JP2018063833A - coaxial cable - Google Patents

coaxial cable Download PDF

Info

Publication number
JP2018063833A
JP2018063833A JP2016201097A JP2016201097A JP2018063833A JP 2018063833 A JP2018063833 A JP 2018063833A JP 2016201097 A JP2016201097 A JP 2016201097A JP 2016201097 A JP2016201097 A JP 2016201097A JP 2018063833 A JP2018063833 A JP 2018063833A
Authority
JP
Japan
Prior art keywords
wire
tensile strength
tensile
conductive
coaxial cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016201097A
Other languages
Japanese (ja)
Other versions
JP6828362B2 (en
Inventor
考信 渡部
Takanobu Watabe
考信 渡部
得天 黄
Tokuten Ko
得天 黄
晴之 渡辺
Haruyuki Watanabe
晴之 渡辺
紀美香 工藤
Kimika Kudo
紀美香 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016201097A priority Critical patent/JP6828362B2/en
Publication of JP2018063833A publication Critical patent/JP2018063833A/en
Application granted granted Critical
Publication of JP6828362B2 publication Critical patent/JP6828362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Communication Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coaxial cable provided with a conductor having a thin diameter, and excellent flexibility.SOLUTION: A coaxial cable includes: an inner conductor; an insulator layer provided so as to surround a side periphery of the inner conductor; and an outer conductor provided so as to surround the side periphery of the insulator layer, in which the inner conductor is provided with a tensile braided wire obtained by braiding a plurality of tensile wires and a plurality of conductive wires provided on a circumference concentric with tensile braided wires so as to surround the side periphery of the tensile braided wire and obtained by braiding with the tensile braided wire at a center.SELECTED DRAWING: Figure 2

Description

本発明は、同軸ケーブルに関する。   The present invention relates to a coaxial cable.

従来より、電気信号を伝送する際、内部導体と、絶縁層と、外部導体と、シースと、を有する同軸ケーブルが用いられている。内部導体として、CP線からなる高張力金属線と、高張力金属線の側周を囲うように設けられた軟銅線からなる低抵抗金属線と、を撚り合わせてなる撚線であって、撚線が所定の径となるように圧縮加工を行った撚線(圧縮撚線)を用いることが提案されている(例えば特許文献1参照)。   Conventionally, when transmitting an electric signal, a coaxial cable having an inner conductor, an insulating layer, an outer conductor, and a sheath has been used. The inner conductor is a stranded wire formed by twisting a high-tensile metal wire made of CP wire and a low-resistance metal wire made of annealed copper wire so as to enclose the side circumference of the high-tensile metal wire, It has been proposed to use a stranded wire (compressed stranded wire) that has been compressed so that the wire has a predetermined diameter (see, for example, Patent Document 1).

特開平8−222036号公報JP-A-8-2222036

しかしながら、上述の圧縮撚線は、内部導体を小型(細径)にすることはできるものの、CP線は耐屈曲性が低い線であるため、このような内部導体では、繰り返し屈曲すると内部導体が断線してしまうことがある。   However, although the above-described compression twisted wire can make the inner conductor small (thin diameter), the CP wire is a wire having low bending resistance. It may break.

本発明は、細径であり、良好な耐屈曲性を有する導体を備える同軸ケーブルを提供することを目的とする。   An object of the present invention is to provide a coaxial cable including a conductor having a small diameter and good bending resistance.

本発明の一態様によれば、
内部導体と、前記内部導体の側周を囲うように設けられた絶縁層と、前記絶縁層の側周を囲うように設けられた外部導体と、を有し、
前記内部導体は、
複数の抗張力線が撚られてなる抗張力撚線と、
前記抗張力撚線の側周を全周にわたって囲うように、前記抗張力撚線と同心の円周上に配され、前記抗張力撚線を中心にして撚られてなる複数の導電線と、有する同軸ケーブルが提供される。
According to one aspect of the invention,
An inner conductor, an insulating layer provided so as to surround a side circumference of the inner conductor, and an outer conductor provided so as to surround a side circumference of the insulating layer,
The inner conductor is
A tensile stranded wire formed by twisting a plurality of tensile strength wires;
A coaxial cable having a plurality of conductive wires arranged on a circumference concentric with the tensile strength stranded wire and twisted around the tensile strength stranded wire so as to surround a side circumference of the tensile strength stranded wire over the entire circumference. Is provided.

本発明によれば、細径であり、良好な耐屈曲性を有する導体を備える同軸ケーブルを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, a coaxial cable provided with the conductor which is small diameter and has favorable bending resistance can be provided.

本発明の一実施形態にかかる同軸ケーブルの径方向における概略断面図の一例を示す図である。It is a figure which shows an example of the schematic sectional drawing in the radial direction of the coaxial cable concerning one Embodiment of this invention. (a)は図1の同軸ケーブルが備える内部導体の径方向における概略断面図の一例を示す図であり、(b)は従来の内部導体の径方向における概略断面図の一例を示す図であり、(c)は従来の内部導体の径方向における概略断面図の他の例を示す図である。(A) is a figure which shows an example of the schematic sectional drawing in the radial direction of the internal conductor with which the coaxial cable of FIG. 1 is provided, (b) is a figure which shows an example of the schematic sectional drawing in the radial direction of the conventional internal conductor. (C) is a figure which shows the other example of the schematic sectional drawing in the radial direction of the conventional internal conductor. 導電線(抗張力撚線)の撚りピッチを説明する模式図を示す図である。It is a figure which shows the schematic diagram explaining the twist pitch of an electroconductive wire (tensile strength strand wire). 屈曲試験の方法を説明する図である。It is a figure explaining the method of a bending test.

<本発明の一実施形態>
(1)同軸ケーブルの構成
以下に、本発明の一実施形態にかかる同軸ケーブルの構成について、図面を参照しながら説明する。
<One Embodiment of the Present Invention>
(1) Configuration of Coaxial Cable A configuration of a coaxial cable according to an embodiment of the present invention will be described below with reference to the drawings.

