JP2018064231A - Optical communication system and power supply method - Google Patents

Optical communication system and power supply method Download PDF

Info

Publication number
JP2018064231A
JP2018064231A JP2016202575A JP2016202575A JP2018064231A JP 2018064231 A JP2018064231 A JP 2018064231A JP 2016202575 A JP2016202575 A JP 2016202575A JP 2016202575 A JP2016202575 A JP 2016202575A JP 2018064231 A JP2018064231 A JP 2018064231A
Authority
JP
Japan
Prior art keywords
optical
light
master station
slave station
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016202575A
Other languages
Japanese (ja)
Inventor
一貴 原
Kazutaka Hara
一貴 原
日下部 貴之
Takayuki Kusakabe
貴之 日下部
康隆 木村
Yasutaka Kimura
康隆 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016202575A priority Critical patent/JP2018064231A/en
Publication of JP2018064231A publication Critical patent/JP2018064231A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical communication system and a power supply method that reduce the number of light sources, improve space efficiency, and reduce power consumption.SOLUTION: A master station transmits output light from a light source, and a slave station splits the light transmitted by the master station with an optical splitter, uses one of the split light as modulated light and uses the other for power supply. The present invention eliminates the necessity of separately providing a light source for power supply and a light source for modulated light in the master station, and thereby can save space and reduce power consumption.SELECTED DRAWING: Figure 1

Description

本開示は、光ファイバを介して親局から子局に電力を供給することで、子局側の電力供給源を不要とし、子局側で収集した情報を親局に伝送する光通信システム及び給電方法に関するものである。   The present disclosure relates to an optical communication system that supplies power from a master station to a slave station via an optical fiber, eliminates the need for a power supply source on the slave station side, and transmits information collected on the slave station side to the master station, and The present invention relates to a power supply method.

近年、IPデータ通信だけではなくIoT(Internet of Things)/M2M (Machine to Machine)、4K/8K高精細映像配信サービス、オンライン動画配信サービス、SNSによる動画アップロード等、多種多様なアプリケーションやサービスが急速に普及してきた。特にコンピュータなどの情報/通信機器だけでなく、世の中に存在する様々な「モノ」に通信機能を持たせ、インターネットに接続し、相互に通信を行うことにより、自動認識、自動制御、遠隔計測などを行うIoTは社会的な要請によるニーズの側面と、デバイスの低廉化によるシーズの側面がマッチしたことにより飛躍的な市場拡大が予測される。   In recent years, not only IP data communication but also IoT (Internet of Things) / M2M (Machine to Machine), 4K / 8K high-definition video distribution service, online video distribution service, video uploading by SNS, etc. Has become popular. In particular, not only information / communication equipment such as computers but also various “things” that exist in the world have communication functions, are connected to the Internet, and communicate with each other, so that automatic recognition, automatic control, remote measurement, etc. IoT is expected to expand dramatically due to a match between the needs of society due to social demands and the seeds of cheap devices.

IoTの一例として、遠隔地で所定の物理量(電流、電圧、気圧、気温、水量、湿度、etc….)を取得し、これらデータをセンタ側でビッグデータ解析することで、解析結果を新たなビジネスに活用するシーンが挙げられる。遠隔地での各種データ収集には主にセンサが利用されるが、センサを駆動させるためには電力源が必要であり、電力線が敷設されていない遠隔地や、電力線を使用できない場所に給電するための給電システムとして、光ファイバより構成される光伝送路を介した光給電システムが有効である。光給電システムは、給電側(親局)にハイパワーなレーザ光源を用いて光エネルギーを発生させ、被給電側(子局)ではPD(Photodiode)や太陽電池により電気エネルギーに光電変換する構成が挙げられ、30%程度の高い変換効率が報告されている。また、近年では1W 級の通信用レーザも製品化されており、これらを組みわせることにより数百mWの電力を供給できる光給電システムが実現可能である。このように光給電システムは、光ファイバを介してセンサ等へ電力を供給することで、電源用電気配線の工事、現地での電気供給設備の敷設、雷害対策、電気ノイズ対策を不要とする多くのメリットが挙げられ実現に向けた様々な報告がなされている。   As an example of IoT, a predetermined physical quantity (current, voltage, atmospheric pressure, air temperature, water volume, humidity, etc.) is acquired at a remote location, and big data analysis is performed on these data on the center side, so that the analysis result can be renewed. There are scenes that can be used for business. Sensors are mainly used to collect various data at remote locations, but a power source is required to drive the sensors, and power is supplied to remote locations where power lines are not installed or where power lines cannot be used. As a power supply system for this purpose, an optical power supply system via an optical transmission line composed of an optical fiber is effective. The optical power feeding system has a configuration in which light energy is generated using a high-power laser light source on the power feeding side (master station), and photoelectric conversion is performed on the power feeding side (slave station) into electric energy by a PD (Photodiode) or a solar cell. A high conversion efficiency of about 30% has been reported. In recent years, 1W class communication lasers have been commercialized, and by combining them, it is possible to realize an optical power feeding system capable of supplying power of several hundred mW. In this way, the optical power feeding system supplies power to the sensor, etc. via the optical fiber, thereby eliminating the need for electrical wiring construction for power supply, laying of electrical supply facilities on site, lightning damage countermeasures, and electric noise countermeasures. There are many merits and various reports for realization have been made.

