JP2018072273A - Encoder - Google Patents

Encoder Download PDF

Info

Publication number
JP2018072273A
JP2018072273A JP2016215611A JP2016215611A JP2018072273A JP 2018072273 A JP2018072273 A JP 2018072273A JP 2016215611 A JP2016215611 A JP 2016215611A JP 2016215611 A JP2016215611 A JP 2016215611A JP 2018072273 A JP2018072273 A JP 2018072273A
Authority
JP
Japan
Prior art keywords
optical path
scale
light
reflecting member
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016215611A
Other languages
Japanese (ja)
Inventor
慶顕 加藤
Yoshiaki Kato
慶顕 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2016215611A priority Critical patent/JP2018072273A/en
Publication of JP2018072273A publication Critical patent/JP2018072273A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an encoder that can suppress errors in a measurement using a coherent fringe.SOLUTION: An encoder 1A comprises: a light source 10; a scale 20 that has a diffraction grating 20a; a light reception unit 30; and a reflection unit that configures a first optical path and a second optical path having a mutually equal optical path length as an optical path forming diffraction of a plurality of times by the diffraction grating 20a from the light source 10 to the light reception unit 30 via the scale 20. In the encoder, light to be emitted from the light source is low coherent light. Further, when the optical path length of the first optical path and the second optical path is a normal optical path length, and an optical path length of an optical path other than the first optical path and the second optical path is a non-normal optical path length, the reflection unit is configured so that the normal optical path length is different from the non-normal optical path length.SELECTED DRAWING: Figure 1

Description

本発明はエンコーダに関し、より詳しくは、スケールピッチの1/2(nは正の整数)倍の信号を出力するエンコーダに関する。 The present invention relates to an encoder, and more particularly to an encoder that outputs a signal that is 1/2 n (n is a positive integer) times a scale pitch.

特許文献1には、干渉縞を利用したエンコーダが開示されている。このエンコーダでは、移動物体に取り付けた回折格子に可干渉性の光束を複数回入射させて、回折格子からの回折光を互いに干渉させて干渉縞を形成し、干渉縞の明暗の縞を計数することによって移動物体の移動量を測定している。光源には、レーザ光のような可干渉光源が利用される。この光源からスケールを介して受光素子に到達するまでの光路上に複数のコーナーキューブが設けられる。このような構成によって、複数回の回折によりスケールピッチの1/8倍の正弦波信号出力を得ている。   Patent Document 1 discloses an encoder that uses interference fringes. In this encoder, a coherent beam is incident on a diffraction grating attached to a moving object a plurality of times, the diffracted lights from the diffraction grating interfere with each other to form interference fringes, and the bright and dark fringes of the interference fringes are counted. Thus, the amount of movement of the moving object is measured. A coherent light source such as a laser beam is used as the light source. A plurality of corner cubes are provided on the optical path from the light source to the light receiving element via the scale. With such a configuration, a sine wave signal output of 1/8 times the scale pitch is obtained by multiple times of diffraction.

特開平2−85715号公報Japanese Patent Laid-Open No. 2-85715

しかしながら、光源から受光素子までの光路には、測定において想定される正規の光路(正規光路)と、想定されていない迷光による光路(迷光光路)とが存在する。この正規光路を通る光と迷光光路を通る光との干渉や、複数の迷光光路を通る光の干渉は、測定に必要な正弦波信号に誤差を発生させる原因となる。   However, in the optical path from the light source to the light receiving element, there are a normal optical path assumed in the measurement (normal optical path) and an optical path caused by stray light that is not assumed (stray light optical path). The interference between the light passing through the regular optical path and the light passing through the stray light optical path, or the interference of light passing through the plurality of stray light optical paths causes an error in the sine wave signal necessary for the measurement.

本発明は、干渉縞を利用した測定において誤差を抑制することができるエンコーダを提供することを目的とする。   An object of this invention is to provide the encoder which can suppress an error in the measurement using an interference fringe.

上記課題を解決するために、本発明のエンコーダは、光源と、回折格子を有するスケールと、受光部と、光源からスケールを介して受光部までの間で回折格子による複数回の回折を形成する光路として、互いに等しい光路長を有する第1光路および第2光路を構成する反射部と、を備える。このエンコーダにおいて、光源から放出される光は低可干渉光である。また、第1光路および第2光路の光路長を正規光路長、第1光路および第2光路以外の光路の光路長を非正規光路長とした場合、反射部は、正規光路長が非正規光路長とは異なるように構成されている。   In order to solve the above problems, an encoder of the present invention forms a plurality of diffractions by a diffraction grating between a light source, a scale having a diffraction grating, a light receiving unit, and the light source to the light receiving unit through the scale. The optical path includes a first optical path and a second optical path that have the same optical path length. In this encoder, the light emitted from the light source is low coherent light. Further, when the optical path lengths of the first optical path and the second optical path are normal optical path lengths, and the optical path lengths of the optical paths other than the first optical path and the second optical path are non-normal optical path lengths, the reflecting unit has an abnormal optical path length of the normal optical path length. It is configured to be different from the length.

このような構成によれば、スケールの回折格子によって複数回の回折を形成する光路を構成する反射部において、正規光路長が非正規光路長とは異なるようになっている。光源から光を放出することで正規光路である第1光路を通る光と第2光路を通る光とで干渉が発生する。光源からは低可干渉光(正規光路長と非正規光路長との光路差よりも短いコヒーレント長の光)が放出されるため、正規光路を通る光と非正規光路を通る光とでは干渉が抑制される。これにより、正規光路を通る光の干渉で生成される正弦波信号に含まれる誤差を抑制することができる。   According to such a configuration, the normal optical path length is different from the non-normal optical path length in the reflection portion that configures the optical path that forms the diffraction of a plurality of times by the diffraction grating of the scale. By emitting light from the light source, interference occurs between the light passing through the first optical path, which is the normal optical path, and the light passing through the second optical path. The light source emits low-coherence light (light with a coherent length shorter than the optical path difference between the normal optical path length and the non-normal optical path length), so there is interference between the light passing through the normal optical path and the light passing through the non-normal optical path. It is suppressed. Thereby, the error contained in the sine wave signal produced | generated by the interference of the light which passes along a regular optical path can be suppressed.

