JP2018066605A - Processing method and processing device of radioactive waste - Google Patents

Processing method and processing device of radioactive waste Download PDF

Info

Publication number
JP2018066605A
JP2018066605A JP2016204326A JP2016204326A JP2018066605A JP 2018066605 A JP2018066605 A JP 2018066605A JP 2016204326 A JP2016204326 A JP 2016204326A JP 2016204326 A JP2016204326 A JP 2016204326A JP 2018066605 A JP2018066605 A JP 2018066605A
Authority
JP
Japan
Prior art keywords
radioactive waste
adsorbent
radioactive
solidified body
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016204326A
Other languages
Japanese (ja)
Other versions
JP6668215B2 (en
Inventor
千晶 並木
Chiaki Namiki
千晶 並木
中村 秀樹
Hideki Nakamura
秀樹 中村
由樹 井上
Yuki Inoue
由樹 井上
金子 昌章
Masaaki Kaneko
昌章 金子
雄生 山下
Takeo Yamashita
雄生 山下
宮本 真哉
Masaya Miyamoto
真哉 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016204326A priority Critical patent/JP6668215B2/en
Publication of JP2018066605A publication Critical patent/JP2018066605A/en
Application granted granted Critical
Publication of JP6668215B2 publication Critical patent/JP6668215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method of radioactive wastes that forms a solidified body in which soluble radioactive nuclide is immobilized by adsorbent, and stably reduces the elution of the radioactive nuclide from the solidified body for a long term.SOLUTION: A processing method includes: a mixing step S3 of mixing radioactive wastes with adsorbent; a compression step S4 of compressing the mixture obtained in the mixing step; and a burning step S5 of burning the compressed object obtained in the compression step to obtain a solidified body.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、易溶性の放射性核種を含む放射性廃棄物の処理方法及び処理装置に関する。   Embodiments described herein relate generally to a processing method and a processing apparatus for radioactive waste containing a readily soluble radionuclide.

原子力発電所で大規模な事故が発生した場合、原子炉冷却のため大量の冷却水が注入されるため、多量の高レベル汚染水が発生する。また、放射性核種が環境に放出された場合には、原子力発電所の周囲の土壌が放射性核種によって汚染される事態が発生する。   When a large-scale accident occurs at a nuclear power plant, a large amount of high-level contaminated water is generated because a large amount of cooling water is injected to cool the reactor. In addition, when the radionuclide is released to the environment, the situation where the soil around the nuclear power plant is contaminated by the radionuclide occurs.

このような高レベル汚染水や汚染土壌には半減期が28.8年の放射性ストロンチウム(90Sr)や30.2年の放射性セシウム(137Cs)等の半減期が長い放射性核種が含まれており、長期にわたって環境に悪影響を及ぼす可能性があることから、これらの放射性核種を除去する必要がある。 Such high-level contaminated water and contaminated soil contain radionuclides with a long half-life, such as radioactive strontium ( 90 Sr) with a half-life of 28.8 years and radioactive cesium ( 137 Cs) with a half-life of 30.2 years. Therefore, it is necessary to remove these radionuclides because they may adversely affect the environment for a long time.

一般に、高レベル汚染水対策として放射能濃度の低減と減容のためゼオライト等の吸着材を用いて放射性核種を除去する手段が知られている。また、汚染土壌については、酸性溶液等からなる抽出剤を用いて放射性核種を溶出させ、抽出させた酸性溶液をゼオライト等の吸着材と接触させて放射性核種を除去する手段が提案されている。   In general, as a countermeasure against high-level contaminated water, means for removing radionuclides using an adsorbent such as zeolite is known for reducing and reducing the radioactivity concentration. For contaminated soil, a means has been proposed in which the radionuclide is eluted using an extractant composed of an acidic solution or the like, and the extracted acidic solution is brought into contact with an adsorbent such as zeolite to remove the radionuclide.

特開2013−96982号公報JP 2013-96982 A 特開2014−16311号公報JP 2014-16311 A

ところで、放射性核種のうち、放射性ストロンチウム(90Sr)や放射性セシウム(137Cs)は水に溶けやすい特性(易溶性)がある。そのため、易溶性の放射性核種が吸着された吸着剤は、放射性核種が環境に溶出しないように、長期にわたって安定な形態で保管する必要がある。 By the way, among the radionuclides, radioactive strontium ( 90 Sr) and radioactive cesium ( 137 Cs) have a characteristic (easily soluble) that is easily soluble in water. Therefore, it is necessary to store the adsorbent on which the readily soluble radionuclide is adsorbed in a stable form for a long period of time so that the radionuclide is not eluted into the environment.