例えば、特許文献1では、ハイパワーの光エネルギー伝送によってファイバの接続部に損傷が生じてしまう事を懸念し、マルチコアファイバを用いた方法が開示されている。特許文献2では、波長分割多重:WDM(Wavelength Division Multiplexing)方式により、給電用と信号用とを同一ファイバ上で伝送させる方法が開示されている。   For example, Patent Document 1 discloses a method using a multi-core fiber because there is a concern that the fiber connection portion may be damaged by high-power optical energy transmission. Patent Document 2 discloses a method of transmitting power and signal on the same fiber by wavelength division multiplexing: WDM (Wavelength Division Multiplexing).

特開2014−042166号公報JP 2014-042166 A 特許第4641787号Japanese Patent No. 4641787

IoTのコンセプトは、様々な「モノ」がインターネットにつながり、情報のやり取りや収集を行うことで、「モノ」のデータ化やそれに基づく自動化等が進展し、新たな付加価値を生み出すというものである。従って、IoTに光給電システムを適用するためには子局側に配置されるセンサ等へ給電すると共にセンサ等からの収集した情報を光信号として親局へ送信する仕組みが必要となる。   The concept of IoT is that various “things” are connected to the Internet, and information is exchanged and collected, so that data of “things” and automation based on it progress, creating new added value. . Therefore, in order to apply the optical power feeding system to IoT, a mechanism for feeding power to a sensor or the like arranged on the slave station side and transmitting information collected from the sensor or the like as an optical signal to the parent station is required.

特許文献1では、給電方式については明記されているがセンサデバイス等からの子局側のデータを親局側へ送信する方式については記載されていない。特許文献2は、子局側で収集したデータをセンタ側へ送信するために予め親局側に光源を設けることで、子局側の光源を不要とする方式が明記されている。しかしながら、特許文献2では親局側に給電用レーザ光源と子局側で収集したデータをセンタ側へ送信するためのレーザ光源とを設ける必要があり、レーザ光源を設置するスペースや省電力化の観点から非効率であるという課題があった。   In Patent Document 1, a power feeding method is specified, but a method for transmitting data on a slave station side from a sensor device or the like to the master station side is not described. Japanese Patent Laid-Open No. 2004-228561 specifies a method in which a light source on the slave station side is not required by providing a light source on the master station side in advance in order to transmit data collected on the slave station side to the center side. However, in Patent Document 2, it is necessary to provide a power supply laser light source on the master station side and a laser light source for transmitting data collected on the slave station side to the center side. There was a problem of inefficiency from the viewpoint.

そこで、本発明は、上記課題を解決するために、光源の数を低減し、スペースの効率化と低消費電力化を図る光通信システム及び給電方法を提供することを目的とする。   SUMMARY OF THE INVENTION In order to solve the above problems, an object of the present invention is to provide an optical communication system and a power feeding method that reduce the number of light sources, improve space efficiency, and reduce power consumption.

上記目的を達成するために、本発明に係る光通信システム及び給電方法は、親局から子局へ供給光を送信し、供給光の一部を上り信号の被変調光とし、他を給電光として受信することとした。   In order to achieve the above object, an optical communication system and a power supply method according to the present invention transmit supply light from a master station to a slave station, a part of the supply light is modulated light of an upstream signal, and the other is supply light. I decided to receive it.

具体的には、本発明に係る光通信システムは、親局と子局とを光伝送路で接続した光通信システムであって、
前記親局は、前記子局から前記親局への上り信号のための被変調光を含む供給光を前記子局へ送信する送信手段を備え、
前記子局は、前記親局からの前記供給光を前記被変調光と給電光とにパワー分岐する光スプリッタと、前記光スプリッタで分岐された前記被変調光を変調して前記親局へ送信する光変調器と、前記光スプリッタで分岐された前記給電光を受光して電力に変換する光電変換器と、を備えることを特徴とする。
Specifically, the optical communication system according to the present invention is an optical communication system in which a master station and a slave station are connected by an optical transmission line,
The master station comprises a transmission means for transmitting supply light including modulated light for an uplink signal from the slave station to the master station to the slave station,
The slave station modulates the modulated light branched by the optical splitter and splits the supplied light from the master station into the modulated light and power supply light, and transmits the modulated light to the master station. And a photoelectric converter that receives the feed light branched by the optical splitter and converts it into electric power.