図1に示すように、本実施形態にかかる同軸ケーブル1は、内部導体(中心導体)2と、内部導体2の側周を囲うように設けられた絶縁層3と、絶縁層3の側周を囲うように設けられた外部導体4と、外部導体4の側周を囲うように設けられた外被(シース)5と、を有している。   As shown in FIG. 1, the coaxial cable 1 according to this embodiment includes an inner conductor (center conductor) 2, an insulating layer 3 provided so as to surround the side periphery of the inner conductor 2, and a side periphery of the insulating layer 3. The outer conductor 4 is provided so as to surround the outer conductor 4 and the outer sheath (sheath) 5 is provided so as to surround the side periphery of the outer conductor 4.

同軸ケーブル1が備える内部導体2は、例えば図2(a)に示すように、複数(本実施形態では例えば19本)の抗張力線21が撚られてなる抗張力撚線22と、抗張力撚線22の側周を全周にわたって囲うように設けられた複数の導電線23と、を有している。   For example, as shown in FIG. 2A, the inner conductor 2 included in the coaxial cable 1 includes a tensile strength strand 22 formed by twisting a plurality of (for example, 19 in this embodiment) strength wires 21, and a strength strand 22. And a plurality of conductive wires 23 provided so as to surround the entire circumference of the side.

抗張力撚線22は、抗張力線21からなる層を複数有している。すなわち、本実施形態にかかる抗張力撚線22は、例えば図2(a)に示すように、抗張力撚線22の中心に配される1本の抗張力線21aからなる第1層と、第1層の側周を囲うように配される複数(例えば6本)の抗張力線21bからなる第2層と、第2層の側周を囲うように配される複数(例えば12本)の抗張力線21cからなる第3層と、を有している。   The tensile strength stranded wire 22 has a plurality of layers composed of the tensile strength wires 21. That is, the tensile strength stranded wire 22 according to the present embodiment includes a first layer composed of a single tensile strength wire 21a arranged at the center of the tensile strength stranded wire 22 and a first layer as shown in FIG. A second layer composed of a plurality of (for example, six) tensile wires 21b arranged so as to surround the side periphery, and a plurality of (for example, twelve) tensile wires 21c arranged so as to surround the side periphery of the second layer. And a third layer.

抗張力撚線22は、その破断強度が例えば1500MPa以上であることが望ましい。これにより、抗張力撚線22の側周に複数の導電線23を配した場合であっても、内部導体2全体の破断強度を450MPa以上、好ましくは1000MPa程度にでき、所定の耐屈曲性を確保できる。なお、抗張力撚線22の破断強度が1500MPa未満であると、内部導体2全体の破断強度が450MPa未満になることがある。   The tensile strength stranded wire 22 desirably has a breaking strength of, for example, 1500 MPa or more. Thereby, even when a plurality of conductive wires 23 are arranged on the side periphery of the tensile strength stranded wire 22, the breaking strength of the entire inner conductor 2 can be set to 450 MPa or more, preferably about 1000 MPa, and a predetermined bending resistance is ensured. it can. In addition, when the breaking strength of the tensile strength stranded wire 22 is less than 1500 MPa, the breaking strength of the entire inner conductor 2 may be less than 450 MPa.

なお、上述の抗張力撚線22の代わりに、所定の径を有する1本の抗張力線、すなわち抗張力を有する単線(例えばSUSワイヤ)を用いることも考えられる。しかしながら、この場合、内部導体2(同軸ケーブル1)が屈曲した際に、抗張力線の屈曲箇所に加わる曲げ歪の量が抗張力撚線22よりも多くなる。そのため、所定の耐屈曲性(耐屈曲特性)を確保できないことがある。また、SUSワイヤの破断強度が大きくなるにつれて、耐屈曲性の向上は認められるものの、所定の耐屈曲性を確保できなことを本発明者は確認済みである。   In place of the above-described tensile strength stranded wire 22, it is also conceivable to use a single tensile strength wire having a predetermined diameter, that is, a single wire having a tensile strength (for example, a SUS wire). However, in this case, when the inner conductor 2 (coaxial cable 1) is bent, the amount of bending strain applied to the bent portion of the tensile strength wire is larger than that of the tensile strength twisted wire 22. Therefore, predetermined bending resistance (bending resistance) may not be ensured. Moreover, although the improvement of bending resistance is recognized as the breaking strength of the SUS wire increases, the present inventor has confirmed that the predetermined bending resistance cannot be secured.

抗張力線21としては、導電線23よりも導電率が低い材料で形成された線を用いることができる。例えば、抗張力線21としてステンレス(SUS)からなる素線(SUS素線)を用いることができる。すなわち、上述の抗張力撚線22としてSUSロープを用いることができる。また、抗張力線21として鋼からなる素線(鋼線、ピアノ線)を用いることもできる。しかしながら、SUS素線の方がピアノ素線よりも錆びにくいという点で好ましい。また、抗張力線21として、ニッケル(Ni)やチタン(Ti)を含む形状記憶合金からなる素線を用いることもできる。しかしながら、SUS素線やピアノ素線の方が上述の形状記憶合金からなる素線よりもコストが低い点で好ましい。   As the tensile wire 21, a wire formed of a material having a lower conductivity than the conductive wire 23 can be used. For example, a strand made of stainless steel (SUS) can be used as the tensile strength wire 21. That is, a SUS rope can be used as the above-mentioned tensile strength stranded wire 22. Moreover, the strand (steel wire, piano wire) made of steel can also be used as the tensile strength wire 21. However, SUS strands are preferred in that they are less likely to rust than piano strands. Further, as the tensile strength wire 21, a strand made of a shape memory alloy containing nickel (Ni) or titanium (Ti) can be used. However, SUS strands and piano strands are preferable in terms of lower costs than strands made of the shape memory alloy described above.

なお、抗張力線21として、アラミド繊維やナイロン等の比較的張力の高い繊維からなる糸を用いることが考えられる。しかしながら、この場合、抗張力撚線22の径方向における断面形状を円形(例えば真円)にすることが難しく、その結果、内部導体2の径方向における断面形状(以下、「内部導体2の断面形状」ともいう。)を円形にできないことがある。また、糸からなる抗張力撚線22は、繰り返し屈曲すると撚りがほどけてきたり、コネクタ等への接続が難しかったりするという問題もある。   In addition, it is possible to use the thread | yarn which consists of fibers with comparatively high tension, such as an aramid fiber and nylon, as the tensile strength line 21. However, in this case, it is difficult to make the cross-sectional shape in the radial direction of the tensile strength stranded wire 22 circular (for example, a perfect circle), and as a result, the cross-sectional shape in the radial direction of the internal conductor 2 (hereinafter referred to as “the cross-sectional shape of the internal conductor 2”). May also be a circle. Further, the tensile strength twisted wire 22 made of yarn has a problem that when it is repeatedly bent, it is untwisted or difficult to connect to a connector or the like.

