JP2018063419A - Substrate with antiglare film, liquid composition for forming antiglare film and method for manufacturing substrate with antiglare film - Google Patents

Substrate with antiglare film, liquid composition for forming antiglare film and method for manufacturing substrate with antiglare film Download PDF

Info

Publication number
JP2018063419A
JP2018063419A JP2017160279A JP2017160279A JP2018063419A JP 2018063419 A JP2018063419 A JP 2018063419A JP 2017160279 A JP2017160279 A JP 2017160279A JP 2017160279 A JP2017160279 A JP 2017160279A JP 2018063419 A JP2018063419 A JP 2018063419A
Authority
JP
Japan
Prior art keywords
antiglare film
substrate
film
antiglare
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017160279A
Other languages
Japanese (ja)
Other versions
JP6696486B2 (en
Inventor
洋介 竹田
Yosuke Takeda
洋介 竹田
鷹典 下坂
Takamichi Shimosaka
鷹典 下坂
池田 徹
Toru Ikeda
徹 池田
脩 本間
Osamu Homma
脩 本間
小林 大介
Daisuke Kobayashi
大介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to CN201710907342.5A priority Critical patent/CN107918167B/en
Priority to CN202110992449.0A priority patent/CN113835143B/en
Priority to US15/723,801 priority patent/US11772125B2/en
Priority to DE102017012414.0A priority patent/DE102017012414B4/en
Priority to DE102017009250.8A priority patent/DE102017009250B4/en
Publication of JP2018063419A publication Critical patent/JP2018063419A/en
Application granted granted Critical
Publication of JP6696486B2 publication Critical patent/JP6696486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate with an antiglare film, which has an excellent antiglare property and a reduced haze such that, for example, when a black printed layer is seen through the substrate with an antiglare film, cloudiness is less likely to be visible on the black printed layer, a liquid composition for forming an antiglare film for forming the above antiglare film, and a method for manufacturing a substrate with an antiglare film.SOLUTION: A substrate 1 with an antiglare film has a transparent substrate 2 and an antiglare film 3 disposed on the transparent substrate 2. The antiglare film 3 essentially comprises silica and contains a CF(CH)- group, where n is an integer of 1 to 6, therein; and the antiglare film 3 has a surface roughness curve skewness Rsk of 1.3 or less and an arithmetic average roughness Ra of 0.01 μm or more.SELECTED DRAWING: Figure 1

Description

本発明は、防眩膜付基体、防眩膜形成用液状組成物及び防眩膜付基体の製造方法に関する。   The present invention relates to a substrate with an antiglare film, a liquid composition for forming an antiglare film, and a method for producing a substrate with an antiglare film.

各種機器(例えば、テレビ、パーソナルコンピュータ、スマートフォン、携帯電話、車両等に備えられた画像表示装置(例えば、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等))においては、蛍光灯などの室内照明や太陽光等の外光が表示面に映り込むと、反射像によって視認性が低下する。   In various devices (for example, image display devices (for example, liquid crystal displays, organic EL displays, plasma displays, etc.) provided in televisions, personal computers, smartphones, mobile phones, vehicles, etc.) When external light such as light is reflected on the display surface, the visibility is reduced due to the reflected image.

外光の映り込みを抑制する方法として、防眩膜を画像表示装置の表示面側に配置する方法がある。防眩膜は、表面に凹凸を有しており、外光を拡散反射させることで、反射像を不鮮明にするものである。このような防眩膜は、例えば、シリカ前駆体として、アルコキシシランの加水分解縮合物などの加水分解性有機ケイ素化合物を含む塗布液を、スプレー法にて基材表面に塗布し、その後、焼成して形成される(例えば、特許文献1参照。)。   As a method for suppressing the reflection of external light, there is a method of disposing an antiglare film on the display surface side of the image display device. The antiglare film has irregularities on the surface, and diffuses and reflects external light to blur the reflected image. Such an antiglare film is, for example, a coating liquid containing a hydrolyzable organosilicon compound such as an alkoxysilane hydrolyzed condensate as a silica precursor is applied to a substrate surface by a spray method, and then fired. (For example, refer to Patent Document 1).

