflective mask blank of this invention. 本発明の反射型マスクブランクの製造工程(基板凸状欠陥がある場合)を示す模式断面図である。It is a schematic cross section which shows the manufacturing process (when there exists a board | substrate convex defect) of the reflective mask blank of this invention. 本発明の反射型マスクブランクの製造工程(基板凹状欠陥がある場合)を示す模式断面図である。It is a schematic cross section which shows the manufacturing process (when there exists a board | substrate concave defect) of the reflective mask blank of this invention. 本発明の反射型マスクブランクの製造工程(多層膜中凸状欠陥がある場合)を示す模式断面図である。It is a schematic cross section which shows the manufacturing process (when there exists a convex defect in a multilayer film) of the reflective mask blank of this invention. 多層反射層のペア数に対する紫外線(DUV光、EUV光)反射率を計算した特性図である。It is the characteristic view which computed the ultraviolet-ray (DUV light, EUV light) reflectance with respect to the number of pairs of a multilayer reflective layer. (a)多層反射層最表面の凸部高さに対する正常部反射光と欠陥部反射光の位相差、(b)同じく表面粗さに対するEUV光反射率、(c)基板表面粗さ(=多層反射層層間粗さ)に対するEUV光反射率を計算した特性図である。(A) Phase difference between normal part reflected light and defect part reflected light with respect to the convex part height on the outermost surface of the multilayer reflective layer, (b) EUV light reflectance with respect to the same surface roughness, (c) Substrate surface roughness (= multilayer) It is the characteristic view which calculated the EUV light reflectance with respect to (reflection layer interlayer roughness). 反射型マスクブランクと反射型マスクの構造と製造工程の一部を示す模式断面図である。It is a schematic cross section showing the structure of the reflective mask blank and the reflective mask and part of the manufacturing process.

以下、本発明の実施形態に係る反射型マスクブランクの製造方法及び反射型マスクブランクついて詳細に説明する。尚、同一の構成要素については便宜上の理由がない限り同一の符号を付け、重複する説明は省略する。また、以下の説明で用いる図面は、特徴をわかりやすくするために、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じではない。   Hereinafter, a reflective mask blank manufacturing method and a reflective mask blank according to an embodiment of the present invention will be described in detail. In addition, the same code | symbol is attached | subjected about the same component unless there is a reason for convenience, and the overlapping description is abbreviate | omitted. Also, in the drawings used in the following description, in order to make the features easy to understand, the portions that become the features may be shown in an enlarged manner, and the dimensional ratios of the respective constituent elements are not the same as the actual ones.

(本発明の反射型マスクブランクの製造工程フロー)
図2に、本発明の反射型マスクブランクの製造工程フロー図を示す。まず、低熱膨張基板上に多層反射層を数層(N層とする)スパッタリングにて成膜し(STEP1)、全面に表面形状の欠陥検査を実施する(STEP2)。そこで検出した欠陥に対してSEM(走査型電子顕微鏡)測定を実施し、凹凸の形状やサイズを確認する(STEP3)。その後、欠陥部を含む多層反射層の領域を、修正機等を用いて除去し、前記欠陥を露出させる(STEP4)。その後、欠陥が凹形状であればフォトマスク用修正機によりデポジッション修正を実施し(STEP5)、凸形状であればエッチング修正を実施し(STEP5’)、前記欠陥を除去する。
(Production process flow of the reflective mask blank of the present invention)
FIG. 2 shows a flow chart of the manufacturing process of the reflective mask blank of the present invention. First, a multilayer reflective layer is formed on a low thermal expansion substrate by sputtering (referred to as N layer) sputtering (STEP 1), and surface shape defect inspection is performed on the entire surface (STEP 2). Therefore, SEM (scanning electron microscope) measurement is performed on the detected defect, and the shape and size of the unevenness are confirmed (STEP 3). Thereafter, the region of the multilayer reflective layer including the defective portion is removed using a correction machine or the like to expose the defect (STEP 4). Thereafter, if the defect has a concave shape, the deposition correction is performed by a photomask correcting machine (STEP 5). If the defect has a convex shape, an etching correction is performed (STEP 5 '), and the defect is removed.

次に、前記修正後の形状を確認するため、AFM(原子力間顕微鏡)により表面粗さ測定を実施し、RMS(Root Mean Square=二乗平均粗さ)が設定した許容値以下であるか、許容値外であるかの判定を行う(STEP6)。許容値以下であれば修正成功(YES)とし、許容値外(NO)であれば再度修正、AFM測定、判定をYESとなるまで繰り返す。ここで、許容値としては、EUV露光で転写形成する回路パターンの種類、線幅や転写条件に応じて適宜設定すればよい。その後、STEP1のN層スパッタリングからSTEP6のRMS判定までをk回繰返し、その後k+1回目の成膜を行い、修正が1回もなかった部分は目的とするM(=N×k)層よりもN層多い多層反射層のスパッタリング成膜が終了する(STEP7)。   Next, in order to confirm the corrected shape, surface roughness is measured with an AFM (atomic force microscope), and RMS (Root Mean Square) is less than or equal to a set allowable value. It is determined whether the value is out of range (STEP 6). If it is less than the allowable value, the correction is successful (YES), and if it is out of the allowable value (NO), the correction, AFM measurement, and determination are repeated until YES. Here, the allowable value may be set as appropriate according to the type of circuit pattern to be transferred and formed by EUV exposure, the line width, and transfer conditions. Thereafter, the N-layer sputtering in STEP 1 to the RMS judgment in STEP 6 are repeated k times, and then the (k + 1) th film formation is performed, and the portion that has not been corrected once is more than the target M (= N × k) layer. Sputter deposition of the multilayer reflective layer with many layers is completed (STEP 7).

