JP2018072635A - Developer carrier and developing device - Google Patents

Developer carrier and developing device Download PDF

Info

Publication number
JP2018072635A
JP2018072635A JP2016213698A JP2016213698A JP2018072635A JP 2018072635 A JP2018072635 A JP 2018072635A JP 2016213698 A JP2016213698 A JP 2016213698A JP 2016213698 A JP2016213698 A JP 2016213698A JP 2018072635 A JP2018072635 A JP 2018072635A
Authority
JP
Japan
Prior art keywords
conductive agent
resin
developer carrier
developer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016213698A
Other languages
Japanese (ja)
Other versions
JP6866112B2 (en
Inventor
敦史 野口
Atsushi Noguchi
敦史 野口
長岡 一聡
Kazutoshi Nagaoka
一聡 長岡
良介 高山
Ryosuke Takayama
良介 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016213698A priority Critical patent/JP6866112B2/en
Publication of JP2018072635A publication Critical patent/JP2018072635A/en
Application granted granted Critical
Publication of JP6866112B2 publication Critical patent/JP6866112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a developer carrier that improves adhesion between a substrate and a resin layer.SOLUTION: A developer carrier comprises a conductive substrate, and a resin layer in contact with the substrate. The resin layer contains an electronic conductive agent, a resin having at least one partial structure selected from the group consisting of specific structures in a molecule, and an anion.SELECTED DRAWING: None

Description

本発明は電子写真画像形成装置に用いられる現像剤担持体及び該現像剤担持体を有する現像装置に関する。   The present invention relates to a developer carrier used in an electrophotographic image forming apparatus and a developing device having the developer carrier.

電子写真装置で使用される現像剤担持体は、現像剤のチャージアップによる現像剤担持体への現像剤固着防止、現像剤のチャージアップに伴う現像剤担持体の表面から現像剤への摩擦帯電付与不良防止の観点から、例えば、1×10Ω・cm以下の低体積抵抗領域で用いられている。特許文献1は、導電性の軸芯体と、該軸芯体上に形成された、特定のカチオン構造を有する樹脂とアニオンとを含む導電層を備えた電子写真用部材を開示している。 The developer carrier used in the electrophotographic apparatus prevents the developer from adhering to the developer carrier due to the developer charge-up, and friction charging from the surface of the developer carrier to the developer accompanying the developer charge-up. From the viewpoint of preventing improper application, for example, it is used in a low volume resistance region of 1 × 10 3 Ω · cm or less. Patent Document 1 discloses an electrophotographic member including a conductive shaft core, and a conductive layer formed on the shaft core and including a resin having a specific cation structure and an anion.

特開2015−232705号公報Japanese Patent Laying-Open No. 2015-232705

本発明者らは、特許文献1に係る電子写真用部材について更に検討を重ねたところ、軸芯体と、導電層との密着性が不十分である場合があった。
そこで、本発明の一態様は、基体と導電層との密着性が向上してなる現像剤担持体を提供することに向けたものである。
As a result of further studies on the electrophotographic member according to Patent Document 1, the present inventors sometimes have insufficient adhesion between the shaft core and the conductive layer.
Accordingly, one embodiment of the present invention is directed to providing a developer carrying member having improved adhesion between a substrate and a conductive layer.

本発明の一態様によれば、導電性の基体と、該基体に接触している導電性の樹脂層とを有する現像剤担持体であって、
該樹脂層は電子導電剤と、分子内に下記式(1)〜(7)で示される構造からなる群から選ばれる少なくとも1つの部分構造を有する樹脂と、アニオンと、を含んでいる現像剤担持体が提供される。
According to one aspect of the present invention, there is provided a developer carrying body having a conductive substrate and a conductive resin layer in contact with the substrate,
The resin layer includes an electronic conductive agent, a resin having at least one partial structure selected from the group consisting of structures represented by the following formulas (1) to (7) in the molecule, and an anion. A carrier is provided.

Figure 2018072635
Figure 2018072635

式(1)〜(7)中、
101、R201とR202、R301からR303、R401からR404、R501とR502、R601からR603、R701からR704は、それぞれ独立に水素原子、OH、CHOH、COH、COOHを示し、
102、R203とR204、R304からR306、R405からR408、R503からR505、R604からR607、R705からR710は、それぞれ独立にC2m(mは、2〜16の整数)または、(CO)(lは、1〜8の整数)を示し、
307は、炭素数1〜18のアルキル基を示し、
501、X701およびX702は、それぞれ独立に窒素原子またはメチン基を示し、
601は、窒素カチオンまたは炭素原子を示し、
101、A501およびA601は、それぞれ独立に下記構造式(a)〜(d)のいずれかを示し、E201、E701は、それぞれ独立に下記構造式(e)または(f)を示し、
In formulas (1) to (7),
R 101, R 201 and R 202, R 603 from the R 301 from R 303, R 401 R 404, R 501 and R 502, R 601, from R 701 R 704 each independently represent a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, COOH,
R 102 , R 203 and R 204 , R 304 to R 306 , R 405 to R 408 , R 503 to R 505 , R 604 to R 607 , and R 705 to R 710 are each independently C m H 2m (m is , An integer of 2 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8),
R 307 represents an alkyl group having 1 to 18 carbon atoms,
X 501 , X 701 and X 702 each independently represent a nitrogen atom or a methine group,
X 601 represents a nitrogen cation or a carbon atom,
A 101 , A 501 and A 601 each independently represent any of the following structural formulas (a) to (d), and E 201 and E 701 each independently represent the following structural formula (e) or (f). Show

Figure 2018072635
Figure 2018072635

式(a)〜(f)中、R〜Rはそれぞれ独立に、炭素数1〜18のアルキル基を示し、n1およびn2は、各々独立に、1または2を示し、YとYはメチレン基または酸素原子を表す。 In formulas (a) to (f), R 1 to R 9 each independently represents an alkyl group having 1 to 18 carbon atoms, n1 and n2 each independently represent 1 or 2, Y 1 and Y 2 represents a methylene group or an oxygen atom.

また本発明の他の態様によれば、導電性の基体と、該基体に接触している樹脂層とを有する現像剤担持体であって、該樹脂層は、電子導電剤と、下記式(I1)〜(I7)で示される構造からなる群から選ばれる1つのカチオン構造とアニオンを有するイオン導電剤の少なくとも1種と、該イオン導電剤の1級または2級アミノ基と反応可能な官能基を有する化合物との反応物からなる樹脂とを含有する現像剤担持体が提供される。   According to another aspect of the present invention, there is provided a developer carrying member having a conductive substrate and a resin layer in contact with the substrate, the resin layer comprising an electronic conductive agent and a compound represented by the following formula ( At least one ion conductive agent having one cationic structure and an anion selected from the group consisting of the structures represented by I1) to (I7), and a functional group capable of reacting with the primary or secondary amino group of the ion conductive agent Provided is a developer carrier containing a resin comprising a reaction product with a compound having a group.

Figure 2018072635
Figure 2018072635

式(I1)〜(I7)中、
101、R201とR202、R301からR303、R401からR404、R501とR502、R601からR603、R701からR704は、それぞれ独立に水素原子、OH、CHOH、COH、COOHを示し、
102、R203とR204、R304からR306、R405からR408、R503からR505、R604からR607、R705からR710は、それぞれ独立にC2m(mは、2〜16の整数)または、(CO)(lは、1〜8の整数)を示し、
307は炭素数1〜18のアルキル基を示し、
501、X701、X702は、それぞれ独立に窒素原子またはメチン基を示し、
601は、窒素カチオンまたは炭素原子を示し、
101、A501、A601は、それぞれ独立に下記構造式(a)〜(d)のいずれかを示し、
201、E701は、それぞれ独立に下記構造式(e)または(f)を示す。
In formulas (I1) to (I7),
R 101, R 201 and R 202, R 603 from the R 301 from R 303, R 401 R 404, R 501 and R 502, R 601, from R 701 R 704 each independently represent a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, COOH,
R 102 , R 203 and R 204 , R 304 to R 306 , R 405 to R 408 , R 503 to R 505 , R 604 to R 607 , and R 705 to R 710 are each independently C m H 2m (m is , An integer of 2 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8),
R 307 represents an alkyl group having 1 to 18 carbon atoms,
X 501 , X 701 , and X 702 each independently represent a nitrogen atom or a methine group,
X 601 represents a nitrogen cation or a carbon atom,
A 101 , A 501 and A 601 each independently represent any of the following structural formulas (a) to (d),
E 201 and E 701 each independently represent the following structural formula (e) or (f).

Figure 2018072635
Figure 2018072635

式(a)〜(f)中、R〜Rはそれぞれ独立に、炭素数1〜18のアルキル基を示し、n1とn2は、各々独立に、1または2を示し、YとYはメチレン基または酸素原子を表す。 In formulas (a) to (f), R 1 to R 9 each independently represents an alkyl group having 1 to 18 carbon atoms, n1 and n2 each independently represent 1 or 2, Y 1 and Y 2 represents a methylene group or an oxygen atom.

また本発明のさらに他の態様によれば、現像剤と、前記現像剤を収容するための容器と、該容器に収容された現像剤を担持搬送するための現像剤担持体を有している現像装置であって、該現像剤担持体が上記に記載の現像剤担持体であることを特徴とする現像装置が提供される。   According to still another aspect of the present invention, a developer, a container for containing the developer, and a developer carrier for carrying and transporting the developer contained in the container are provided. A developing device is provided, wherein the developer carrying member is the developer carrying member described above.

本発明の一態様によれば、基体と樹脂層の密着性に優れた現像剤担持体を得ることができる。
また本発明の一態様によれば、高品位な電子写真画像を安定して形成することのできる現像装置を得ることができる。
According to one embodiment of the present invention, a developer carrier having excellent adhesion between a substrate and a resin layer can be obtained.
Further, according to one embodiment of the present invention, a developing device capable of stably forming a high-quality electrophotographic image can be obtained.

本発明に係る現像剤担持体の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the developer carrier which concerns on this invention. 本発明の現像剤担持体を用いた現像装置の一例を示した模式図である。FIG. 2 is a schematic diagram illustrating an example of a developing device using the developer carrying member of the present invention. 本発明の現像剤担持体を用いた現像装置の他の一例を示した模式図である。It is the schematic diagram which showed another example of the developing device using the developing agent carrier of this invention.

本発明者らは、導電性の樹脂層に含まれる樹脂として、4級アンモニウム塩構造を有する樹脂を用いる際、4級アンモニウム塩構造中の窒素原子に特定の官能基を導入することによって、導電性の樹脂層と基体との密着性を向上させ得ることを見出した。
その理由を本発明者らは以下のように推測している。すなわち、アルミ素管など表面処理されていない基体の表面には、OHやHなどの表面官能基が存在している。その表面官能基と、樹脂層中の特定の官能基との間で水素結合が形成されるため、密着性が向上しているものと考えられる。この水素結合を強固にし、樹脂層と基体との密着性をより強くするためには、電気陰性度の高い元素と水素間の水素結合にする必要がある。
電気陰性度の高いアミノ窒素に結合する元素が水素原子である樹脂、および、アミノ窒素に結合する官能基が、−OH、−CHOH、−CHCHOH、−COOHである各樹脂の各々を含む樹脂層のアルミ素管に対する密着性について検討した。その結果、密着性は、アミノ窒素に水素原子が結合した樹脂を含む樹脂層が相対的に低く、その他の樹脂層の密着性はほぼ同程度であった。
すなわち、アミノ窒素に結合する元素が全てHである樹脂を含む樹脂層に比較して、アミノ窒素に結合した官能基の少なくとも一つが−OH、−CHOH、−CHCHOHおよび−COOHからなる群から選択される何れかである樹脂を含む樹脂層は、基体との、密着性は向上する。そして、アミノ窒素に結合する、上記群から選択される何れかの官能基の数が増えるに従って、密着性はより一層向上する。すなわち、アミノ窒素に結合した官能基が全て上記群から選択される何れかの官能基である場合、基体に対する密着性は特に優れたものとなる。
When using a resin having a quaternary ammonium salt structure as a resin contained in the conductive resin layer, the present inventors introduce a specific functional group into a nitrogen atom in the quaternary ammonium salt structure to thereby provide a conductive material. It has been found that the adhesion between the conductive resin layer and the substrate can be improved.
The inventors presume the reason as follows. That is, surface functional groups such as OH and H are present on the surface of a substrate that is not surface-treated such as an aluminum base tube. Since a hydrogen bond is formed between the surface functional group and a specific functional group in the resin layer, it is considered that the adhesion is improved. In order to strengthen this hydrogen bond and further enhance the adhesion between the resin layer and the substrate, it is necessary to form a hydrogen bond between an element having high electronegativity and hydrogen.
Resin in which the element bonded to amino nitrogen having high electronegativity is a hydrogen atom, and each resin in which the functional group bonded to amino nitrogen is —OH, —CH 2 OH, —CH 2 CH 2 OH, —COOH The adhesion of the resin layer containing each of the above to the aluminum tube was examined. As a result, the adhesiveness of the resin layer containing a resin in which hydrogen atoms are bonded to amino nitrogen was relatively low, and the adhesiveness of the other resin layers was almost the same.
That is, as compared with a resin layer containing a resin in which all elements bonded to amino nitrogen are H, at least one of functional groups bonded to amino nitrogen is —OH, —CH 2 OH, —CH 2 CH 2 OH, and — The resin layer containing a resin selected from the group consisting of COOH has improved adhesion to the substrate. And as the number of any functional group selected from the above group that binds to the amino nitrogen increases, the adhesion is further improved. That is, when the functional groups bonded to the amino nitrogen are all functional groups selected from the above group, the adhesion to the substrate is particularly excellent.

以下、本発明を詳細に説明する。
図1に、本発明の現像剤担持体の一例を示す概略断面図を示す。本発明に係る現像剤担持体1は、図1に示すように、導電性の基体3と、その外周に設けられた樹脂層2とからなることができる。樹脂層2は、本発明に係る樹脂を含む樹脂層である。また、樹脂層は2層以上配置した多層構成であってもよい。この場合、基体に接触している層が本発明に係る樹脂を含む層であれば、その他の層は本発明以外の導電性を有する樹脂層を用いてもよい。
Hereinafter, the present invention will be described in detail.
FIG. 1 is a schematic sectional view showing an example of the developer carrying member of the present invention. As shown in FIG. 1, the developer carrier 1 according to the present invention can include a conductive substrate 3 and a resin layer 2 provided on the outer periphery thereof. The resin layer 2 is a resin layer containing the resin according to the present invention. The resin layer may have a multilayer structure in which two or more layers are arranged. In this case, if the layer in contact with the substrate is a layer containing the resin according to the present invention, a resin layer having conductivity other than the present invention may be used for the other layers.

<導電性の基体>
導電性の基体としては、現像剤担持体の分野で公知の基体を用いることができ、その形状は、中空円筒状、中実円柱状及びベルト形状等から適宜選択できる。本発明は基体と樹脂層の官能基による相互作用により密着性を向上させているため、基体としては金属を含む材料が好ましく、表面に酸化被膜(不動態)を形成しやすいアルミニウム、鉄等の金属素管や金属棒がより好ましい。
<Conductive substrate>
As the conductive substrate, a substrate known in the field of the developer carrying member can be used, and the shape thereof can be appropriately selected from a hollow cylindrical shape, a solid columnar shape, a belt shape, and the like. In the present invention, the adhesion is improved by the interaction of the functional group of the substrate and the resin layer. Therefore, a material containing a metal is preferable as the substrate, and aluminum, iron, etc., which easily form an oxide film (passive) on the surface. Metal base tubes and metal bars are more preferable.