本発明のエンコーダにおいて、反射部は、第1反射部材と、第2反射部材と、第1光路および第2光路において第1反射部材と第2反射部材との間に設けられる中間反射部材と、を有していてもよい。スケールの回折格子が設けられる面に対して垂直な方向において、第1反射部材とスケールとの距離は、第2反射部材とスケールとの距離と異なっている。これにより、第1反射部材を介した非正規光路と、第2反射部材を介した非正規光路とに光路差を設けることができる。   In the encoder of the present invention, the reflecting portion includes a first reflecting member, a second reflecting member, an intermediate reflecting member provided between the first reflecting member and the second reflecting member in the first optical path and the second optical path, You may have. In the direction perpendicular to the surface on which the diffraction grating of the scale is provided, the distance between the first reflecting member and the scale is different from the distance between the second reflecting member and the scale. Thereby, an optical path difference can be provided between the non-regular optical path via the first reflecting member and the non-regular optical path via the second reflecting member.

本発明のエンコーダにおいて、光源、受光部、第1反射部材、第2反射部材および中間反射部材は、スケールの一方側に配置されていてもよい。これにより、スケールに対して反射型の光路を構成することができる。   In the encoder of the present invention, the light source, the light receiving unit, the first reflecting member, the second reflecting member, and the intermediate reflecting member may be arranged on one side of the scale. Thereby, a reflection type optical path can be constituted with respect to the scale.

本発明のエンコーダにおいて、光源、受光部および中間反射部はスケールの一方側に配置され、第1反射部材および第2反射部材はスケールの他方側に配置されていてもよい。これにより、スケールに対して透過型の光路を構成することができる。   In the encoder of the present invention, the light source, the light receiving unit, and the intermediate reflecting unit may be disposed on one side of the scale, and the first reflecting member and the second reflecting member may be disposed on the other side of the scale. Thereby, a transmissive optical path can be configured with respect to the scale.

本発明のエンコーダにおいて、光源は、スーパールミネッセンスダイオード(SLD)を有していてもよい。これにより、正規光路を通る光での強い干渉と、非正規光路を通る光での干渉抑制とを両立することができる。   In the encoder of the present invention, the light source may include a super luminescence diode (SLD). Thereby, it is possible to achieve both strong interference with light passing through the regular optical path and suppression of interference with light passing through the non-regular optical path.

(a)および(b)は、第1実施形態に係るエンコーダの構成を例示する模式図である。(A) And (b) is a schematic diagram which illustrates the structure of the encoder which concerns on 1st Embodiment. (a)および(b)は、非正規光路を例示する模式図である。(A) And (b) is a schematic diagram which illustrates a non-regular optical path. (a)および(b)は、参考例を示す模式図である。(A) And (b) is a schematic diagram which shows a reference example. (a)および(b)は、参考例を示す模式図である。(A) And (b) is a schematic diagram which shows a reference example. (a)および(b)は、第2実施形態に係るエンコーダの構成を例示する模式図である。(A) And (b) is a schematic diagram which illustrates the structure of the encoder which concerns on 2nd Embodiment. (a)および(b)は、非正規光路を例示する模式図である。(A) And (b) is a schematic diagram which illustrates a non-regular optical path.

以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same members are denoted by the same reference numerals, and the description of the members once described is omitted as appropriate.

〔第1実施形態〕
図1(a)〜図2(b)は、第1実施形態に係るエンコーダの構成を例示する模式図である。
本実施形態に係るエンコーダ1Aは、回折光の干渉によって生じる干渉縞によってスケール20と光学系との相対的な移動量を検出するものである。エンコーダ1Aは、光源10と、スケール20と、受光部30と、反射部40とを備える。
[First Embodiment]
FIG. 1A to FIG. 2B are schematic views illustrating the configuration of an encoder according to the first embodiment.
The encoder 1 </ b> A according to the present embodiment detects a relative movement amount between the scale 20 and the optical system based on interference fringes generated by interference of diffracted light. The encoder 1 </ b> A includes a light source 10, a scale 20, a light receiving unit 30, and a reflecting unit 40.

光源10から放出される光は、後述する正規光路長と非正規光路長との光路差よりも短いコヒーレント長を有する。すなわち、光源10から放出される光は低可干渉光である。本実施形態では、レーザ光よりも低コヒーレントな光(時間コヒーレントが低い光)が用いられる。このような低コヒーレントな光を放出する光源10としては、例えばスーパールミネッセンスダイオード(SLD)が挙げられる。光源10としてSLDを用いる場合、数十μm〜数百μmのコヒーレント長のものが適用される。   The light emitted from the light source 10 has a coherent length shorter than the optical path difference between a regular optical path length and an irregular optical path length, which will be described later. That is, the light emitted from the light source 10 is low coherent light. In the present embodiment, light that is less coherent than laser light (light that has low temporal coherence) is used. Examples of such a light source 10 that emits low-coherent light include a super luminescence diode (SLD). When an SLD is used as the light source 10, a light having a coherent length of several tens of μm to several hundreds of μm is applied.

スケール20は、回折格子(図示せず)を有する。回折格子は所定ピッチの凹凸やスリットなどによって構成される。回折格子はスケール20の面20aに設けられる。直線のスケール20では直線移動の量を検出し、円形のスケール20では回転量(回転角度)を検出する。光源10から放出される光は、スケール20の回折格子が設けられた面20aと直交する方向に照射される。   The scale 20 has a diffraction grating (not shown). The diffraction grating is constituted by irregularities, slits or the like having a predetermined pitch. The diffraction grating is provided on the surface 20 a of the scale 20. The linear scale 20 detects the amount of linear movement, and the circular scale 20 detects the amount of rotation (rotation angle). The light emitted from the light source 10 is irradiated in a direction orthogonal to the surface 20a on which the diffraction grating of the scale 20 is provided.