前記でk=1回目は基板作製時の研磨により発生した基板の凹凸欠陥に対する検査と修正であり、k=2回目以降は多層反射層形成中に発生するパーティクルや異物などの欠陥に対する検査と修正である。仮にk回までの繰返しで1か所ずつ修正したとすると、最終的に修正箇所はk個となるが、通常修正箇所は小さいため、k個の修正箇所は各々異なった位置にあり、k回までの成膜でこれらの修正箇所の層数はN×(k−1)となっている。   In the above, k = 1 is the inspection and correction for the concave / convex defect of the substrate generated by polishing at the time of manufacturing the substrate, and k = second and subsequent inspection and correction for defects such as particles and foreign matters generated during the formation of the multilayer reflective layer. It is. Assuming that corrections are made one by one up to k times, the number of correction points will eventually be k, but since the normal correction points are small, the k correction points are at different positions, and k times. In the film formation up to this point, the number of layers at these correction points is N × (k−1).

従って、STEP7の後は、k+1回目の成膜で生じたパーティクルと、修正が1回もなくM(=N×k)層よりもN層だけ厚く(過剰に)成膜された部分をCMP研磨(Chemical Mechanical Polishing)よって除去すればよい(STEP8)。以上により、位相欠陥の原因となる凹状欠陥または凸状欠陥が無い多層反射層を備えた本発明の反射型マスクブランクが完成する。   Therefore, after STEP7, the particles generated in the (k + 1) th film formation and the portion where the film was thickened (excessively) by the N layer rather than the M (= N × k) layer without any correction are subjected to CMP polishing. It may be removed by (Chemical Mechanical Polishing) (STEP 8). By the above, the reflective mask blank of this invention provided with the multilayer reflective layer without the concave defect or convex defect which causes a phase defect is completed.

前記で、目的とするM層の多層反射層の成膜は、N層ずつをk回繰り返してM層とする例を説明したが、必ずしも毎回がN層ずつである必要はなく、成膜時のパーティクルや異物の発生が少なければ(多ければ)、k=2回目以降はN層よりも多い(少ない)層数ずつ成膜し、最終的にM層とすればよい。この場合、過剰に成膜された多層反射層のもっと
も多い層数は、前記でもっとも多く成膜されたときの層数に等しくなる。
In the above description, an example of forming the target M multilayer reflective layer has been described in which each N layer is repeated k times to form the M layer. However, it is not always necessary that each N layer is formed. If the generation of particles and foreign matter is small (if it is large), the number of layers may be increased by a smaller number than the N layer after the second time, and finally M layers may be formed. In this case, the largest number of the multilayer reflective layers formed excessively is equal to the number of layers formed when the largest number is formed.

(基板凸状欠陥がある場合の本発明の反射型マスクブランクの製造工程)
図3は、図2で説明した製造工程フロー図で、基板20作製時の研磨により発生した凸状欠陥22があり、説明の簡略化のためk=1のみとし、本発明の反射型マスクブランク240を製造する工程を示す模式断面図である。
(Manufacturing process of the reflective mask blank of the present invention when there is a substrate convex defect)
FIG. 3 is a flow chart of the manufacturing process described with reference to FIG. 2. There is a convex defect 22 generated by polishing during the production of the substrate 20, and for the sake of simplicity, only k = 1 is assumed. 4 is a schematic cross-sectional view showing a process of manufacturing 240. FIG.

まず、基板20に対してスパッタリングにてN層の多層反射層21(N)を成膜すると、図3(a)に示す(凸型位相欠陥23付きの)反射型マスクブランク200が得られる。その後欠陥検査を実施して位相欠陥23となる形状欠陥を検出した後、前記検査結果をもとに、SEM測定を実施し、欠陥の形状やサイズを確認する。その後、欠陥部を含む多層反射層の領域を、修正機等を用いて除去し、21(N)aとして前記欠陥22を露出させ、図3(b)に示す欠陥領域の多層反射層除去済み反射型マスクブランク210を得る。   First, when an N-layer multilayer reflective layer 21 (N) is formed on the substrate 20 by sputtering, a reflective mask blank 200 (with a convex phase defect 23) shown in FIG. Thereafter, defect inspection is performed to detect a shape defect that becomes the phase defect 23, and then SEM measurement is performed based on the inspection result to confirm the shape and size of the defect. Thereafter, the region of the multilayer reflective layer including the defective portion is removed using a correction machine or the like, the defect 22 is exposed as 21 (N) a, and the multilayer reflective layer in the defective region shown in FIG. A reflective mask blank 210 is obtained.