本発明の実施形態は、上記課題を解決するためになされたもので、易溶性の放射性核種が吸着された吸着材を安定に固化し、放射性核種の溶出を抑制可能な固化体を作成する放射性廃棄物の処理方法及び処理装置を提供することを目的とする。   Embodiments of the present invention have been made to solve the above-described problems, and are intended to stably solidify an adsorbent on which a readily soluble radionuclide is adsorbed, and to create a solidified body that can suppress elution of the radionuclide. It is an object of the present invention to provide a waste processing method and a processing apparatus.

上記課題を解決するために、本発明の実施形態に係る放射性廃棄物の処理方法は、放射性廃棄物と吸着材とを混合する混合工程と、前記混合工程で得られた混合物を圧縮する圧縮工程と、前記圧縮工程で得られた圧縮物を焼成する焼成工程と、を有し、前記吸着剤はチャバサイト、酸化チタン、モルデナイト及びA型ゼオライトからなる群のうち少なくとも一つを含有するものとする。   In order to solve the above problems, a method for treating radioactive waste according to an embodiment of the present invention includes a mixing step of mixing radioactive waste and an adsorbent, and a compression step of compressing the mixture obtained in the mixing step. And a firing step of firing the compressed product obtained in the compression step, and the adsorbent contains at least one of the group consisting of chabasite, titanium oxide, mordenite and A-type zeolite, To do.

また、本発明の実施形態に係る放射性廃棄物の処理装置は、本発明に係る放射性廃棄物の処理方法を実施するための放射性廃棄物の処理装置であって、放射性廃棄物と吸着材を混合する混合装置と、圧縮装置と、焼成装置と、を有するものとする。   Further, the radioactive waste processing apparatus according to the embodiment of the present invention is a radioactive waste processing apparatus for carrying out the radioactive waste processing method according to the present invention, wherein the radioactive waste and the adsorbent are mixed. A mixing device, a compression device, and a baking device.

本発明の実施形態によれば、易溶性の放射性核種が吸着された吸着剤からの放射性核種の溶出を抑制することができる。   According to the embodiment of the present invention, elution of a radionuclide from an adsorbent on which a readily soluble radionuclide is adsorbed can be suppressed.

第1の実施形態に係る放射性廃棄物の処理フロー図。The processing flow figure of the radioactive waste which concerns on 1st Embodiment. 第1及び第2の実施形態に係る放射性廃棄物の処理装置の構成図。The block diagram of the processing apparatus of the radioactive waste which concerns on 1st and 2nd embodiment. 第1及び第2の実施形態に係る固化体の成分を示す図。The figure which shows the component of the solidified body which concerns on 1st and 2nd embodiment. 第2の実施形態に係る放射性廃棄物の処理フロー図。The processing flow figure of the radioactive waste which concerns on 2nd Embodiment.

以下、本発明に係る放射性廃棄物の処理方法及び処理装置の実施形態を、図面を参照して説明する。
なお、以下の説明では処理対象の放射性核種として放射性ストロンチウムを例に説明するが、放射性セシウムなど他の易溶性の放射性核種にも適用できる。
Embodiments of a radioactive waste processing method and a processing apparatus according to the present invention will be described below with reference to the drawings.
In the following description, radioactive strontium is described as an example of the radionuclide to be processed, but the present invention can also be applied to other readily soluble radionuclides such as radioactive cesium.

[第1の実施形態]
第1の実施形態に係る放射性廃棄物の処理方法及び処理装置を、図1〜図3を用いて説明する。
[First Embodiment]
The radioactive waste processing method and processing apparatus according to the first embodiment will be described with reference to FIGS.