受光部30は、例えばラインセンサを含む。受光部30は、干渉縞の濃淡を電気信号に変換して出力する。受光部30の後段には図示しない演算部が設けられ、受光した干渉縞に基づく電気信号に対する処理を行っている。   The light receiving unit 30 includes, for example, a line sensor. The light receiving unit 30 converts the density of the interference fringes into an electrical signal and outputs it. A calculation unit (not shown) is provided at the subsequent stage of the light receiving unit 30 to perform processing on an electrical signal based on the received interference fringes.

反射部40は、光源10からスケール20を介して受光部30までの間で回折格子による複数回の回折を形成する光路を形成するための反射光学系である。複数回の回折を形成するための光路として、反射部40は正規光路である第1光路および第2光路を構成する。   The reflection unit 40 is a reflection optical system for forming an optical path for forming a plurality of diffractions by the diffraction grating between the light source 10 and the light receiving unit 30 via the scale 20. As an optical path for forming a plurality of times of diffraction, the reflector 40 constitutes a first optical path and a second optical path that are normal optical paths.

第1光路および第2光路を構成するため、反射部40は、第1反射部材41、第2反射部材42および中間反射部材43を有する。これらの反射部材によって3回の回折光を形成して、スケール20に設けられた回折格子のピッチの1/8倍の信号を出力することができる。   In order to configure the first optical path and the second optical path, the reflecting unit 40 includes a first reflecting member 41, a second reflecting member 42, and an intermediate reflecting member 43. These reflecting members can form diffracted light three times and output a signal that is 1/8 times the pitch of the diffraction grating provided on the scale 20.

第1反射部材41、第2反射部材42および中間反射部材43は、例えばコーナーキューブによって構成される。コーナーキューブは、互いに直交する2つの反射面を有する。第1反射部材41は、スケール20の面20aの側において光源10の光軸の一方側に配置される。第2反射部材42は、スケール20の面20aの側において光源10の光軸の他方側に配置される。中間反射部材43は、スケール20の面20aの側において、第1反射部材41と第2反射部材42との間に配置される。受光部30は、スケール20の面20aと中間反射部材43との間に配置される。   The 1st reflective member 41, the 2nd reflective member 42, and the intermediate | middle reflective member 43 are comprised by the corner cube, for example. The corner cube has two reflecting surfaces orthogonal to each other. The first reflecting member 41 is disposed on one side of the optical axis of the light source 10 on the surface 20 a side of the scale 20. The second reflecting member 42 is disposed on the other side of the optical axis of the light source 10 on the surface 20 a side of the scale 20. The intermediate reflecting member 43 is disposed between the first reflecting member 41 and the second reflecting member 42 on the surface 20a side of the scale 20. The light receiving unit 30 is disposed between the surface 20 a of the scale 20 and the intermediate reflecting member 43.

本実施形態では、光源10、受光部30、第1反射部材41、第2反射部材42および中間反射部材43が、スケール20の回折格子が設けられた面20aの側に、配置される。これにより、反射型のエンコーダ1Aが構成される。   In the present embodiment, the light source 10, the light receiving unit 30, the first reflecting member 41, the second reflecting member 42, and the intermediate reflecting member 43 are arranged on the surface 20 a side where the diffraction grating of the scale 20 is provided. Thereby, the reflective encoder 1A is configured.

そして、スケール20の面20aに対して垂直な方向において、第1反射部材41とスケール20との距離D1は、第2反射部材42とスケール20との距離D2と異なっている。図1に示す例では、距離D1は距離D2よりも短くなっている。   In the direction perpendicular to the surface 20a of the scale 20, the distance D1 between the first reflecting member 41 and the scale 20 is different from the distance D2 between the second reflecting member 42 and the scale 20. In the example shown in FIG. 1, the distance D1 is shorter than the distance D2.

図1(a)の線および矢印は、第1光路を示している。第1光路は、光線c1、c11〜c17によって構成される。第1光路は、光源10、スケール20、第2反射部材42、スケール20、中間反射部材43、スケール20、第1反射部材41、スケール20、受光部30の順に向かう光路である。   The line and arrow in FIG. 1A indicate the first optical path. The first optical path is constituted by light rays c1 and c11 to c17. The first optical path is an optical path that goes in the order of the light source 10, the scale 20, the second reflecting member 42, the scale 20, the intermediate reflecting member 43, the scale 20, the first reflecting member 41, the scale 20, and the light receiving unit 30.

具体的には、先ず、光源10から放出された光による光線c1は、スケール20の面20aに垂直に向かう。スケール20の面20aに設けられた回折格子によって回折光が生成される。回折光のうち第2反射部材42に向かう光線c11は、第2反射部材42で反射して光線c12となり、スケール20に向かう。光線c12はスケール20の面20aに設けられた回折格子で回折して光線c13となり、中間反射部材43へ向かう。光線c13は中間反射部材43で反射して光線c14となり、再びスケール20に向かう。光線c14はスケール20の面20aに設けられた回折格子によって回折して光線c15となり、第1反射部材41へ向かう。光線c15は第1反射部材41で反射して光線c16となり、再びスケール20に向かう。光線c16はスケール20の面20aに設けられた回折格子によって回折して光線c17となり、受光部30へ向かう。   Specifically, first, the light ray c <b> 1 due to the light emitted from the light source 10 goes perpendicular to the surface 20 a of the scale 20. Diffracted light is generated by the diffraction grating provided on the surface 20 a of the scale 20. Of the diffracted light, a light ray c11 directed to the second reflecting member 42 is reflected by the second reflecting member 42 to become a light ray c12 and travels toward the scale 20. The light ray c12 is diffracted by the diffraction grating provided on the surface 20a of the scale 20 to become the light ray c13, and travels toward the intermediate reflecting member 43. The light ray c13 is reflected by the intermediate reflecting member 43 to become the light ray c14, and goes toward the scale 20 again. The light beam c14 is diffracted by the diffraction grating provided on the surface 20a of the scale 20 to become the light beam c15, and travels toward the first reflecting member 41. The light ray c15 is reflected by the first reflecting member 41 to become the light ray c16, and goes again to the scale 20. The light beam c <b> 16 is diffracted by the diffraction grating provided on the surface 20 a of the scale 20 to become the light beam c <b> 17 and travels toward the light receiving unit 30.