次に、基板上の凸状欠陥22をフォトマスク用修正機によるエッチングにて除去し、図3(c)に示す凸状欠陥修正済み反射型マスクブランク220を得る。その後、前記欠陥修正後の表面粗さをAFMにて測定し、RMSが許容値内にあることを確認した後、多層反射層を目的のM層成膜し、図3(d)に示す過剰多層反射層21(+N)aを有する反射型マスクブランク230を得る。最後に、過剰多層反射層21(+N)aをCMPにより研磨して、図3(e)に示すCMP研磨後の本発明の反射型マスクブランク240が得られる。   Next, the convex defects 22 on the substrate are removed by etching using a photomask correcting machine, and a convex mask 220 having a corrected convex defect shown in FIG. 3C is obtained. Thereafter, the surface roughness after the defect correction is measured with an AFM, and after confirming that the RMS is within an allowable value, the target M layer is formed as a multilayer reflective layer, and the excess shown in FIG. A reflective mask blank 230 having the multilayer reflective layer 21 (+ N) a is obtained. Finally, the excess multilayer reflective layer 21 (+ N) a is polished by CMP to obtain the reflective mask blank 240 of the present invention after CMP polishing shown in FIG. 3 (e).

(基板凹状欠陥がある場合の本発明の反射型マスクブランクの製造工程)
図4は、図2で説明した製造工程フロー図で、基板30作製時の研磨により発生したピット等の凹状欠陥32があり、説明の簡略化のためk=1のみとし、本発明の反射型マスクブランク340を製造する工程を示す模式断面図である。
(Manufacturing process of the reflective mask blank of the present invention when the substrate has a concave defect)
FIG. 4 is a flow chart of the manufacturing process described with reference to FIG. 2, and there is a concave defect 32 such as a pit generated by polishing during the production of the substrate 30. For the sake of simplification, only k = 1 is assumed. It is a schematic cross section which shows the process of manufacturing the mask blank 340.

まず、基板30に対してスパッタリングにてN層の多層反射層31(N)を成膜すると、図4(a)に示す(凹型位相欠陥33付きの)反射型マスクブランク300が得られる。その後欠陥検査を実施して位相欠陥33となる形状欠陥を検出した後、前記検査結果をもとに、SEM測定を実施し、欠陥の形状やサイズを確認する。その後、欠陥部を含む多層反射層の領域を、修正機等を用いて除去し、31(N)aとして前記欠陥32を露出させ、図4(b)に示す欠陥領域の多層反射層除去済み反射型マスクブランク310を得る。   First, when an N-layer multilayer reflective layer 31 (N) is formed on the substrate 30 by sputtering, a reflective mask blank 300 (with a concave phase defect 33) shown in FIG. 4A is obtained. Thereafter, defect inspection is performed to detect a shape defect that becomes the phase defect 33, and then SEM measurement is performed based on the inspection result to confirm the shape and size of the defect. Thereafter, the region of the multilayer reflective layer including the defective portion is removed using a correction machine or the like to expose the defect 32 as 31 (N) a, and the multilayer reflective layer in the defective region shown in FIG. 4B has been removed. A reflective mask blank 310 is obtained.

次に、基板上の凹状欠陥32をフォトマスク用修正機により埋め、デポジッション部34とし、図4(c)に示す凹状欠陥修正済み反射型マスクブランク320を得る。その後、前記欠陥修正後の表面粗さをAFMにて測定し、RMSが許容値内にあることを確認した後、多層反射層を目的のM層成膜し、図4(d)に示す過剰多層反射層31(+N)aを有する反射型マスクブランク330を得る。最後に、過剰多層反射層31(+N)aをCMPにより研磨して、図4(e)に示すCMP研磨後の本発明の反射型マスクブランク340が得られる。   Next, the concave defect 32 on the substrate is filled with a photomask correction machine to form a deposition unit 34, and a concave defect corrected reflective mask blank 320 shown in FIG. 4C is obtained. Thereafter, the surface roughness after the defect correction is measured with an AFM, and after confirming that the RMS is within an allowable value, the target M layer is formed as a multilayer reflective layer, and the excess shown in FIG. A reflective mask blank 330 having the multilayer reflective layer 31 (+ N) a is obtained. Finally, the excess multilayer reflective layer 31 (+ N) a is polished by CMP to obtain the reflective mask blank 340 of the present invention after CMP polishing shown in FIG. 4 (e).

(多層膜中凸状欠陥がある場合の本発明の反射型マスクブランクの製造工程)
図5は、図2で説明した製造工程フロー図で、多層反射層をN×p層成膜した後に発生したパーティクルによる凸状欠陥42があり、説明の簡略化のため、残りN層の成膜で目的のM層となることとし、本発明の反射型マスクブランク440を製造する工程を示す模式断面図である。
(Manufacturing process of the reflective mask blank of the present invention when there are convex defects in the multilayer film)
FIG. 5 is a flow chart of the manufacturing process described with reference to FIG. 2, and there is a convex defect 42 due to particles generated after forming the N × p multilayer reflective layer. For simplicity of explanation, the remaining N layers are formed. FIG. 5 is a schematic cross-sectional view showing a process of manufacturing a reflective mask blank 440 of the present invention, which is a target M layer with a film.