また、画像表示装置の表示面に低反射膜を配置し、透明基体への入射光の反射自体を抑えて、反射像を不鮮明にする方法もある。低反射膜としては、低屈折率材料からなる単層膜、低屈折率材料からなる層と高屈折率材料からなる層とを組み合わせた多層膜が知られている。また、低反射膜として、含フッ素加水分解性有機ケイ素化合物から形成される膜も知られている(例えば、特許文献2〜5参照。)。   Further, there is a method in which a low reflection film is disposed on the display surface of the image display device, and reflection of incident light to the transparent substrate itself is suppressed to blur the reflected image. As the low reflection film, a single layer film made of a low refractive index material and a multilayer film in which a layer made of a low refractive index material and a layer made of a high refractive index material are combined are known. Moreover, the film | membrane formed from a fluorine-containing hydrolysable organosilicon compound is also known as a low reflection film (for example, refer patent documents 2-5).

国際公開2016/021560号International Publication No. 2016/021560 特開昭64−1527号公報JP-A 64-1527 特開2003−344608号公報JP 2003-344608 A 特開2002−79616号公報JP 2002-79616 A 国際公開2005/121265号International Publication No. 2005/121265

画像表示装置の表示面に防眩膜を配置することで、外光が表示面に映り込むことによる画像の視認性の低下を抑制できる。しかし同時に、防眩膜は、防眩性が高いほど、ヘイズが高くなりやすい。   By disposing the anti-glare film on the display surface of the image display device, it is possible to suppress a decrease in the visibility of the image due to external light reflected on the display surface. However, at the same time, the higher the antiglare property, the higher the haze of the antiglare film.

画像表示装置の前面板には、視認側に防眩膜を形成するとともに、防眩膜が設けられていない非視認側の面の周辺部に、意匠性や美観を向上させる目的で、黒色印刷層のような光遮蔽部を設けることが行われている。このとき、防眩膜のヘイズが高いと、防眩膜を介して黒色印刷層を見た際に、白濁が視認されることがあり、美観を損なう問題があった。   The front plate of the image display device is formed with an antiglare film on the viewing side, and black printing is performed on the non-viewing side surface where the antiglare film is not provided for the purpose of improving design and aesthetics. A light shielding part such as a layer is provided. At this time, when the haze of the antiglare film is high, when the black print layer is viewed through the antiglare film, white turbidity may be visually recognized, resulting in a problem of deteriorating the aesthetic appearance.

本発明は、優れた防眩性を有するとともに、ヘイズを低くした防眩膜付基体、該防眩膜を形成するための防眩膜形成用液状組成物及び防眩膜付基体の製造方法を提供することを目的とする。   The present invention relates to a substrate with an antiglare film having excellent antiglare properties and a low haze, a liquid composition for forming an antiglare film for forming the antiglare film, and a method for producing the substrate with an antiglare film The purpose is to provide.

本発明は、以下の態様を有する。
(1) 透明基体と、前記透明基体上に設けられた防眩膜を有し、前記防眩膜は、シリカを主成分とし、CF(CH−基(ただし、nは1〜6の整数である。)を含み、前記防眩膜表面の粗さ曲線のスキューネスRskが1.3以下であり、かつ、算術平均粗さRaが0.01μm以上である防眩膜付基体。
The present invention has the following aspects.
(1) It has a transparent substrate and an antiglare film provided on the transparent substrate, and the antiglare film contains silica as a main component, and a CF 3 (CH 2 ) n -group (where n is 1 to 1). The anti-glare film surface roughness curve has a skewness Rsk of 1.3 or less and an arithmetic average roughness Ra of 0.01 μm or more.

(2) トリフルオロプロピルトリメトキシシランと、鱗片状シリカ粒子と、液状媒体とを含む防眩膜形成用液状組成物。
(3) トリフルオロプロピルトリメトキシシランと、鱗片状シリカ粒子と、液状媒体とを含む防眩膜形成用液状組成物を、透明基体上にスプレーコート法により塗布して塗膜を形成し、前記塗膜を焼成することで、シリカを主成分とし、CF(CH−基(ただし、nは1〜6の整数である。)を含み、表面の粗さ曲線のスキューネスRskが1.3以下であり、かつ、算術平均粗さRaが0.01μm以上である防眩膜を前記透明基体上に形成して、防眩膜付基体を製造する防眩膜付基体の製造方法。
(2) A liquid composition for forming an antiglare film comprising trifluoropropyltrimethoxysilane, scaly silica particles, and a liquid medium.
(3) A liquid coating composition for forming an antiglare film containing trifluoropropyltrimethoxysilane, scaly silica particles, and a liquid medium is applied on a transparent substrate by a spray coating method to form a coating film, By baking the coating film, the main component is silica, CF 3 (CH 2 ) n — group (where n is an integer of 1 to 6), and the surface roughness curve skewness Rsk is 1. A method for producing a substrate with an antiglare film, wherein an antiglare film having an arithmetic average roughness Ra of 0.01 μm or more is formed on the transparent substrate to produce a substrate with an antiglare film.