図1(b)の線および矢印は、第2光路を示している。第2光路は、光線c1、c21〜c27によって構成される。第2光路は、光源10、スケール20、第1反射部材41、スケール20、中間反射部材43、スケール20、第2反射部材42、スケール20、受光部30の順に向かう光路である。   The line and arrow in FIG. 1B indicate the second optical path. The second optical path is constituted by light rays c1 and c21 to c27. The second optical path is an optical path that goes in the order of the light source 10, the scale 20, the first reflecting member 41, the scale 20, the intermediate reflecting member 43, the scale 20, the second reflecting member 42, the scale 20, and the light receiving unit 30.

具体的には、先ず、光源10から放出された光による光線c1は、スケール20の面20aに垂直に向かう。スケール20の面20aに設けられた回折格子によって回折光が生成される。回折光のうち第1反射部材41に向かう光線c21は、第1反射部材41で反射して光線c22となり、スケール20に向かう。光線c22はスケール20の面20aに設けられた回折格子で回折して光線c23となり、中間反射部材43へ向かう。光線c23は中間反射部材43で反射して光線c24となり、再びスケール20に向かう。光線c24はスケール20の面20aに設けられた回折格子によって回折して光線c25となり、第2反射部材42へ向かう。光線c25は第2反射部材42で反射して光線c26となり、再びスケール20に向かう。光線c26はスケール20の面20aに設けられた回折格子によって回折して光線c27となり、受光部30へ向かう。   Specifically, first, the light ray c <b> 1 due to the light emitted from the light source 10 goes perpendicular to the surface 20 a of the scale 20. Diffracted light is generated by the diffraction grating provided on the surface 20 a of the scale 20. Of the diffracted light, the light beam c21 that travels toward the first reflecting member 41 is reflected by the first reflecting member 41 to become the light beam c22 and travels toward the scale 20. The light ray c22 is diffracted by the diffraction grating provided on the surface 20a of the scale 20 to become the light ray c23, and travels toward the intermediate reflecting member 43. The light ray c23 is reflected by the intermediate reflecting member 43 to become the light ray c24, and goes again to the scale 20. The light ray c24 is diffracted by the diffraction grating provided on the surface 20a of the scale 20 to become the light ray c25, and travels toward the second reflecting member 42. The light ray c25 is reflected by the second reflecting member 42 to become the light ray c26, and goes toward the scale 20 again. The light ray c26 is diffracted by the diffraction grating provided on the surface 20a of the scale 20 to become the light ray c27, and travels toward the light receiving unit 30.

上記の第1光路による光路長は、第2光路による光路長と等しい。第1光路による光線c17と第2光路による光線c27とが干渉して干渉縞が発生し、受光部30は干渉縞による濃淡の信号を得ることができる。   The optical path length by the first optical path is equal to the optical path length by the second optical path. The light beam c17 by the first optical path and the light beam c27 by the second optical path interfere with each other to generate interference fringes, and the light receiving unit 30 can obtain a light and dark signal due to the interference fringes.

図2(a)および(b)は、非正規光路を例示する模式図である。図2(a)には非正規光路の一つである第3光路が例示され、図2(b)には非正規光路の他の一つである第4光路が例示される。   FIGS. 2A and 2B are schematic views illustrating non-regular optical paths. FIG. 2A illustrates a third optical path that is one of the non-regular optical paths, and FIG. 2B illustrates a fourth optical path that is the other of the non-regular optical paths.

図2(a)に示す第3光路は、光線c1、c31〜c37によって構成される。第3光路は、光源10、スケール20、第1反射部材41、スケール20、中間反射部材43、スケール20、第1反射部材41、スケール20、受光部30の順に向かう光路である。すなわち、非正規光路である第3光路は、第2反射部材42で反射せずに第1反射部材41で2回反射する光路である。   The third optical path shown in FIG. 2A is constituted by light rays c1, c31 to c37. The third optical path is an optical path that goes in the order of the light source 10, the scale 20, the first reflecting member 41, the scale 20, the intermediate reflecting member 43, the scale 20, the first reflecting member 41, the scale 20, and the light receiving unit 30. That is, the third optical path that is an irregular optical path is an optical path that is not reflected by the second reflecting member 42 but is reflected twice by the first reflecting member 41.

図2(b)に示す第4光路は、光線c1、c41〜c47によって構成される。第4光路は、光源10、スケール20、第2反射部材42、スケール20、中間反射部材43、スケール20、第2反射部材42、スケール20、受光部30の順に向かう光路である。すなわち、非正規光路である第4光路は、第1反射部材41で反射せずに第2反射部材42で2回反射する光路である。   The 4th optical path shown in Drawing 2 (b) is constituted by light rays c1 and c41-c47. The fourth optical path is an optical path that goes in the order of the light source 10, the scale 20, the second reflecting member 42, the scale 20, the intermediate reflecting member 43, the scale 20, the second reflecting member 42, the scale 20, and the light receiving unit 30. That is, the fourth optical path that is an irregular optical path is an optical path that is not reflected by the first reflecting member 41 but is reflected twice by the second reflecting member 42.

本実施形態では、距離D1と距離D2とが互いに相違しているため、第3光路による光路長と、第4光路による光路長とが異なることになる。この光路長の差によって、第3光路による光線c37と第4光路による光線c47との干渉が抑制される。   In the present embodiment, since the distance D1 and the distance D2 are different from each other, the optical path length by the third optical path is different from the optical path length by the fourth optical path. Due to this difference in optical path length, interference between the light beam c37 by the third optical path and the light beam c47 by the fourth optical path is suppressed.