基板40に対してスパッタリングにてN×p層の多層反射層41(Np)を成膜した後までは欠陥検査で位相欠陥となる形状欠陥は検出されず、さらにN層の成膜を行い欠陥検査を行ったところ、図5(a)に示す凸型位相欠陥43付きの反射型マスクブランク400が得られたとする。そこで前記検査結果をもとに、SEM測定を実施し、欠陥の形状やサイズを確認する。その後、欠陥部を含むN層の多層反射層の領域を、修正機等を用いて除去し、41(N)aとして前記欠陥42を露出させ、図5(b)に示す欠陥領域のN層の多層反射層除去済み反射型マスクブランク410を得る。   Until the multilayer reflective layer 41 (Np) of N × p layer is formed on the substrate 40 by sputtering, the shape defect that becomes the phase defect is not detected by the defect inspection, and further, the N layer is formed and the defect is detected. As a result of inspection, it is assumed that a reflective mask blank 400 with a convex phase defect 43 shown in FIG. 5A is obtained. Therefore, SEM measurement is performed based on the inspection result to confirm the shape and size of the defect. After that, the region of the N multilayer reflective layer including the defect is removed using a correction machine or the like to expose the defect 42 as 41 (N) a, and the N layer of the defect region shown in FIG. The reflective mask blank 410 from which the multilayer reflective layer has been removed is obtained.

次に、多層反射層上の凸状欠陥42をフォトマスク用修正機によるエッチングにて除去し、図5(c)に示す凸状欠陥修正済み反射型マスクブランク420を得る。その後、前記欠陥修正後の表面粗さをAFMにて測定し、RMSが許容値内にあることを確認した後、多層反射層を残りのN層成膜し、図5(d)に示す過剰多層反射層41(+N)aを有する反射型マスクブランク430を得る。最後に、過剰多層反射層41(+N)aをCMPにより研磨して、図5(e)に示すCMP研磨後の本発明の反射型マスクブランク440が得られる。   Next, the convex defect 42 on the multilayer reflective layer is removed by etching with a photomask correcting machine, to obtain a reflective mask blank 420 with a corrected convex defect shown in FIG. Thereafter, the surface roughness after the defect correction is measured by AFM, and after confirming that the RMS is within an allowable value, the remaining N layers are formed as a multilayer reflective layer, and the excess shown in FIG. A reflective mask blank 430 having the multilayer reflective layer 41 (+ N) a is obtained. Finally, the excess multilayer reflective layer 41 (+ N) a is polished by CMP to obtain the reflective mask blank 440 of the present invention after CMP polishing shown in FIG. 5 (e).

図2のSTEP2で行う欠陥検査は、検査速度が速い光学式とし、波長は紫外線(DUV(深紫外線)光、またはEUV光)領域であることが好ましい。図6は、多層反射層のペア数(=層数/2)に対する紫外線(DUV光、EUV光)反射率を計算した特性図である。ここで、多層反射層の材料は前述と同じSiとMo、基板材料は石英とし、計算で用いる材料の光学定数は、表1の値を使用している。   The defect inspection performed in STEP 2 of FIG. 2 is preferably an optical method with a high inspection speed, and the wavelength is preferably in the ultraviolet (DUV (deep ultraviolet) light or EUV light) region. FIG. 6 is a characteristic diagram in which the reflectance of ultraviolet rays (DUV light, EUV light) is calculated with respect to the number of pairs (= number of layers / 2) of the multilayer reflective layer. Here, the materials of the multilayer reflective layer are Si and Mo as described above, the substrate material is quartz, and the values of Table 1 are used as the optical constants of the materials used in the calculation.

図6から分るように、通常の光学的欠陥検査で用いられる波長=257nmや199nmのDUV光では、1ペアの成膜で30%程度、2ペアの成膜で50%程度の高い反射率が得られ(これはSiやMoの金属性反射によるものである)、暗視野式の光学検査により表面の凹凸形状を検出することができる。一方、EUV光では30%の反射率を得るためには、10ペア程度の成膜が必要である。従って、成膜層数が少ない段階ではDUV光を使う方が望ましい。また、同じ反射率であれば、分解能は波長が短いEUV光の方が高いため、検出したい欠陥サイズやスパッタリング装置のパーティクル発生状況に応じて、DUV光またはEUV光の検査装置を使い分けることが好ましい。   As can be seen from FIG. 6, in the case of DUV light having a wavelength of 257 nm or 199 nm used in normal optical defect inspection, a high reflectance of about 30% in one pair of film formation and about 50% in two pairs of film formation. (This is due to metallic reflection of Si or Mo), and the uneven shape of the surface can be detected by dark-field optical inspection. On the other hand, in order to obtain a reflectance of 30% with EUV light, it is necessary to form about 10 pairs of films. Therefore, it is desirable to use DUV light at a stage where the number of deposited layers is small. If the reflectivity is the same, EUV light with a short wavelength is higher in resolution, so it is preferable to use a DUV light or EUV light inspection apparatus properly depending on the defect size to be detected and the particle generation status of the sputtering apparatus. .