導電線23は、信号伝送(信号送電)用の線である。複数の導電線23は、例えば抗張力撚線22の最外層を構成する各抗張力線21(すなわち第3層を構成する抗張力線21c、以下では「最外抗張力線21c」ともいう。)の中心を通る円と同心の円周上に分配されている。複数の導電線23は、抗張力撚線22の中心と各導電線23の中心との間の最短距離が等しくなるとともに、隣接する導電線23がそれぞれ接触し、また各導電線23と抗張力撚線22とが接触するように配されている。複数の導電線23は、抗張力撚線22を中心にして撚られている。   The conductive line 23 is a line for signal transmission (signal transmission). The plurality of conductive wires 23 are, for example, the centers of the respective tensile strength wires 21 constituting the outermost layer of the tensile strength twisted wires 22 (that is, the tensile strength wires 21c constituting the third layer, hereinafter also referred to as “outermost tensile strength wires 21c”). It is distributed on the circumference concentric with the passing circle. The plurality of conductive wires 23 have the same shortest distance between the center of the tensile strength stranded wire 22 and the center of each conductive wire 23, and the adjacent conductive wires 23 are in contact with each other. 22 is arranged so as to contact. The plurality of conductive wires 23 are twisted around the tensile strength stranded wire 22.

導電線23の数は、最外抗張力線21cの数よりも多いことが好ましい。例えば本実施形態のように最外抗張力線21cの数が12本の場合、導電線23の数は13本以上であることが好ましい。   The number of conductive wires 23 is preferably larger than the number of outermost tensile strength wires 21c. For example, when the number of outermost tensile strength wires 21c is 12 as in this embodiment, the number of conductive wires 23 is preferably 13 or more.

導電線23の数は、導電線23で構成される層(導電層)を1層で収めることができる範囲内の数で、できるだけ多い数にすることが好ましい。というのも、高速伝送用の信号、すなわち高周波域の電気信号は、表皮効果により主に内部導体2(導電層)の表面側を流れることとなる。例えば1GHzの帯域の信号は、主に内部導体2の表面から1μm程度の深さまでの領域を流れることとなる。したがって、導電層を複数層にするメリットが殆どないどころか、導電層を複数層にすることで、内部導体2の径(直径)が大きくなり、同軸ケーブル1を小型にできないことがある。したがって、導電線23の数は、上述の範囲内の数にすることが好ましい。   The number of the conductive lines 23 is a number within a range in which a layer (conductive layer) composed of the conductive lines 23 can be accommodated in one layer, and is preferably as large as possible. This is because a signal for high-speed transmission, that is, an electric signal in a high frequency range, mainly flows on the surface side of the inner conductor 2 (conductive layer) due to the skin effect. For example, a signal of 1 GHz band mainly flows in a region from the surface of the inner conductor 2 to a depth of about 1 μm. Therefore, in addition to the fact that there is almost no merit of using a plurality of conductive layers, the diameter (diameter) of the internal conductor 2 is increased by using a plurality of conductive layers, and the coaxial cable 1 may not be reduced in size. Therefore, the number of conductive lines 23 is preferably set to a number within the above range.

各導電線23は、抗張力線21の径よりも小さな径を有していることが好ましい。これにより、導電線23の数を、上述のように最外抗張力線21cの数よりも確実に多くすることができる。   Each conductive wire 23 preferably has a diameter smaller than that of the tensile strength wire 21. Thereby, the number of the conductive wires 23 can be surely increased as compared with the number of the outermost tensile strength wires 21c.

各導電線23の径は、抗張力線21の径よりも小さな径であって、できるだけ小さな径であることが好ましい。これにより、内部導体2の表面をできるだけ凹凸が少ない平坦な面にする、すなわち内部導体2の断面形状を円形(真円)に近付けることができる。   The diameter of each conductive wire 23 is smaller than that of the tensile strength wire 21 and is preferably as small as possible. Thereby, the surface of the internal conductor 2 can be made as a flat surface with as few irregularities as possible, that is, the cross-sectional shape of the internal conductor 2 can be made close to a circle (perfect circle).

また、複数の導電線23はそれぞれ、同じ径を有していることが好ましい。これにより、内部導体2の断面形状を円形に確実に近付けることができる。   Moreover, it is preferable that each of the plurality of conductive wires 23 has the same diameter. Thereby, the cross-sectional shape of the internal conductor 2 can be reliably brought close to a circle.

導電線23としては、例えば銅線や銅合金線等の抗張力線21よりも導電率が高い材料で形成された線を用いることができる。銅線は銅合金線よりも導電率が高い点で好ましく、銅合金線は銅線よりも高い引張強度を有する点で好ましい。導電線23は、例えば85%IACS以上の導電率を有していることが好ましい。導電線23の導電率が85%IACS未満であると、高速信号を伝送することができなくなったり、伝送損失が大きくなったりすることがある。   As the conductive wire 23, for example, a wire formed of a material having higher conductivity than the tensile strength wire 21 such as a copper wire or a copper alloy wire can be used. A copper wire is preferable in that it has a higher electrical conductivity than a copper alloy wire, and a copper alloy wire is preferable in that it has a higher tensile strength than a copper wire. The conductive wire 23 preferably has a conductivity of 85% IACS or more, for example. If the conductivity of the conductive wire 23 is less than 85% IACS, a high-speed signal may not be transmitted or transmission loss may increase.