具体的には、本発明に係る給電方法は、親局と子局とを光伝送路で接続した光通信システムにおいて光を利用して前記子局へ電力を供給する給電方法であって、
前記子局から前記親局への上り信号のための被変調光を含む供給光を前記親局から前記子局へ送信する送信手順と、
前記親局からの前記供給光を前記被変調光と給電光とにパワー分岐する光分岐手順と、
前記光分岐手順で分岐された前記被変調光を変調して前記親局へ送信する光変調手順と、
前記光分岐手順で分岐された前記給電光を受光して電力に変換する光電変換手順と、
を行うことを特徴とする。
Specifically, the power supply method according to the present invention is a power supply method for supplying power to the slave station using light in an optical communication system in which a master station and a slave station are connected by an optical transmission line,
A transmission procedure for transmitting supply light including modulated light for an uplink signal from the slave station to the master station from the master station to the slave station;
An optical branching procedure for splitting the supply light from the master station into the modulated light and the feed light;
An optical modulation procedure for modulating the modulated light branched in the optical branching procedure and transmitting the modulated light to the master station;
A photoelectric conversion procedure for receiving the power supply light branched in the optical branching procedure and converting it into electric power;
It is characterized by performing.

本発明は、親局が、光源からの出力光を送信し、子局が、親局から送信された光を光スプリッタで分岐し、分岐された一方の光を被変調光として用い、他方の光を給電に用いる。本発明は、親局において、給電用の光源と被変調光用の光源とを個別に設ける必要がなくなり、省スペース化や低消費電力化を図ることができる。   In the present invention, the master station transmits the output light from the light source, the slave station splits the light transmitted from the master station by the optical splitter, uses one of the branched lights as the modulated light, Light is used for power supply. According to the present invention, it is not necessary to separately provide a power source for power supply and a light source for modulated light in the master station, and space saving and low power consumption can be achieved.

従って、本発明は、光源の数を低減し、スペースの効率化と低消費電力化を図る光通信システム及び給電方法を提供することができる。   Therefore, the present invention can provide an optical communication system and a power feeding method that reduce the number of light sources, improve the space efficiency and reduce power consumption.

本発明に係る光通信システムの前記子局は、前記光電変換器が光電変換した電力を蓄積する蓄電回路をさらに備える。子局に接続されるセンサの駆動電力範囲を光電変換器律速から蓄電回路の容量律速とすることができ、消費電力の大きいセンサや複数のセンサ群を動作させることが可能となる。   The slave station of the optical communication system according to the present invention further includes a power storage circuit that stores electric power photoelectrically converted by the photoelectric converter. The drive power range of the sensor connected to the slave station can be changed from the photoelectric converter rate limit to the capacity limit rate of the power storage circuit, and it becomes possible to operate a sensor or a plurality of sensor groups with large power consumption.

本発明に係る光通信システムの前記子局は、前記光電変換器が光電変換した電力をバイアス電圧へ変換して前記光変調器に印加するバイアス回路をさらに備える。変調器へ一定のバイアス電圧を印加することで光変調器の最適バイアス電圧の個体差を吸収することができる。   The slave station of the optical communication system according to the present invention further includes a bias circuit that converts electric power photoelectrically converted by the photoelectric converter into a bias voltage and applies the bias voltage to the optical modulator. By applying a constant bias voltage to the modulator, individual differences in the optimum bias voltage of the optical modulator can be absorbed.

本発明に係る光通信システムの前記光伝送路は、前記供給光を前記送信手段から前記子局へ送信する経路と前記被変調光を変調した光を前記光変調器から前記親局へ送信する経路とが異なることを特徴とする。親局と子局とを単一の経路で接続した場合(例えば、1芯双方向伝送)、親局と子局の双方に光サーキュレータや方向性結合器が必要となる。親局から子局への下りの経路と子局から親局への上りの経路とを分けた場合(例えば、2芯構成)、光サーキュレータや方向性結合器が不要となり、子局からの変調信号に対するクロストークを低減できるとともに、光サーキュレータや方向性結合器分のコストを削減することができる。   The optical transmission line of the optical communication system according to the present invention transmits a path for transmitting the supplied light from the transmission means to the slave station and light modulated from the modulated light from the optical modulator to the master station. The route is different. When the master station and the slave station are connected by a single path (for example, single-core bidirectional transmission), an optical circulator and a directional coupler are required for both the master station and the slave station. When the downstream path from the master station to the slave station and the upstream path from the slave station to the master station are separated (for example, a two-core configuration), an optical circulator or a directional coupler is not required, and modulation from the slave station Crosstalk with respect to signals can be reduced, and the cost for optical circulators and directional couplers can be reduced.

本発明は、光源の数を低減し、スペースの効率化と低消費電力化を図る光通信システム及び給電方法を提供することができる。   The present invention can provide an optical communication system and a power supply method that can reduce the number of light sources, improve space efficiency, and reduce power consumption.