本発明の反射型マスクブランクの製造方法では、図2の最終的なSTEP8の工程で、過剰に成膜された多層反射層のCMP研磨を行う。CMPは、近年の半導体の高集積化、高性能化のための平坦化や、光学部品等の精密部品における平坦化のために必須の技術となっている。CMPでは、砥粒内包研磨パッドと被研磨物との双方を回転させた状態で、研磨液(スラリ)を研磨パッドの表面に供給して液体成分による化学的研磨と研磨粒子による機械的研磨との相乗効果によって研磨加工を行う。金属膜のCMPでは、アルミナやシリカ等の無機化合物粒子と硝酸第二鉄や過酸化水素水などの酸化剤との混合物からなる研磨液が利用される。   In the reflective mask blank manufacturing method of the present invention, CMP polishing of the multilayer reflective layer formed excessively is performed in the final STEP 8 of FIG. CMP has become an indispensable technique for planarization for high integration and high performance of semiconductors in recent years and for planarization of precision parts such as optical parts. In CMP, with both the abrasive-encapsulated polishing pad and the object to be polished rotated, a polishing liquid (slurry) is supplied to the surface of the polishing pad to perform chemical polishing with a liquid component and mechanical polishing with abrasive particles. Polishing is performed by the synergistic effect. In CMP of a metal film, a polishing liquid made of a mixture of inorganic compound particles such as alumina and silica and an oxidizing agent such as ferric nitrate and aqueous hydrogen peroxide is used.

しかしながらCMPは、前記のように研磨粒子による機械的研磨を行うので、被研磨物の表面に対して研磨痕などの研磨変性層(ダメージ層)を完全に取り除くことは難しい。従って、本発明の反射型マスクブランクの製造方法においても、最終的なSTEP8の工程で、多層反射層の表面に回転状の研磨痕が残ることが予想され、その影響が懸念される。   However, since CMP performs mechanical polishing with abrasive particles as described above, it is difficult to completely remove a polishing modified layer (damage layer) such as a polishing mark on the surface of an object to be polished. Therefore, also in the manufacturing method of the reflective mask blank of the present invention, it is expected that a rotational polishing mark will remain on the surface of the multilayer reflective layer in the final STEP 8, and there is a concern about the influence.

図7は、多層反射層の表面の研磨痕の影響を検討するために、(a)多層反射層最表面の凹凸形状の凸部高さに対する、EUV光の正常部反射光と欠陥部反射光の位相差、(b)同じく表面粗さに対する反射率を計算した特性図である。尚、多層反射層はこれまでと同様SiとMoの40ペア、最表面はSiとしている。これらの図から、最表面であれば高さや表面粗さが変化しても位相差や反射率への影響は問題とならないレベルであることが分る。図7(c)は比較のために、石英基板表面の粗さが多層反射層の全層の層間にわたって継続したと仮定した場合の反射率であるが、このように位相欠陥同様、基板に近い表面粗さは反射率を大きく低下させることが分る。   7A and 7B show, in order to examine the influence of polishing marks on the surface of the multilayer reflective layer, (a) normal part reflected light and defective part reflected light of EUV light with respect to the height of the convex and concave portions on the outermost surface of the multilayer reflective layer. (B) is a characteristic diagram in which the reflectance with respect to the surface roughness is calculated. The multilayer reflective layer is made of 40 pairs of Si and Mo, and the outermost surface is made of Si, as before. From these figures, it can be seen that the effect on the phase difference and the reflectance is not a problem even if the height and surface roughness are changed on the outermost surface. For comparison, FIG. 7C shows the reflectance when the roughness of the quartz substrate surface is assumed to continue across all the layers of the multilayer reflective layer. It can be seen that the surface roughness greatly reduces the reflectivity.

以上より、本発明の反射型マスクブランクの製造方法で作製した反射型マスクには、多層反射層表面に回転状の研磨痕が残ることが予想されるが、CMP工程の通常のレベルの研磨痕であれば、反射率や位相差への影響は小さく、マスク化したときの吸収膜パターンの線幅精度へ影響を与えないレベルであればよい。   From the above, it is expected that a rotational polishing mark will remain on the surface of the multilayer reflective layer in the reflective mask produced by the method for manufacturing a reflective mask blank of the present invention. If it is, the influence on the reflectance and the phase difference is small, and any level that does not affect the line width accuracy of the absorption film pattern when masked is acceptable.

以下、本発明の実施例を説明するが、本発明の趣旨を逸脱しない範囲で、以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples without departing from the spirit of the present invention.