(構成)
本実施形態では、高レベル汚染水中に含まれる放射性ストロンチウムを、例えばチタン酸系吸着剤からなる吸着剤に吸着させ、吸着後の廃吸着剤(以下、「放射性廃棄物」ともいう)をゼオライト等からなる吸着材と混合し、圧縮した後、焼成することで、放射性ストロンチウムが溶出しにくい安定した固化体を形成する。
(Constitution)
In this embodiment, radioactive strontium contained in high-level contaminated water is adsorbed on an adsorbent composed of, for example, a titanate adsorbent, and the adsorbed waste adsorbent (hereinafter also referred to as “radioactive waste”) is used as zeolite or the like. It is mixed with an adsorbent comprising, compressed, and baked to form a stable solidified body in which radioactive strontium is difficult to elute.

本実施形態で用いられる放射性廃棄物の処理装置は、図2に示すように、放射性ストロンチウムを含む放射性廃棄物が収容される廃棄物容器1と、例えばゼオライト等からなる吸着材が収容される吸着材容器2と、放射性廃棄物と吸着材を攪拌混合するための混合装置3と、混合装置3で混合された混合物を圧縮するための圧縮装置4と、圧縮装置4で圧縮された混合物を焼成し固化体10を得るための焼成装置5と、から構成される。   As shown in FIG. 2, the radioactive waste processing apparatus used in the present embodiment has a waste container 1 in which radioactive waste containing radioactive strontium is accommodated, and an adsorption material in which an adsorbent made of, for example, zeolite is accommodated. The material container 2, the mixing device 3 for stirring and mixing the radioactive waste and the adsorbent, the compression device 4 for compressing the mixture mixed by the mixing device 3, and the mixture compressed by the compression device 4 are fired. And a firing device 5 for obtaining the solidified body 10.

(作用)
上記放射性廃棄物の処理フローを図1により説明する。
まず、放射性ストロンチウムを含む放射性廃棄物とゼオライト(例えば、A型ゼオライト)からなる吸着材を廃棄物容器1と吸着材容器2においてそれぞれ脱水処理する(脱水工程;S1)。
(Function)
The processing flow of the radioactive waste will be described with reference to FIG.
First, an adsorbent composed of radioactive waste containing radioactive strontium and zeolite (for example, A-type zeolite) is dehydrated in the waste container 1 and the adsorbent container 2 (dehydration step; S1).

脱水工程S1では一般に乾燥手段が用いられ、乾燥温度は、例えば60℃以上で、乾燥時間は処理量にもよるが、24時間程度である。乾燥手段としては、加熱機や乾燥機等が用いられる。   In the dehydration step S1, a drying means is generally used, and the drying temperature is, for example, 60 ° C. or more, and the drying time is about 24 hours although it depends on the throughput. As the drying means, a heater, a dryer or the like is used.

次に、脱水処理された放射性廃棄物と吸着材を混合装置3で混合し(混合工程;S3)、次いで、放射性廃棄物と吸着材との混合物を圧縮装置4で圧縮する(圧縮工程;S4)。圧縮装置4はプレス機等の成型装置が用いられる。プレス圧力は、例えば、300kg/cm以上とする。この圧縮工程を経ることで、後の焼成工程(S5)で、混合物が飛散するのを防ぐことができる。 Next, the dehydrated radioactive waste and the adsorbent are mixed by the mixing device 3 (mixing step; S3), and then the mixture of the radioactive waste and the adsorbent is compressed by the compression device 4 (compression step; S4). ). The compression device 4 is a molding device such as a press machine. The press pressure is, for example, 300 kg / cm 2 or more. By passing through this compression step, it is possible to prevent the mixture from scattering in the subsequent baking step (S5).

次に、S4で圧縮された混合物を焼成装置5で焼成し(焼成工程;S5)、固化体10を形成する。焼成装置5としては、電気炉、焼成炉、焼成窯等を用いることができる。
焼成温度は、800℃以上、好ましくは1100℃程度に設定される。焼成温度が800℃以上とすることで、吸着材に対する放射性ストロンチウムの吸着性能が向上するため、放射性ストロンチウムが、焼成した固化体中に固定化される。これにより焼成後の固化体10から放射性ストロンチウムが溶出するのを抑制することができる。
Next, the mixture compressed in S4 is baked by the baking apparatus 5 (baking process; S5), and the solidified body 10 is formed. As the baking apparatus 5, an electric furnace, a baking furnace, a baking kiln, etc. can be used.
The firing temperature is set to 800 ° C. or higher, preferably about 1100 ° C. By setting the calcination temperature to 800 ° C. or higher, the adsorption performance of radioactive strontium to the adsorbent is improved, so that radioactive strontium is immobilized in the baked solidified body. Thereby, it can suppress that radioactive strontium elutes from the solidified body 10 after baking.