本発明に係る光通信システムを説明する図である。It is a figure explaining the optical communication system which concerns on this invention. 本発明に係る光通信システムの動作を説明する図である。It is a figure explaining operation | movement of the optical communication system which concerns on this invention. 本発明に係る光通信システムを説明する図である。It is a figure explaining the optical communication system which concerns on this invention. 本発明に係る光通信システムを説明する図である。It is a figure explaining the optical communication system which concerns on this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図1は、本実施形態の光通信システム301を説明する構成図である。光通信システム301は、親局10と子局20とを光伝送路30で接続した光通信システムであって、
親局10は、子局20から親局10への上り信号のための被変調光を含む供給光を子局20へ送信する送信手段(光源11)を備え、
子局20は、親局10からの前記供給光を前記被変調光と給電光とにパワー分岐する光スプリッタ21と、光スプリッタ21で分岐された前記被変調光を変調して親局10へ送信する光変調器23と、光スプリッタ21で分岐された前記給電光を受光して電力に変換する光電変換器22と、を備える。
(Embodiment 1)
FIG. 1 is a configuration diagram illustrating an optical communication system 301 of the present embodiment. An optical communication system 301 is an optical communication system in which a master station 10 and a slave station 20 are connected by an optical transmission line 30,
The master station 10 includes transmission means (light source 11) for transmitting supply light including modulated light for an uplink signal from the slave station 20 to the master station 10 to the slave station 20,
The slave station 20 modulates the modulated light branched by the optical splitter 21 to the master station 10 by optically splitting the supplied light from the master station 10 into the modulated light and the feeding light. An optical modulator 23 for transmission, and a photoelectric converter 22 that receives the feed light branched by the optical splitter 21 and converts it into electric power are provided.

親局10は、光電変換器22へ給電するための給電光と子局20から親局10への被変調光を含む光を子局20へ送信する送信手段(光源11)を備える。子局20は、親局10から送信された光を給電光と被変調光に光強度を分配する光スプリッタ21と、光スプリッタ21で光強度分配された被変調光をループバックにより、変調して親局10へ送信する光変調器23と、光スプリッタ21で光強度分配された前記給電光を受光して電力に変換する光電変換器22と、を備える。また、子局20は、情報を収集するセンサ40が接続される。図中の破線は電気信号、実線は光信号の経路を示している。   The master station 10 includes transmission means (light source 11) that transmits to the slave station 20 light including power supply light for supplying power to the photoelectric converter 22 and modulated light from the slave station 20 to the master station 10. The slave station 20 modulates the light transmitted from the master station 10 by the loopback and the optical splitter 21 that distributes the light intensity to the feed light and the modulated light, and the modulated light that is distributed by the optical splitter 21. And an optical modulator 23 for transmitting to the master station 10 and a photoelectric converter 22 for receiving the power supply light distributed by the optical splitter 21 and converting it into electric power. The slave station 20 is connected to a sensor 40 that collects information. A broken line in the figure indicates an electric signal, and a solid line indicates an optical signal path.

本実施形態の場合、親局10の送信手段は、前記給電光と前記被変調光を出力する光源11である。光源11は、光ファイバに結合可能な光源であれば限定されるべきものではなく、例えばコヒーレント光源であればLD(Laser Diode)、インコヒーレント光であればASE(Amplified Spontaneous Emission)光源等が挙げられる。光源11からの光は光サーキュレータ12を介して光伝送路30へ出力される。そして、センサ40からのセンシングデータで変調された上り信号は光サーキュレータ12を介して光受信器13にて受信される。ここで、光源11からの光と伝送路30との結合、及び光伝送路30からの上り信号と光受信器13との結合には例として光サーキュレータ12を挙げたが、これに限定されるべきものではなく方向性結合器(光カプラ)でも同様の効果が得られる。   In the case of this embodiment, the transmission means of the master station 10 is the light source 11 that outputs the feeding light and the modulated light. The light source 11 is not limited as long as it is a light source that can be coupled to an optical fiber. For example, an LD (Laser Diode) is used for a coherent light source, and an ASE (Amplified Spontaneous Emission) light source is used for an incoherent light. It is done. Light from the light source 11 is output to the optical transmission line 30 via the optical circulator 12. The upstream signal modulated with the sensing data from the sensor 40 is received by the optical receiver 13 via the optical circulator 12. Here, the optical circulator 12 is used as an example for the coupling between the light from the light source 11 and the transmission path 30, and the coupling between the upstream signal from the optical transmission path 30 and the optical receiver 13, but the present invention is not limited thereto. A similar effect can be obtained by using a directional coupler (optical coupler).

一方、子局20の光スプリッタ21は、親局10から送信された光を所定の分岐比で給電側に出力するポートと、被変調側に出力するポートとを備える。例えば、光スプリッタ21の分岐比を90:10(給電側:被変調側)とした場合、送信された光強度の90%を給電側へ、残り10%を被変調側へ光強度を分配する。光電変換器22は、光スプリッタ21の前記給電側ポートからの光を受光して電力に変換し、子局20の各デバイスやセンサ40に供給する。光変調器23は、光スプリッタ21の被変調側ポートからの光を各センサ40からのデータで光信号に変調する。光サーキュレータ24は、光伝送路30からの光を光スプリッタ21に結合し、光変調器23からの上り信号を光伝送路30に結合する。ここで、伝送路30からの光と光スプリッタ21との結合、及び光変調器23からの上り信号と光伝送路30との結合には例として光サーキュレータ24を挙げたが、これに限定されるべきものではなく方向性結合器(光カプラ)でも同様の効果が得られる。   On the other hand, the optical splitter 21 of the slave station 20 includes a port that outputs light transmitted from the master station 10 to the power feeding side with a predetermined branching ratio, and a port that outputs light to the modulated side. For example, when the branching ratio of the optical splitter 21 is 90:10 (feeding side: modulated side), 90% of the transmitted light intensity is distributed to the feeding side, and the remaining 10% is distributed to the modulated side. . The photoelectric converter 22 receives light from the power supply side port of the optical splitter 21, converts it into electric power, and supplies it to each device and sensor 40 of the slave station 20. The optical modulator 23 modulates light from the modulated side port of the optical splitter 21 into an optical signal with data from each sensor 40. The optical circulator 24 couples light from the optical transmission line 30 to the optical splitter 21 and couples an upstream signal from the optical modulator 23 to the optical transmission line 30. Here, the optical circulator 24 is given as an example for the coupling between the light from the transmission path 30 and the optical splitter 21, and the coupling between the upstream signal from the optical modulator 23 and the optical transmission path 30, but the present invention is not limited to this. A similar effect can be obtained with a directional coupler (optical coupler).