なお、以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
「シリカ前駆体」とは、ネットワーク結合に関与する成分としてシリカを主成分とするマトリックスを形成し得る物質を意味する。
「シリカを主成分とする」とは、SiOを50質量%以上含むことを意味する。
「ケイ素原子に結合した加水分解性基」とは、加水分解によって、ケイ素原子に結合したOH基に変換し得る基を意味する。
「鱗片状粒子」とは、扁平な形状を有する粒子を意味する。粒子の形状は、透過型電子顕微鏡(以下、TEMとも記す。)を用いて確認できる。
鱗片状粒子の「平均粒子径」は、体積基準で求めた粒度(最長長さ)分布の全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち体積基準累積50%径(D50)を意味する。粒度分布は、レーザー回折/散乱式粒子径分布測定装置で測定した頻度分布及び累積体積分布曲線で求められる。
「アスペクト比」は、粒子の厚さに対する粒子径の比(最長長さ/厚さ)を意味し、「平均アスペクト比」は、無作為に選択された50個の粒子のアスペクト比の平均値である。粒子の厚さは、原子間力顕微鏡(以下、AFMとも記す。)によって測定され、最長長さは、TEMによって測定される。
It should be noted that the following definitions of terms apply throughout the present specification and claims.
“Silica precursor” means a substance capable of forming a matrix mainly composed of silica as a component involved in network bonding.
“Containing silica as a main component” means containing 50 mass% or more of SiO 2 .
The “hydrolyzable group bonded to a silicon atom” means a group that can be converted into an OH group bonded to a silicon atom by hydrolysis.
“Scaly particle” means a particle having a flat shape. The shape of the particles can be confirmed using a transmission electron microscope (hereinafter also referred to as TEM).
The “average particle size” of the scaly particles is the particle size at which the particle size (longest length) distribution obtained on a volume basis is 50% in the cumulative volume distribution curve with the total volume of the distribution being 100%, that is, the volume-based cumulative 50 It means% diameter (D50). The particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser diffraction / scattering particle size distribution measuring apparatus.
“Aspect ratio” means the ratio of the particle diameter to the thickness of the particles (longest length / thickness), and “average aspect ratio” is the average value of the aspect ratios of 50 randomly selected particles It is. The thickness of the particles is measured by an atomic force microscope (hereinafter also referred to as AFM), and the longest length is measured by TEM.

本発明によれば、優れた防眩性を有するとともに、ヘイズを低くした防眩膜付基体を得られる。
本発明によれば、優れた防眩性を有するとともに、ヘイズを低くした防眩膜付基体を得るための防眩膜形成用液状組成物及び防眩膜付基体の製造方法を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, while having the outstanding anti-glare property, the base | substrate with an anti-glare film | membrane which made haze low can be obtained.
ADVANTAGE OF THE INVENTION According to this invention, while having the outstanding anti-glare property, the manufacturing method of the liquid composition for glare-proof film formation for obtaining the base | substrate with an anti-glare film which lowered haze, and the base | substrate with an anti-glare film can be provided.

第1の実施形態に係る防眩膜付基体を表す断面模式図である。It is a cross-sectional schematic diagram showing the base | substrate with an anti-glare film which concerns on 1st Embodiment. 第2の実施形態に係る防眩膜付基体を表す断面模式図である。It is a cross-sectional schematic diagram showing the base | substrate with an anti-glare film which concerns on 2nd Embodiment. 図2の防眩膜付基体の底面模式図である。It is a bottom face schematic diagram of the base | substrate with a glare-proof film of FIG.