また、焼成温度が800℃以上であれば、吸着材の成分と放射性ストロンチウムが鉱物(スローソン石:SrAlSi)を生成するため、当該鉱物中に放射性ストロンチウムを強固に取り込むことができる。 Further, if the firing temperature is 800 ° C. or higher, the adsorbent component and radioactive strontium produce a mineral (slowsonite: SrAl 2 Si 2 O 8 ), so that radioactive strontium can be firmly incorporated into the mineral. it can.

これにより、放射性ストロンチウムが長期的かつ安定的に固定化された固化体10を得ることができる。
なお、焼成工程S5では焼成中に固定化が行われる。
Thereby, the solidified body 10 in which radioactive strontium is stably fixed for a long time can be obtained.
In the firing step S5, immobilization is performed during firing.

(溶出試験1)
上記処理フローに基づいて得られた固化体の溶出試験結果を以下に説明する。
本溶出試験1で用いた固化体は以下のとおりである。
(Dissolution test 1)
The dissolution test result of the solidified body obtained based on the above processing flow will be described below.
The solidified bodies used in this dissolution test 1 are as follows.

〈実施例1〉1100℃で焼成した放射性ストロンチウムを吸着したチタン酸系吸着剤(約50wt%)とA型ゼオライト(約50wt%)の固化体1。
〈比較例1〉1100℃で焼成した放射性ストロンチウムを吸着したチタン酸系吸着剤のみの固化体2。
焼成工程(S5)は、20℃/分の速度で1100℃まで昇温した後、その温度で1時間保持した。
<Example 1> Solidified product 1 of titanate-based adsorbent (about 50 wt%) adsorbed with radioactive strontium calcined at 1100 ° C and A-type zeolite (about 50 wt%).
<Comparative Example 1> Solidified body 2 containing only titanic acid-based adsorbent adsorbing radioactive strontium calcined at 1100 ° C.
In the firing step (S5), the temperature was raised to 1100 ° C. at a rate of 20 ° C./min, and then held at that temperature for 1 hour.

溶出試験では、固化体を純水中に液固比10ml/gで6時間浸漬し、浸漬液を0.45μmのフィルタに通過させた後、ICP−AES(ICP発光分光分析法;Inductively Coupled Plasma Atomic Emission Spectroscopy)によりストロンチウム濃度を測定した。その結果を表1に示す。

Figure 2018066605
In the elution test, the solidified body was immersed in pure water at a liquid / solid ratio of 10 ml / g for 6 hours, and the immersion liquid was passed through a 0.45 μm filter, and then ICP-AES (ICP emission spectroscopy analysis; Inductively Coupled Plasma). Strontium concentration was measured by Atomic Emission Spectroscopy. The results are shown in Table 1.
Figure 2018066605

表1に示すように、比較例1では溶出したストロンチウム濃度は18mg/lであるのに対し、実施例1では検出限界以下の0.1mg/l以下であった。
このことから、放射性廃棄物に吸着材を添加して作成した固化体のほうが、吸着材を添加せずに作成した固化体よりも、放射性ストロンチウムの溶出を抑制できることがわかった。
As shown in Table 1, in Comparative Example 1, the eluted strontium concentration was 18 mg / l, whereas in Example 1, it was 0.1 mg / l or less below the detection limit.
From this, it was found that the solidified material prepared by adding the adsorbent to the radioactive waste can suppress the elution of radioactive strontium than the solidified material prepared without adding the adsorbent.

また、図2は実施例1の固化体1をX線回折装置により分析した図で、一定量のSrAlSiが検出された。このことから、放射性ストロンチウムが固化体1中にSrAlSiの鉱物形態で存在しており、放射性ストロンチウムは固化体内で長期的に強固で安定な形態であることが分かる。すなわち、固化体からの放射性ストロンチウムの溶出は長期的に抑制されることが分かる。 FIG. 2 is a diagram in which the solidified body 1 of Example 1 was analyzed by an X-ray diffractometer, and a certain amount of SrAl 2 Si 2 O 8 was detected. This shows that radioactive strontium exists in the solid form 1 in the form of mineral SrAl 2 Si 2 O 8 , and radioactive strontium is a strong and stable form for a long time in the solidified body. That is, it is understood that elution of radioactive strontium from the solidified product is suppressed for a long time.