<樹脂層>
本発明に係る樹脂層を構成する樹脂について説明する。本発明に係る樹脂は、分子内に下記式(1)〜(7)で示される構造からなる群から選ばれる少なくとも1つの部分構造を有している。
<Resin layer>
The resin constituting the resin layer according to the present invention will be described. The resin according to the present invention has at least one partial structure selected from the group consisting of structures represented by the following formulas (1) to (7) in the molecule.

(式1)
本発明に係る樹脂が含有する式(1)の構造を以下に示す。
(Formula 1)
The structure of the formula (1) contained in the resin according to the present invention is shown below.

Figure 2018072635
Figure 2018072635

式(1)中、R101は、水素原子、OH、CHOH、COH、COOHを示し、
102は、C2m(mは、2〜16の整数)または、(CO)(lは、1〜8の整数)を示し、A101は下記構造式(a)〜(d)のいずれかを示す。
In formula (1), R 101 represents a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, COOH,
R 102 represents C m H 2m (m is an integer of 2 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8), and A 101 has the following structure One of formulas (a) to (d) is shown.

Figure 2018072635
Figure 2018072635

ここで、R〜Rはそれぞれ独立に、炭素数1〜18のアルキル基を示し、
n1は1または2を示し、Yはメチレン基または酸素原子を示す。
Here, R < 1 > -R < 7 > shows a C1-C18 alkyl group each independently,
n1 represents 1 or 2, and Y 1 represents a methylene group or an oxygen atom.

式(1)で示される部分構造を有する樹脂を得るためには、原料としてのバインダー樹脂を、式(1)で示される部分構造を有するイオン導電剤と反応させて、4級アンモニウム塩構造が導入された樹脂を得ることが重要となる。ここで、バインダー樹脂と反応させる原料としてのイオン導電剤における反応部位は窒素原子である。そのため、R101は立体障害を抑え、イオン導電剤と原料としてのバインダー樹脂との反応性を阻害せず、かつ基体との密着性を向上させるため、水素原子、OH、CHOH、COH、COOHから選択される。さらに、OH、CHOH、COH、COOHは基体の表面官能基との相互作用が強くなるため、好ましい。またR102に関しても、原料としてのバインダー樹脂とイオン導電剤との反応性と導電性の観点から、炭素数2〜16のアルキレン鎖〔C2m(mは、2〜16の整数)〕または、繰り返し単位が1〜8までのエチレンオキサイド鎖〔(CO)(lは、1〜8の整数)〕から選択される。この範囲であれば、原料としてのバインダー樹脂へのイオン導電剤の反応性を阻害することなく、また導電性に関しても十分得られる。
またA101で示される4級アンモニウムカチオン構造として、式(a)〜(d)のいずれかの構造であり、R〜Rがそれぞれ独立に、炭素数1〜18のアルキル基で、n1が1あるいは2、Yがメチレン基または酸素原子であれば、バインダー樹脂との反応を阻害することがなく、高導電性、かつバインダー樹脂との相溶性が得られる。A101で示される4級アンモニウムカチオン構造は、樹脂が複数の式(1)で示される部分構造を有する場合、それぞれ同一でも異なっていてもよい。
In order to obtain a resin having a partial structure represented by the formula (1), a binder resin as a raw material is reacted with an ionic conductive agent having a partial structure represented by the formula (1) to form a quaternary ammonium salt structure. It is important to obtain the introduced resin. Here, the reactive site in the ionic conductive agent as a raw material to be reacted with the binder resin is a nitrogen atom. Therefore, R 101 suppresses steric hindrance, does not hinder the reactivity between the ionic conductive agent and the binder resin as a raw material, and improves the adhesion to the substrate, so that hydrogen atoms, OH, CH 2 OH, C 2 Selected from H 4 OH, COOH. Furthermore, OH, CH 2 OH, C 2 H 4 OH, and COOH are preferable because the interaction with the surface functional group of the substrate becomes strong. R 102 also has an alkylene chain of 2 to 16 carbon atoms [C m H 2m (m is an integer of 2 to 16)] from the viewpoints of reactivity and conductivity between the binder resin as a raw material and the ionic conductive agent. Alternatively, it is selected from ethylene oxide chains [(C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8)] having a repeating unit of 1 to 8. If it is this range, it will be sufficient also regarding electroconductivity, without inhibiting the reactivity of the ionic conductive agent to the binder resin as a raw material.
The quaternary ammonium cation structure represented by A 101 is any one of formulas (a) to (d), and R 1 to R 7 are each independently an alkyl group having 1 to 18 carbon atoms, n1 When 1 is 2 or Y 1 is a methylene group or an oxygen atom, the reaction with the binder resin is not hindered, and high conductivity and compatibility with the binder resin can be obtained. The quaternary ammonium cation structure represented by A 101 may be the same or different when the resin has a plurality of partial structures represented by Formula (1).

(式2)
本発明に係る樹脂が含有する式(2)の構造を以下に示す。
(Formula 2)
The structure of the formula (2) contained in the resin according to the present invention is shown below.

Figure 2018072635
Figure 2018072635

式(2)中、R201とR202はそれぞれ独立に水素原子、OH、CHOH、COH、COOHを示し、R203とR204はそれぞれ独立にC2m(mは、2〜16の整数)または、(CO)(lは、1〜8の整数)を示し、E201は下記構造式(e)または(f)を示す。 In Formula (2), R 201 and R 202 each independently represent a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, or COOH, and R 203 and R 204 each independently represent C m H 2m (where m is , An integer of 2 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8), and E 201 represents the following structural formula (e) or (f).

Figure 2018072635
Figure 2018072635

ここで、RとRはそれぞれ独立に、炭素数1〜18のアルキル基を示す。
n2は1または2を示し、Yはメチレン基または酸素原子を表す。
Here, R < 8 > and R < 9 > show a C1-C18 alkyl group each independently.
n2 represents 1 or 2, Y 2 represents a methylene group or an oxygen atom.

式(2)で示される部分構造を有する樹脂を得るためには、原料としてのバインダー樹脂を、式(2)で示される部分構造を有するイオン導電剤と反応させて、4級アンモニウム塩構造が導入された樹脂を得ることが重要となる。ここで、バインダー樹脂と反応させる原料としてのイオン導電剤における反応部位は式(1)と同様に窒素原子である。そのため、R201とR202は立体障害を抑え、イオン導電剤と原料としてのバインダー樹脂との反応性を阻害せず、かつ基体との密着性を向上させるため、水素原子、OH、CHOH、COH、COOHから選択される。さらに、OH、CHOH、COH、COOHは基体の表面官能基との相互作用が強くなるため、より好ましい。またR203とR204に関しても、原料としてのバインダー樹脂とイオン導電剤との反応性と導電性の観点から、炭素数2〜16のアルキレン鎖または、繰り返し単位が1〜8までのエチレンオキサイド鎖から選択される。この範囲であれば、原料としてのバインダー樹脂へのイオン導電剤の反応性を阻害することなく、また導電性に関しても十分得られる。
またE201で示される4級アンモニウムカチオン構造として、式(e)または(f)の構造であり、RとRがそれぞれ独立に、炭素数1〜18のアルキル基で、n2が1あるいは2であり、Yがメチレン基または酸素原子であれば、バインダー樹脂との反応を阻害することがなく、高導電性、かつバインダー樹脂との相溶性が得られる。E201で示される4級アンモニウムカチオン構造は、樹脂が複数の式(2)で示される部分構造を有する場合、それぞれ同一でも異なっていてもよい。
In order to obtain a resin having a partial structure represented by the formula (2), a binder resin as a raw material is reacted with an ionic conductive agent having a partial structure represented by the formula (2) to form a quaternary ammonium salt structure. It is important to obtain the introduced resin. Here, the reactive site in the ionic conductive agent as a raw material to be reacted with the binder resin is a nitrogen atom as in the formula (1). Therefore, R 201 and R 202 suppress steric hindrance, do not hinder the reactivity between the ionic conductive agent and the binder resin as a raw material, and improve the adhesion to the substrate, so that hydrogen atoms, OH, CH 2 OH , C 2 H 4 OH, COOH. Furthermore, OH, CH 2 OH, C 2 H 4 OH, and COOH are more preferable because the interaction with the surface functional group of the substrate becomes strong. Further, regarding R 203 and R 204 , from the viewpoint of reactivity and conductivity between the binder resin as a raw material and the ionic conductive agent, an alkylene chain having 2 to 16 carbon atoms or an ethylene oxide chain having 1 to 8 repeating units. Selected from. If it is this range, it will be sufficient also regarding electroconductivity, without inhibiting the reactivity of the ionic conductive agent to the binder resin as a raw material.
The quaternary ammonium cation structure represented by E 201 is a structure of the formula (e) or (f), R 8 and R 9 are each independently an alkyl group having 1 to 18 carbon atoms, and n2 is 1 or When Y 2 is a methylene group or an oxygen atom, the reaction with the binder resin is not hindered, and high conductivity and compatibility with the binder resin can be obtained. The quaternary ammonium cation structure represented by E 201 may be the same or different when the resin has a plurality of partial structures represented by Formula (2).

(式3)
本発明に係る樹脂が含有する式(3)の構造を以下に示す。
(Formula 3)
The structure of the formula (3) contained in the resin according to the present invention is shown below.

Figure 2018072635
Figure 2018072635

式(3)中、R301からR303はそれぞれ独立に水素原子、OH、CHOH、COH、COOHを示し、R304からR306はそれぞれ独立にC2m(mは、2〜16の整数)または、(CO)(lは、1〜8の整数)、R307は炭素数1〜18のアルキル基を示す。 In formula (3), R 301 to R 303 each independently represent a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, or COOH, and R 304 to R 306 each independently represent C m H 2m (m is , An integer of 2 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8), R 307 represents an alkyl group having 1 to 18 carbon atoms.

式(3)で示される部分構造を有する樹脂を得るためには、原料としてのバインダー樹脂を、式(3)で示される部分構造を有するイオン導電剤と反応させて、4級アンモニウム塩構造が導入された樹脂を得ることが重要となる。ここで、バインダー樹脂と反応させる原料としてのイオン導電剤における反応部位は式(1)と同様に窒素原子である。そのため、R301からR303は立体障害を抑え、イオン導電剤と原料としてのバインダー樹脂との反応性を阻害せず、かつ基体との密着性を向上させるため、水素原子、OH、CHOH、COH、COOHから選択される。さらに、OH、CHOH、COH、COOHは基体の表面官能基との相互作用が強くなるため、好ましい。またR304からR306に関しても、原料としてのバインダー樹脂とイオン導電剤との反応性と導電性の観点から、炭素数2〜16のアルキレン鎖または、繰り返し単位が1〜8までのエチレンオキサイド鎖から選択される。この範囲であれば、原料としてのバインダー樹脂へのイオン導電剤の反応性を阻害することなく、また導電性に関しても十分得られる。またR307が、バインダー樹脂とイオン導電剤との反応性と導電性の観点から、炭素数1〜18のアルキル基から選択される。 In order to obtain a resin having a partial structure represented by the formula (3), a binder resin as a raw material is reacted with an ionic conductive agent having a partial structure represented by the formula (3) to form a quaternary ammonium salt structure. It is important to obtain the introduced resin. Here, the reactive site in the ionic conductive agent as a raw material to be reacted with the binder resin is a nitrogen atom as in the formula (1). Therefore, R 301 to R 303 suppress steric hindrance, do not hinder the reactivity between the ionic conductive agent and the binder resin as a raw material, and improve the adhesion to the substrate, so that hydrogen atoms, OH, CH 2 OH , C 2 H 4 OH, COOH. Furthermore, OH, CH 2 OH, C 2 H 4 OH, and COOH are preferable because the interaction with the surface functional group of the substrate becomes strong. Also, regarding R 304 to R 306 , from the viewpoint of the reactivity and conductivity between the binder resin as a raw material and the ionic conductive agent, an alkylene chain having 2 to 16 carbon atoms or an ethylene oxide chain having 1 to 8 repeating units. Selected from. If it is this range, it will be sufficient also regarding electroconductivity, without inhibiting the reactivity of the ionic conductive agent to the binder resin as a raw material. R 307 is selected from alkyl groups having 1 to 18 carbon atoms from the viewpoints of reactivity between the binder resin and the ionic conductive agent and conductivity.

(式4)
本発明に係る樹脂が含有する式(4)の構造を以下に示す。
(Formula 4)
The structure of the formula (4) contained in the resin according to the present invention is shown below.

Figure 2018072635
Figure 2018072635

式(4)中、R401からR404はそれぞれ独立に水素原子、OH、CHOH、COH、COOHを示し、R405からR408はそれぞれ独立にC2m(mは、2〜16の整数)または、(CO)(lは、1〜8の整数)を示す。 In Formula (4), R 401 to R 404 each independently represent a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, or COOH, and R 405 to R 408 each independently represent C m H 2m (m is , An integer of 2 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8).

式(4)で示される部分構造を有する樹脂を得るためには、原料としてのバインダー樹脂を、式(4)で示される部分構造を有するイオン導電剤と反応させて、4級アンモニウム塩構造が導入された樹脂を得ることが重要となる。ここで、バインダー樹脂と反応させる原料としてのイオン導電剤における反応部位は式(1)と同様に窒素原子である。そのため、R401からR404は立体障害を抑え、イオン導電剤と原料としてのバインダー樹脂との反応性を阻害せず、かつ基体との密着性を向上させるため、水素原子、OH、CHOH、COH、COOHから選択される。さらに、OH、CHOH、COH、COOHは基体の表面官能基との相互作用が強くなるため、好ましい。またR405からR408に関しても、原料としてのバインダー樹脂とイオン導電剤との反応性と導電性の観点から、炭素数2〜16のアルキレン鎖または、繰り返し単位が1〜8までのエチレンオキサイド鎖から選択される。この範囲であれば、原料としてのバインダー樹脂へのイオン導電剤の反応性を阻害することなく、また導電性に関しても十分得られる。 In order to obtain a resin having a partial structure represented by formula (4), a binder resin as a raw material is reacted with an ionic conductive agent having a partial structure represented by formula (4) to form a quaternary ammonium salt structure. It is important to obtain the introduced resin. Here, the reactive site in the ionic conductive agent as a raw material to be reacted with the binder resin is a nitrogen atom as in the formula (1). Therefore, R 401 to R 404 suppress steric hindrance, do not hinder the reactivity between the ionic conductive agent and the binder resin as a raw material, and improve the adhesion to the substrate, so that hydrogen atoms, OH, CH 2 OH , C 2 H 4 OH, COOH. Furthermore, OH, CH 2 OH, C 2 H 4 OH, and COOH are preferable because the interaction with the surface functional group of the substrate becomes strong. R 405 to R 408 also have an alkylene chain having 2 to 16 carbon atoms or an ethylene oxide chain having 1 to 8 repeating units from the viewpoint of reactivity and conductivity between the binder resin as a raw material and an ionic conductive agent. Selected from. If it is this range, it will be sufficient also regarding electroconductivity, without inhibiting the reactivity of the ionic conductive agent to the binder resin as a raw material.

(式5)
本発明に係る樹脂が含有する式(5)の構造を以下に示す。
(Formula 5)
The structure of the formula (5) contained in the resin according to the present invention is shown below.

Figure 2018072635
Figure 2018072635

式(5)中、R501とR502は、それぞれ独立に水素原子、OH、CHOH、COH、COOHを示し、R503からR505はそれぞれ独立にC2m(mは、2〜16の整数)または、(CO)(lは、1〜8の整数)を示し、X501は窒素原子またはメチン基を示し、A501は前記構造式(a)〜(d)のいずれかを示す。 In Formula (5), R 501 and R 502 each independently represent a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, or COOH, and R 503 to R 505 are each independently C m H 2m (m Represents an integer of 2 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8), X 501 represents a nitrogen atom or a methine group, and A 501 represents the above One of structural formulas (a) to (d) is shown.