上記構成において、親局10内に設置される光源11から送信された光は、親局側光サーキュレータ12を介して光ファイバ伝送路30へ送出される。子局20へ到達した光信号は、子局側光サーキュレータ24を介して光スプリッタ21にて給電光と被変調光に所定の分岐比にて光強度が分配される。   In the above configuration, the light transmitted from the light source 11 installed in the master station 10 is sent to the optical fiber transmission line 30 via the master station side optical circulator 12. The optical signal reaching the slave station 20 is distributed in light intensity at a predetermined branching ratio to the feed light and the modulated light by the optical splitter 21 via the slave station side optical circulator 24.

光スプリッタ21にて光強度が分配された被変調光は、光変調器23にて各種センサ40からの電気信号で光信号に変調され、子局側光サーキュレータ24、光ファイバ伝送路30、親局側光サーキュレータ12を介して光受信器13にて受信される。ここで光電変換器22は、光信号を電流に変換する電流源として働き、例えば太陽電池やPDが挙げられる。また、光変調器23はセンサ40からの電気信号により入力された光の強度を変調して光信号に変換可能であれば限定されるべきものではなく、電気光学効果を利用したLN(Lithium−Niobate)やMEMS(Micro Electro Mechanical Systems)等を利用した光ゲートが挙げられる。   The modulated light to which the light intensity is distributed by the optical splitter 21 is modulated into an optical signal by an electrical signal from various sensors 40 by the optical modulator 23, and the slave station side optical circulator 24, the optical fiber transmission line 30, The signal is received by the optical receiver 13 via the station side optical circulator 12. Here, the photoelectric converter 22 functions as a current source that converts an optical signal into a current, and examples thereof include a solar cell and a PD. The optical modulator 23 is not limited as long as it can modulate the intensity of the light input by the electrical signal from the sensor 40 and convert it into an optical signal. LN (Lithium−) utilizing the electro-optic effect is not limited. Examples thereof include an optical gate using Niobate) or MEMS (Micro Electro Mechanical Systems).

図2は、図1における各ポイントA〜Fまでの周波数/時間領域でのスペクトル、及び波形を示したものである。なお、ここでは光源をLD光源(波長λ1)、光スプリッタ21の分岐比は90:10としている。図中の符号αは光サーキュレータ12、24での透過損失、及び光伝送路30での伝送路損失の和を示している。   FIG. 2 shows a spectrum and a waveform in the frequency / time domain up to the points A to F in FIG. Here, the light source is an LD light source (wavelength λ1), and the branching ratio of the optical splitter 21 is 90:10. The symbol α in the figure indicates the sum of the transmission loss in the optical circulators 12 and 24 and the transmission path loss in the optical transmission path 30.

光通信システム301は、親局10に設置するレーザ光源の数を低減し、親局10のスペースの効率化、消費電力の低減に有効であると共に、子局20への一切の電力供給源を不要とすることが可能である。   The optical communication system 301 is effective in reducing the number of laser light sources installed in the master station 10, improving the space efficiency of the master station 10, reducing power consumption, and providing all power supply sources to the slave stations 20. It can be unnecessary.

(実施形態2)
図3は、本実施形態の光通信システム302を説明する構成図である。光通信システム302と図1の光通信システム301との相違点は、親局10から子局20へ供給光を送信する経路30aと、子局20から親局10へ光変調器23によって変調された信号光を送信する経路30bとが異なることである。光通信システム302は、光サーキュレータや方向性結合器を持たず、センサ40からのセンシングデータで変調された上り信号を伝送するための専用の経路30bを備える。
(Embodiment 2)
FIG. 3 is a configuration diagram illustrating the optical communication system 302 of the present embodiment. The difference between the optical communication system 302 and the optical communication system 301 in FIG. 1 is that a path 30a for transmitting the supplied light from the master station 10 to the slave station 20 and a modulation from the slave station 20 to the master station 10 by the optical modulator 23. That is, the path 30b for transmitting the signal light is different. The optical communication system 302 does not have an optical circulator or a directional coupler, and includes a dedicated path 30b for transmitting an upstream signal modulated with sensing data from the sensor 40.