<実施例1>
以下、図3の本発明の反射型マスクブランク240の製造方法の実施例を説明する。図3(a)に示す低熱膨張基板20上に波長13.5nmのEUV光に対して反射率が65%程度となるように設計されたMoとSiの40ペア(=80層。合計280nm厚)のうち、最初の1ペア(=2層。合計7nm厚)の多層反射層21(N)をスパッタリング装置により成膜した。続いて、マスク用検査装置にて199nmの波長を用いて多層反射層21(N)全面の表面形状の欠陥検査を実施し、おおよそ平面視で300nmサイズの凸型位相欠陥23を検出した。次にSEMにて観察することで正確なサイズと形状を得た。当該箇所に対し、レーザー修正機にて、1um角の領域に波長355nmのレーザーを照射することで1ペアの多層反射層21(N)を除去し、図3(b)に示す低熱膨張基板上に凸状欠陥22が露出した反射型マスクブランク210を得た。その後、レーザーよりもビーム径が小さいフォトマスク用EB修正機にて300nmサイズの凸状欠陥22に対し、エッチングガスを吹き付けながらEB照射することで凸状欠陥22のみのエッチング修正を実施し、図3(c)に示す凸状欠陥修正済み反射型マスクブランク220を得た。修正後形状を確認するため、AFMにて低熱膨張基板上における500nm角のRMS粗さを測定した所、0.45nmと設定した許容値内であったため、判定合格とした。その後、SiとMoの40ペア(=80層。合計280nm厚)の多層反射層を成膜し、図3(d)に示す過剰多層反射層21(+N)a(ここでは1ペア=2層)を有する反射型マスクブランク230を得た。次に、2ペアの過剰多層反射層21(+N)aをCMPにより研磨して、図3(e)に示すCMP研磨後の本発明の反射型マスクブランク240を得た。最後に多層反射層表面をAFMにて測定したところ、回転状の研磨痕が見られたが、RMS測定値は0.40nmであった。
<Example 1>
Hereinafter, an embodiment of a method for manufacturing the reflective mask blank 240 of the present invention shown in FIG. 3 will be described. 40 pairs of Mo and Si (= 80 layers, total 280 nm thickness) designed to have a reflectivity of about 65% for EUV light with a wavelength of 13.5 nm on the low thermal expansion substrate 20 shown in FIG. ), The first pair (= 2 layers, total 7 nm thickness) of the multilayer reflective layer 21 (N) was formed by a sputtering apparatus. Subsequently, a defect inspection of the surface shape of the entire surface of the multilayer reflective layer 21 (N) was performed using a wavelength of 199 nm by a mask inspection apparatus, and a convex phase defect 23 having a size of about 300 nm was detected in a plan view. Next, an accurate size and shape were obtained by observation with an SEM. The pair of multilayer reflective layers 21 (N) is removed by irradiating a 1 um square region with a laser having a wavelength of 355 nm to the portion by a laser corrector, and the low thermal expansion substrate shown in FIG. Thus, a reflective mask blank 210 in which the convex defect 22 was exposed was obtained. Thereafter, etching correction of only the convex defect 22 is carried out by irradiating EB while blowing an etching gas to the 300 nm-sized convex defect 22 with a photomask EB correcting machine having a beam diameter smaller than that of the laser. The reflective defect-corrected mask blank 220 shown in 3 (c) was obtained. In order to confirm the corrected shape, the RMS roughness of a 500 nm square on the low thermal expansion substrate was measured by AFM, which was within the allowable value set to 0.45 nm. Thereafter, 40 pairs of Si and Mo (= 80 layers, total 280 nm thickness) are formed, and an excess multilayer reflective layer 21 (+ N) a (here, 1 pair = 2 layers) shown in FIG. ) To obtain a reflective mask blank 230. Next, two pairs of excess multilayer reflective layers 21 (+ N) a were polished by CMP to obtain a reflective mask blank 240 of the present invention after CMP polishing shown in FIG. 3 (e). Finally, when the surface of the multilayer reflective layer was measured with AFM, rotational polishing marks were observed, but the RMS measurement was 0.40 nm.

<実施例2>
以下、図4の本発明の反射型マスクブランク340の製造方法の実施例を説明する。図4(a)に示す低熱膨張基板30上に波長13.5nmのEUV光に対して反射率が65%程度となるように設計されたMoとSiの40ペア(=80層。合計280nm厚)のうち、最初の1ペア(=2層。合計7nm厚)の多層反射層31(N)をスパッタリング装置により成膜した。続いて、マスク用検査装置にて199nmの波長を用いて多層反射層31(N)全面の表面形状の欠陥検査を実施し、おおよそ平面視で300nmサイズの凹型位相欠陥33を検出した。次にSEMにて観察することで正確なサイズと形状を得た。当該箇所に対し、レーザー修正機にて、1um角の領域に波長355nmのレーザーを照射することで1ペアの多層反射層31(N)を除去し、図4(b)に示す低熱膨張基板上に凹状欠陥32が露出した反射型マスクブランク310を得た。その後、レーザーよりもビーム径が小さいフォトマスク用EB修正機にて300nmサイズの凹状欠陥32に対し、デポジッションガスを吹き付けながらEB照射することで凹状欠陥32のみのデポジッション修正を実施し、図4(c)に示す凹状欠陥修正済み反射型マスクブランク320を得た。修正後形状を確認するため、AFMにて低熱膨張基板上における500nm角のRMS粗さを測定した所、0.48nmと設定した許容値内であったため、判定合格とした。その後、SiとMoの40ペア(=80層。合計280nm厚)の多層反射層を成膜し、図4(d)に示す過剰多層反射層31(+N)a(ここでは1ペア=2層)を有する反射型マスクブランク330を得た。次に、2ペアの過剰多層反射層31(+N)aをCMPにより研磨して、図4(e)に示すCMP研磨後の本発明の反射型マスクブランク340を得た。最後に多層反射層表面をAFMにて測定したところ、回転状の研磨痕が見られたが、RMS測定値は0.41nmであった。
<Example 2>
Hereinafter, the Example of the manufacturing method of the reflective mask blank 340 of this invention of FIG. 4 is described. 40 pairs of Mo and Si (= 80 layers, total 280 nm thickness) designed to have a reflectivity of about 65% with respect to EUV light having a wavelength of 13.5 nm on the low thermal expansion substrate 30 shown in FIG. ), The first pair (= 2 layers, total 7 nm thickness) of the multilayer reflective layer 31 (N) was formed by a sputtering apparatus. Subsequently, a defect inspection of the surface shape of the entire surface of the multilayer reflective layer 31 (N) was performed using a wavelength of 199 nm by a mask inspection apparatus, and a concave phase defect 33 having a size of about 300 nm was detected in a plan view. Next, an accurate size and shape were obtained by observation with an SEM. On the low thermal expansion substrate shown in FIG. 4 (b), the pair of multilayer reflective layers 31 (N) is removed by irradiating a 1um square region with a laser having a wavelength of 355nm with a laser correction machine. Thus, a reflective mask blank 310 with the concave defect 32 exposed was obtained. Thereafter, the EB irradiation machine for the photomask having a beam diameter smaller than that of the laser is irradiated with EB while blowing the deposition gas to the 300 nm-sized concave defect 32, thereby correcting the deposition of only the concave defect 32. The concave defect-corrected reflective mask blank 320 shown in 4 (c) was obtained. In order to confirm the corrected shape, the RMS roughness of a 500 nm square on the low thermal expansion substrate was measured by AFM, and it was within the allowable value set to 0.48 nm, and therefore the determination was passed. Thereafter, 40 pairs of Si and Mo (= 80 layers, total 280 nm thickness) are formed into a multilayer reflective layer, and the excess multilayer reflective layer 31 (+ N) a (here, 1 pair = 2 layers) shown in FIG. ) To obtain a reflective mask blank 330. Next, two pairs of excess multilayer reflective layers 31 (+ N) a were polished by CMP to obtain a reflective mask blank 340 of the present invention after CMP polishing shown in FIG. 4 (e). Finally, when the surface of the multilayer reflective layer was measured by AFM, rotational polishing marks were observed, but the RMS measurement was 0.41 nm.