式(5)で示される部分構造を有する樹脂を得るためには、原料としてのバインダー樹脂を、式(5)で示される部分構造イオン導電剤と反応させて、4級アンモニウム塩構造が導入された樹脂を得ることが重要となる。ここで、バインダー樹脂と反応させる原料としてのイオン導電剤における反応部位は式(1)と同様に窒素原子である。そのため、R501とR502は立体障害を抑え、イオン導電剤と原料としてのバインダー樹脂との反応性を阻害せず、かつ基体との密着性を向上させるため、水素原子、OH、CHOH、COH、COOHから選択される。さらに、OH、CHOH、COH、COOHは基体の表面官能基との相互作用が強くなるため、好ましい。またR503からR505に関しても、原料としてのバインダー樹脂とイオン導電剤との反応性と導電性の観点から、炭素数2〜16のアルキレン鎖または、繰り返し単位が1〜8までのエチレンオキサイド鎖から選択される。この範囲であれば、原料としてのバインダー樹脂へのイオン導電剤の反応性を阻害することなく、また導電性に関しても十分得られる。X501は窒素原子またはメチン基であることで合成が容易である。
またA501で示される4級アンモニウムカチオン構造が、前記構造式(a)〜(d)のいずれかであるため、バインダー樹脂との反応を阻害することがなく、高導電性、かつバインダー樹脂との相溶性が得られる。
In order to obtain a resin having a partial structure represented by formula (5), a binder resin as a raw material is reacted with a partial structure ionic conductive agent represented by formula (5) to introduce a quaternary ammonium salt structure. It is important to obtain a suitable resin. Here, the reactive site in the ionic conductive agent as a raw material to be reacted with the binder resin is a nitrogen atom as in the formula (1). Therefore, R 501 and R 502 suppress steric hindrance, do not hinder the reactivity between the ionic conductive agent and the binder resin as a raw material, and improve the adhesion to the substrate, so that hydrogen atoms, OH, CH 2 OH , C 2 H 4 OH, COOH. Furthermore, OH, CH 2 OH, C 2 H 4 OH, and COOH are preferable because the interaction with the surface functional group of the substrate becomes strong. Further, regarding R 503 to R 505 , from the viewpoint of the reactivity and conductivity between the binder resin as a raw material and the ionic conductive agent, an alkylene chain having 2 to 16 carbon atoms or an ethylene oxide chain having 1 to 8 repeating units. Selected from. If it is this range, it will be sufficient also regarding electroconductivity, without inhibiting the reactivity of the ionic conductive agent to the binder resin as a raw material. X 501 is a nitrogen atom or a methine group and can be easily synthesized.
In addition, since the quaternary ammonium cation structure represented by A 501 is any one of the structural formulas (a) to (d), the reaction with the binder resin is not hindered, the conductivity is high, and the binder resin The compatibility of is obtained.

(式6)
本発明に係る樹脂が含有する式(6)の構造を以下に示す。
(Formula 6)
The structure of the formula (6) contained in the resin according to the present invention is shown below.

Figure 2018072635
Figure 2018072635

式(6)中、R601からR603は、独立して水素原子、OH、CHOH、COH、COOHを示し、R604からR607はそれぞれ独立にC2m(mは1〜16の整数)または、(CO)(lは、1〜8の整数)を示し、X601は窒素カチオンまたは炭素原子を示し、A601は前記構造式(a)〜(d)のいずれかを示す。 In the formula (6), R 601 to R 603 independently represent a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, COOH, and R 604 to R 607 each independently represent C m H 2m (m Represents an integer of 1 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8), X 601 represents a nitrogen cation or a carbon atom, and A 601 represents the structure described above. One of formulas (a) to (d) is shown.

式(6)で示される部分構造を有する樹脂を得るためには、原料としてのバインダー樹脂を、式(6)で示される部分構造を有するイオン導電剤と反応させて、4級アンモニウム塩構造が導入されたバインダー樹脂を得ることが重要となる。ここで、バインダー樹脂と反応させる原料としてのイオン導電剤における反応部位は式(1)と同様に窒素原子である。そのため、R601からR603は立体障害を抑え、イオン導電剤と原料としてのバインダー樹脂との反応性を阻害せず、かつ基体との密着性を向上させるため、水素原子、OH、CHOH、COH、COOHから選択される。さらに、OH、CHOH、COH、COOHは基体の表面官能基との相互作用が強くなるため、好ましい。またR604からR607に関しても、原料としてのバインダー樹脂とイオン導電剤との反応性と導電性の観点から、炭素数2〜16のアルキレン鎖または、繰り返し単位が1〜8までのエチレンオキサイド鎖から選択される。この範囲であれば、原料としてのバインダー樹脂へのイオン導電剤の反応性を阻害することなく、また導電性に関しても十分得られる。X601は窒素カチオンまたは炭素原子であることで合成が容易である。
またA601で示される4級アンモニウムカチオン構造が、前記構造式(a)〜(d)のいずれかであるため、バインダー樹脂との反応を阻害することがなく、高導電性、かつバインダー樹脂との相溶性が得られる。
In order to obtain a resin having a partial structure represented by formula (6), a binder resin as a raw material is reacted with an ionic conductive agent having a partial structure represented by formula (6) to form a quaternary ammonium salt structure. It is important to obtain the introduced binder resin. Here, the reactive site in the ionic conductive agent as a raw material to be reacted with the binder resin is a nitrogen atom as in the formula (1). Therefore, R 601 to R 603 suppress steric hindrance, do not hinder the reactivity between the ionic conductive agent and the binder resin as a raw material, and improve the adhesion to the substrate, so that hydrogen atoms, OH, CH 2 OH , C 2 H 4 OH, COOH. Furthermore, OH, CH 2 OH, C 2 H 4 OH, and COOH are preferable because the interaction with the surface functional group of the substrate becomes strong. R 604 to R 607 also have an alkylene chain having 2 to 16 carbon atoms or an ethylene oxide chain having 1 to 8 repeating units from the viewpoint of reactivity and conductivity between the binder resin as a raw material and an ionic conductive agent. Selected from. If it is this range, it will be sufficient also regarding electroconductivity, without inhibiting the reactivity of the ionic conductive agent to the binder resin as a raw material. X 601 can be easily synthesized by being a nitrogen cation or a carbon atom.
Since quaternary ammonium cation structure represented by A 601 is either of the structural formulas (a) ~ (d), without inhibiting the reaction between the binder resin, high conductivity, and a binder resin The compatibility of is obtained.

(式7)
本発明に係る樹脂が含有する式(7)の構造を以下に示す。
(Formula 7)
The structure of the formula (7) contained in the resin according to the present invention is shown below.

Figure 2018072635
Figure 2018072635

式(7)中、R701からR704は、独立して水素原子、OH、CHOH、COH、COOHを示し、R705からR710はそれぞれ独立にC2m(mは、2〜16の整数)または、(CO)(lは、1〜8の整数)を示し、X701及びX702はそれぞれ窒素原子またはメチン基を示し、E701は前記構造式(e)または(f)を示す。 In formula (7), R 701 to R 704 independently represent a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, COOH, and R 705 to R 710 each independently represent C m H 2m (m Represents an integer of 2 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8), X 701 and X 702 each represent a nitrogen atom or a methine group, E 701 represents the structural formula (e) or (f).

式(7)で示される部分構造を有する樹脂を得るためには、原料としてのバインダー樹脂を、式(7)で示される部分構造を有するイオン導電剤と反応させて、4級アンモニウム塩構造が導入された樹脂を得ることが重要となる。ここで、バインダー樹脂と反応させる原料としてのイオン導電剤における反応部位は式(1)と同様に窒素原子である。そのため、R701からR704は立体障害を抑え、イオン導電剤と原料としてのバインダー樹脂との反応性を阻害せず、かつ基体との密着性を向上させるため、水素原子、OH、CHOH、COH、COOHから選択される。さらに、OH、CHOH、COH、COOHは基体の表面官能基との相互作用が強くなるため、好ましい。またR705からR710に関しても、原料としてのバインダー樹脂とイオン導電剤との反応性と導電性の観点から、炭素数2〜16のアルキレン鎖または、繰り返し単位が1〜8までのエチレンオキサイド鎖から選択される。この範囲であれば、原料としてのバインダー樹脂へのイオン導電剤の反応性を阻害することなく、また導電性に関しても十分得られる。X701及びX702は窒素原子またはメチン基であることで合成が容易である。
またE701で示される4級アンモニウムカチオン構造として、前記構造式(e)または(f)は、バインダー樹脂との反応を阻害することがなく、高導電性、かつバインダー樹脂との相溶性が得られる。E701で示される4級アンモニウムカチオン構造は、樹脂が複数の式(7)で示される部分構造を有する場合、それぞれ同一でも異なっていてもよい。
In order to obtain a resin having a partial structure represented by formula (7), a binder resin as a raw material is reacted with an ionic conductive agent having a partial structure represented by formula (7) to form a quaternary ammonium salt structure. It is important to obtain the introduced resin. Here, the reactive site in the ionic conductive agent as a raw material to be reacted with the binder resin is a nitrogen atom as in the formula (1). Therefore, R 701 to R 704 suppress steric hindrance, do not hinder the reactivity between the ionic conductive agent and the binder resin as a raw material, and improve the adhesion to the substrate, so that hydrogen atoms, OH, CH 2 OH , C 2 H 4 OH, COOH. Furthermore, OH, CH 2 OH, C 2 H 4 OH, and COOH are preferable because the interaction with the surface functional group of the substrate becomes strong. R 705 to R 710 also have an alkylene chain having 2 to 16 carbon atoms or an ethylene oxide chain having 1 to 8 repeating units from the viewpoint of reactivity and conductivity between the binder resin as a raw material and an ionic conductive agent. Selected from. If it is this range, it will be sufficient also regarding electroconductivity, without inhibiting the reactivity of the ionic conductive agent to the binder resin as a raw material. Since X 701 and X 702 are a nitrogen atom or a methine group, the synthesis is easy.
As quaternary ammonium cation structure represented by E 701, the structural formula (e) or (f) may not inhibit the reaction of the binder resin, high conductivity, and compatibility with a binder resin to give It is done. When the resin has a plurality of partial structures represented by the formula (7), the quaternary ammonium cation structure represented by E 701 may be the same or different.

以下に、本発明で用いられる樹脂の原料としてのバインダー樹脂原料、イオン導電剤について説明する。   Below, the binder resin raw material and ionic conductive agent as the raw material of the resin used in the present invention will be described.

<バインダー樹脂原料>
本発明に係る樹脂は、上記の式(1)〜(7)で示される構造からなる群から選ばれる1つの部分構造とアニオンからなるイオン導電剤の少なくとも1種と、該イオン導電剤の1級または2級アミノ基と反応可能な官能基を有する化合物(バインダー樹脂原料)との反応物からなる。
アミノ基と反応可能な官能基を有する化合物は、当該官能基を有するモノマー化合物あるいは、当該官能基を末端等に有するプレポリマーが挙げられる。このような化合物としては、一般的にアミノ基との反応性が公知な官能基を有するものから選ばれる。具体的には、イソシアネート化合物、エポキシ化合物、カルボン酸化合物、酸ハロゲン化物、酸無水物化合物、アルデヒド化合物、ケトン化合物、ハロゲン化物、α,β不飽和カルボニル化合物等が挙げられるが、これらに限られない。またアンモニア触媒レゾール型フェノール樹脂の様な、アミン化合物及びアルデヒド、求核試薬の3成分反応でStrecker反応、Mannich反応、Betti反応等によってアミノ基と共有結合を形成する樹脂も挙げられる。
バインダー樹脂原料として好ましいものとしては、イソシアネート化合物、エポキシ化合物、カルボン酸化合物、酸ハロゲン化物、ハロゲン化物及びこれらのプレポリマー、アンモニア触媒レゾール型フェノール樹脂である。より好ましいものとしては、イソシアネート基末端プレポリマー、エポキシ基末端プレポリマー、アンモニア触媒レゾール型フェノール樹脂である。これらのバインダー樹脂原料と1級または2級アミノ基を有するイオン導電剤と反応させた樹脂は、電子導電剤との混合が容易かつ化学的に安定であるためである。
以下に1級または2級アミノ基を有するイオン導電剤とそれぞれのバインダー樹脂原料と反応した結合部の構造を示す。すなわち、イオン導電剤由来の4級アンモニウムカチオン構造が導入された、本発明に係る樹脂は下記式(8)〜(10)で示されるいずれかの構造を介して、上記の式(1)〜(7)のいずれかの部分構造と樹脂分子鎖とが結合している。
<Binder resin raw material>
The resin according to the present invention includes at least one ion conductive agent comprising one partial structure selected from the group consisting of the structures represented by the above formulas (1) to (7) and an anion, and 1 of the ion conductive agent. It consists of a reaction product with a compound (binder resin material) having a functional group capable of reacting with a secondary or secondary amino group.
Examples of the compound having a functional group capable of reacting with an amino group include a monomer compound having the functional group or a prepolymer having the functional group at the terminal. Such a compound is generally selected from those having a known functional group that is reactive with an amino group. Specific examples include, but are not limited to, isocyanate compounds, epoxy compounds, carboxylic acid compounds, acid halides, acid anhydride compounds, aldehyde compounds, ketone compounds, halides, α, β unsaturated carbonyl compounds, and the like. Absent. Examples of the ammonia-catalyzed resol type phenol resin include a resin that forms a covalent bond with an amino group by a Strecker reaction, a Mannich reaction, a Betti reaction or the like in a three-component reaction of an amine compound, an aldehyde, and a nucleophile.
Preferable materials for the binder resin include isocyanate compounds, epoxy compounds, carboxylic acid compounds, acid halides, halides and their prepolymers, and ammonia-catalyzed resol type phenol resins. More preferable are an isocyanate group-terminated prepolymer, an epoxy group-terminated prepolymer, and an ammonia-catalyzed resol type phenol resin. This is because the resin obtained by reacting these binder resin raw materials with an ionic conductive agent having a primary or secondary amino group is easily and chemically stable to be mixed with the electronic conductive agent.
Below, the structure of the coupling | bond part which reacted with the ion conductive agent which has a primary or secondary amino group, and each binder resin raw material is shown. That is, the resin according to the present invention in which a quaternary ammonium cation structure derived from an ionic conductive agent is introduced is represented by the above formulas (1) to (10) through any structure represented by the following formulas (8) to (10). Any partial structure of (7) and the resin molecular chain are bonded.

Figure 2018072635
Figure 2018072635

ここで式(8)〜(10)において、*は式(1)〜(7)のいずれかの構造の結合部位、**は樹脂分子鎖への結合部位を示す。式(10)中のメチレン連結鎖はヒドロキシ基に対してベンゼン環のオルト位またはパラ位に結合する。なお、式(8)は後述するイオン導電剤が有するアミノ基とイソシアネート化合物が有するNCO基とが反応した構造であり、式(9)は後述するイオン導電剤が有するアミノ基とエポキシ化合物が有するエポキシ環の開環付加により形成された構造、式(10)は後述するイオン導電剤が有するアミノ基とアンモニア触媒レゾール型フェノール樹脂が反応した構造である。 Here, in formulas (8) to (10), * represents a binding site of any structure of formulas (1) to (7), and ** represents a binding site to the resin molecular chain. The methylene linking chain in formula (10) is bonded to the ortho or para position of the benzene ring with respect to the hydroxy group. In addition, Formula (8) is the structure which the amino group which the ionic conductive agent mentioned later has, and the NCO group which an isocyanate compound has reacted, Formula (9) has the amino group and epoxy compound which the ionic conductive agent mentioned later has. A structure formed by ring-opening addition of an epoxy ring, Formula (10), is a structure in which an amino group of an ionic conductive agent described later reacts with an ammonia-catalyzed resol type phenol resin.