また、本実施形態では、正規光路である第1光路および第2光路の光路長と、非正規光路である第3光路の光路長とが異なる。また、第1光路および第2光路の光路長は、第4光路の光路長とも相違する。光源10からは低可干渉光(正規光路長と非正規光路長との光路差よりも短いコヒーレント長の光)が放出されるため、正規光路である第1光路の光と第2光路の光とでは強い干渉が発生するものの、正規光路である第1光路および第2光路の光と非正規光路である第3光路および第4光路の光とでは強い干渉は発生しない。すなわち、正規光路と非正規光路との光路差を、光源10のコヒーレント長よりも長くすることで、迷光の干渉縞を発生させずに、正規光路の光による干渉縞を明確に発生させることができる。したがって、正規光路での干渉による干渉縞が明瞭に現れ、非正規光路の光による誤差を抑制することができる。   Further, in the present embodiment, the optical path lengths of the first optical path and the second optical path that are normal optical paths are different from the optical path length of the third optical path that is an irregular optical path. The optical path lengths of the first optical path and the second optical path are also different from the optical path length of the fourth optical path. Since the light source 10 emits low coherent light (light having a coherent length shorter than the optical path difference between the normal optical path length and the non-normal optical path length), the light in the first optical path and the light in the second optical path, which are normal optical paths. However, strong interference does not occur between the light in the first optical path and the second optical path, which are normal optical paths, and the light in the third optical path and the fourth optical path, which are non-regular optical paths. That is, by making the optical path difference between the regular optical path and the non-regular optical path longer than the coherent length of the light source 10, it is possible to clearly generate interference fringes due to light in the regular optical path without generating stray light interference fringes. it can. Therefore, interference fringes due to interference in the regular optical path appear clearly, and errors due to light in the irregular optical path can be suppressed.

〔参考例〕
図3(a)〜図4(b)は、参考例を示す模式図である。
図3(a)〜図4(b)には、第1反射部材41の距離D1と、第2反射部材42の距離D2とが同じ構成の例が示される。
図3(a)および(b)には正規光路(参考例の第1光路および第2光路)による光線が示され、図4(a)および(b)には非正規光路(参考例の第3光路および第4光路)による光線が示される。
[Reference example]
FIG. 3A to FIG. 4B are schematic diagrams illustrating reference examples.
FIGS. 3A to 4B show an example in which the distance D1 of the first reflecting member 41 and the distance D2 of the second reflecting member 42 are the same.
3 (a) and 3 (b) show light rays along the normal optical path (first optical path and second optical path in the reference example), and FIGS. 4 (a) and 4 (b) show non-normal optical paths (first reference path in the reference example). The light rays by (3 optical paths and 4 optical paths) are shown.

図3(a)に示す参考例の第1光路は、光源10、スケール20、第2反射部材42、スケール20、中間反射部材43、スケール20、第1反射部材41、スケール20、受光部30の順に向かう光路である。図3(b)に示す参考例の第2光路は、光源10、スケール20、第1反射部材41、スケール20、中間反射部材43、スケール20、第2反射部材42、スケール20、受光部30の順に向かう光路である。   The first optical path of the reference example shown in FIG. 3A includes the light source 10, the scale 20, the second reflecting member 42, the scale 20, the intermediate reflecting member 43, the scale 20, the first reflecting member 41, the scale 20, and the light receiving unit 30. It is an optical path heading in the order of. The second optical path of the reference example shown in FIG. 3B includes the light source 10, the scale 20, the first reflecting member 41, the scale 20, the intermediate reflecting member 43, the scale 20, the second reflecting member 42, the scale 20, and the light receiving unit 30. It is an optical path that goes to

図4(a)に示す参考例の第3光路は、光源10、スケール20、第1反射部材41、スケール20、中間反射部材43、スケール20、第1反射部材41、スケール20、受光部30の順に向かう光路である。図4(b)に示す参考例の第4光路は、光源10、スケール20、第2反射部材42、スケール20、中間反射部材43、スケール20、第2反射部材42、スケール20、受光部30の順に向かう光路である。   The third optical path of the reference example shown in FIG. 4A includes the light source 10, the scale 20, the first reflecting member 41, the scale 20, the intermediate reflecting member 43, the scale 20, the first reflecting member 41, the scale 20, and the light receiving unit 30. It is an optical path heading in the order of. The fourth optical path of the reference example shown in FIG. 4B includes the light source 10, the scale 20, the second reflecting member 42, the scale 20, the intermediate reflecting member 43, the scale 20, the second reflecting member 42, the scale 20, and the light receiving unit 30. It is an optical path heading in the order of.

このような参考例において、第1光路、第2光路、第3光路および第4光路のそれぞれの光路長は互いに等しくなっている。したがって、受光部30に向かう第1光路、第2光路、第3光路および第4光路のそれぞれの光によって干渉が発生し、正規光路での干渉に非正規光路での干渉が影響を与えることになる。   In such a reference example, the optical path lengths of the first optical path, the second optical path, the third optical path, and the fourth optical path are equal to each other. Therefore, interference occurs due to the light in each of the first optical path, the second optical path, the third optical path, and the fourth optical path toward the light receiving unit 30, and interference in the non-regular optical path affects the interference in the regular optical path. Become.

図1(a)〜図2(b)に示す本実施形態のエンコーダ1Aでは、正規光路での干渉によって明確な明暗を生成することができるとともに、非正規光路での干渉が与える影響を抑制できるため、正規光路での干渉によって精度の高い検出を行うことが可能となる。   In the encoder 1A of the present embodiment shown in FIG. 1A to FIG. 2B, it is possible to generate clear light and dark by interference in the normal optical path, and to suppress the influence of interference in the non-normal optical path. Therefore, highly accurate detection can be performed by interference in the regular optical path.

特に、複数回の回折光の生成によって回折格子のピッチよりも狭い測定精度を得る場合、反射回数が多いほど非正規光路による僅かな干渉の影響が誤差の原因になりやすい。本実施形態では、非正規光路による影響を抑止できるため、複数回の回折光の生成を利用したエンコーダ1Aの測定精度向上に有効である。   In particular, when a measurement accuracy narrower than the pitch of the diffraction grating is obtained by generating the diffracted light a plurality of times, the influence of slight interference due to the non-regular optical path tends to cause an error as the number of reflections increases. In the present embodiment, since the influence of the non-regular optical path can be suppressed, it is effective for improving the measurement accuracy of the encoder 1A using a plurality of generations of diffracted light.