200、400・・・凸型位相欠陥付き反射型マスクブランク
210、410・・・欠陥領域多層反射層除去済み反射型マスクブランク
220、420・・・凸状欠陥修正済み反射型マスクブランク
230、430・・・多層反射層成膜後反射型マスクブランク
240、440・・・CMP研磨後反射型マスクブランク
300・・・凹型位相欠陥付き反射型マスクブランク
310・・・欠陥領域多層反射層除去済み反射型マスクブランク
320・・・欠陥修正済み反射型マスクブランク
330・・・多層反射層成膜後反射型マスクブランク
340・・・CMP研磨後反射型マスクブランク
10、20、30、40、50・・・低熱膨張基板
11・・・・多層反射層
21(N)、31(N)、41(N)・・・多層反射層(層数:N)
21(N)a、31(N)a、41(N)a
・・・欠陥部が除去された多層反射層(層数:N)
21(+N)a、31(+N)a、41(+N)a・・・過剰多層反射層(層数:N)
41(Np)・・・・多層反射層(層数:N×p)
21(M)、31(M)、41(M)、51(M)・・・多層反射層(層数:M)
12a、22・・・・基板凸状欠陥
12b、42・・・・多層膜中凸状欠陥(パーティクルや異物)
13a、13b、23、43・・・凸型位相欠陥
32・・・・基板凹状欠陥(ピット等)
33・・・・凹型位相欠陥
34・・・・デポジッション部
・・・・正常部反射光
・・・・欠陥部反射光
500・・・反射型マスクブランク
550・・・吸収膜付き反射型マスクブランク
560・・・反射型マスク
55・・・・吸収膜
55a・・・吸収膜パターン
56・・・・回路パターン
57・・・・高反射部
200, 400 ... reflective mask blanks 210, 410 with convex phase defects, reflective mask blanks 220, 420 with defect layer multilayer reflective layer removed, reflective mask blanks 230, 430 with corrected convex defects ... Reflective mask blanks 240, 440 ... Reflective mask blanks 300 after CMP polishing ... Reflective mask blanks 310 with concave phase defects ... Reflection after removal of defective multilayer reflective layers Type mask blank 320... Defect-corrected reflection type mask blank 330... Reflective mask blank 340 after multilayer reflection layer deposition reflection type mask blank 10, 20, 30, 40, 50.・ Low thermal expansion substrate
11... Multilayer reflective layer 21 (N), 31 (N), 41 (N)... Multilayer reflective layer (number of layers: N)
21 (N) a, 31 (N) a, 41 (N) a
... Multilayer reflective layers from which defects have been removed (number of layers: N)
21 (+ N) a, 31 (+ N) a, 41 (+ N) a... Excess multilayer reflective layer (number of layers: N)
41 (Np)... Multi-layer reflective layer (number of layers: N × p)
21 (M), 31 (M), 41 (M), 51 (M) ... multilayer reflective layer (number of layers: M)
12a, 22... Substrate convex defect 12b, 42... Convex defect (particles or foreign matter) in the multilayer film
13a, 13b, 23, 43... Convex phase defect 32... Substrate concave defect (pit, etc.)
33 ... recessed phase defect 34 ... deposition unit R 0 ... normal part reflected light R d .... defect reflected light 500 ... reflective mask blank 550 ... absorption film Reflective mask blank 560... Reflective mask 55... Absorption film
55a ... Absorbing film pattern 56 ... Circuit pattern 57 ... High reflection part

Claims (4)