<イオン導電剤>
(カチオン)
本発明の原料としてのイオン導電剤は、バインダー樹脂と反応する1級または2級アミノ基と、4級アンモニウム基を有するイオン導電剤である。このイオン導電剤の代表的なカチオン構造を下記I1〜I7に示すが、本発明は例示されたカチオン構造を有するイオン導電剤を用いて製造された樹脂のみに限定されるものではない。
<Ionic conductive agent>
(Cation)
The ionic conductive agent as a raw material of the present invention is an ionic conductive agent having a primary or secondary amino group that reacts with a binder resin and a quaternary ammonium group. Typical cation structures of this ionic conductive agent are shown in the following I1 to I7, but the present invention is not limited only to the resin produced using the ionic conductive agent having the exemplified cation structure.

Figure 2018072635
Figure 2018072635

式(I1)〜(I7)において、各基は、式(1)〜(7)で説明した基と同一の意味を示す。 In the formulas (I1) to (I7), each group has the same meaning as the groups described in the formulas (1) to (7).

(アニオン)
本発明で使用するイオン導電剤のアニオン、すなわち、本発明に係る樹脂層に含まれるアニオンとしては、フッ素、塩素、臭素、ヨウ素等のハロゲンイオン、過塩素酸イオン、スルホン酸化合物イオン、リン酸化合物イオン、ホウ酸化合物イオン、パーフルオロスルホニルイミドイオン等が挙げられる。
上述のイオン種の中でも、パーフルオロスルホニルイミドイオンが好ましい。パーフルオロスルホニルイミドイオンは疎水性が高いため、一般的な親水性の高いイオンと比較し、本発明に係るバインダー樹脂原料との親和性が高くなりやすい。その結果、バインダー樹脂原料と均一に分散し反応し固定化されやすく、分散ムラの低減という点において好適である。
パーフルオロスルホニルイミドイオンとして、具体的には、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメタンスルホニル)イミド、ビス(ペンタフルオロエタンスルホニル)イミド、ビス(ノナフルオロブタンスルホニル)イミド、シクロ−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミド等が挙げられるが、これらに限られない。
このような、カチオン及びアニオンの組み合わせからなるイオン導電剤は、1種を単独で、あるいは2種以上を組み合わせて用いることができる。2種以上を組み合わせる場合、同じアニオンを有するものを組み合わせることが好ましい。また、密着性の観点から、少なくとも1種は2級アミノ基を有するイオン導電剤を用いることが好ましく、1級アミノ基を有さないイオン導電剤を用いることがより好ましい。
(Anion)
The anion of the ionic conductive agent used in the present invention, that is, the anion contained in the resin layer according to the present invention includes halogen ions such as fluorine, chlorine, bromine and iodine, perchlorate ions, sulfonate compound ions, and phosphoric acid. Compound ions, boric acid compound ions, perfluorosulfonylimide ions and the like can be mentioned.
Among the above ionic species, perfluorosulfonylimide ions are preferred. Since perfluorosulfonylimide ions have high hydrophobicity, the affinity with the binder resin raw material according to the present invention tends to be higher than that of general highly hydrophilic ions. As a result, it is easy to disperse and react uniformly with the binder resin raw material and is easy to be immobilized, which is preferable in terms of reducing dispersion unevenness.
Specific examples of perfluorosulfonylimide ions include bis (fluorosulfonyl) imide, bis (trifluoromethanesulfonyl) imide, bis (pentafluoroethanesulfonyl) imide, bis (nonafluorobutanesulfonyl) imide, and cyclo-hexafluoropropane. Examples include, but are not limited to, -1,3-bis (sulfonyl) imide.
Such an ionic conductive agent comprising a combination of a cation and an anion can be used alone or in combination of two or more. When combining 2 or more types, it is preferable to combine those having the same anion. From the viewpoint of adhesion, at least one ion conductive agent having a secondary amino group is preferably used, and an ion conductive agent having no primary amino group is more preferably used.

(添加量)
イオン導電剤の添加量は適宜設定することができ、原料としてのバインダー樹脂原料100質量部に対して、該イオン導電剤を0.5質量部以上20質量部以下の割合で配合することが好ましい。配合量が0.5質量部以上の場合には、イオン導電剤添加による導電性の付与効果を容易に得ることができる。20質量部以下の場合には、電気抵抗の環境依存性を低減させることができる。
(Addition amount)
The addition amount of the ionic conductive agent can be appropriately set, and the ionic conductive agent is preferably blended at a ratio of 0.5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the binder resin raw material as a raw material. . When the blending amount is 0.5 parts by mass or more, the conductivity imparting effect due to the addition of the ionic conductive agent can be easily obtained. In the case of 20 parts by mass or less, the environmental dependency of electrical resistance can be reduced.

(分析方法)
本発明に係る式(1)〜(7)のいずれかの部分構造が、樹脂中に導入されているか否かについては、以下の方法で確認できる。樹脂層を一部切り出し、IR(赤外分光)分析を行うことで部分構造の連結の有無を確認できる。また、樹脂層に対し、固体13C−NMR(核磁気共鳴)測定と、TOF−MS(飛行時間型質量分析)測定を実施することで部分構造を確認できる。また、エタノール等の親水性溶剤を用い、ソックスレー抽出作業を1週間行い、得られた抽出残渣に対して、固体13C−NMR(核磁気共鳴)測定と、TOF−MS(飛行時間型質量分析)測定を実施することで、アニオン種を確認できる。
(Analysis method)
Whether the partial structure of any one of formulas (1) to (7) according to the present invention is introduced into the resin can be confirmed by the following method. By cutting out a part of the resin layer and performing IR (infrared spectroscopy) analysis, it can be confirmed whether or not the partial structure is connected. Moreover, a partial structure can be confirmed by implementing solid 13 C-NMR (nuclear magnetic resonance) measurement and TOF-MS (time-of-flight mass spectrometry) measurement on the resin layer. In addition, Soxhlet extraction work was performed for 1 week using a hydrophilic solvent such as ethanol, and the obtained extraction residue was subjected to solid-state 13 C-NMR (nuclear magnetic resonance) measurement and TOF-MS (time-of-flight mass spectrometry). ) The anion species can be confirmed by carrying out the measurement.

<電子導電剤>
本発明に係る樹脂層に含む電子導電剤としては、アルミニウム、銅、ニッケル、銀等の金属、酸化アンチモン、酸化インジウム、酸化錫、酸化チタン、酸化亜鉛、酸化モリブデン等の金属酸化物、結晶性グラファイト、各種カーボンファイバー、ファーネスブラック、ランプブラック、サーマルブラック、アセチレンブラック、チャネルブラック等の導電性粒子や、上記金属の繊維を挙げることができる。特に、分散性及び導電性に優れることから、カーボンブラック、グラファイトが好ましい。
<Electronic conductive agent>
Examples of the electronic conductive agent contained in the resin layer according to the present invention include metals such as aluminum, copper, nickel, and silver, metal oxides such as antimony oxide, indium oxide, tin oxide, titanium oxide, zinc oxide, and molybdenum oxide, and crystallinity. Examples thereof include conductive particles such as graphite, various carbon fibers, furnace black, lamp black, thermal black, acetylene black, and channel black, and fibers of the above metals. In particular, carbon black and graphite are preferable because they are excellent in dispersibility and conductivity.

<その他材料>
本発明においては、樹脂層表面の粗さを適切な値に制御し、且つ維持する目的で、凹凸付与粒子を添加しても良い。凹凸付与粒子としては、例えば次のものが挙げられる。ポリメチルメタクリレート、ポリエチルアクリレート、ポリブタジエン、ポリエチレン、ポリプロピレン、ポリスチレン等のビニル系重合体や共重合体、ベンゾグアナミン樹脂、フェノール樹脂、ポリアミド樹脂、フッ素樹脂、シリコーン樹脂、エポキシ樹脂、ポリエステル樹脂等の樹脂粒子、アルミナ、酸化亜鉛、シリコーン、酸化チタン、酸化錫等の酸化物粒子、炭素粒子、導電処理を施した樹脂粒子等の導電性粒子、イミダゾール化合物等の有機化合物を粒子状化したもの。その他、凹凸付与粒子として用いる樹脂粒子の表面に、無機微粉末を付着させた、または固着させたものを用いてもよい。
<Other materials>
In the present invention, irregularity imparting particles may be added for the purpose of controlling and maintaining the roughness of the resin layer surface at an appropriate value. Examples of the irregularity-imparting particles include the following. Resin particles such as vinyl polymers and copolymers such as polymethyl methacrylate, polyethyl acrylate, polybutadiene, polyethylene, polypropylene, polystyrene, benzoguanamine resin, phenol resin, polyamide resin, fluororesin, silicone resin, epoxy resin, polyester resin Particles formed from oxide particles such as alumina, zinc oxide, silicone, titanium oxide and tin oxide, carbon particles, conductive particles such as resin particles subjected to conductive treatment, and organic compounds such as imidazole compounds. In addition, an inorganic fine powder adhered or fixed to the surface of the resin particle used as the unevenness imparting particle may be used.

<形成方法>
樹脂層の形成方法としては、例えば、各成分を溶剤中に分散混合して塗料化し、前記基体上に塗工し、乾燥させることにより得る方法を挙げることができる。各成分の分散混合には、サンドミル、ペイントシェーカー、ダイノミル、パールミル等のビーズを利用した公知の分散装置、若しくはそれらを利用しないメディアレス分散が好適に利用可能である。また、塗工方法としては、ディッピング法、スプレー法、ロールコート法の如き公知の方法が適用可能である。
樹脂層の厚みは特に制限されるものではないが、3μm以上、25μm以下が好ましく、4μm以上、20μm以下が、電子導電剤の脱離が無く、均一な膜厚を得るためにより好ましい。
<Formation method>
Examples of the method for forming the resin layer include a method in which each component is dispersed and mixed in a solvent to form a paint, which is coated on the substrate and dried. For the dispersion mixing of each component, a known dispersion apparatus using beads such as a sand mill, a paint shaker, a dyno mill, a pearl mill, or a medialess dispersion not using them can be suitably used. Moreover, as a coating method, well-known methods, such as a dipping method, a spray method, and a roll coat method, are applicable.
The thickness of the resin layer is not particularly limited, but is preferably 3 μm or more and 25 μm or less, and more preferably 4 μm or more and 20 μm or less in order to obtain a uniform film thickness without desorption of the electron conductive agent.

〔現像装置〕
次に、本発明に係る現像装置について説明する。図2は、本発明に係る現像剤担持体を備えた現像装置の一例を示す概略断面図である。図2において、静電潜像を保持する静電潜像保持体、例えば、感光ドラム5は、矢印B方向に回転する。本発明に係る現像剤担持体1は、現像剤を収容するための容器(現像容器6)によって供給された磁性現像剤である一成分系現像剤を担持搬送する。現像剤担持体1が、矢印A方向に回転することによって、現像剤担持体1と感光ドラム5とが対向している現像領域Cに現像剤を搬送される。図2に示すように、現像剤担持体1の中空円筒状の基体内には、現像剤を現像剤担持体1上に磁気的に吸引且つ保持するために、磁石が内接されているマグネットローラー7が配置されている。
[Development equipment]
Next, the developing device according to the present invention will be described. FIG. 2 is a schematic cross-sectional view showing an example of a developing device provided with the developer carrying member according to the present invention. In FIG. 2, an electrostatic latent image holding body that holds an electrostatic latent image, for example, the photosensitive drum 5 rotates in the arrow B direction. The developer carrier 1 according to the present invention carries and conveys a one-component developer which is a magnetic developer supplied by a container (developing container 6) for containing the developer. As the developer carrying member 1 rotates in the direction of arrow A, the developer is transported to the developing region C where the developer carrying member 1 and the photosensitive drum 5 face each other. As shown in FIG. 2, a magnet is inscribed in the hollow cylindrical base of the developer carrier 1 in order to magnetically attract and hold the developer on the developer carrier 1. A roller 7 is arranged.

現像容器6中には、現像剤を攪拌するための攪拌翼8が設けられている。現像剤は、現像剤相互間及び現像剤担持体1の樹脂層2との摩擦により、感光ドラム5上の静電潜像を現像することが可能な摩擦帯電電荷を得る。図2の例では、現像領域Cに搬送される現像剤の層厚を規制するために、現像剤層厚規制部材としての強磁性金属製の磁性規制ブレード9が、現像剤担持体1の表面から50〜500μmのギャップ幅を持って現像剤担持体1に対向するように配設されている。マグネットローラー7の磁極N1からの磁力線が磁性規制ブレード9に集中することにより、現像剤担持体1上に現像剤の薄層が形成される。磁性規制ブレード9に代えて非磁性ブレードを使用することもできる。   In the developing container 6, a stirring blade 8 for stirring the developer is provided. The developer obtains a triboelectric charge capable of developing the electrostatic latent image on the photosensitive drum 5 by friction between the developers and the resin layer 2 of the developer carrier 1. In the example of FIG. 2, in order to regulate the layer thickness of the developer conveyed to the development area C, a magnetic regulation blade 9 made of a ferromagnetic metal as a developer layer thickness regulating member is provided on the surface of the developer carrier 1. To 50 μm to 500 μm so as to face the developer carrier 1. A magnetic force line from the magnetic pole N <b> 1 of the magnet roller 7 concentrates on the magnetic regulation blade 9, whereby a thin layer of developer is formed on the developer carrier 1. A nonmagnetic blade can be used instead of the magnetic regulating blade 9.

このようにして、現像剤担持体1上に形成される現像剤の薄層の厚みは、現像領域Cにおける現像剤担持体1と感光ドラム5との間の最小間隙よりも更に薄いものであることが好ましい。本発明に係る現像剤担持体は、上記のように、非接触型現像装置に組み込むのが特に有効である。現像領域Cにおいて、現像剤層の厚みが現像剤担持体1と感光ドラム5との間の最小間隙以上の厚みである現像装置、即ち、接触型現像装置にも本発明の現像剤担持体を適用することができる。説明の煩雑を避けるため、以下の説明では、上記したような非接触型現像装置を例にとって行う。   In this manner, the thickness of the thin developer layer formed on the developer carrier 1 is thinner than the minimum gap between the developer carrier 1 and the photosensitive drum 5 in the development region C. It is preferable. As described above, it is particularly effective to incorporate the developer carrying member according to the present invention in a non-contact type developing apparatus. In the developing region C, the developer carrier of the present invention is also applied to a developing device in which the thickness of the developer layer is equal to or greater than the minimum gap between the developer carrier 1 and the photosensitive drum 5, that is, a contact type developing device. Can be applied. In order to avoid complicated description, the following description will be made with the non-contact type developing apparatus as described above as an example.

上記現像剤担持体1に担持された磁性現像剤を有する一成分系現像剤を飛翔させるため、上記現像剤担持体1には、バイアス手段としての現像バイアス電源10により現像バイアス電圧が印加される。この現像バイアス電圧として直流電圧を使用するときに、静電潜像の画像部(現像剤が付着して可視化される領域)の電位と背景部の電位との間の値の電圧を現像剤担持体1に印加するのが好ましい。   In order to fly a one-component developer having a magnetic developer carried on the developer carrying member 1, a developing bias voltage is applied to the developer carrying member 1 by a developing bias power source 10 as a bias means. . When a DC voltage is used as the developing bias voltage, a voltage having a value between the potential of the image portion of the electrostatic latent image (the region visualized as the developer adheres) and the potential of the background portion is carried by the developer. Application to the body 1 is preferred.