〔第2実施形態〕
図5(a)〜図6(b)は、第2実施形態に係るエンコーダの構成を例示する模式図である。
本実施形態に係るエンコーダ1Bは、光源10と、スケール20と、受光部30と、反射部40とを備える。反射部40は、第1反射部材41、第2反射部材42および中間反射部材43を有する。このうち、光源10、受光部30および中間反射部材43はスケール20の一方側に設けられ、第1反射部材41および第2反射部材42はスケール20の他方側に設けられる。これにより、透過型のエンコーダ1Bが構成される。
[Second Embodiment]
FIG. 5A to FIG. 6B are schematic views illustrating the configuration of an encoder according to the second embodiment.
The encoder 1B according to this embodiment includes a light source 10, a scale 20, a light receiving unit 30, and a reflecting unit 40. The reflection unit 40 includes a first reflection member 41, a second reflection member 42, and an intermediate reflection member 43. Among these, the light source 10, the light receiving unit 30, and the intermediate reflecting member 43 are provided on one side of the scale 20, and the first reflecting member 41 and the second reflecting member 42 are provided on the other side of the scale 20. Thereby, the transmissive encoder 1B is configured.

そして、スケール20の面20aに対して垂直な方向において、第1反射部材41とスケール20との距離D1は、第2反射部材42とスケール20との距離D2と異なっている。図5に示す例では、距離D1は距離D2よりも短くなっている。   In the direction perpendicular to the surface 20a of the scale 20, the distance D1 between the first reflecting member 41 and the scale 20 is different from the distance D2 between the second reflecting member 42 and the scale 20. In the example shown in FIG. 5, the distance D1 is shorter than the distance D2.

図5(a)の線および矢印は、第1光路を示している。第1光路は、光線c1、c51〜c57によって構成される。第1光路は、光源10、スケール20、第2反射部材42、スケール20、中間反射部材43、スケール20、第1反射部材41、スケール20、受光部30の順に向かう光路である。   The line and arrow in FIG. 5A indicate the first optical path. The first optical path is constituted by light rays c1 and c51 to c57. The first optical path is an optical path that goes in the order of the light source 10, the scale 20, the second reflecting member 42, the scale 20, the intermediate reflecting member 43, the scale 20, the first reflecting member 41, the scale 20, and the light receiving unit 30.

具体的には、先ず、光源10から放出された光による光線c1は、スケール20の面20aに垂直に向かう。スケール20の面20aに設けられた回折格子を光線c1が通過することで回折光が生成される。回折光のうち第2反射部材42に向かう光線c51は、第2反射部材42で反射して光線c52となり、スケール20に向かう。光線c52はスケール20の面20aに設けられた回折格子を通過することで回折して光線c53となり、中間反射部材43へ向かう。光線c53は中間反射部材43で反射して光線c54となり、再びスケール20に向かう。光線c54はスケール20の面20aに設けられた回折格子を通過することで回折して光線c55となり、第1反射部材41へ向かう。光線c55は第1反射部材41で反射して光線c56となり、再びスケール20に向かう。光線c56はスケール20の面20aに設けられた回折格子を通過することで回折して光線c57となり、受光部30へ向かう。   Specifically, first, the light ray c <b> 1 due to the light emitted from the light source 10 goes perpendicular to the surface 20 a of the scale 20. Diffracted light is generated when the light beam c1 passes through the diffraction grating provided on the surface 20a of the scale 20. Of the diffracted light, the light beam c 51 that travels toward the second reflecting member 42 is reflected by the second reflecting member 42 to become a light beam c 52 that travels toward the scale 20. The light beam c52 passes through the diffraction grating provided on the surface 20a of the scale 20 and is diffracted into the light beam c53, which travels toward the intermediate reflecting member 43. The light ray c53 is reflected by the intermediate reflecting member 43 to become the light ray c54, and goes again to the scale 20. The light ray c54 passes through the diffraction grating provided on the surface 20a of the scale 20 and is diffracted to become the light ray c55, which travels toward the first reflecting member 41. The light ray c55 is reflected by the first reflecting member 41 to become the light ray c56, and goes toward the scale 20 again. The light beam c56 passes through the diffraction grating provided on the surface 20a of the scale 20 and is diffracted to become the light beam c57, which travels toward the light receiving unit 30.

図5(b)の線および矢印は、第2光路を示している。第2光路は、光線c1、c61〜c67によって構成される。第2光路は、光源10、スケール20、第1反射部材41、スケール20、中間反射部材43、スケール20、第2反射部材42、スケール20、受光部30の順に向かう光路である。   The line and arrow in FIG. 5B indicate the second optical path. The second optical path is constituted by light rays c1 and c61 to c67. The second optical path is an optical path that goes in the order of the light source 10, the scale 20, the first reflecting member 41, the scale 20, the intermediate reflecting member 43, the scale 20, the second reflecting member 42, the scale 20, and the light receiving unit 30.

具体的には、先ず、光源10から放出された光による光線c1は、スケール20の面20aに垂直に向かう。スケール20の面20aに設けられた回折格子を光線c1が通過することで回折光が生成される。回折光のうち第1反射部材41に向かう光線c61は、第1反射部材41で反射して光線c62となり、スケール20に向かう。光線c62はスケール20の面20aに設けられた回折格子を通過することで回折して光線c63となり、中間反射部材43へ向かう。光線c63は中間反射部材43で反射して光線c64となり、再びスケール20に向かう。光線c64はスケール20の面20aに設けられた回折格子を通過することで回折して光線c65となり、第2反射部材42へ向かう。光線c65は第2反射部材42で反射して光線c66となり、再びスケール20に向かう。光線c66はスケール20の面20aに設けられた回折格子を通過することで回折して光線c67となり、受光部30へ向かう。   Specifically, first, the light ray c <b> 1 due to the light emitted from the light source 10 goes perpendicular to the surface 20 a of the scale 20. Diffracted light is generated when the light beam c1 passes through the diffraction grating provided on the surface 20a of the scale 20. Of the diffracted light, the light beam c 61 that travels toward the first reflecting member 41 is reflected by the first reflecting member 41 to become a light beam c 62 and travels toward the scale 20. The light ray c62 passes through the diffraction grating provided on the surface 20a of the scale 20 and is diffracted to become the light ray c63, which travels toward the intermediate reflecting member 43. The light ray c63 is reflected by the intermediate reflecting member 43 to become the light ray c64, and again travels toward the scale 20. The light beam c64 passes through the diffraction grating provided on the surface 20a of the scale 20 and is diffracted to become the light beam c65, which travels toward the second reflecting member 42. The light ray c65 is reflected by the second reflecting member 42 to become a light ray c66, and goes toward the scale 20 again. The light beam c66 passes through the diffraction grating provided on the surface 20a of the scale 20 and is diffracted into the light beam c67, which travels toward the light receiving unit 30.