上述のように複数の導電線23は、抗張力撚線22を中心にして撚られている。このとき、導電線23の撚り込み率と抗張力撚線22の撚り込み率とが異なっていることが好ましい。すなわち、各導電線23は、各抗張力線21(特に最外抗張力線21c)と交差していることが好ましい。具体的には、導電線23で構成される層の層心径(Pd)に対する導電線23の撚りピッチ(P)の比(P/Pd比)と、最外抗張力線21cで構成される層の層心径(Pd)に対する最外抗張力線21cの撚りピッチ(P)の比(P/Pd比)と、が異なっている(P/Pd比≠P/Pd比である)ことが好ましい。なお、導電線23で構成される層の層心径とは、抗張力撚線22の側周に環状に配置された各導電線23の中心を通る円C1の直径であり、最外抗張力線21cで構成される層の層心径とは、各最外抗張力線21cの中心を通る円C2の直径である。また、撚りピッチ(P,P)とは、図3に示すように、各導電線23、各最外抗張力線21cがそれぞれ、同軸ケーブル1(すなわち抗張力撚線22)の中心軸mを中心として周方向に螺旋状に360°回転するのに要する距離のことである。 As described above, the plurality of conductive wires 23 are twisted around the tensile strength twisted wire 22. At this time, the twist rate of the conductive wire 23 and the twist rate of the tensile strength twisted wire 22 are preferably different. That is, it is preferable that each conductive wire 23 intersects each tensile strength line 21 (particularly the outermost tensile strength line 21c). Specifically, the ratio (P 1 / Pd 1 ratio) of the twist pitch (P 1 ) of the conductive wire 23 to the layer core diameter (Pd 1 ) of the layer composed of the conductive wire 23 and the outermost tensile strength wire 21c The ratio (P 2 / Pd 2 ratio) of the twist pitch (P 2 ) of the outermost tensile strength wire 21c to the layer core diameter (Pd 2 ) of the layer to be constructed is different (P 1 / Pd 1 ratio ≠ P 2 / Pd 2 ratio). The layer core diameter of the layer formed of the conductive wire 23 is the diameter of a circle C1 passing through the center of each conductive wire 23 arranged in an annular shape on the side periphery of the tensile strength stranded wire 22, and the outermost tensile strength wire 21c. Is the diameter of the circle C2 passing through the center of each outermost tensile strength line 21c. Further, as shown in FIG. 3, the twist pitch (P 1 , P 2 ) means that each conductive wire 23 and each outermost tensile wire 21c each have a central axis m of the coaxial cable 1 (that is, the tensile strand 22). This is the distance required to rotate 360 ° spirally in the circumferential direction as the center.

また、導電線23が最外抗張力線21cよりも短ピッチで撚られることが好ましい。すなわち、P/Pd比が、P/Pd比よりも小さい(P/Pd比<P/Pd比である)ことが好ましい。 Moreover, it is preferable that the conductive wire 23 is twisted at a shorter pitch than the outermost tensile strength wire 21c. In other words, the P 1 / Pd 1 ratio is preferably smaller than the P 2 / Pd 2 ratio (P 1 / Pd 1 ratio <P 2 / Pd 2 ratio).

また、導電線23の撚り方向と抗張力撚線22の撚り方向とを同じ方向とした場合、内部導体2(同軸ケーブル1)が屈曲することによる導電線23の撚り状態の変化を、抗張力線21の撚り状態の変化と同傾向のものにすることができる点で好ましい。すなわち、導電線23の撚り合わせが緩んだ場合、抗張力線21の撚り合わせも緩ませることができ、導電線23の撚り合わせが締まった場合、抗張力線21の撚り合わせも締めることができる点で好ましい。なお、導電線23や抗張力撚線22の撚り状態の変化とは、内部導体2が屈曲した際に導電線23および抗張力撚線22が捻回すること等により、導電線23の撚りピッチ(P)や抗張力撚線22の撚りピッチ(P)が変わることをいう。 Moreover, when the twist direction of the conductive wire 23 and the twist direction of the tensile strength twisted wire 22 are the same direction, the change in the twisted state of the conductive wire 23 due to the bending of the internal conductor 2 (coaxial cable 1) It is preferable at the point which can make it the same tendency as the change of the twist state of. That is, when the twisting of the conductive wire 23 is loosened, the twisting of the tensile wire 21 can be loosened, and when the twisting of the conductive wire 23 is tightened, the twisting of the tensile wire 21 can be tightened. preferable. The change in the twisted state of the conductive wire 23 and the tensile twisted wire 22 means that the conductive wire 23 and the tensile twisted wire 22 are twisted when the inner conductor 2 is bent. 1 ) and the twist pitch (P 2 ) of the tensile strength stranded wire 22 is changed.

また、導電線23の撚り方向と抗張力撚線22の撚り方向とを異なる方向とした場合、導電線23と最外抗張力線21cとを交差させやすくなる点で好ましい。   Moreover, when the twist direction of the conductive wire 23 and the twist direction of the tensile strength twisted wire 22 are different from each other, it is preferable in that the conductive wire 23 and the outermost tensile strength wire 21c are easily crossed.

上述のように、絶縁層3が内部導体2の外周を囲うように設けられている。絶縁層3は、絶縁性に優れるとともに、伝送損失を確実に低減するため誘電率および誘電正接の小さい材料で形成することが好ましい。絶縁層3は、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、パーフルオロアルコキシアルカン(PFA)等の絶縁樹脂で形成することが好ましい。また、絶縁層3を、発泡ポリエチレン、発泡フッ素樹脂等の発泡絶縁樹脂で形成することもでき、これにより、絶縁層3の誘電率および誘電正接をさらに小さくすることができる。   As described above, the insulating layer 3 is provided so as to surround the outer periphery of the inner conductor 2. The insulating layer 3 is preferably formed of a material having a low dielectric constant and a dielectric loss tangent in order to have excellent insulating properties and reliably reduce transmission loss. The insulating layer 3 is preferably formed of an insulating resin such as polytetrafluoroethylene (PTFE), polyethylene, perfluoroalkoxyalkane (PFA). The insulating layer 3 can also be formed of a foamed insulating resin such as foamed polyethylene or foamed fluororesin, whereby the dielectric constant and dielectric loss tangent of the insulating layer 3 can be further reduced.

上述のように、外部導体4が絶縁層3の側周を被覆するように設けられている。外部導体4はシールド層として機能する。外部導体4は、例えば銅や銅合金等の導電率が高い材料で形成されていることが好ましい。例えば、外部導体4として、複数の銅や銅合金の素線(銅線や銅合金線)を格子状に編み込んで形成した編組シールドや、絶縁層3上に複数の素線を螺旋状に巻きつけて形成した横巻シールドを用いることができる。   As described above, the outer conductor 4 is provided so as to cover the side periphery of the insulating layer 3. The outer conductor 4 functions as a shield layer. The outer conductor 4 is preferably made of a material having high conductivity such as copper or copper alloy. For example, as the outer conductor 4, a braided shield formed by braiding a plurality of copper or copper alloy wires (copper wires or copper alloy wires) in a lattice shape, or a plurality of strands are spirally wound on the insulating layer 3. A transversely wound shield formed by attaching can be used.