光サーキュレータは、一般的に3ポートで構成され、ポート1に入射した光はポート2で、ポート2に入射した光はポート3で出射される。実施形態1において、親局10側に設置されている光サーキュレータ12は、ポート1が光源11と接続され、ポート2は光伝送路30と接続され、ポート3が受信器13と接続されている。理想的には光サーキュレータはポート1からポート3へ光は出力されない(ダイレクティビティと呼ぶ)が、前記ダイレクティビティは有限の値を持っており親局10から送信された一部の信号が光サーキュレータ12を介して洩れ込み光として受信器13に入力される。これは、センサ40からのセンシングデータで変調された上り信号にとってはクロストークとなり、受信感度を劣化させる要因となる。方向性結合器においても、上記光サーキュレータと同様に有限のダイレクティビティの値を持つため、親局10から送信された一部の信号が洩れ込み光として受信器13に入力され、変調された上り信号にとってはクロストークとなる。   The optical circulator is generally composed of three ports. Light incident on the port 1 is emitted from the port 2, and light incident on the port 2 is emitted from the port 3. In the first embodiment, the optical circulator 12 installed on the master station 10 side has the port 1 connected to the light source 11, the port 2 connected to the optical transmission line 30, and the port 3 connected to the receiver 13. . Ideally, the optical circulator does not output light from port 1 to port 3 (referred to as directivity), but the directivity has a finite value, and a part of the signal transmitted from the master station 10 is optical circulator. 12 is input to the receiver 13 as leaked light. This is a crosstalk for the upstream signal modulated by the sensing data from the sensor 40, and causes a deterioration in reception sensitivity. Since the directional coupler also has a finite directivity value in the same manner as the optical circulator, a part of the signal transmitted from the master station 10 is input to the receiver 13 as leakage light and modulated upstream. For signals, this is crosstalk.

本実施形態は、上記課題を解決したものであって、光サーキュレータ12及び24を排除することで、より経済的な光通信システムを提供すると共に、前記受信感度を劣化させる要因となるクロストークを排除することが可能である。なお、動作原理については、光通信システム301と同様であるため説明を省略する。   The present embodiment solves the above-mentioned problem, and by eliminating the optical circulators 12 and 24, it provides a more economical optical communication system and crosstalk that causes the reception sensitivity to deteriorate. It is possible to eliminate. The operation principle is the same as that of the optical communication system 301, and thus the description thereof is omitted.

光通信システム302は、親局10に設置する光源の数を低減し、親局10のスペースの効率化、消費電力の低減に有効であると共に、子局20への一切の電力供給源を不要とし、光サーキュレータや方向性結合器を排除することでより経済的な光通信システムを提供すると共に、光サーキュレータや方向性結合器の洩れ込みによって発生するクロストークを排除することが可能である。   The optical communication system 302 is effective in reducing the number of light sources installed in the master station 10, increasing the space efficiency of the master station 10 and reducing power consumption, and does not require any power supply source to the slave station 20. By eliminating the optical circulator and the directional coupler, it is possible to provide a more economical optical communication system and to eliminate crosstalk caused by leakage of the optical circulator and the directional coupler.

(実施形態3)
図4は、本実施形態の光通信システム303を説明する構成図である。光通信システム303と図1の光通信システム301との相違点は子局20にバイアス回路25及び蓄電回路26(例えばコンデンサが挙げられる)が追加された点である。子局20は、光電変換器22が光電変換した電力を蓄積する蓄電回路26、及び光電変換器22が光電変換した電力をバイアス電圧へ変換して光変調器23に印加するバイアス回路25をさらに備える。
(Embodiment 3)
FIG. 4 is a configuration diagram illustrating the optical communication system 303 of the present embodiment. A difference between the optical communication system 303 and the optical communication system 301 in FIG. 1 is that a bias circuit 25 and a power storage circuit 26 (for example, a capacitor) are added to the slave station 20. The slave station 20 further includes a power storage circuit 26 that stores the power photoelectrically converted by the photoelectric converter 22, and a bias circuit 25 that converts the power photoelectrically converted by the photoelectric converter 22 into a bias voltage and applies the bias voltage to the optical modulator 23. Prepare.

実施形態1で記載したように光変調器23は主にLN変調器が挙げられる。LN変調器の透過特性は、印加電圧(DCバイアス電圧)の余弦の2乗に比例することが知られている。このため、LN変調器を使用するときは、DCバイアス点を透過率50%に設定することが一般的である。通常、LN変調器のDCバイアス電圧の最適電圧は個体差があり、LN変調器によっては印加電圧が0Vの時に変調光が出力されない(透過率0%)可能性がある。そのため、光通信システム303は、光電変換器22で発生した電力の一部を利用して、DCバイアス電圧をバイアス回路25で生成して光変調器23へ印加する。   As described in the first embodiment, the optical modulator 23 is mainly an LN modulator. It is known that the transmission characteristic of the LN modulator is proportional to the square of the cosine of the applied voltage (DC bias voltage). For this reason, when using an LN modulator, the DC bias point is generally set to a transmittance of 50%. Usually, the optimum voltage of the DC bias voltage of the LN modulator has individual differences, and depending on the LN modulator, there is a possibility that modulated light is not output when the applied voltage is 0 V (transmittance 0%). Therefore, the optical communication system 303 uses part of the power generated by the photoelectric converter 22 to generate a DC bias voltage by the bias circuit 25 and applies it to the optical modulator 23.