上記の第1光路による光路長は、第2光路による光路長と等しい。第1光路による光線c57と第2光路による光線c67とが干渉して干渉縞が発生し、受光部30は干渉縞による濃淡の信号を得ることができる。   The optical path length by the first optical path is equal to the optical path length by the second optical path. The light beam c57 by the first optical path and the light beam c67 by the second optical path interfere with each other to generate interference fringes, and the light receiving unit 30 can obtain a light / dark signal due to the interference fringes.

図6(a)および(b)は、非正規光路を例示する模式図である。図6(a)には非正規光路の一つである第3光路が例示され、図6(b)には非正規光路の他の一つである第4光路が例示される。   FIGS. 6A and 6B are schematic views illustrating non-regular optical paths. FIG. 6A illustrates a third optical path that is one of the non-regular optical paths, and FIG. 6B illustrates a fourth optical path that is the other of the non-normal optical paths.

図6(a)に示す第3光路は、光線c1、c71〜c77によって構成される。第3光路は、光源10、スケール20、第1反射部材41、スケール20、中間反射部材43、スケール20、第1反射部材41、スケール20、受光部30の順に向かう光路である。すなわち、非正規光路である第3光路は、第2反射部材42で反射せずに第1反射部材41で2回反射する光路である。   The third optical path shown in FIG. 6A is composed of light rays c1 and c71 to c77. The third optical path is an optical path that goes in the order of the light source 10, the scale 20, the first reflecting member 41, the scale 20, the intermediate reflecting member 43, the scale 20, the first reflecting member 41, the scale 20, and the light receiving unit 30. That is, the third optical path that is an irregular optical path is an optical path that is not reflected by the second reflecting member 42 but is reflected twice by the first reflecting member 41.

図6(b)に示す第4光路は、光線c1、c81〜c87によって構成される。第4光路は、光源10、スケール20、第2反射部材42、スケール20、中間反射部材43、スケール20、第2反射部材42、スケール20、受光部30の順に向かう光路である。すなわち、非正規光路である第4光路は、第1反射部材41で反射せずに第2反射部材42で2回反射する光路である。   The 4th optical path shown in Drawing 6 (b) is constituted by light rays c1 and c81-c87. The fourth optical path is an optical path that goes in the order of the light source 10, the scale 20, the second reflecting member 42, the scale 20, the intermediate reflecting member 43, the scale 20, the second reflecting member 42, the scale 20, and the light receiving unit 30. That is, the fourth optical path that is an irregular optical path is an optical path that is not reflected by the first reflecting member 41 but is reflected twice by the second reflecting member 42.

本実施形態では、第1実施形態と同様に、距離D1と距離D2とが互いに相違しているため、第3光路による光路長と、第4光路による光路長とが異なることになる。この光路長の差によって、第3光路による光線c77と第4光路による光線c87との干渉が抑制される。   In the present embodiment, since the distance D1 and the distance D2 are different from each other as in the first embodiment, the optical path length by the third optical path is different from the optical path length by the fourth optical path. Due to this difference in optical path length, interference between the light beam c77 by the third optical path and the light beam c87 by the fourth optical path is suppressed.

また、正規光路である第1光路および第2光路の光路長と、非正規光路である第3光路の光路長とが異なる。また、第1光路および第2光路の光路長は、第4光路の光路長とも相違する。光源10からは低可干渉光が放出されるため、正規光路での干渉による干渉縞が明瞭に現れ、非正規光路の光による誤差を抑制することができる。   Further, the optical path lengths of the first optical path and the second optical path that are normal optical paths are different from the optical path length of the third optical path that is an irregular optical path. The optical path lengths of the first optical path and the second optical path are also different from the optical path length of the fourth optical path. Since low coherent light is emitted from the light source 10, interference fringes due to interference in the regular optical path clearly appear, and errors due to light in the irregular optical path can be suppressed.

以上説明したように、実施形態によれば、干渉縞を利用した測定において誤差を抑制することができるエンコーダ1A、1Bを提供することができる。   As described above, according to the embodiment, encoders 1A and 1B that can suppress errors in measurement using interference fringes can be provided.

なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、反射部40の構成は、第1反射部材41、第2反射部材42および中間反射部材43には限定されず、さらに多くの反射部材によって4回以上の回折光の反射を実現する構成であってもよい。また、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。   Although the present embodiment has been described above, the present invention is not limited to these examples. For example, the configuration of the reflection unit 40 is not limited to the first reflection member 41, the second reflection member 42, and the intermediate reflection member 43, and is a configuration that realizes reflection of diffracted light four times or more by more reflection members. There may be. In addition, those in which those skilled in the art appropriately added, deleted, and changed the design of the above-described embodiments, and combinations of the features of each embodiment as appropriate also include the gist of the present invention. As long as it is within the scope of the present invention.