図3は、本発明の、現像剤担持体を用いた現像装置における他の実施形態を示す模式断面図である。図3に示した現像装置では、現像剤担持体1上の現像剤の層厚を規制する現像剤層厚規制部材として、ウレタンゴム、シリコーンゴムの如きゴム弾性を有する材料、あるいはリン青銅、ステンレス鋼の如き金属弾性を有する材料の弾性板からなる弾性規制ブレード11を使用している。そして、この弾性規制ブレード11を現像剤担持体1の回転方向と逆方向の向きで圧接させている。この現像装置では、現像剤担持体1に対して、現像剤層を介して現像剤層厚規制部材を弾性的に圧接することによって、現像剤担持体上に現像剤の薄層を形成することから、現像剤担持体1上に、薄い現像剤層を形成することができる。図3の現像装置における他の基本的構成は、図2に示した現像装置と同じであり、同符号のものは同一の部材であることを示す。
本発明に係る現像装置は、電子写真画像形成装置本体に対して着脱自在に構成されてなるプロセスカートリッジとして、あるいは電子写真画像形成装置本体に直接組み込んで使用することができる。
FIG. 3 is a schematic cross-sectional view showing another embodiment of the developing device using the developer carrying member of the present invention. In the developing device shown in FIG. 3, as a developer layer thickness regulating member for regulating the developer layer thickness on the developer carrier 1, a material having rubber elasticity such as urethane rubber, silicone rubber, phosphor bronze, stainless steel, or the like is used. An elastic regulating blade 11 made of an elastic plate made of a material having metal elasticity such as steel is used. The elastic regulating blade 11 is pressed in the direction opposite to the rotation direction of the developer carrier 1. In this developing device, a developer layer thickness regulating member is elastically pressed against the developer carrier 1 through the developer layer, thereby forming a thin layer of developer on the developer carrier. Thus, a thin developer layer can be formed on the developer carrier 1. 3 is the same as that of the developing apparatus shown in FIG. 2, and the same reference numerals denote the same members.
The developing device according to the present invention can be used as a process cartridge configured to be detachable from the electrophotographic image forming apparatus main body, or directly incorporated in the main body of the electrophotographic image forming apparatus.

以下、本発明の実施例について説明する。なお、以下の合成例及び調製例において「部」及び「%」は特に断りがない限り質量基準を示す。   Examples of the present invention will be described below. In the following synthesis examples and preparation examples, “part” and “%” are based on mass unless otherwise specified.

<1.イオン導電剤の合成>
(式(I1)のカチオン構造を有するイオン導電剤の合成)
(イオン導電剤1)
4級化剤であるN−(4−ブロモブチル)フタルイミド10mmolをアセトン10mlに溶解し、室温で3級アミンとしてトリメチルアミン28%水溶液15mmolを加えた後、72時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、残留物をエタノール10mlに溶解し、ヒドラジン一水和物(純度79%)15mmolを加え40℃にて4時間加熱撹拌した後、室温まで冷却し濾過した。濾液中の溶媒を減圧留去した。得られた残留物のアニオンは、臭化物イオンである。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてリチウムビス(トリフルオロメタンスルホニル)イミド10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)であるイオン導電剤1を得た。合成したイオン導電剤1の構造を表2に示す。
<1. Synthesis of ionic conductive agent>
(Synthesis of an ionic conductive agent having a cation structure of the formula (I1))
(Ionic conductive agent 1)
10 mmol of N- (4-bromobutyl) phthalimide as a quaternizing agent was dissolved in 10 ml of acetone, and 15 mmol of a 28% aqueous solution of trimethylamine was added as a tertiary amine at room temperature, followed by heating under reflux for 72 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After repeating this operation three times, the residue was dissolved in 10 ml of ethanol, 15 mmol of hydrazine monohydrate (purity 79%) was added and the mixture was heated and stirred at 40 ° C. for 4 hours, then cooled to room temperature and filtered. The solvent in the filtrate was distilled off under reduced pressure. The resulting anion of the residue is a bromide ion.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of lithium bis (trifluoromethanesulfonyl) imide was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain ionic conductive agent 1 whose anion was bis (trifluoromethanesulfonyl) imide ion (TFSI). Table 2 shows the structure of the synthesized ionic conductive agent 1.

(イオン導電剤2)
4級化剤である1,2−ジブロモエタン15mmolをアセトニトリル10mlに溶解し、室温で3級アミンとしてトリメチルアミン10mmolを加えた後、72時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、残留物をエタノール10mlに溶解し、アミノメタノール40%水溶液30mmol(ここで投入するアミンを以後第二のアミンと呼ぶ)を加えた後、72時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。得られた残留物のアニオンは、臭化物イオンである。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてビス(トリフルオロメタンスルホニル)イミドリチウム塩10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがTFSIであるイオン導電剤2を得た。合成したイオン導電剤2の構造を表2に示す。
(Ionic conductive agent 2)
15 mmol of 1,2-dibromoethane, which is a quaternizing agent, was dissolved in 10 ml of acetonitrile, 10 mmol of trimethylamine was added as a tertiary amine at room temperature, and then heated to reflux for 72 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After this operation was repeated three times, the residue was dissolved in 10 ml of ethanol, 30 mmol of aminomethanol 40% aqueous solution (the amine added here is referred to as the second amine hereinafter) and then heated to reflux for 72 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times. The resulting anion of the residue is a bromide ion.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of bis (trifluoromethanesulfonyl) imide lithium salt was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain an ionic conductive agent 2 whose anion was TFSI. Table 2 shows the structure of the synthesized ionic conductive agent 2.

(イオン導電剤3〜15)
4級化剤、3級アミン、第二のアミンを表1のものに変更したこと以外はイオン導電剤2と同様にして、イオン導電剤3〜15を合成した。なお、イオン導電剤4はアニオン交換を行わず、イオン導電剤5はアニオン交換塩をシクロヘキサフルオロプロパン−1,3−ビス(スルホニル)イミドカリウム塩(CHFSI K)に変更した。また、イオン導電剤15はアニオン交換前に酸加水分解を実施した。合成したイオン導電剤3〜15の構造を表2に示す。
(Ionic conductive agent 3-15)
Ionic conductive agents 3 to 15 were synthesized in the same manner as the ionic conductive agent 2 except that the quaternizing agent, tertiary amine, and second amine were changed to those shown in Table 1. In addition, the ion conductive agent 4 did not perform anion exchange, and the ion conductive agent 5 changed the anion exchange salt to cyclohexafluoropropane-1,3-bis (sulfonyl) imide potassium salt (CHFSI K). The ionic conductive agent 15 was subjected to acid hydrolysis before anion exchange. Table 2 shows the structures of the synthesized ionic conductive agents 3 to 15.

Figure 2018072635
Figure 2018072635

Figure 2018072635
Figure 2018072635

(式(I2)のカチオン構造を有するイオン導電剤の合成)
(イオン導電剤16)
アミノメタノール40%水溶液30mmolにクロロギ酸フルオレニルメチル (Fmoc−Cl)40mmol、ピリジンを加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、さらに24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。得られた残留物をエタノール10mlに溶解し、ビス(2−クロロエチル)アミン塩酸塩を加え、72時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返し、得られた濃縮物をアセトニトリル10mlに溶解させた後、ヨードメタン20mmolを添加し室温にて24時間撹拌した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、残留物をエタノール10mlに溶解して、パラジウム/炭素を添加し、水素ガス雰囲気下、室温にて撹拌した。反応溶液を濾過後、溶媒を減圧留去した。得られた残留物のアニオンは、ヨウ素イオンである。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてリチウムビス(トリフルオロメタンスルホニル)イミド10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)であるイオン導電剤16を得た。合成したイオン導電剤16の構造を表3に示す。
(Synthesis of an ionic conductive agent having a cation structure of the formula (I2))
(Ion conductive agent 16)
Fluorenylmethyl chloroformate (Fmoc-Cl) 40 mmol and pyridine were added to 30 mmol of aminomethanol 40% aqueous solution and heated to reflux for 24 hours. Piperidine 20% DMF solution was added, and the mixture was further heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times. The obtained residue was dissolved in 10 ml of ethanol, bis (2-chloroethyl) amine hydrochloride was added, and the mixture was heated to reflux for 72 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times, and the resulting concentrate was dissolved in 10 ml of acetonitrile, and then 20 mmol of iodomethane was added and stirred at room temperature for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After repeating this operation three times, the residue was dissolved in 10 ml of ethanol, palladium / carbon was added, and the mixture was stirred at room temperature in a hydrogen gas atmosphere. After filtering the reaction solution, the solvent was distilled off under reduced pressure. The anion of the resulting residue is iodine ion.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of lithium bis (trifluoromethanesulfonyl) imide was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain ionic conductive agent 16 whose anion was bis (trifluoromethanesulfonyl) imide ion (TFSI). Table 3 shows the structure of the synthesized ionic conductive agent 16.

(イオン導電剤17)
ベンゼン10mlに溶解させた塩化チオニル溶液20mmolに8−アミノ−1−オクタノール10mmolを加え、24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。得られた残留物をエタノール10mlに溶解し、8−クロロ−1−n−オクタノール10mmolを加え、72時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。得られた残留物をベンゼン10mlに溶解させ、塩化チオニル10mmolを加え、24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。得られた濃縮物をアセトニトリル10mlに溶解させた後、ヨードメタン20mmolを添加し室温にて24時間撹拌した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、残留物をエタノール10mlに溶解して、パラジウム/炭素を添加し、水素ガス雰囲気下室温にて撹拌した。反応溶液を濾過後、溶媒を減圧留去した。得られた残留物のアニオンは、ヨウ素イオンである。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてリチウムビス(トリフルオロメタンスルホニル)イミド10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)であるイオン導電剤16を得た。合成したイオン導電剤17の構造を表3に示す。
(Ion conductive agent 17)
To 20 mmol of thionyl chloride solution dissolved in 10 ml of benzene, 10 mmol of 8-amino-1-octanol was added and heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times. The obtained residue was dissolved in 10 ml of ethanol, 10 mmol of 8-chloro-1-n-octanol was added, and the mixture was heated to reflux for 72 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times. The obtained residue was dissolved in 10 ml of benzene, 10 mmol of thionyl chloride was added, and the mixture was heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times. After the obtained concentrate was dissolved in 10 ml of acetonitrile, 20 mmol of iodomethane was added and stirred at room temperature for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After repeating this operation three times, the residue was dissolved in 10 ml of ethanol, palladium / carbon was added, and the mixture was stirred at room temperature in a hydrogen gas atmosphere. After filtering the reaction solution, the solvent was distilled off under reduced pressure. The anion of the resulting residue is iodine ion.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of lithium bis (trifluoromethanesulfonyl) imide was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain ionic conductive agent 16 whose anion was bis (trifluoromethanesulfonyl) imide ion (TFSI). Table 3 shows the structure of the synthesized ionic conductive agent 17.

(イオン導電剤18)
イオン導電剤16のヨードメタンを1−クロロオクタデカンに変更したこと以外は、イオン導電剤16と同様にして、イオン導電剤18を合成した。合成したイオン導電剤18の構造を表3に示す。
(Ion conductive agent 18)
An ionic conductive agent 18 was synthesized in the same manner as the ionic conductive agent 16 except that the iodomethane of the ionic conductive agent 16 was changed to 1-chlorooctadecane. Table 3 shows the structure of the synthesized ionic conductive agent 18.

(イオン導電剤19)
アミンとしてモルホリン10mmolをアセトン10mlに溶解した後、炭酸カリウムを加えた。その後四級化剤としてN−(4−ブロモブチル)フタルイミド20mmolを加え24時間加熱還流した。室温まで冷却した反応溶液にジクロロメタンを加え、分液し得られた有機層の溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、残留物をエタノール10mlに溶解し、ヒドラジン一水和物(純度79%)15mmolを加え40℃にて4時間加熱撹拌し、室温まで冷却後濾過した。その濾液中の溶媒を減圧留去した。その残留物に、アミノメタノール40%水溶液30mmolにクロロギ酸フルオレニルメチル (Fmoc−Cl)40mmol、ピリジンを加え、24時間加熱還流し、ピペリジン20wt%DMF溶液を加え、24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてリチウムビス(トリフルオロメタンスルホニル)イミド10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)であるイオン導電剤19を得た。合成したイオン導電剤19の構造を表3に示す。
(Ion conductive agent 19)
After dissolving 10 mmol of morpholine as an amine in 10 ml of acetone, potassium carbonate was added. Thereafter, 20 mmol of N- (4-bromobutyl) phthalimide was added as a quaternizing agent, and the mixture was heated to reflux for 24 hours. Dichloromethane was added to the reaction solution cooled to room temperature, and the solvent of the organic layer obtained by liquid separation was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After repeating this operation three times, the residue was dissolved in 10 ml of ethanol, added with 15 mmol of hydrazine monohydrate (purity 79%), heated and stirred at 40 ° C. for 4 hours, cooled to room temperature and filtered. The solvent in the filtrate was distilled off under reduced pressure. To the residue was added 40 mmol of fluorenylmethyl chloroformate (Fmoc-Cl) and pyridine to 30 mmol of 40% aqueous solution of aminomethanol, and the mixture was heated under reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of lithium bis (trifluoromethanesulfonyl) imide was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain ionic conductive agent 19 whose anion was bis (trifluoromethanesulfonyl) imide ion (TFSI). Table 3 shows the structure of the synthesized ionic conductive agent 19.

Figure 2018072635
Figure 2018072635

(式(I3)のカチオン構造を有するイオン導電剤の合成)
(イオン導電剤20)
トリス(3−アミノエチル)アミン10mmolとピリジンをジエチルエーテル10mlに溶解させ、ジエチルエーテル5mlに溶解させたクロロ蟻酸フェニル30mmolを滴下し室温にて反応させた。水酸化ナトリウム水溶液を反応溶液に加え塩基性にした後、分液し得られた有機層の溶媒を減圧留去した。得られた濃縮物をアセトニトリル10mlに溶解させた後、ヨードメタン10mmolを添加し室温にて24時間撹拌した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、残留物をエタノール10mlに溶解して、パラジウム/炭素を添加し、水素ガス雰囲気下、室温にて撹拌した。反応溶液を濾過後、溶媒を減圧留去した。その残留物に、アミノメタノール40%水溶液30mmolにクロロギ酸フルオレニルメチル (Fmoc−Cl)40mmol、ピリジンを加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてリチウムビス(トリフルオロメタンスルホニル)イミド10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)であるイオン導電剤20を得た。合成したイオン導電剤20の構造を表4に示す。
(Synthesis of an ionic conductive agent having a cation structure of the formula (I3))
(Ion conductive agent 20)
10 mmol of tris (3-aminoethyl) amine and pyridine were dissolved in 10 ml of diethyl ether, and 30 mmol of phenyl chloroformate dissolved in 5 ml of diethyl ether was added dropwise and reacted at room temperature. An aqueous sodium hydroxide solution was added to the reaction solution to make it basic, and then the organic layer solvent obtained by liquid separation was distilled off under reduced pressure. The obtained concentrate was dissolved in 10 ml of acetonitrile, 10 mmol of iodomethane was added, and the mixture was stirred at room temperature for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After repeating this operation three times, the residue was dissolved in 10 ml of ethanol, palladium / carbon was added, and the mixture was stirred at room temperature in a hydrogen gas atmosphere. After filtering the reaction solution, the solvent was distilled off under reduced pressure. To the residue, 30 mmol of 40% aqueous solution of aminomethanol, 40 mmol of fluorenylmethyl chloroformate (Fmoc-Cl) and pyridine were added, and the mixture was refluxed for 24 hours. A 20% DMF solution was added, and the mixture was heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of lithium bis (trifluoromethanesulfonyl) imide was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain an ionic conductive agent 20 whose anion was bis (trifluoromethanesulfonyl) imide ion (TFSI). Table 4 shows the structure of the synthesized ionic conductive agent 20.