上述のように、シース5が外部導体4の側周を被覆するように設けられている。シース5は、同軸ケーブル1の最外周を構成する層であり、同軸ケーブル1の保護層として機能する。シース5は、ポリエチレン樹脂、エチレン−酢酸ビニル重合体、フッ素系樹脂、シリコーン系樹脂等で形成することができる。   As described above, the sheath 5 is provided so as to cover the side periphery of the outer conductor 4. The sheath 5 is a layer that forms the outermost periphery of the coaxial cable 1 and functions as a protective layer of the coaxial cable 1. The sheath 5 can be formed of polyethylene resin, ethylene-vinyl acetate polymer, fluorine-based resin, silicone-based resin, or the like.

(2)本実施形態にかかる効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(2) Effects According to the Present Embodiment According to the present embodiment, one or more effects described below are exhibited.

(a)内部導体2の内周側を抗張力撚線22で構成し、外周側を導電線23で構成することで、内部導体2を小型(細径)にしても、高い耐屈曲性を確保することができる。特に、内部導体2の内周側を抗張力撚線22で構成することで、従来の内部導体よりも高い耐屈曲性を確保することができる。 (A) By configuring the inner peripheral side of the inner conductor 2 with the tensile stranded wire 22 and the outer peripheral side with the conductive wire 23, high flexibility is ensured even if the inner conductor 2 is made small (small diameter). can do. In particular, by configuring the inner peripheral side of the inner conductor 2 with the tensile stranded wire 22, higher bending resistance than that of the conventional inner conductor can be ensured.

内部導体2の径を同一としたとき、本実施形態にかかる内部導体2の屈曲寿命の方が、例えば図2(b)に示すような複数の銅合金の素線を撚り合わせてなる銅合金撚線からなる内部導体20Aの屈曲寿命よりも長いことを本願発明者は確認済みである。屈曲寿命とは、内部導体に対して屈曲試験を行った際に内部導体が破断に至るまでの屈曲回数であり、屈曲回数が多いほど、屈曲寿命が長いことを意味する。なお、屈曲試験は、図4に示すように、内部導体2(または内部導体2を有する同軸ケーブル1)を垂直に配置し、所定半径rを有する断面が円形状の2つの治具31で内部導体2を挟んだ後、例えば所定重量の重り32を吊るすことで内部導体2を所定荷重で引張りながら±90°(左右に)屈曲させることで行った。屈曲回数は左右に1回ずつ屈曲させることで1回とした。   When the diameter of the inner conductor 2 is the same, the bending life of the inner conductor 2 according to this embodiment is a copper alloy formed by twisting together a plurality of copper alloy strands as shown in FIG. The inventor of the present application has confirmed that the bending life of the inner conductor 20A made of a stranded wire is longer. The bending life is the number of times the internal conductor is bent until the internal conductor breaks when a bending test is performed on the internal conductor. The larger the number of bending times, the longer the bending life. In the bending test, as shown in FIG. 4, the inner conductor 2 (or the coaxial cable 1 having the inner conductor 2) is arranged vertically, and the inner portion is measured with two jigs 31 having a predetermined radius r and a circular section. After the conductor 2 was sandwiched, for example, the internal conductor 2 was bent by ± 90 ° (left and right) while being pulled with a predetermined load by hanging a weight 32 having a predetermined weight. The number of times of bending was set to 1 by bending left and right once.

また参考までに、内部導体の径を同一としたとき、上述の内部導体20Aの屈曲寿命の方が、例えば図2(c)に示すような銅合金の単線からなる内部導体20Bの屈曲寿命よりも長いことも本願発明者は確認済みである。例えば、上述の内部導体20Aの屈曲寿命を1としたとき、上述の内部導体20Bの屈曲寿命は0.2程度であることを本願発明者は確認済みである。   For reference, when the diameter of the inner conductor is the same, the bending life of the above-described inner conductor 20A is greater than the bending life of the inner conductor 20B made of a single copper alloy wire as shown in FIG. 2C, for example. The present inventor has also confirmed that this is long. For example, when the bending life of the above-described inner conductor 20A is 1, the present inventor has confirmed that the bending life of the above-described inner conductor 20B is about 0.2.

(b)各導電線23の径を小さくしたり、各導電線23を同じ径にしたりすることで、導電線23に対して圧縮加工を行うことなく、内部導体2の断面形状を円形に近付けることができる。これにより、内部導体2を流れる電気信号の損失(伝送損失)を低減することができる。 (B) By reducing the diameter of each conductive wire 23 or by making each conductive wire 23 the same diameter, the cross-sectional shape of the internal conductor 2 is made close to a circular shape without compressing the conductive wire 23. be able to. Thereby, the loss (transmission loss) of the electric signal flowing through the inner conductor 2 can be reduced.

本実施形態にかかる内部導体2は、上述の内部導体20Aよりも伝送損失を低減できるとともに、上述の内部導体20Bと同程度の伝送損失にすることができる。例えば、上述の内部導体20Aの伝送損失を1としたとき、本実施形態にかかる内部導体2の伝送損失は0.85程度であり、上述の内部導体20Bの伝送損失は0.8程度であることを本願発明者は確認済みである。なお、これらの内部導体2,20A,20Bの径は同一の径としている。   The internal conductor 2 according to the present embodiment can reduce transmission loss more than the above-described internal conductor 20A, and can have transmission loss comparable to that of the above-described internal conductor 20B. For example, when the transmission loss of the inner conductor 20A is 1, the transmission loss of the inner conductor 2 according to the present embodiment is about 0.85, and the transmission loss of the inner conductor 20B is about 0.8. This inventor has confirmed that. The inner conductors 2, 20A and 20B have the same diameter.

(c)また、各導電線23の径を小さくすることで、内部導体2が屈曲した際に導電線23の屈曲箇所に加わる曲げ歪の量を少なくできる。また、各導電線23を同じ径にすることで、内部導体2が屈曲した際、屈曲箇所(屈曲箇所の近傍)で特定の導電線23が隣接する他の導電線23によって押し付けられて断線することを抑制できる。これらにより、内部導体2の耐屈曲性をより向上させることができる。 (C) Further, by reducing the diameter of each conductive wire 23, the amount of bending strain applied to the bent portion of the conductive wire 23 when the inner conductor 2 is bent can be reduced. Further, by setting each conductive wire 23 to the same diameter, when the inner conductor 2 is bent, the specific conductive wire 23 is pressed by another adjacent conductive wire 23 at the bent portion (near the bent portion) and disconnected. This can be suppressed. As a result, the bending resistance of the inner conductor 2 can be further improved.