1A,1B…エンコーダ
10…光源
20…スケール
20a…面
30…受光部
40…反射部
41…第1反射部材
42…第2反射部材
43…中間反射部材
D1…距離
D2…距離

1A, 1B ... Encoder 10 ... Light source 20 ... Scale 20a ... Surface 30 ... Light receiving portion 40 ... Reflecting portion 41 ... First reflecting member 42 ... Second reflecting member 43 ... Intermediate reflecting member D1 ... Distance D2 ... Distance

Claims (5)

光源と、
回折格子を有するスケールと、
受光部と、
前記光源から前記スケールを介して前記受光部までの間で前記回折格子による複数回の回折を形成する光路として、互いに等しい光路長を有する第1光路および第2光路を構成する反射部と、
を備え、
前記第1光路および前記第2光路の光路長を正規光路長、前記第1光路および前記第2光路以外の光路の光路長を非正規光路長とした場合、前記反射部は、前記正規光路長が前記非正規光路長とは異なるように構成され、
前記光源は、前記正規光路長と前記非正規光路長との光路差よりも短いコヒーレント長の光を放出することを特徴とするエンコーダ。
A light source;
A scale having a diffraction grating;
A light receiver;
Reflecting portions constituting a first optical path and a second optical path having the same optical path length as an optical path for forming a plurality of diffractions by the diffraction grating from the light source to the light receiving section through the scale,
With
When the optical path lengths of the first optical path and the second optical path are normal optical path lengths, and the optical path lengths of optical paths other than the first optical path and the second optical path are non-normal optical path lengths, the reflecting unit is configured to have the normal optical path length. Is configured to be different from the non-regular optical path length,
The encoder, wherein the light source emits light having a coherent length shorter than an optical path difference between the normal optical path length and the non-normal optical path length.
前記反射部は、
第1反射部材と、
第2反射部材と、
前記第1光路および前記第2光路において前記第1反射部材と前記第2反射部材との間に設けられる中間反射部材と、を有し、
前記スケールの前記回折格子が設けられる面に対して垂直な方向において、前記第1反射部材と前記スケールとの距離は、前記第2反射部材と前記スケールとの距離と異なっている、請求項1記載のエンコーダ。
The reflective portion is
A first reflecting member;
A second reflecting member;
An intermediate reflection member provided between the first reflection member and the second reflection member in the first optical path and the second optical path;
The distance between the first reflecting member and the scale is different from the distance between the second reflecting member and the scale in a direction perpendicular to the surface of the scale on which the diffraction grating is provided. The encoder described.
前記光源、前記受光部、前記第1反射部材、前記第2反射部材および前記中間反射部材は、前記スケールの一方側に配置された、請求項2記載のエンコーダ。   The encoder according to claim 2, wherein the light source, the light receiving unit, the first reflecting member, the second reflecting member, and the intermediate reflecting member are disposed on one side of the scale. 前記光源、前記受光部および前記中間反射部材は前記スケールの一方側に配置され、
前記第1反射部材および前記第2反射部材は前記スケールの他方側に配置された、請求項2記載のエンコーダ。
The light source, the light receiving unit and the intermediate reflecting member are arranged on one side of the scale,
The encoder according to claim 2, wherein the first reflecting member and the second reflecting member are disposed on the other side of the scale.
前記光源は、スーパールミネッセンスダイオード(SLD)を有する、請求項1〜4のいずれか1つに記載のエンコーダ。   The encoder according to claim 1, wherein the light source includes a super luminescence diode (SLD).
JP2016215611A 2016-11-02 2016-11-02 Encoder Pending JP2018072273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016215611A JP2018072273A (en) 2016-11-02 2016-11-02 Encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215611A JP2018072273A (en) 2016-11-02 2016-11-02 Encoder

Publications (1)

Publication Number Publication Date
JP2018072273A true JP2018072273A (en) 2018-05-10

Family

ID=62115276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215611A Pending JP2018072273A (en) 2016-11-02 2016-11-02 Encoder

Country Status (1)

Country Link
JP (1) JP2018072273A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277926A (en) * 1987-05-11 1988-11-15 Canon Inc Length measuring instrument
JPH0285715A (en) * 1988-09-22 1990-03-27 Canon Inc Encoder
WO2010047100A1 (en) * 2008-10-23 2010-04-29 株式会社ニコン Encoder
JP2012073222A (en) * 2010-08-31 2012-04-12 Mori Seiki Co Ltd Displacement detection device
JP2012237644A (en) * 2011-05-11 2012-12-06 Mori Seiki Co Ltd Displacement detector
JP2015501920A (en) * 2011-11-09 2015-01-19 ザイゴ コーポレーションZygo Corporation Low coherence interferometry using an encoder system
WO2016011024A1 (en) * 2014-07-14 2016-01-21 Zygo Corporation Interferometric encoders using spectral analysis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277926A (en) * 1987-05-11 1988-11-15 Canon Inc Length measuring instrument
JPH0285715A (en) * 1988-09-22 1990-03-27 Canon Inc Encoder
WO2010047100A1 (en) * 2008-10-23 2010-04-29 株式会社ニコン Encoder
JP2012073222A (en) * 2010-08-31 2012-04-12 Mori Seiki Co Ltd Displacement detection device
JP2012237644A (en) * 2011-05-11 2012-12-06 Mori Seiki Co Ltd Displacement detector
JP2015501920A (en) * 2011-11-09 2015-01-19 ザイゴ コーポレーションZygo Corporation Low coherence interferometry using an encoder system
WO2016011024A1 (en) * 2014-07-14 2016-01-21 Zygo Corporation Interferometric encoders using spectral analysis

Similar Documents

Publication Publication Date Title
EP2294357B1 (en) Laser self-mixing measuring system
US9175987B2 (en) Displacement detecting device
EP2603811B1 (en) Vector velocimeter
CA2341432C (en) Device for measuring translation, rotation or velocity via light beam interference
JP6641650B2 (en) Absolute grid scale
JP3254737B2 (en) encoder
KR101511344B1 (en) Position detector and light deflection apparatus
JP6465950B2 (en) Optical encoder
JP2014182028A (en) Limited area reflection type photoelectric sensor
JP2005522682A (en) Optical encoder
JP6420846B2 (en) Optical rotary encoder
JPS58191907A (en) Method for measuring extent of movement
JP2018072273A (en) Encoder
JP2020193929A (en) Optical encoder
US9719809B2 (en) Optical unit and displacement measuring device
JP4506271B2 (en) Photoelectric encoder
US7705289B2 (en) Scanning unit for an optical position-measuring device
JP6111852B2 (en) Encoder device
JP2020012784A (en) Optical angle sensor
JP3808192B2 (en) Movement amount measuring apparatus and movement amount measuring method
JPWO2011114938A1 (en) Optical encoder
JP2018197743A (en) Photoelectric encoder
JP5635439B2 (en) Optical encoder
JP3544576B2 (en) Optical encoder
JP6285270B2 (en) Photoelectric encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210907