(効果)
本実施形態によれば、廃吸着剤に含まれる易溶性の放射性核種を、ゼオライト等からなる吸着材に強固に固定することが可能となるので、固化体からの易溶性の放射性核種の溶出を長期的に抑制することができる。
(effect)
According to this embodiment, since it becomes possible to firmly fix the easily soluble radionuclide contained in the waste adsorbent to the adsorbent made of zeolite or the like, elution of the easily soluble radionuclide from the solidified body is achieved. It can be suppressed in the long term.

[第2の実施形態]
第2の実施形態に係る放射性廃棄物の処理方法及び処理装置を、図2〜図4を用いて説明する。
[Second Embodiment]
The radioactive waste processing method and processing apparatus according to the second embodiment will be described with reference to FIGS.

(構成)
本実施形態では、放射性ストロンチウムを含む汚染土壌(以下、「放射性廃棄物」ともいう)を処理する例について説明する。
処理装置及び処理条件は第1の実施形態と基本的に同じであるため、重複説明を省略する。
(Constitution)
In the present embodiment, an example of treating contaminated soil containing radioactive strontium (hereinafter also referred to as “radioactive waste”) will be described.
Since the processing apparatus and processing conditions are basically the same as those in the first embodiment, a duplicate description is omitted.

(作用)
本第2の実施形態に係る放射性廃棄物(汚染土壌)の処理フローを図4により説明する。
まず、ゼオライト(例えば、A型ゼオライト)からなる吸着材を吸着材容器2においてそれぞれ脱水処理する(脱水工程;S1)とともに、放射性ストロンチウムを含む汚染土壌からなる放射性廃棄物を脱水・分級処理する(脱水・分級工程;S2)。
(Function)
A processing flow of radioactive waste (contaminated soil) according to the second embodiment will be described with reference to FIG.
First, an adsorbent made of zeolite (for example, A-type zeolite) is dehydrated in the adsorbent container 2 (dehydration step; S1), and radioactive waste made of contaminated soil containing radioactive strontium is dehydrated and classified ( Dehydration and classification step; S2).

なお、S2の分級処理では、汚染土壌に含まれる植物、小生物等の有機物や瓦礫等を除去し、土壌の粒径が例えば2mm以下になるように分級処理する。分級装置としてはエアセパレータや篩等が用いられる(図示せず)。   In the classification process of S2, organic substances such as plants and small organisms and debris contained in the contaminated soil are removed, and the classification process is performed so that the particle size of the soil becomes 2 mm or less, for example. An air separator, a sieve, etc. are used as a classification device (not shown).

次に、放射性廃棄物と吸着材を混合装置3で混合し(混合処理;S3)、次いで、放射性廃棄物と吸着材との混合物を圧縮装置4で圧縮した後(圧縮工程;S4)、焼成装置5で焼成する(焼成工程;S5)。これにより、放射性ストロンチウムが長期的かつ安定的に固定化された固化体10を得ることができる。   Next, the radioactive waste and the adsorbent are mixed by the mixing device 3 (mixing process; S3), and then the mixture of the radioactive waste and the adsorbent is compressed by the compression device 4 (compression step; S4) and then baked. Firing is performed by the apparatus 5 (firing step; S5). Thereby, the solidified body 10 in which radioactive strontium is stably fixed for a long time can be obtained.

(溶出試験2)
上記処理フローに基づいて得られた固化体の溶出試験結果を以下に説明する。
本溶出試験2で用いた固化体等は以下のとおりである。
(Dissolution test 2)
The dissolution test result of the solidified body obtained based on the above processing flow will be described below.
The solidified bodies used in the dissolution test 2 are as follows.

〈実施例2〉1100℃で焼成した放射性ストロンチウムを含む汚染土壌(約50wt%)とA型ゼオライト(約50wt%)の固化体3。
〈実施例3〉1100℃で焼成したゼオライトの1種であるモルデナイト(約50wt%)と放射性ストロンチウムを含む汚染土壌(約50wt%)の固化体4。
Example 2 Solidified body 3 of contaminated soil containing radioactive strontium (about 50 wt%) and A-type zeolite (about 50 wt%) fired at 1100 ° C.
Example 3 Solidified body 4 of contaminated soil (about 50 wt%) containing mordenite (about 50 wt%) which is one of zeolites calcined at 1100 ° C. and radioactive strontium.