(d)P/Pd比≠P/Pd比とすることで、内部導体2が屈曲した際に抗張力撚線22が引張られることにより隣接する最外抗張力線21cの間に形成された溝(隙間)内に、導電線23が落ちて嵌ることを抑制できる。特定の導電線23が上述の溝内に嵌った状態で内部導体2が屈曲すると、特定の導電線23(例えば上述の溝内に嵌った導電線23)が他の導電線23や最外抗張力線21等によって圧縮されて断線することがあるが、P/Pd比≠P/Pd比とすることで、この課題を解決して導電線23の断線を抑制できる。すなわち、内部導体2の耐屈曲性をより一層向上させることができる。 (D) By setting the ratio P 1 / Pd 1 ≠ P 2 / Pd 2 , the tensile stranded wire 22 is pulled when the inner conductor 2 is bent, so that it is formed between the adjacent outermost tensile strength wires 21 c. It is possible to prevent the conductive wire 23 from falling into the groove (gap). When the inner conductor 2 is bent in a state where the specific conductive wire 23 is fitted in the above-described groove, the specific conductive wire 23 (for example, the conductive wire 23 fitted in the above-described groove) is replaced with another conductive wire 23 or the outermost tensile strength. Although the wire 21 is compressed by the wire 21 or the like, it may be disconnected, but by setting the ratio P 1 / Pd 1 ≠ P 2 / Pd 2 , this problem can be solved and disconnection of the conductive wire 23 can be suppressed. That is, the bending resistance of the inner conductor 2 can be further improved.

これに対し、P/Pd比とP/Pd比とが同一(P/Pd比=P/Pd比)であると、各導電線23が最外抗張力線21cと平行に配置されることとなるため、内部導体2が屈曲していない状態であっても、導電線23が隣接する最外抗張力線21cの間の溝内に落ちることがある。 On the other hand, if the P 1 / Pd 1 ratio and the P 2 / Pd 2 ratio are the same (P 1 / Pd 1 ratio = P 2 / Pd 2 ratio), each conductive wire 23 is connected to the outermost tensile strength wire 21c. Since they are arranged in parallel, even when the inner conductor 2 is not bent, the conductive wire 23 may fall into a groove between the adjacent outermost tensile strength wires 21c.

(e)P/Pd比<P/Pd比とすることで、内部導体2の外周側に位置する導電線23の長さが、内部導体2の内周側に位置する抗張力線21(特に最外抗張力線21c)の長さよりも長くなる。なお、導電線23(抗張力線21)の長さとは、導電線23(抗張力線21)の径方向と直交する方向における長さである。これにより、導電線23の余長により、P/Pd比>P/Pd比とする(導電線23を抗張力線21よりも長ピッチで撚る)場合よりも、内部導体2が屈曲しやすくなるため、導電線23がより断線しにくくなる。 (E) By setting the P 1 / Pd 1 ratio <P 2 / Pd 2 ratio, the length of the conductive wire 23 positioned on the outer peripheral side of the inner conductor 2 is equal to the tensile strength line positioned on the inner peripheral side of the inner conductor 2. 21 (particularly the outermost tensile strength line 21c). The length of the conductive wire 23 (tensile wire 21) is the length in a direction orthogonal to the radial direction of the conductive wire 23 (strength wire 21). As a result, the internal conductor 2 has a P 1 / Pd 1 ratio> P 2 / Pd 2 ratio due to the extra length of the conductive wire 23 (the conductive wire 23 is twisted at a longer pitch than the tensile wire 21). Since it becomes easy to bend, the conductive wire 23 becomes more difficult to break.

(f)P/Pd比<P/Pd比とすることで、内部導体2が屈曲した際に、導電線23や抗張力撚線22(特に最外抗張力線21c)の撚り状態が変化した場合であっても、導電線23が上述の溝内に落ちて嵌ることを抑制できる。その結果、上記(d)の効果を確実に得ることができる。 (F) P 1 / Pd 1 ratio <With P 2 / Pd 2 ratio, when the inner conductor 2 is bent, the twisted state of the conductive wire 23 and the tensile strength stranded wire 22 (in particular, the outermost strength wires 21c) Even if it changes, it can suppress that the conductive wire 23 falls and fits in the above-mentioned groove | channel. As a result, the effect (d) can be obtained with certainty.

なお、P/Pd比>P/Pd比であると、導電線23および抗張力撚線22の撚り状態が導電線23および抗張力撚線22の撚りピッチ(P,P)が短くなる方向(撚り合わせが緩む方向)に変化した場合に導電線23が上述の溝内に落ちて嵌ることがある。 Incidentally, if it is P 1 / Pd 1 ratio> P 2 / Pd 2 ratio, twist pitch of the conductive wire 23 and the tensile strength stranded twisted state conductive wire 23 of 22 and tensile strength stranded 22 (P 1, P 2) is When the direction changes (direction in which twisting is loosened), the conductive wire 23 may fall and fit into the groove.

(g)導電層を複数の導電線23で構成することで、内部導体2が屈曲した際、屈曲箇所で1本あたりの導電線23に加わる応力を分散させることができるため、導電線23がより断線しにくくなる。 (G) Since the conductive layer is composed of a plurality of conductive wires 23, when the internal conductor 2 is bent, the stress applied to each conductive wire 23 at the bent portion can be dispersed. It becomes harder to break.

(h)隣接する導電線23が接触していることで、内部導体2が屈曲した際に内部導体2内で隣り合う導電線23同士が互いに干渉することで導電線23が移動することを抑制できる。これにより、内部導体2が屈曲を繰り返しても内部導体2の断面形状を円形に近い形状に維持できるとともに、特定の導電線23が例えば絶縁層3と最外抗張力線21cとの間に挟まれて導電線23が断線することを抑制できる。 (H) The adjacent conductive wires 23 are in contact with each other, so that when the internal conductor 2 is bent, the adjacent conductive wires 23 in the internal conductor 2 interfere with each other to prevent the conductive wires 23 from moving. it can. As a result, even if the inner conductor 2 is repeatedly bent, the cross-sectional shape of the inner conductor 2 can be maintained in a nearly circular shape, and the specific conductive wire 23 is sandwiched between, for example, the insulating layer 3 and the outermost tensile strength wire 21c. Thus, disconnection of the conductive wire 23 can be suppressed.