(イオン導電剤21)
フタルイミドカリウム30mmolをジメチルホルムアミド20mlに溶解させた後、1,2−ビス(2−クロロエトキシ)エタン30mmolを加え、加熱還流した。室温まで冷却した溶液にイオン交換水と酢酸エチルを加え分液した。得られた有機層中の溶媒を減圧留去し、四級化剤を得た。この四級化剤をアセトン20mlに溶解した後、ステアリルアミン10mmolと炭酸カリウムを加え24時間加熱還流した。得られた反応溶液を濾過し、濾液中の溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。その残留物に、アミノメタノール40%水溶液30mmolにクロロギ酸フルオレニルメチル (Fmoc−Cl)40mmol、ピリジンを加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてリチウムビス(トリフルオロメタンスルホニル)イミド10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)であるイオン導電剤21を得た。合成したイオン導電剤21の構造を表4に示す。
(Ion conductive agent 21)
After dissolving 30 mmol of potassium phthalimide in 20 ml of dimethylformamide, 30 mmol of 1,2-bis (2-chloroethoxy) ethane was added and heated to reflux. To the solution cooled to room temperature, ion-exchanged water and ethyl acetate were added and separated. The solvent in the obtained organic layer was distilled off under reduced pressure to obtain a quaternizing agent. This quaternizing agent was dissolved in 20 ml of acetone, 10 mmol of stearylamine and potassium carbonate were added, and the mixture was heated to reflux for 24 hours. The obtained reaction solution was filtered, and the solvent in the filtrate was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times. To the residue, 30 mmol of 40% aqueous solution of aminomethanol, 40 mmol of fluorenylmethyl chloroformate (Fmoc-Cl) and pyridine were added, and the mixture was refluxed for 24 hours. A 20% DMF solution was added, and the mixture was heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of lithium bis (trifluoromethanesulfonyl) imide was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain an ionic conductive agent 21 whose anion is bis (trifluoromethanesulfonyl) imide ion (TFSI). Table 4 shows the structure of the synthesized ionic conductive agent 21.

Figure 2018072635
Figure 2018072635

(式(I4)のカチオン構造を有するイオン導電剤の合成)
(イオン導電剤22)
トリス(3−アミノエチル)アミン10mmolとピリジンをジエチルエーテル20mlに溶解させ、クロロ蟻酸フェニル30mmolを滴下し、室温にて反応させた。水酸化ナトリウム水溶液を反応溶液に加え塩基性にした後、分液し得られた有機層の溶媒を減圧留去した。アセトン20mlに得られた濃縮物と予め別途合成したN−(16−ブロモヘキサデカン)フタルイミド10mmolを溶解し24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、残留物をエタノール10mlに溶解し、ヒドラジン一水和物(純度79%)15mmolを加え40℃にて4時間加熱撹拌し、室温まで冷却後濾過した。得られた濾液中の有機溶媒を減圧留去した。得られた残留物をエタノール10mlに溶解して、パラジウム/炭素を添加し、水素ガス雰囲気下、室温にて撹拌した。反応溶液を濾過後、溶媒を減圧留去した。その残留物に、アミノメタノール40%水溶液30mmolにクロロギ酸フルオレニルメチル (Fmoc−Cl)40mmol、ピリジンを加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてリチウムビス(トリフルオロメタンスルホニル)イミド10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)であるイオン導電剤22を得た。合成したイオン導電剤22の構造を表5に示す。
(Synthesis of an ion conductive agent having a cation structure of the formula (I4))
(Ion conductive agent 22)
10 mmol of tris (3-aminoethyl) amine and pyridine were dissolved in 20 ml of diethyl ether, and 30 mmol of phenyl chloroformate was added dropwise and reacted at room temperature. An aqueous sodium hydroxide solution was added to the reaction solution to make it basic, and then the organic layer solvent obtained by liquid separation was distilled off under reduced pressure. The concentrate obtained in 20 ml of acetone and 10 mmol of N- (16-bromohexadecane) phthalimide synthesized separately separately were dissolved and heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After repeating this operation three times, the residue was dissolved in 10 ml of ethanol, added with 15 mmol of hydrazine monohydrate (purity 79%), heated and stirred at 40 ° C. for 4 hours, cooled to room temperature and filtered. The organic solvent in the obtained filtrate was distilled off under reduced pressure. The obtained residue was dissolved in 10 ml of ethanol, palladium / carbon was added, and the mixture was stirred at room temperature in a hydrogen gas atmosphere. After filtering the reaction solution, the solvent was distilled off under reduced pressure. To the residue, 30 mmol of 40% aqueous solution of aminomethanol, 40 mmol of fluorenylmethyl chloroformate (Fmoc-Cl) and pyridine were added, and the mixture was refluxed for 24 hours. A 20% DMF solution was added, and the mixture was heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of lithium bis (trifluoromethanesulfonyl) imide was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain an ionic conductive agent 22 whose anion was bis (trifluoromethanesulfonyl) imide ion (TFSI). Table 5 shows the structure of the synthesized ionic conductive agent 22.

(イオン導電剤23)
1,2−ビス(2−アミノエトキシ)エタン10mmolとピリジンをジエチルエーテル10mlに溶解させ、クロロ蟻酸フェニル10mmolを滴下し室温にて反応させた。水酸化ナトリウム水溶液を反応溶液に加え塩基性にした後、分液し得られた有機層の溶媒を減圧留去し原料アミンを得た。
フタルイミドカリウム30mmolをジメチルホルムアミド30mlに溶解させた後、1,2−ビス(2−クロロエトキシ)エタン30mmolを加え、加熱還流した。室温まで冷却した溶液にイオン交換水と酢酸エチルを加え分液した。得られた有機層中の溶媒を減圧留去し、四級化剤を得た。
アセトン50mlに原料アミン10mmolと四級化剤30mmolを溶解し、炭酸カリウムを加え、24時間加熱還流した。その後、濾過を行い濾液中から有機溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、残留物をエタノール30mlに溶解し、ヒドラジン一水和物(純度79%)45mmolを加え40℃にて4時間加熱撹拌し、室温まで冷却後濾過した。得られた濾液中の有機溶媒を減圧留去した。得られた残留物をエタノール10mlに溶解して、パラジウム/炭素を添加し、水素ガス雰囲気下、室温にて撹拌した。反応溶液を濾過後、溶媒を減圧留去した。その残留物に、アミノメタノール40%水溶液30mmolにクロロギ酸フルオレニルメチル (Fmoc−Cl)40mmol、ピリジンを加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてリチウムビス(トリフルオロメタンスルホニル)イミド10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)であるイオン導電剤23を得た。合成したイオン導電剤23の構造を表5に示す。
(Ionic conductive agent 23)
10 mmol of 1,2-bis (2-aminoethoxy) ethane and pyridine were dissolved in 10 ml of diethyl ether, and 10 mmol of phenyl chloroformate was added dropwise and reacted at room temperature. An aqueous sodium hydroxide solution was added to the reaction solution to make it basic, and then the organic layer solvent obtained by liquid separation was distilled off under reduced pressure to obtain a raw material amine.
After dissolving 30 mmol of potassium phthalimide in 30 ml of dimethylformamide, 30 mmol of 1,2-bis (2-chloroethoxy) ethane was added and heated to reflux. To the solution cooled to room temperature, ion-exchanged water and ethyl acetate were added and separated. The solvent in the obtained organic layer was distilled off under reduced pressure to obtain a quaternizing agent.
10 mmol of raw material amine and 30 mmol of quaternizing agent were dissolved in 50 ml of acetone, potassium carbonate was added, and the mixture was heated to reflux for 24 hours. Thereafter, filtration was performed, and the organic solvent was distilled off from the filtrate under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After repeating this operation three times, the residue was dissolved in 30 ml of ethanol, 45 mmol of hydrazine monohydrate (purity 79%) was added, the mixture was heated and stirred at 40 ° C. for 4 hours, cooled to room temperature, and filtered. The organic solvent in the obtained filtrate was distilled off under reduced pressure. The obtained residue was dissolved in 10 ml of ethanol, palladium / carbon was added, and the mixture was stirred at room temperature in a hydrogen gas atmosphere. After filtering the reaction solution, the solvent was distilled off under reduced pressure. To the residue, 30 mmol of 40% aqueous solution of aminomethanol, 40 mmol of fluorenylmethyl chloroformate (Fmoc-Cl) and pyridine were added, and the mixture was refluxed for 24 hours. A 20% DMF solution was added, and the mixture was heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of lithium bis (trifluoromethanesulfonyl) imide was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain ionic conductive agent 23 whose anion was bis (trifluoromethanesulfonyl) imide ion (TFSI). Table 5 shows the structure of the synthesized ionic conductive agent 23.

Figure 2018072635
Figure 2018072635

(式(I5)のカチオン構造を有するイオン導電剤の合成)
(イオン導電剤24)
エタノール20mlに四級化剤としてN−(2−ブロモエチル)フタルイミド10mmolを溶解し、三級アミンとしてトリメチルアミン10mmolを添加して24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、残留物をエタノール10mlに溶解し、ヒドラジン一水和物(純度79%)15mmolを加え40℃にて4時間加熱撹拌した後、室温まで冷却し濾過した。濾液中の溶媒を減圧留去し残留物を得た。この残留物と三級化剤であるN−(2−ブロモエチル)フタルイミド20mmolをアセトン30mlに溶解し、炭酸カリウムを加えた後72時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、残留物をエタノール30mlに溶解し、ヒドラジン一水和物(純度79%)30mmolを加え40℃にて4時間加熱撹拌した後、室温まで冷却し濾過した。濾液中の溶媒を減圧留去し残留物を得た。その残留物に、アミノメタノール40%水溶液30mmolにクロロギ酸フルオレニルメチル (Fmoc−Cl)40mmol、ピリジンを加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてリチウムビス(トリフルオロメタンスルホニル)イミド10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)であるイオン導電剤24を得た。合成したイオン導電剤24の構造を表7に示す。
(Synthesis of an ionic conductive agent having a cation structure of the formula (I5))
(Ionic conductive agent 24)
In 20 ml of ethanol, 10 mmol of N- (2-bromoethyl) phthalimide as a quaternizing agent was dissolved, 10 mmol of trimethylamine was added as a tertiary amine, and the mixture was heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After repeating this operation three times, the residue was dissolved in 10 ml of ethanol, 15 mmol of hydrazine monohydrate (purity 79%) was added and the mixture was heated and stirred at 40 ° C. for 4 hours, then cooled to room temperature and filtered. The solvent in the filtrate was distilled off under reduced pressure to obtain a residue. The residue and 20 mmol of N- (2-bromoethyl) phthalimide as a tertiary agent were dissolved in 30 ml of acetone, potassium carbonate was added, and the mixture was heated to reflux for 72 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After repeating this operation three times, the residue was dissolved in 30 ml of ethanol, 30 mmol of hydrazine monohydrate (purity 79%) was added and the mixture was heated and stirred at 40 ° C. for 4 hours, then cooled to room temperature and filtered. The solvent in the filtrate was distilled off under reduced pressure to obtain a residue. To the residue, 30 mmol of 40% aqueous solution of aminomethanol, 40 mmol of fluorenylmethyl chloroformate (Fmoc-Cl) and pyridine were added, and the mixture was refluxed for 24 hours. A 20% DMF solution was added, and the mixture was heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of lithium bis (trifluoromethanesulfonyl) imide was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain an ionic conductive agent 24 whose anion was bis (trifluoromethanesulfonyl) imide ion (TFSI). Table 7 shows the structure of the synthesized ionic conductive agent 24.

(イオン導電剤25〜33)
四級化剤、三級アミン、三級化剤を表6のものに変更したこと以外はイオン導電剤24と同様にして、イオン導電剤25〜33を合成した。合成したイオン導電剤25〜33の構造を表7に示す。
(Ion conductive agent 25-33)
Ionic conductive agents 25 to 33 were synthesized in the same manner as the ionic conductive agent 24 except that the quaternizing agent, tertiary amine and tertiaryizing agent were changed to those shown in Table 6. Table 7 shows the structures of the synthesized ionic conductive agents 25-33.

Figure 2018072635
Figure 2018072635

Figure 2018072635
Figure 2018072635

(式(I6)のカチオン構造を有するイオン導電剤の合成)
(イオン導電剤34)
トリス(3−アミノエチル)アミン10mmolとピリジンをジエチルエーテル20mlに溶解させ、クロロ蟻酸フェニル30mmolを滴下し室温にて反応させた。水酸化ナトリウム水溶液を反応溶液に加え塩基性にした後、分液し得られた有機層の溶媒を減圧留去した。得られた残留物とクロロコリンクロリド10mmolをエタノール20mlに溶解し、24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、得られた残留物をエタノール10mlに溶解して、パラジウム/炭素を添加し、水素ガス雰囲気下室温にて撹拌した。反応溶液を濾過後、溶媒を減圧留去した。その残留物に、アミノメタノール40%水溶液30mmolにクロロギ酸フルオレニルメチル (Fmoc−Cl)40mmol、ピリジンを加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流し、ピペリジン20%DMF溶液を加え、24時間加熱還流した。その後溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した。
アニオン交換するために、得られた残留物をジクロロメタン5mlに溶解させた後、アニオン交換塩としてリチウムビス(トリフルオロメタンスルホニル)イミド10mmolを溶解させた水溶液を加え、24時間攪拌した。得られた溶液を分液し、有機層を得た。この有機層を水にて2回洗浄分液後、ジクロロメタンを減圧留去し、アニオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)であるイオン導電剤34を得た。合成したイオン導電剤34の構造を表9に示す。
(Synthesis of an ionic conductive agent having a cation structure of the formula (I6))
(Ion conductive agent 34)
10 mmol of tris (3-aminoethyl) amine and pyridine were dissolved in 20 ml of diethyl ether, and 30 mmol of phenyl chloroformate was added dropwise and reacted at room temperature. An aqueous sodium hydroxide solution was added to the reaction solution to make it basic, and then the organic layer solvent obtained by liquid separation was distilled off under reduced pressure. The obtained residue and 10 mmol of chlorocholine chloride were dissolved in 20 ml of ethanol and heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. After repeating this operation three times, the obtained residue was dissolved in 10 ml of ethanol, palladium / carbon was added, and the mixture was stirred at room temperature in a hydrogen gas atmosphere. After filtering the reaction solution, the solvent was distilled off under reduced pressure. To the residue, 30 mmol of 40% aqueous solution of aminomethanol, 40 mmol of fluorenylmethyl chloroformate (Fmoc-Cl) and pyridine were added, and the mixture was refluxed for 24 hours. A 20% DMF solution was added, and the mixture was heated to reflux for 24 hours. Thereafter, the solvent was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times.
In order to perform anion exchange, the obtained residue was dissolved in 5 ml of dichloromethane, and then an aqueous solution in which 10 mmol of lithium bis (trifluoromethanesulfonyl) imide was dissolved as an anion exchange salt was added and stirred for 24 hours. The obtained solution was separated to obtain an organic layer. This organic layer was washed twice with water and separated, and then dichloromethane was distilled off under reduced pressure to obtain an ionic conductive agent 34 whose anion was bis (trifluoromethanesulfonyl) imide ion (TFSI). Table 9 shows the structure of the synthesized ionic conductive agent 34.

(イオン導電剤35〜43)
四級化剤、三級アミン、添加量を30mmolに変更した三級化剤、添加量を20mmolに変更したアニオン交換塩をそれぞれ表8に示す材料に変更し、イオン導電剤24と同様にしてイオン導電剤35〜43を合成した。合成したイオン導電剤35〜43の構造を表9に示す。
(Ion conductive agent 35-43)
The quaternizing agent, the tertiary amine, the tertiary agent whose addition amount was changed to 30 mmol, and the anion exchange salt whose addition amount was changed to 20 mmol were each changed to the materials shown in Table 8, and the same as the ionic conductive agent 24. Ionic conductive agents 35 to 43 were synthesized. Table 9 shows the structures of the synthesized ionic conductive agents 35 to 43.