また、各種センサ40の駆動電力範囲は、光電変換器22によって律速されていたが、蓄電回路26を備えることで蓄電回路26の容量に依存することになる。例えば、光電変換器22を20mAの定電流源と仮定し、蓄電回路26の容量値を10μF、充電時間を10sとすると20Vの電圧が得られる。このように蓄電回路26を備えることで、消費電力の大きいセンサや複数のセンサ群を動作させることが可能である。 In addition, the drive power range of the various sensors 40 is rate-determined by the photoelectric converter 22, but depends on the capacity of the power storage circuit 26 by including the power storage circuit 26. For example, assuming that the photoelectric converter 22 is a constant current source of 20 mA, the capacity value of the power storage circuit 26 is 10 4 μF, and the charging time is 10 s, a voltage of 20 V is obtained. By providing the power storage circuit 26 as described above, it is possible to operate a sensor with a large power consumption or a plurality of sensor groups.

光通信システム303は、親局10に設置するレーザ光源の数を低減し、親局10のスペースの効率化、消費電力の低減に有効であると共に、子局20への一切の電力供給源を不要とし、蓄電回路26を設けることで光電変換器22の電力に無依存とすることが可能である。なお、本実施形態で説明した蓄電回路26とバイアス回路25は、実施形態2で説明した光通信システム302の構成にも適用できる。   The optical communication system 303 is effective in reducing the number of laser light sources installed in the master station 10, improving the space efficiency of the master station 10, reducing power consumption, and providing all power supply sources to the slave stations 20. It can be made unnecessary and independent of the electric power of the photoelectric converter 22 by providing the power storage circuit 26. The power storage circuit 26 and the bias circuit 25 described in the present embodiment can also be applied to the configuration of the optical communication system 302 described in the second embodiment.

(効果)
本発明は、子局側へ設置されたセンサへの電力供給源、及びデータ収集用光源を不要とするループバック型光給電システムにおいて親局側の給電用レーザ光源を不要とすることで、親局側を簡易な構成によりスペースの効率化、消費電力の低減を図ることができる。
(effect)
The present invention eliminates the need for a power supply laser light source on the master station side in a loopback type optical power supply system that does not require a power supply source and a data collection light source for sensors installed on the slave station side. With a simple configuration on the station side, space efficiency and power consumption can be reduced.

10:親局
11:光源
12:光サーキュレータ
13:光受信器
20:子局
21:光スプリッタ
22:光電変換器
23:光変調器
24:光サーキュレータ
25:バイアス回路
26:蓄電回路
30、30a、30b:光伝送路
40:センサ
301〜303:光通信システム
10: Master station 11: Light source 12: Optical circulator 13: Optical receiver 20: Slave station 21: Optical splitter 22: Photoelectric converter 23: Optical modulator 24: Optical circulator 25: Bias circuit 26: Power storage circuits 30, 30a 30b: Optical transmission line 40: Sensors 301 to 303: Optical communication system

Claims (5)

親局と子局とを光伝送路で接続した光通信システムであって、
前記親局は、
前記子局から前記親局への上り信号のための被変調光を含む供給光を前記子局へ送信する送信手段を備え、
前記子局は、
前記親局からの前記供給光を前記被変調光と給電光とにパワー分岐する光スプリッタと、
前記光スプリッタで分岐された前記被変調光を変調して前記親局へ送信する光変調器と、
前記光スプリッタで分岐された前記給電光を受光して電力に変換する光電変換器と、
を備えることを特徴とする光通信システム。
An optical communication system in which a master station and a slave station are connected by an optical transmission line,
The master station is
Transmitting means for transmitting supply light including modulated light for an uplink signal from the slave station to the master station to the slave station,
The slave station is
An optical splitter that splits the supply light from the master station into the modulated light and the feed light;
An optical modulator that modulates the modulated light branched by the optical splitter and transmits the modulated light to the master station;
A photoelectric converter that receives the feed light branched by the optical splitter and converts it into electric power;
An optical communication system comprising:
前記子局は、
前記光電変換器が光電変換した電力を蓄積する蓄電回路をさらに備えることを特徴とする請求項1に記載の光通信システム。
The slave station is
The optical communication system according to claim 1, further comprising a power storage circuit that stores electric power photoelectrically converted by the photoelectric converter.
前記子局は、
前記光電変換器が光電変換した電力をバイアス電圧へ変換して前記光変調器に印加するバイアス回路をさらに備えることを特徴とする請求項1又は2に記載の光通信システム。
The slave station is
The optical communication system according to claim 1, further comprising a bias circuit that converts electric power photoelectrically converted by the photoelectric converter into a bias voltage and applies the bias voltage to the optical modulator.
前記光伝送路は、
前記供給光を前記送信手段から前記子局へ送信する経路と前記被変調光を変調した光を前記光変調器から前記親局へ送信する経路とが異なることを特徴とする請求項1から3のいずれかに記載の光通信システム。
The optical transmission line is
4. A path for transmitting the supplied light from the transmitting means to the slave station is different from a path for transmitting light modulated from the modulated light from the optical modulator to the master station. An optical communication system according to any one of the above.
親局と子局とを光伝送路で接続した光通信システムにおいて光を利用して前記子局へ電力を供給する給電方法であって、
前記子局から前記親局への上り信号のための被変調光を含む供給光を前記親局から前記子局へ送信する送信手順と、
前記親局からの前記供給光を前記被変調光と給電光とにパワー分岐する光分岐手順と、
前記光分岐手順で分岐された前記被変調光を変調して前記親局へ送信する光変調手順と、
前記光分岐手順で分岐された前記給電光を受光して電力に変換する光電変換手順と、
を行うことを特徴とする給電方法。
In a power supply method for supplying power to the slave station using light in an optical communication system in which a master station and a slave station are connected by an optical transmission line,
A transmission procedure for transmitting supply light including modulated light for an uplink signal from the slave station to the master station from the master station to the slave station;
An optical branching procedure for splitting the supply light from the master station into the modulated light and the feed light;
An optical modulation procedure for modulating the modulated light branched in the optical branching procedure and transmitting the modulated light to the master station;
A photoelectric conversion procedure for receiving the power supply light branched in the optical branching procedure and converting it into electric power;
A power feeding method characterized in that
JP2016202575A 2016-10-14 2016-10-14 Optical communication system and power supply method Pending JP2018064231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202575A JP2018064231A (en) 2016-10-14 2016-10-14 Optical communication system and power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202575A JP2018064231A (en) 2016-10-14 2016-10-14 Optical communication system and power supply method