〈実施例4〉100℃で焼成した酸化チタン系吸着剤と放射性ストロンチウムを含む汚染土壌の固化体5。
〈実施例5〉1100℃で焼成したゼオライトの1種であるチャバサイト(IE−96)(約50wt%)と放射性ストロンチウムを含む汚染土壌(約50wt%)の固化体6。
<Example 4> Solidified body 5 of contaminated soil containing a titanium oxide adsorbent and radioactive strontium calcined at 100 ° C.
Example 5 Solidified body 6 of contaminated soil (about 50 wt%) containing chabasite (IE-96) (about 50 wt%) and radioactive strontium, which is a kind of zeolite calcined at 1100 ° C.

〈比較例2〉未焼成の放射性ストロンチウムで汚染された汚染土壌。
〈比較例3〉1100℃で焼成した放射性ストロンチウムを含む汚染土壌の固化体7。
<Comparative Example 2> Contaminated soil contaminated with unfired radioactive strontium.
<Comparative Example 3> Solidified body 7 of contaminated soil containing radioactive strontium baked at 1100 ° C.

溶出試験2では、表2に示すように、実施例2〜5では検出されたストロンチウム濃度は0.1、17、16、31mg/lであるのに対し、比較例2〜比較例3では、それぞれ2462、43mg/lであった。
なお、測定方法は上記溶出試験1と同様である。溶出試験結果を表2に示す。

Figure 2018066605
In dissolution test 2, as shown in Table 2, the strontium concentrations detected in Examples 2 to 5 were 0.1, 17, 16, and 31 mg / l, whereas in Comparative Examples 2 to 3, They were 2462 and 43 mg / l, respectively.
The measuring method is the same as in the dissolution test 1. The dissolution test results are shown in Table 2.
Figure 2018066605

この溶出試験2の結果から、汚染土壌である放射性廃棄物に吸着材を添加して作成した固化体(実施例2〜5、固化体3〜6)の方が、放射性廃棄物のみ(比較例2)、又は、放射性廃棄物に吸着材を添加せずに作成した固化体(比較例3、固化体7)よりも、固化体3〜6からの放射性ストロンチウムの溶出量は低いことがわかる。   From the results of this dissolution test 2, the solidified bodies (Examples 2-5, solidified bodies 3-6) prepared by adding an adsorbent to the radioactive waste that is contaminated soil are the only radioactive waste (Comparative Example). 2) Or the elution amount of radioactive strontium from the solidified bodies 3 to 6 is lower than that of the solidified body (Comparative Example 3, solidified body 7) prepared without adding an adsorbent to the radioactive waste.

特に、実施例2の固化体3では放射性ストロンチウムの溶出量が検出限界以下で、ほとんど検出されていない。
また、実施例2の固化体3をX線回折装置により分析したところ、第1の実施形態と同様に図2に示す結果が得られた。すなわち、図2によれば、固化体3から一定量のSrAlSiが検出された。このことから、放射性ストロンチウムが固化体2中にSrAlSiの鉱物形態で存在しており、固化体からの放射性ストロンチウムの溶出は長期的に抑制されることが分かる。
In particular, in the solidified body 3 of Example 2, the elution amount of radioactive strontium is below the detection limit and is hardly detected.
Moreover, when the solidified body 3 of Example 2 was analyzed with the X-ray-diffraction apparatus, the result shown in FIG. 2 was obtained similarly to 1st Embodiment. That is, according to FIG. 2, a certain amount of SrAl 2 Si 2 O 8 was detected from the solidified body 3. This indicates that radioactive strontium is present in the solid form 2 in the form of mineral SrAl 2 Si 2 O 8 , and elution of radioactive strontium from the solidified body is suppressed for a long time.

同様に、実施例2〜5の固化体3〜6も、放射性ストロンチウムは固化体中でSrAlSiの鉱物形態で存在していると考えられ、固化体からの放射性ストロンチウムの溶出は長期的に抑制されると考えられる。 Similarly, in the solidified bodies 3 to 6 of Examples 2 to 5, it is considered that radioactive strontium is present in the mineral form of SrAl 2 Si 2 O 8 in the solidified body, and elution of radioactive strontium from the solidified body is It is thought that it will be suppressed in the long term.