(i)本実施形態にかかる内部導体2を有する同軸ケーブル1は、高速信号(例えば400MHz以上の信号)を伝送するケーブルに用いる場合に特に有効である。 (I) The coaxial cable 1 having the inner conductor 2 according to the present embodiment is particularly effective when used for a cable that transmits a high-speed signal (for example, a signal of 400 MHz or more).

(本発明の他の実施形態)
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
(Other embodiments of the present invention)
As mentioned above, although one Embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the summary, it can change suitably.

上述の実施形態では、抗張力撚線22が抗張力線21からなる層を3層有する場合を例に説明したが、これに限定されない。例えば、1本の抗張力線21aからなる第1層と、第1層の側周を囲うように配される6本の抗張力線21bからなる第2層と、を有する抗張力撚線22であってもよい。すなわち、抗張力撚線22は抗張力線21からなる層を2層以上有していればよく、また各層を構成する抗張力線21の本数も上述の実施形態の本数に限定されるものではなく、内部導体2(同軸ケーブル1)に要求される仕様に基づいて適宜変更可能である。   In the above-described embodiment, the case where the tensile strength stranded wire 22 includes three layers including the tensile strength wire 21 has been described as an example, but the present invention is not limited to this. For example, a tensile strand 22 having a first layer composed of one tensile wire 21a and a second layer composed of six tensile wires 21b arranged so as to surround the side periphery of the first layer. Also good. That is, the tensile strength stranded wire 22 only needs to have two or more layers composed of the tensile strength wires 21, and the number of the tensile strength wires 21 constituting each layer is not limited to the number of the above-described embodiments. It can be appropriately changed based on the specifications required for the conductor 2 (coaxial cable 1).

<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.

[付記1]
本発明の一態様によれば、
内部導体と、前記内部導体の側周を囲うように設けられた絶縁層と、前記絶縁層の側周を囲うように設けられた外部導体と、を有し、
前記内部導体は、
複数の抗張力線が撚られてなる抗張力撚線と、
前記抗張力撚線の側周を全周にわたって囲うように、前記抗張力撚線と同心の円周上に配され、前記抗張力撚線を中心にして撚られてなる複数の導電線と、を有する同軸ケーブルが提供される。
[Appendix 1]
According to one aspect of the invention,
An inner conductor, an insulating layer provided so as to surround a side circumference of the inner conductor, and an outer conductor provided so as to surround a side circumference of the insulating layer,
The inner conductor is
A tensile stranded wire formed by twisting a plurality of tensile strength wires;
A plurality of conductive wires that are arranged on a circumference concentric with the tensile strength stranded wire and are twisted around the tensile strength stranded wire so as to surround the entire circumference of the side of the tensile strength stranded wire. A cable is provided.

[付記2]
付記1の同軸ケーブルであって、好ましくは、
前記抗張力線は、ステンレス素線または鋼線である。
[Appendix 2]
The coaxial cable according to appendix 1, preferably
The tensile strength wire is a stainless steel wire or a steel wire.

[付記3]
付記1または2の同軸ケーブルであって、好ましくは、
前記導電線の数は、前記抗張力撚線の最外周を構成する前記抗張力線の数よりも多い。
[Appendix 3]
The coaxial cable according to appendix 1 or 2, preferably,
The number of the conductive wires is greater than the number of the tensile wires constituting the outermost periphery of the tensile stranded wire.

[付記4]
付記1〜3のいずれかの同軸ケーブルであって、好ましくは、
前記導電線の径は、前記抗張力線の径よりも小さい。
[Appendix 4]
The coaxial cable according to any one of appendices 1 to 3, preferably,
The diameter of the conductive wire is smaller than the diameter of the tensile wire.

[付記5]
付記1〜4のいずれかの同軸ケーブルであって、好ましくは、
複数の前記導電線はそれぞれ、同一の径を有している。
[Appendix 5]
The coaxial cable according to any one of appendices 1 to 4, preferably,
Each of the plurality of conductive wires has the same diameter.

[付記6]
付記1〜5のいずれかの同軸ケーブルであって、好ましくは、
前記導電線で構成される層の層心径(Pd)に対する前記導電線の撚りピッチ(P)の比(P/Pd比)と、前記抗張力線で構成される層の層心径(Pd)に対する前記抗張力線の撚りピッチ(P)の比(P/Pd比)と、が異なっている。
[Appendix 6]
The coaxial cable according to any one of appendices 1 to 5, preferably,
The ratio (P 1 / Pd 1 ratio) of the twist pitch (P 1 ) of the conductive wire to the layer core diameter (Pd 1 ) of the layer composed of the conductive wire, and the layer core of the layer composed of the tensile wire The ratio (P 2 / Pd 2 ratio) of the twist pitch (P 2 ) of the tensile wire to the diameter (Pd 2 ) is different.

[付記7]
付記6の同軸ケーブルであって、好ましくは、
前記導電線で構成される層の層心径(Pd)に対する前記導電線の撚りピッチ(P)の比(P/Pd比)が、前記抗張力線で構成される層の層心径(Pd)に対する前記抗張力線の撚りピッチ(P)の比(P/Pd比)よりも小さい。
[Appendix 7]
The coaxial cable according to appendix 6, preferably,
The ratio (P 1 / Pd 1 ratio) of the twist pitch (P 1 ) of the conductive wire to the layer core diameter (Pd 1 ) of the layer formed of the conductive wire is the layer core of the layer formed of the tensile wire. It is smaller than the ratio (P 2 / Pd 2 ratio) of the twist pitch (P 2 ) of the tensile strength wire to the diameter (Pd 2 ).

[付記8]
付記1〜7のいずれかの同軸ケーブルであって、好ましくは、
前記抗張力撚線の撚り方向と、前記導電線の撚り方向と、が同じ方向である。
[Appendix 8]
The coaxial cable according to any one of appendices 1 to 7, preferably,
The twist direction of the tensile strength stranded wire and the twist direction of the conductive wire are the same direction.