Figure 2018072635
Figure 2018072635

Figure 2018072635
Figure 2018072635

(式(I7)のカチオン構造を有するイオン導電剤の合成)
(イオン導電剤44)
アミンとして10mmolのイオン導電剤16をエタノール30mlに溶解させ、ハロゲン化物としてN−(2−ブロモエチル)フタルイミド40mmolと炭酸カリウムを加え24時間加熱還流した。濾過後、濾液にヒドラジン一水和物(純度79%)40mmolを加え40℃にて4時間加熱撹拌した後、室温まで冷却し濾過した。濾液中の溶媒を減圧留去した。得られた濃縮物をジエチルエーテルにて洗浄し、上澄み液をデカンテーションにて除去した。この操作を3回繰り返した後、減圧乾燥した。得られた残留物のアニオンは、TFSIイオンである。合成したイオン導電剤44の構造を表11に示す。
(Synthesis of an ion conductive agent having a cation structure of the formula (I7))
(Ion conductive agent 44)
10 mmol of ionic conductive agent 16 as an amine was dissolved in 30 ml of ethanol, 40 mmol of N- (2-bromoethyl) phthalimide and potassium carbonate were added as halides, and the mixture was heated to reflux for 24 hours. After filtration, 40 mmol of hydrazine monohydrate (purity 79%) was added to the filtrate, and the mixture was stirred with heating at 40 ° C. for 4 hours, and then cooled to room temperature and filtered. The solvent in the filtrate was distilled off under reduced pressure. The obtained concentrate was washed with diethyl ether, and the supernatant was removed by decantation. This operation was repeated three times and then dried under reduced pressure. The resulting anion of the residue is a TFSI ion. Table 11 shows the structure of the synthesized ionic conductive agent 44.

(イオン導電剤45〜47)
アミンとハロゲン化物を表10に示す材料に変更した以外はイオン導電剤44と同様にして、イオン導電剤45〜47を合成した。合成したイオン導電剤45〜47の構造を表11に示す。
(Ion conductive agent 45-47)
Ionic conductive agents 45 to 47 were synthesized in the same manner as the ionic conductive agent 44 except that amines and halides were changed to the materials shown in Table 10. Table 11 shows the structures of the synthesized ionic conductive agents 45 to 47.

Figure 2018072635
Figure 2018072635

Figure 2018072635
Figure 2018072635

<2.塗工液の調製>
本発明で用いる塗工液の調製について説明する。
<2. Preparation of coating solution>
The preparation of the coating solution used in the present invention will be described.

(塗工液1)
以下の材料を混合し、直径1mmのガラスビーズをメディア粒子として用いたサンドミルにて1時間分散し、塗工液1を得た。
(Coating fluid 1)
The following materials were mixed and dispersed for 1 hour in a sand mill using glass beads having a diameter of 1 mm as media particles to obtain a coating solution 1.

・バインダー樹脂:レゾール型フェノール樹脂(DIC製、商品名:J−325)20部
・カーボンブラック(東海カーボン製、商品名:トーカブラック#5500) 10部
・2−プロパノール(IPA) 50部
・イオン導電剤1 1部
・ Binder resin: 20 parts of resol type phenolic resin (made by DIC, trade name: J-325) ・ Carbon black (made by Tokai Carbon, trade name: Toka Black # 5500) 10 parts ・ 50 parts of 2-propanol (IPA) 1 part of conductive agent

(塗工液2〜17)
イオン導電剤の種類と部数を表12に示す内容に変更したこと以外は塗工液1と同様にして、塗工液2〜17を調製した。
(Coating liquid 2-17)
Coating liquids 2 to 17 were prepared in the same manner as coating liquid 1 except that the type and number of parts of the ionic conductive agent were changed to the contents shown in Table 12.

Figure 2018072635
Figure 2018072635

(塗工液18)
窒素雰囲気下、反応容器中でポリメリックMDI(商品名:ミリオネートMR200、東ソー社製)27部に対し、分子量1000のポリテトラメチレングリコール(商品名:PTMG1000、三菱化学社製)100部を反応容器内の温度を65℃に保持しつつ、徐々に滴下した。滴下終了後、温度65℃で2時間反応させた。得られた反応混合物を室温まで冷却し、イソシアネート基含有量3.31%のイソシアネート基末端プレポリマーを得た。
イソシアネート基末端プレポリマー60.4部に対して、分子量3000のポリプロピレングリコールにエチレンオキサイドを付加重合したポリエーテルジオール(商品名:アデカポリエーテルPR−3007、ADEKA社製)39.6部、及びイオン導電剤2 1部を撹拌混合した。その後、カーボンブラック(商品名:トーカブラック#5500、東海カーボン社製)10部と、総固形分比が30%となるように2−ブタノン(MEK)を加え、直径1mmのガラスビーズをメディア粒子として用いたサンドミルにて混合し、塗工液18を得た。
(Coating fluid 18)
In a reaction vessel under nitrogen atmosphere, 100 parts of polytetramethylene glycol (trade name: PTMG1000, manufactured by Mitsubishi Chemical Corporation) with a molecular weight of 1000 is placed in the reaction vessel with respect to 27 parts of polymeric MDI (trade name: Millionate MR200, manufactured by Tosoh Corporation). While maintaining the temperature at 65 ° C., the solution was gradually added dropwise. After completion of the dropping, the reaction was carried out at a temperature of 65 ° C. for 2 hours. The obtained reaction mixture was cooled to room temperature to obtain an isocyanate group-terminated prepolymer having an isocyanate group content of 3.31%.
Polyether diol obtained by addition polymerization of ethylene oxide to polypropylene glycol having a molecular weight of 3000 with respect to 60.4 parts of isocyanate group-terminated prepolymer (trade name: Adeka Polyether PR-3007, manufactured by ADEKA) 39.6 parts, and ions 1 part of conductive agent 2 was mixed with stirring. Thereafter, 10 parts of carbon black (trade name: Toka Black # 5500, manufactured by Tokai Carbon Co., Ltd.) and 2-butanone (MEK) were added so that the total solid content ratio was 30%, and glass beads with a diameter of 1 mm were used as media particles. It mixed in the sand mill used as a coating liquid 18 was obtained.

(塗工液19)
ポリエチレングリコールジグリシジルエーテル(ナガセケムッテックス社製、商品名:デナコールEX−841)51.8部とポリプロピレングリコールジグリシジルエーテル(ナガセケムッテックス社製、商品名:デナコールEX−931)37.1部とエチレングリコールビス(アミノエチル)エーテル(シグマアルドリッチ社製)11.1部とイオン導電剤2 1部を撹拌混合した。その後、カーボンブラック(東海カーボン製、商品名:トーカブラック#5500)10部と、総固形分比が30%となるように2−プロパノール(IPA)を加え、直径1mmのガラスビーズをメディア粒子として用いたサンドミルにて混合し、塗工液19を得た。
(Coating fluid 19)
Polyethylene glycol diglycidyl ether (manufactured by Nagase Chemmutex, trade name: Denacol EX-841) 51.8 parts and polypropylene glycol diglycidyl ether (manufactured by Nagase Chemmutex, trade name: Denacol EX-931) 37.1 Parts, 11.1 parts of ethylene glycol bis (aminoethyl) ether (manufactured by Sigma-Aldrich) and 1 part of ionic conductive agent 2 were mixed with stirring. Thereafter, 10 parts of carbon black (product name: Toka Black # 5500, manufactured by Tokai Carbon Co., Ltd.) and 2-propanol (IPA) were added so that the total solid content ratio was 30%, and glass beads having a diameter of 1 mm were used as media particles. The coating liquid 19 was obtained by mixing with the used sand mill.

(塗工液20〜51)
イオン導電剤の種類と部数を表13に示す内容に変更したこと以外は塗工液1と同様にして、塗工液20〜51を調製した。
(Coating liquid 20-51)
Coating liquids 20 to 51 were prepared in the same manner as the coating liquid 1 except that the type and number of parts of the ionic conductive agent were changed to those shown in Table 13.

Figure 2018072635
Figure 2018072635

〔実施例1〕
(現像剤担持体1の作製)
基体として上下端部にマスキングを施した外径16.0mm、算術平均粗さRa0.2μmの研削加工したアルミニウム製円筒管を準備した。この基体を垂直に立てて、一定速度で回転させ、塗工液1を吐出するようにセッティングしたスプレーガンを一定速度で下降させながら塗布した。続いて、熱風乾燥炉中で温度150℃、30分間加熱して塗工液1を硬化して基体上に厚さ12μmの樹脂層を形成し、現像剤担持体1を作製した。なお、IR、NMR、TOF−SIMSにより、樹脂層が本発明に係る部分構造を含むことを確認した。
[Example 1]
(Preparation of developer carrier 1)
A cylindrical aluminum tube having an outer diameter of 16.0 mm and an arithmetic average roughness Ra of 0.2 μm, with the upper and lower ends masked, was prepared as a substrate. The substrate was set up vertically and rotated at a constant speed, and a spray gun set to discharge the coating liquid 1 was applied while being lowered at a constant speed. Subsequently, the coating liquid 1 was cured by heating at a temperature of 150 ° C. for 30 minutes in a hot air drying oven to form a resin layer having a thickness of 12 μm on the substrate, and the developer carrier 1 was produced. In addition, it confirmed that the resin layer contained the partial structure which concerns on this invention by IR, NMR, and TOF-SIMS.

(クロスカット評価)
基体と樹脂層間の膜剥離を観察することで、密着性の評価を行った。現像剤担持体を温度40℃、湿度95%RHの環境に30日間静置した。その後、さらに温度23℃、湿度50%RHの環境に24時間静置した。静置後、同環境において、JIS K5600−5−6に準拠し、1mmクロスカット碁盤目に付着テープを貼り付けて剥離試験を行い、基体と樹脂層との密着性を下記の基準で評価した。評価結果を表14に示す。
(Cross cut evaluation)
The adhesion was evaluated by observing film peeling between the substrate and the resin layer. The developer carrying member was allowed to stand for 30 days in an environment of a temperature of 40 ° C. and a humidity of 95% RH. Then, it was left still for 24 hours in the environment of temperature 23 ° C and humidity 50% RH. After standing, in the same environment, in accordance with JIS K5600-5-6, an adhesion tape was applied to the 1 mm crosscut grid and a peel test was performed, and the adhesion between the substrate and the resin layer was evaluated according to the following criteria. . The evaluation results are shown in Table 14.

ランク0:カットの縁が完全に滑らかで、どの格子の目にもはがれがない。
ランク1:カットの交差点における塗膜の小さなはがれ。
クロスカット部分で影響を受けるのは、明確に5%を上回ることはない。
ランク2:塗膜がカットの縁に沿って、及び/又は交差点においてはがれている。クロ
スカット部分で影響を受けるのは明確に5%を超えるが15%を上回ること
はない。
ランク3:塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及
び/又は目のいろいろな部分が、部分的又は全面的にはがれている。クロス
カット部分で影響を受けるのは、明確に15%を超えるが35%を上回るこ
とはない。
ランク4:塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及
び/又は数か所の目が部分的又は全面的にはがれている。クロスカット部分
で影響を受けるのは、明確に35%を上回ることはない。
ランク5:ランク4でも分類できないはがれ程度のいずれか。
Rank 0: The edge of the cut is completely smooth, and there is no peeling in any lattice eye.
Rank 1: Small peeling of the coating film at the intersection of cuts.
It is clearly not more than 5% that the crosscut is affected.
Rank 2: The coating is peeled along the edge of the cut and / or at the intersection. Black
It is clearly more than 5% but more than 15% that is affected in the scut portion
There is no.
Rank 3: The coating film is partially or totally peeled along the edge of the cut, and
And / or various parts of the eye are partially or completely peeled off. cross
The cut is clearly affected by over 15% but over 35%.
Is not.
Rank 4: The paint film is partially or totally peeled along the edge of the cut.
And / or some eyes are partially or completely peeled off. Cross cut part
The impact on is clearly not over 35%.
Rank 5: Any of the degree of peeling that cannot be classified even in rank 4.

(耐久はがれ試験)
さらに、実機においてはがれが生じているかを確認するため、耐久試験(以降、「耐久はがれ試験」)を実施した。
レーザービームプリンタ:LaserJetP3015n(装置名、Hewlett−Packard製)とその純正カートリッジを用意した。現像剤担持体1をカートリッジに装着可能なようにマグネット及びフランジを取り付けて、このカートリッジに装着した。1枚/5秒の間欠モードで印字比率が1%の文字パターンにて純正の現像剤を補給しながら6万枚の耐久印字を行い、耐久後に樹脂層にはがれが生じているか確認した。判別基準は下記の通りである。なお、このカートリッジは図3に示したような弾性規制ブレードを現像装置内に有する構成である。評価結果を表14に示す。
(Durability peeling test)
Furthermore, an endurance test (hereinafter referred to as “endurance delamination test”) was carried out in order to confirm whether or not peeling occurred in the actual machine.
Laser beam printer: LaserJet P3015n (device name, manufactured by Hewlett-Packard) and its genuine cartridge were prepared. A magnet and a flange were attached so that the developer carrier 1 could be attached to the cartridge, and the developer carrier 1 was attached to this cartridge. Durability printing of 60,000 sheets was performed while supplying a genuine developer with a character pattern with a printing ratio of 1% in the intermittent mode of 1 sheet / 5 seconds, and it was confirmed whether or not the resin layer had peeled after durability. The discrimination criteria are as follows. This cartridge has an elastic regulating blade as shown in FIG. 3 in the developing device. The evaluation results are shown in Table 14.

ランクA:はがれが全くない
ランクB:はがれがごく一部にある。はがれが生じた箇所が全体の5%を上回らない。
ランクC:はがれが一部にある。はがれが生じた箇所が全体の5%を超えるが15%を
上回らない。
ランクD:はがれが全面にある。はがれが生じた箇所が全体の15%を上回る。
Rank A: No peeling at all Rank B: There is very little peeling. The location where peeling occurred does not exceed 5% of the total.
Rank C: There is some peeling. More than 5% of the places where peeling occurred, but 15%
It will not exceed.
Rank D: There is peeling on the entire surface. The location where peeling occurred exceeds 15% of the total.

〔実施例2〜51〕
塗工液2〜51を使用した以外は現像剤担持体1と同様にして、現像剤担持体2〜51を作製した。
現像剤担持体2〜51のクロスカット評価と耐久はがれ試験の結果を表14に示す。
[Examples 2-51]
Developer carriers 2 to 51 were produced in the same manner as the developer carrier 1 except that the coating liquids 2 to 51 were used.
Table 14 shows the results of the cross-cut evaluation and the durability peeling test of the developer carriers 2 to 51.

〔比較例1〕
(イオン導電剤 比較1の合成)
4級化剤、3級アミン、第二のアミンをそれぞれ1,8−ジブロモオクタン、トリメチルアミン、メチルアミンにした以外はイオン導電剤2と同様にして、イオン導電剤 比較1を合成した。合成されたイオン導電剤 比較1の構造は下記式(11)で示されるものであり、式(I1)のR101に相当する置換基がメチル基となるものである。
[Comparative Example 1]
(Synthesis of Ionic Conductive Agent Comparison 1)
An ionic conductive agent comparison 1 was synthesized in the same manner as the ionic conductive agent 2 except that the quaternizing agent, tertiary amine and secondary amine were changed to 1,8-dibromooctane, trimethylamine and methylamine, respectively. Synthesized ionic conductive agent The structure of Comparative Example 1 is represented by the following formula (11), and the substituent corresponding to R 101 of formula (I1) is a methyl group.

Figure 2018072635
Figure 2018072635

(塗工液 比較1の調製)
イオン導電剤をイオン導電剤 比較1に変更したこと以外は塗工液1と同様にして、塗工液 比較1を調製した。
(Preparation of coating solution comparison 1)
A coating liquid comparison 1 was prepared in the same manner as the coating liquid 1 except that the ionic conductive agent was changed to the ionic conductive agent comparison 1.