Publications (1)

Publication Number Publication Date
JP2018064231A true JP2018064231A (en) 2018-04-19

Family

ID=61966906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202575A Pending JP2018064231A (en) 2016-10-14 2016-10-14 Optical communication system and power supply method

Country Status (1)

Country Link
JP (1) JP2018064231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367118A (en) * 2020-10-12 2021-02-12 岭东核电有限公司 Information transmission method, device and system for nuclear power plant
WO2024201721A1 (en) * 2023-03-28 2024-10-03 日本電信電話株式会社 Optical power supply system, optical power supply device, optical node device, and optical power supply method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868197A (en) * 1981-09-24 1983-04-22 シ−メンス・アクチエンゲゼルシヤフト Telemetering apparatus
JP2007335987A (en) * 2006-06-12 2007-12-27 Chugoku Electric Power Co Inc:The Data transmission system and remote measurement system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868197A (en) * 1981-09-24 1983-04-22 シ−メンス・アクチエンゲゼルシヤフト Telemetering apparatus
JP2007335987A (en) * 2006-06-12 2007-12-27 Chugoku Electric Power Co Inc:The Data transmission system and remote measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367118A (en) * 2020-10-12 2021-02-12 岭东核电有限公司 Information transmission method, device and system for nuclear power plant
WO2024201721A1 (en) * 2023-03-28 2024-10-03 日本電信電話株式会社 Optical power supply system, optical power supply device, optical node device, and optical power supply method

Similar Documents

Publication Publication Date Title
US7388892B2 (en) System and method for optically powering a remote network component
CN102100019B (en) Optical communication system supporting detection and communication networks, and providing method thereof
CN112532325B (en) Multi-dimensional multiplexing photon terahertz communication system
US11178472B2 (en) Monitoring multiple passive optical networks
TWI493899B (en) Optical router for dynamic wavelength assignment and terminal thereof
JP2010135989A (en) Optic fiber, optical communication device, and optical communication method
US10686520B2 (en) Transmission quality estimation system, transmission quality estimation device, and transmission quality estimation method
US9401767B2 (en) Optically powered media converter
JPWO2008114438A1 (en) Transmission line monitoring method and apparatus
US8285147B2 (en) Bulk modulation of multiple wavelengths for generation of CATV optical comb
Penze et al. Fiber powered extender for XG-PON/G-PON applications
Abdulsatar et al. Bidirectional hybrid optical communication system based on wavelength division multiplexing for outdoor applications
KR100768641B1 (en) WDM transmission system using shared seed light source
CN115001572A (en) Optical fiber state detection method, optical transceiver module and network element equipment
KR101212770B1 (en) Optical transmitter of hybrid optical passive network
CN103001911B (en) From relevant detection orthogonal frequency division multiplexing passive optical network system and transmission method
JP2018064231A (en) Optical communication system and power supply method
JP6630648B2 (en) Optical communication system and power supply method
CN103248426A (en) Optical module and preparation method thereof
US7756419B2 (en) Traffic signal node cross scheduling method and system
CN101145845B (en) Full duplex optical fiber radio communication base station without light source and modulator
CN105071857A (en) Cascading multi-span on-tower relay light transmission system
EP3120471A1 (en) Multi-span optical communications link having remote optically pumped amplifier
Upreti et al. Building an agile network using WDM-RoF-PON structure
Dhawan et al. Powerless antenna site for bidirectional transmission using RF over fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200414