[付記9]
付記1〜8のいずれかの同軸ケーブルであって、好ましくは、
前記抗張力撚線の撚り方向と、前記導電線の撚り方向と、が異なる方向である。
[Appendix 9]
The coaxial cable according to any one of appendices 1 to 8, preferably,
The twist direction of the tensile-strength wire is different from the twist direction of the conductive wire.

[付記10]
付記1〜9のいずれかの同軸ケーブルであって、好ましくは、
前記抗張力撚線の破断強度が1500MPa以上である。
[Appendix 10]
The coaxial cable according to any one of appendices 1 to 9, preferably,
The breaking strength of the tensile strength stranded wire is 1500 MPa or more.

[付記11]
付記1〜10のいずれかの同軸ケーブルであって、好ましくは、
高速信号伝送に用いられる。
[Appendix 11]
The coaxial cable according to any one of appendices 1 to 10, preferably,
Used for high-speed signal transmission.

1 同軸ケーブル
2 内部導体(導体)
21(21a〜21c) 抗張力線
22 抗張力撚線
23 導電線
1 Coaxial cable 2 Inner conductor (conductor)
21 (21a-21c) Tensile wire 22 Tensile strand wire 23 Conductive wire

Claims (6)

内部導体と、前記内部導体の側周を囲うように設けられた絶縁層と、前記絶縁層の側周を囲うように設けられた外部導体と、を有し、
前記内部導体は、
複数の抗張力線が撚られてなる抗張力撚線と、
前記抗張力撚線の側周を全周にわたって囲うように、前記抗張力撚線と同心の円周上に配され、前記抗張力撚線を中心にして撚られてなる複数の導電線と、
を有する同軸ケーブル。
An inner conductor, an insulating layer provided so as to surround a side circumference of the inner conductor, and an outer conductor provided so as to surround a side circumference of the insulating layer,
The inner conductor is
A tensile stranded wire formed by twisting a plurality of tensile strength wires;
A plurality of conductive wires arranged on a circumference concentric with the tensile strength stranded wire so as to surround the side circumference of the tensile strength stranded wire, and twisted around the tensile strength stranded wire,
Coaxial cable with
前記抗張力線は、ステンレス素線または鋼線である
請求項1に記載の同軸ケーブル。
The coaxial cable according to claim 1, wherein the tensile strength wire is a stainless steel wire or a steel wire.
前記導電線で構成される層の層心径に対する前記導電線の撚りピッチの比と、前記抗張力線で構成される層の層心径に対する前記抗張力線の撚りピッチの比と、が異なっている
請求項1または2に記載の同軸ケーブル。
The ratio of the twist pitch of the conductive wire to the layer core diameter of the layer composed of the conductive wire is different from the ratio of the twist pitch of the tensile wire to the layer core diameter of the layer composed of the tensile wire. The coaxial cable according to claim 1 or 2.
前記導電線で構成される層の層心径に対する前記導電線の撚りピッチの比が、前記抗張力線で構成される層の層心径に対する前記抗張力線の撚りピッチの比よりも小さい
請求項3に記載の同軸ケーブル。
The ratio of the twist pitch of the conductive wire to the layer core diameter of the layer constituted by the conductive wire is smaller than the ratio of the twist pitch of the tensile wire to the layer core diameter of the layer constituted by the tensile wire. The coaxial cable described in 1.
前記抗張力撚線の撚り方向と、前記導電線の撚り方向と、が同じ方向である
請求項1〜4のいずれか1項に記載の同軸ケーブル。
The coaxial cable according to any one of claims 1 to 4, wherein a twist direction of the tensile strength twisted wire and a twist direction of the conductive wire are the same direction.
前記抗張力撚線の破断強度が1500MPa以上である
請求項1〜5のいずれか1項に記載の同軸ケーブル。
The coaxial cable according to any one of claims 1 to 5, wherein the tensile strength of the tensile strength stranded wire is 1500 MPa or more.
JP2016201097A 2016-10-12 2016-10-12 coaxial cable Active JP6828362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016201097A JP6828362B2 (en) 2016-10-12 2016-10-12 coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016201097A JP6828362B2 (en) 2016-10-12 2016-10-12 coaxial cable

Publications (2)

Publication Number Publication Date
JP2018063833A true JP2018063833A (en) 2018-04-19
JP6828362B2 JP6828362B2 (en) 2021-02-10

Family

ID=61967952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016201097A Active JP6828362B2 (en) 2016-10-12 2016-10-12 coaxial cable

Country Status (1)

Country Link
JP (1) JP6828362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068576A (en) * 2019-10-23 2021-04-30 東京特殊電線株式会社 Flex-resistance insulated wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068576A (en) * 2019-10-23 2021-04-30 東京特殊電線株式会社 Flex-resistance insulated wire
JP7412127B2 (en) 2019-10-23 2024-01-12 株式会社Totoku Flexible insulated wire

Also Published As

Publication number Publication date
JP6828362B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
US10249412B2 (en) Composite cable
JP5614428B2 (en) Multi-core cable and manufacturing method thereof
JP5499935B2 (en) Shielded cable
RU169338U1 (en) HIGH FREQUENCY SYMMETRIC HEAT RESISTANT CABLE
US20150083458A1 (en) Multi-core cable
JP2014155597A (en) Catheter wire
CN104036850A (en) Braided-shielded Cable
JP2015138751A (en) signal transmission cable
JP3918643B2 (en) Extra fine multi-core cable
CN109427443A (en) Multi-core cable
JP5761629B2 (en) Shielded cable
JP6828362B2 (en) coaxial cable
JP6572661B2 (en) Jumper wire
JP2014022145A (en) High frequency power transmission coaxial cable
JP2017142960A (en) Cable for movable part wiring and flat cable for movable part wiring
JP2018129278A (en) coaxial cable
CN208368196U (en) A kind of tension torsion fiber optic cables
JP7070651B1 (en) cable
JP6766928B1 (en) Cable for moving parts
JP6973543B2 (en) Composite cable
JP6939324B2 (en) Coaxial wire and multi-core cable
WO2016002812A1 (en) Multiple-circuit cable
JP6686316B2 (en) Jumper wire
JP2017033739A (en) Jumper cable
JP2023048669A (en) composite cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210104

R150 Certificate of patent or registration of utility model

Ref document number: 6828362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350