基板上に多層反射層を備える反射型マスクブランクの製造方法であって、次の1)〜6)の工程を順次含むことを特徴とする反射型マスクブランクの製造方法。
1)最終的な層数よりも少ない多層反射層を成膜する工程。
2)前記最終的な層数よりも少ない多層反射層の表面形状を欠陥検査する工程。
3)1)の工程で成膜した多層反射層の、前記欠陥検査により検出された欠陥を含む領域を除去する工程。
4)2)の工程で検出された欠陥の原因となっており、3)の工程で露出した凸状または凹状の欠陥を修正する工程。
5)多層反射層を追加成膜する工程。
6)最終的な層数よりも多くなった多層反射層の領域を研磨除去する工程。
A method for producing a reflective mask blank comprising a multilayer reflective layer on a substrate, comprising the following steps 1) to 6) in sequence.
1) A step of forming a multilayer reflective layer fewer than the final number of layers.
2) A step of inspecting the surface shape of the multilayer reflective layer that is less than the final number of layers.
3) The process of removing the area | region containing the defect detected by the said defect inspection of the multilayer reflection layer formed into the film of 1).
4) A step of correcting the convex or concave defect that is the cause of the defect detected in the step 2) and is exposed in the step 3).
5) A step of additionally forming a multilayer reflective layer.
6) A step of polishing and removing a region of the multilayer reflective layer that has become larger than the final number of layers.
前記1)〜5)の工程を繰り返すことを特徴とする請求項1に記載の反射型マスクブランクの製造方法。   The method of manufacturing a reflective mask blank according to claim 1, wherein the steps 1) to 5) are repeated. 前記4)の工程における凸状または凹状の欠陥の修正は、電子線、集束イオンビーム、レーザー、プローブのいずれかを用いることを特徴とする請求項1、または2に記載の反射型マスクブランクの製造方法。   3. The reflective mask blank according to claim 1, wherein the correction of the convex or concave defect in the step 4) uses any one of an electron beam, a focused ion beam, a laser, and a probe. Production method. 基板上に多層反射層を備える反射型マスクブランクであって、多層反射層の表面に回転状の研磨痕を有する事を特徴とする反射型マスクブランク。 A reflective mask blank comprising a multilayer reflective layer on a substrate, wherein the multilayer reflective layer has a rotational polishing mark on the surface thereof.
JP2016214308A 2016-11-01 2016-11-01 Manufacturing method of reflection type mask blank and reflection type mask blank Pending JP2018072665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016214308A JP2018072665A (en) 2016-11-01 2016-11-01 Manufacturing method of reflection type mask blank and reflection type mask blank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016214308A JP2018072665A (en) 2016-11-01 2016-11-01 Manufacturing method of reflection type mask blank and reflection type mask blank

Publications (1)

Publication Number Publication Date
JP2018072665A true JP2018072665A (en) 2018-05-10

Family

ID=62115420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016214308A Pending JP2018072665A (en) 2016-11-01 2016-11-01 Manufacturing method of reflection type mask blank and reflection type mask blank

Country Status (1)

Country Link
JP (1) JP2018072665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179915A (en) * 2019-07-04 2021-01-05 深圳长城开发科技股份有限公司 Layer removing method for positioning damage points in bare chip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179915A (en) * 2019-07-04 2021-01-05 深圳长城开发科技股份有限公司 Layer removing method for positioning damage points in bare chip

Similar Documents

Publication Publication Date Title
US8709682B2 (en) Mask and method for forming the mask
JP6674465B2 (en) Method, mask, and device for generating mask for extreme ultraviolet wavelength range
JP5659086B2 (en) Reflection mask defect correction method
JP2010237501A (en) Method for inspecting photomask blank or intermediate thereof and determining the quality thereof
US9329472B2 (en) Method for manufacturing EUV masks minimizing the impact of substrate defects
JP2011197375A (en) Method for manufacturing reflective mask and reflective mask blank used for the manufacture
US9927693B2 (en) Reflective mask blank and process for producing the reflective mask blank
JP2003248299A (en) Mask substrate and method of manufacturing the same
JP5874407B2 (en) Method of manufacturing a reflective mask for EUV exposure that reduces the influence of phase defects
WO2015146140A1 (en) Phase defect evaluation method for euv mask, method for manufacturing euv mask, euv mask blank, and euv mask
JP6277645B2 (en) Pattern position measuring method, pattern position measuring apparatus, and photomask
JP4946136B2 (en) Extreme ultraviolet exposure mask blank, extreme ultraviolet exposure mask, and pattern transfer method
JP2010034129A (en) Method of correcting reflective mask
KR101250125B1 (en) Method for inspecting photomask blank or intermediate thereof, method for determining dosage of high-energy radiation, and method for manufacturing photomask blank
JP2018072665A (en) Manufacturing method of reflection type mask blank and reflection type mask blank
JP4839927B2 (en) Extreme ultraviolet exposure mask blank, extreme ultraviolet exposure mask, and pattern transfer method
JP6599493B2 (en) Mask blank substrate, mask blank, transfer mask, and semiconductor device manufacturing method
JP2014232808A (en) Defect correction method, semiconductor manufacturing device, semiconductor manufacturing method and defect correction program
US10274821B2 (en) Mask and manufacturing method of mask
JP7168573B2 (en) Substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP2022128851A (en) Reflection type mask blank, reflection type mask, and method for manufacturing reflection type mask
JP2014090131A (en) Method of manufacturing reflective mask
JP5454052B2 (en) Method for forming pseudo foreign matter
JP2016066715A (en) Phase defect correction method of reflective mask and mask with pellicle
KR20220139736A (en) EUV(Extreme Ultraviolet) mask manufacturing method