(効果)
本実施形態によれば、易溶性の放射性核種が含まれた汚染土壌においても、易溶性の放射性核種をゼオライト等からなる吸着材に強固に固定することが可能となるので、固化体からの易溶性の放射性核種の溶出を長期的に抑制することができる。
(effect)
According to this embodiment, even in contaminated soil containing easily soluble radionuclides, it is possible to firmly fix readily soluble radionuclides to an adsorbent made of zeolite or the like. Elution of soluble radionuclides can be suppressed for a long time.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…廃棄物容器、2…吸着材容器、3…混合装置、4…圧縮装置、5…焼成装置、10…固化体
DESCRIPTION OF SYMBOLS 1 ... Waste container, 2 ... Adsorbent container, 3 ... Mixing device, 4 ... Compression device, 5 ... Baking device, 10 ... Solidified body

Claims (6)

放射性廃棄物と吸着材とを混合する混合工程と
前記混合工程で得られた混合物を圧縮する圧縮工程と、
前記圧縮工程で得られた圧縮物を焼成する焼成工程と、を有し、
前記吸着剤はチャバサイト、酸化チタン、モルデナイト及びA型ゼオライトからなる群のうち少なくとも一つを含有する放射性廃棄物の処理方法。
A mixing step of mixing the radioactive waste and the adsorbent; a compression step of compressing the mixture obtained in the mixing step;
A firing step of firing the compressed product obtained in the compression step,
The adsorbent is a method for treating radioactive waste, wherein the adsorbent contains at least one selected from the group consisting of chabasite, titanium oxide, mordenite, and A-type zeolite.
前記放射性廃棄物は、放射性ストロンチウムを含む汚染土壌又は廃吸着剤である請求項1記載の放射性廃棄物の処理方法。   The method for treating radioactive waste according to claim 1, wherein the radioactive waste is contaminated soil or waste adsorbent containing radioactive strontium. 前記混合工程において、前記放射性廃棄物と前記吸着材はそれぞれ約50wt%の割合で混合する請求項1又は2記載の放射性廃棄物の処理方法。   The method for treating radioactive waste according to claim 1 or 2, wherein in the mixing step, the radioactive waste and the adsorbent are mixed at a ratio of about 50 wt%. 前記焼成工程において、焼成温度は設定温度で800〜1100℃である請求項1乃至3のいずれかに記載の放射性廃棄物の処理方法。   In the said baking process, baking temperature is 800-1100 degreeC by preset temperature, The processing method of the radioactive waste in any one of Claim 1 thru | or 3. 前記混合工程の前に、前記放射性廃棄物を分級する分級工程をさらに有する請求項1乃至4のいずれかに記載の放射性廃棄物の処理方法。   The radioactive waste processing method according to any one of claims 1 to 4, further comprising a classification step of classifying the radioactive waste before the mixing step. 前記請求項1乃至5のいずれかに記載の放射性廃棄物の処理方法を実施するための放射性廃棄物の処理装置であって、
放射性廃棄物と吸着材を混合する混合装置と、圧縮装置と、焼成装置と、を有することを特徴とする放射性廃棄物の処理装置。
A radioactive waste treatment apparatus for carrying out the radioactive waste treatment method according to any one of claims 1 to 5,
A processing apparatus for radioactive waste, comprising: a mixing device that mixes radioactive waste and an adsorbent, a compression device, and a baking device.
JP2016204326A 2016-10-18 2016-10-18 Radioactive waste treatment method and treatment device Active JP6668215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016204326A JP6668215B2 (en) 2016-10-18 2016-10-18 Radioactive waste treatment method and treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016204326A JP6668215B2 (en) 2016-10-18 2016-10-18 Radioactive waste treatment method and treatment device

Publications (2)

Publication Number Publication Date
JP2018066605A true JP2018066605A (en) 2018-04-26
JP6668215B2 JP6668215B2 (en) 2020-03-18

Family

ID=62086976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204326A Active JP6668215B2 (en) 2016-10-18 2016-10-18 Radioactive waste treatment method and treatment device

Country Status (1)