(現像剤担持体 比較1の作製)
塗工液 比較1を使用したこと以外は現像剤担持体1と同様にして、現像剤担持体 比較1を作製した。
現像剤担持体 比較1のクロスカット評価と耐久試験の結果を表14に示す。
(Production of developer carrier Comparative 1)
A developer carrier comparison 1 was produced in the same manner as the developer carrier 1 except that the coating liquid comparison 1 was used.
Table 14 shows the results of the cross-cut evaluation and the durability test of the developer carrier Comparative Example 1.

〔比較例2〕
イオン導電剤をイオン導電剤 比較1に変更したこと以外は塗工液18と同様にして、塗工液 比較2を調製した。その後、塗工液 比較2を使用したこと以外は現像剤担持体1と同様にして、現像剤担持体 比較2を作製した。
現像剤担持体 比較2のクロスカット評価と耐久試験の結果を表14に示す。
[Comparative Example 2]
A coating liquid comparison 2 was prepared in the same manner as the coating liquid 18 except that the ionic conductive agent was changed to the ionic conductive agent comparison 1. Thereafter, a developer carrier comparison 2 was produced in the same manner as the developer carrier 1 except that the coating liquid comparison 2 was used.
Table 14 shows the results of the cross-cut evaluation and the durability test of the developer carrier Comparative Example 2.

〔比較例3〕
イオン導電剤をイオン導電剤 比較1に変更したこと以外は塗工液19と同様にして、塗工液 比較3を調製した。その後、塗工液 比較3を使用したこと以外は現像剤担持体1と同様にして、現像剤担持体 比較3を作製した。
現像剤担持体 比較3のクロスカット評価と耐久試験の結果を表14に示す。
[Comparative Example 3]
A coating liquid comparison 3 was prepared in the same manner as the coating liquid 19 except that the ionic conductive agent was changed to the ionic conductive agent comparison 1. Thereafter, a developer carrier comparison 3 was prepared in the same manner as the developer carrier 1 except that the coating liquid comparison 3 was used.
Table 14 shows the results of the cross-cut evaluation and the durability test of the developer carrier Comparative Example 3.

〔比較例4〕
(塗工液 比較4の調製)
イオン導電剤を下記に示す式(12)に変更したこと以外は、塗工液1と同様にして、塗工液 比較4を調製した。
[Comparative Example 4]
(Preparation of coating solution comparison 4)
A coating liquid comparison 4 was prepared in the same manner as the coating liquid 1 except that the ionic conductive agent was changed to the formula (12) shown below.

Figure 2018072635
Figure 2018072635

(現像剤担持体 比較4の作製)
塗工液 比較4を使用したこと以外は現像剤担持体1と同様にして、現像剤担持体 比較4を作製した。
現像剤担持体 比較4のクロスカット評価と耐久試験の結果を表14に示す。
(Production of developer carrier Comparative 4)
A developer carrier comparison 4 was produced in the same manner as the developer carrier 1 except that the coating liquid comparison 4 was used.
Table 14 shows the results of the cross-cut evaluation and the durability test of the developer carrier Comparative Example 4.

Figure 2018072635
Figure 2018072635

実施例1〜51は、クロスカット、耐久はがれともに良好な結果が得られた。一方、比較例1〜3は、樹脂層中の官能基がメチルになっているため、樹脂層と基体の密着性が不十分となり、クロスカット、耐久剥がれともに実施例1〜51より悪い結果になった。比較例4は、樹脂層に固定化できないイオン導電剤を用いているため、樹脂層と基体の密着性が不十分となり、クロスカット、耐久剥がれともに実施例1〜51より悪い結果になった。   In Examples 1 to 51, good results were obtained in both crosscutting and durability peeling. On the other hand, in Comparative Examples 1 to 3, since the functional group in the resin layer is methyl, the adhesion between the resin layer and the substrate is insufficient, and both the cross-cut and the durability peeling are worse than Examples 1 to 51. became. In Comparative Example 4, since an ionic conductive agent that cannot be immobilized on the resin layer was used, the adhesion between the resin layer and the substrate was insufficient, and both the cross-cut and durability peeling were worse than Examples 1-51.

1 現像剤担持体
2 樹脂層
3 基体
4 導電粒子
5 感光ドラム
6 現像容器
7 マグネットローラー
8 攪拌翼
9 磁性規制ブレード
10 現像バイアス電源
11 弾性規制ブレード
A 現像剤担持体の回転方向
B 感光ドラムの回転方向
C 現像領域
DESCRIPTION OF SYMBOLS 1 Developer carrier 2 Resin layer 3 Base | substrate 4 Conductive particle 5 Photosensitive drum 6 Developing container 7 Magnet roller 8 Stirring blade 9 Magnetic regulation blade 10 Development bias power supply 11 Elastic regulation blade A Rotation direction of developer carrier B Rotation of photosensitive drum Direction C Development area

Claims (8)

導電性の基体と、該基体に接触している樹脂層とを有する現像剤担持体であって、
該樹脂層は、
電子導電剤と、
分子内に下記式(1)〜(7)で示される構造からなる群から選ばれる少なくとも1つの部分構造を有する樹脂と、
アニオンと、を含んでいることを特徴とする現像剤担持体:
Figure 2018072635
〔式(1)〜(7)中、
101、R201とR202、R301からR303、R401からR404、R501とR502、R601からR603、R701からR704は、それぞれ独立に水素原子、OH、CHOH、COH、COOHを示し、
102、R203とR204、R304からR306、R405からR408、R503からR505、R604からR607、R705からR710は、それぞれ独立にC2m(mは、2〜16の整数)または、(CO)(lは、1〜8の整数)を示し、
307は炭素数1から18のアルキル基を示し、
501、X701、X702は、それぞれ独立に窒素原子またはメチン基を示し、
601は、窒素カチオンまたは炭素原子を示し、
101、A501およびA601は、それぞれ独立に下記構造式(a)〜(d)のいずれかを示し、E201およびE701は、それぞれ独立に下記構造式(e)または(f)を示す:
Figure 2018072635
(式(a)〜(f)中、RからRはそれぞれ独立に、炭素数1〜18のアルキル基を示し、n1およびn2は、各々独立に、1または2を示し、YとYはメチレン基または酸素原子を表す。)〕。
A developer carrier having a conductive substrate and a resin layer in contact with the substrate,
The resin layer is
An electronic conducting agent;
A resin having at least one partial structure selected from the group consisting of structures represented by the following formulas (1) to (7) in the molecule;
And a developer carrier characterized by containing an anion:
Figure 2018072635
[In Formula (1)-(7),
R 101, R 201 and R 202, R 603 from the R 301 from R 303, R 401 R 404, R 501 and R 502, R 601, from R 701 R 704 each independently represent a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, COOH,
R 102 , R 203 and R 204 , R 304 to R 306 , R 405 to R 408 , R 503 to R 505 , R 604 to R 607 , and R 705 to R 710 are each independently C m H 2m (m is , An integer of 2 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8),
R 307 represents an alkyl group having 1 to 18 carbon atoms,
X 501 , X 701 , and X 702 each independently represent a nitrogen atom or a methine group,
X 601 represents a nitrogen cation or a carbon atom,
A 101 , A 501 and A 601 each independently represent any of the following structural formulas (a) to (d), and E 201 and E 701 each independently represent the following structural formula (e) or (f). Show:
Figure 2018072635
(In formulas (a) to (f), R 1 to R 9 each independently represents an alkyl group having 1 to 18 carbon atoms, n1 and n2 each independently represent 1 or 2, and Y 1 and Y 2 represents a methylene group or an oxygen atom))].
前記式(1)〜(7)のいずれかで示される部分構造が下記式(8)〜(10)のいずれかで示される構造を介して樹脂分子鎖に結合している請求項1に記載の現像剤担持体:
Figure 2018072635
(式(8)〜(10)中、*は前記式(1)〜(7)のいずれかの構造の結合部位を示し、**は樹脂分子鎖への結合部位を示す)。
The partial structure represented by any one of the formulas (1) to (7) is bonded to the resin molecular chain via the structure represented by any of the following formulas (8) to (10). Developer carrier:
Figure 2018072635
(In formulas (8) to (10), * represents a binding site of the structure of any one of formulas (1) to (7), and ** represents a binding site to the resin molecular chain).
前記樹脂層が、前記アニオンとして、パーフルオロスルホニルイミドイオンを含む請求項1または2に記載の現像剤担持体。   The developer carrier according to claim 1, wherein the resin layer contains perfluorosulfonylimide ion as the anion. 導電性の基体と、該基体に接触している樹脂層とを有する現像剤担持体であって、
該樹脂層は、
電子導電剤と、
下記式(I1)〜(I7)で示される構造からなる群から選ばれる1つのカチオン構造とアニオンを有するイオン導電剤の少なくとも1種と、
該イオン導電剤の1級または2級アミノ基と反応可能な官能基を有する化合物との反応物からなる樹脂とを含有する現像剤担持体:
Figure 2018072635
〔式(I1)〜(I7)中、
101、R201とR202、R301からR303、R401からR404、R501とR502、R601からR603、R701からR704は、それぞれ独立に水素原子、OH、CHOH、COH、COOHを示し、
102、R203とR204、R304からR306、R405からR408、R503からR505、R604からR607、R705からR710は、それぞれ独立にC2m(mは、2〜16の整数)または、(CO)(lは、1〜8の整数)を示し、
307は炭素数1〜18のアルキル基を示し、
501、X701、X702は、それぞれ独立に窒素原子またはメチン基を示し、
601は、窒素カチオンまたは炭素原子を示し、
101、A501、A601は、それぞれ独立に下記構造式(a)〜(d)のいずれかを示し、
201、E701は、それぞれ独立に下記構造式(e)または(f)を示す:
Figure 2018072635
(式(a)〜(f)中、RからRはそれぞれ独立に、炭素数1〜18のアルキル基を示し、n1およびn2は、各々独立に、1または2を示し、YとYはメチレン基または酸素原子を表す。)〕。
A developer carrier having a conductive substrate and a resin layer in contact with the substrate,
The resin layer is
An electronic conducting agent;
At least one ion conductive agent having one cation structure and an anion selected from the group consisting of the structures represented by the following formulas (I1) to (I7);
A developer carrier comprising a resin comprising a reaction product of a compound having a functional group capable of reacting with a primary or secondary amino group of the ionic conductive agent:
Figure 2018072635
[In the formulas (I1) to (I7),
R 101, R 201 and R 202, R 603 from the R 301 from R 303, R 401 R 404, R 501 and R 502, R 601, from R 701 R 704 each independently represent a hydrogen atom, OH, CH 2 OH, C 2 H 4 OH, COOH,
R 102 , R 203 and R 204 , R 304 to R 306 , R 405 to R 408 , R 503 to R 505 , R 604 to R 607 , and R 705 to R 710 are each independently C m H 2m (m is , An integer of 2 to 16) or (C 2 H 4 O) 1 C 2 H 4 (l is an integer of 1 to 8),
R 307 represents an alkyl group having 1 to 18 carbon atoms,
X 501 , X 701 , and X 702 each independently represent a nitrogen atom or a methine group,
X 601 represents a nitrogen cation or a carbon atom,
A 101 , A 501 and A 601 each independently represent any of the following structural formulas (a) to (d),
E 201 and E 701 each independently represent the following structural formula (e) or (f):
Figure 2018072635
(In formulas (a) to (f), R 1 to R 9 each independently represents an alkyl group having 1 to 18 carbon atoms, n1 and n2 each independently represent 1 or 2, and Y 1 and Y 2 represents a methylene group or an oxygen atom))].
前記アミノ基と反応可能な化合物が、レゾール型フェノール樹脂、エポキシ化合物、イソシアネート化合物からなる群から選択される少なくとも1つの化合物である請求項4に記載の現像剤担持体。   The developer carrier according to claim 4, wherein the compound capable of reacting with the amino group is at least one compound selected from the group consisting of a resol type phenol resin, an epoxy compound, and an isocyanate compound. 前記導電性の基体は、表面に金属を含む、請求項1〜5のいずれか1項に記載の現像剤担持体。   The developer carrying member according to claim 1, wherein the conductive substrate includes a metal on a surface thereof. 現像剤と、前記現像剤を収容するための容器と、該容器に収容された現像剤を担持搬送するための現像剤担持体を有している現像装置であって、該現像剤担持体が請求項1〜6のいずれか1項に記載の現像剤担持体であることを特徴とする現像装置。   A developing device having a developer, a container for containing the developer, and a developer carrier for carrying and transporting the developer contained in the container, wherein the developer carrier is A developing device comprising the developer carrying member according to claim 1. 前記現像剤担持体は、前記導電性の基体が中空円筒状であり、該中空円筒状の基体内に磁石を有する、請求項7に記載の現像装置。   The developing device according to claim 7, wherein the developer carrier has a hollow cylindrical shape for the conductive substrate, and a magnet is provided in the hollow cylindrical substrate.
JP2016213698A 2016-10-31 2016-10-31 Developer carrier and developer Active JP6866112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016213698A JP6866112B2 (en) 2016-10-31 2016-10-31 Developer carrier and developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016213698A JP6866112B2 (en) 2016-10-31 2016-10-31 Developer carrier and developer

Publications (2)

Publication Number Publication Date
JP2018072635A true JP2018072635A (en) 2018-05-10
JP6866112B2 JP6866112B2 (en) 2021-04-28

Family

ID=62115334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016213698A Active JP6866112B2 (en) 2016-10-31 2016-10-31 Developer carrier and developer

Country Status (1)

Country Link
JP (1) JP6866112B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021504447A (en) * 2017-11-21 2021-02-15 日東電工株式会社 Basic ionic liquid composition and elements containing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021504447A (en) * 2017-11-21 2021-02-15 日東電工株式会社 Basic ionic liquid composition and elements containing it

Also Published As

Publication number Publication date
JP6866112B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
JP6622485B2 (en) Electrophotographic member, process cartridge, and electrophotographic image forming apparatus
US8771818B2 (en) Electrically conducting member for electrophotography, process cartridge and electrophotographic image forming apparatus
US8628854B2 (en) Electro-conductive member, process cartridge, and electrophotographic apparatus
JP6410664B2 (en) Electrophotographic member, process cartridge, and electrophotographic apparatus
KR101581519B1 (en) Ion-conducting resin and electrically conductive member for electrophotography
JP6587418B2 (en) Electrophotographic member, process cartridge, and electrophotographic apparatus
JP6486188B2 (en) Electrophotographic member, process cartridge, and electrophotographic apparatus
JP5875416B2 (en) Conductive member for electrophotography
US9964914B2 (en) Electrophotographic member, process cartridge, and electrophotographic apparatus
US20170139336A1 (en) Developing member, method of producing the same, process cartridge and electrophotographic image forming apparatus
WO2013099207A1 (en) Conductive member for electrophotography, process cartridge, and electrophotographic apparatus
JP2015232704A (en) Electrophotographic member, process cartridge, and electrophotographic apparatus
KR20130029431A (en) Conductive member, process cartridge, and device for forming electrophotographic image
JP2017049579A (en) Electrophotographic member, process cartridge, and electrophotographic device
KR101526829B1 (en) Developer carrier and developing device
WO2012132315A1 (en) Conductive member
JP6866112B2 (en) Developer carrier and developer
JP6417211B2 (en) Conductive member
JP2006225454A (en) Polyimide-based resin
JP5743140B2 (en) 1-component developing device
JP5754930B2 (en) Toner carrier, process cartridge, and electrophotographic apparatus
JP2008224945A (en) Developing roller
JP2011173940A (en) Electrically conductive resin composition and electrically conductive film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210407

R151 Written notification of patent or utility model registration

Ref document number: 6866112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151