Country Link
JP (1) JP6668215B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138298A (en) * 1992-10-30 1994-05-20 Japan Atom Energy Res Inst Manufacture of sintered solidified body containing cesium and/or strontium being radioisotope and method for using it as large-scale ri battery through processing
WO2001035422A2 (en) * 1999-11-12 2001-05-17 British Nuclear Fuels Plc Encapsulation of waste
JP2014016311A (en) * 2012-07-11 2014-01-30 Union Showa Kk Method for separation, stabilization, and immobilization of elements of multi-nuclides including cesium and strontium
JP2014048187A (en) * 2012-08-31 2014-03-17 Toshiba Corp Solidified radioactive waste and method for manufacturing the same
JP2014130029A (en) * 2012-12-28 2014-07-10 Neos Co Ltd Decontamination method of contamination silt generated by classification of radioactive material contaminated soil
JP2015014571A (en) * 2013-07-08 2015-01-22 株式会社東芝 Radioactive waste solidification apparatus, solidification processing method of radioactive waste solidified substance and manufacturing method of radioactive waste solidified substance
JP2016114396A (en) * 2014-12-12 2016-06-23 株式会社東芝 Disposal method and disposal device for radioactive substance adsorbent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138298A (en) * 1992-10-30 1994-05-20 Japan Atom Energy Res Inst Manufacture of sintered solidified body containing cesium and/or strontium being radioisotope and method for using it as large-scale ri battery through processing
WO2001035422A2 (en) * 1999-11-12 2001-05-17 British Nuclear Fuels Plc Encapsulation of waste
JP2014016311A (en) * 2012-07-11 2014-01-30 Union Showa Kk Method for separation, stabilization, and immobilization of elements of multi-nuclides including cesium and strontium
JP2014048187A (en) * 2012-08-31 2014-03-17 Toshiba Corp Solidified radioactive waste and method for manufacturing the same
JP2014130029A (en) * 2012-12-28 2014-07-10 Neos Co Ltd Decontamination method of contamination silt generated by classification of radioactive material contaminated soil
JP2015014571A (en) * 2013-07-08 2015-01-22 株式会社東芝 Radioactive waste solidification apparatus, solidification processing method of radioactive waste solidified substance and manufacturing method of radioactive waste solidified substance
JP2016114396A (en) * 2014-12-12 2016-06-23 株式会社東芝 Disposal method and disposal device for radioactive substance adsorbent

Also Published As

Publication number Publication date
JP6668215B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
JP6166869B2 (en) Separation and stability immobilization method of multi-nuclide elements including cesium and strontium
Abdel-Galil et al. Assessment of nano-sized stannic silicomolybdate for the removal of 137Cs, 90Sr, and 141Ce radionuclides from radioactive waste solutions
KR101743263B1 (en) Treatment method of radioactive uranium waste
JP2016123902A (en) Iodate ion scavenger, and method for removing iodate ion
JP6131245B2 (en) Method for treating insoluble ferrocyan compound adsorbed with cesium
JP6850634B2 (en) How to purify mercury-contaminated soil
JP2013170948A (en) Removal method of radioactive cesium
JP2018066605A (en) Processing method and processing device of radioactive waste
JP6163098B2 (en) Decontamination equipment for fly ash containing radioactive cesium
JP5755548B2 (en) How to remove cesium from soil
JP2014074694A (en) Method for removing radioactive cesium
JP5562606B2 (en) Method for treating radioactive ammonia-containing effluent
KR101579795B1 (en) Method of Removing Cesium from Wastewater by the Solidified Sericite
JP6373748B2 (en) Disposal method and disposal apparatus for radioactive material adsorbent
CN1049065C (en) Removal of Radioactivity from zircon
Othman et al. Zinc removal using honey dew rind
Helal et al. Removal of Eu3+ from simulated aqueous solutions by synthesis of a new composite adsorbent material
JP6198645B2 (en) Adsorbent
JP6531305B2 (en) Method for producing titanate ion exchanger
JP2017166948A (en) Processing method of radiostrontium contaminated soil, and processing device thereof
Park et al. Evaluation of Polyethersulfone‐based Composite for Selective Separation of Cesium from Acidic Media
CN109589780A (en) Hydrogen fluoride gas adsorbent and preparation method thereof
JP6196770B2 (en) Processing method of radioactive material-containing granular material
JP2013174502A (en) Cesium removal method
JP2016161374A (en) Method for analyzing radiostrontium

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200226

R150 Certificate of patent or registration of utility model

Ref document number: 6668215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150