以下、図面を参照して、実施形態を詳細に説明する。
(第1の実施形態)
図1は、本発明の実施形態に係る防眩膜付基体を表す断面模式図である。図1に示す防眩膜付基体1は、透明基体2と、透明基体2上に設けられた、防眩膜3とを有する。
Hereinafter, embodiments will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing a substrate with an antiglare film according to an embodiment of the present invention. A substrate 1 with an antiglare film shown in FIG. 1 has a transparent substrate 2 and an antiglare film 3 provided on the transparent substrate 2.

防眩膜付基体1において、防眩膜3はシリカを主成分とし、CF(CH−基(ただし、nは1〜6の整数である。以下も同様。)を含む。また防眩膜3表面の、粗さ曲線のスキューネスRskが1.3以下であり、かつ、算術平均粗さRaが0.01μm以上である。防眩膜付基体1は、防眩膜3が上記特性を有することで、優れた防眩性を有するとともに、ヘイズを低くして、例えば、防眩膜付基体1を通して黒色印刷層を見た際に、白濁が視認されるのを抑えられる。以下、防眩膜付基体1の各構成について説明する。 In the substrate 1 with an antiglare film, the antiglare film 3 contains silica as a main component and includes a CF 3 (CH 2 ) n — group (where n is an integer of 1 to 6, and the same applies hereinafter). Further, the skewness Rsk of the roughness curve on the surface of the antiglare film 3 is 1.3 or less, and the arithmetic average roughness Ra is 0.01 μm or more. The antiglare film-coated substrate 1 has an antiglare film 3 having the above-described characteristics, and thus has an excellent antiglare property and has a low haze. For example, the black printed layer is seen through the antiglare film-coated substrate 1. In this case, it is possible to prevent the cloudiness from being visually recognized. Hereinafter, each structure of the base | substrate 1 with an anti-glare film is demonstrated.

(透明基体2)
透明基体2は、防眩膜による防眩性の付与が求められている透明な材料からなるものであれば、特に限定されず、例えば、ガラス、樹脂、又はそれらの組み合わせ(複合材料、積層材料等)からなるものが好ましく使用される。ガラスとしては、例えばソーダライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、無アルカリガラス等が挙げられる。樹脂としては、例えばポリエチレンテレフタレート、ポリカーボネート、トリアセチルセルロース、ポリメタクリル酸メチル等が挙げられる。
(Transparent substrate 2)
The transparent substrate 2 is not particularly limited as long as it is made of a transparent material that is required to be provided with antiglare property by an antiglare film. For example, glass, resin, or a combination thereof (composite material, laminated material) Etc.) is preferably used. Examples of the glass include soda lime glass, borosilicate glass, aluminosilicate glass, and alkali-free glass. Examples of the resin include polyethylene terephthalate, polycarbonate, triacetyl cellulose, polymethyl methacrylate, and the like.

また、透明基体2の形態についても特に限定されず、例えば、剛性を有する板状、柔軟性を有するフィルム状等とできる。   Moreover, it does not specifically limit about the form of the transparent base | substrate 2, For example, it can be set as the plate shape which has rigidity, the film shape which has a softness | flexibility, etc.

透明基体2の防眩膜3の形成される表面(以下「主面」ともいう。)は、平滑でもよく、凹凸を有してもよい。防眩膜3を設けることの有用性の点(所望の光学特性を得られる点)では、平滑が好ましい。なお、透明基体2上に設けられる防眩膜3は透明基体2の主面全面にわたって形成されていなくても構わない。すなわち、防眩膜3は、透明基体2の主面において、防眩性の付与される所定の領域に形成されていればよく、その他の領域に形成されていなくてもよい。   The surface of the transparent substrate 2 on which the antiglare film 3 is formed (hereinafter also referred to as “main surface”) may be smooth or may have irregularities. From the point of usefulness of providing the antiglare film 3 (a point where desired optical characteristics can be obtained), smoothness is preferable. The antiglare film 3 provided on the transparent substrate 2 may not be formed over the entire main surface of the transparent substrate 2. That is, the antiglare film 3 may be formed in a predetermined region to which the antiglare property is imparted on the main surface of the transparent substrate 2, and may not be formed in other regions.

透明基体2の形状は、図示するような平坦な形状のみでなく、曲面を有する形状であってもよい。この場合、全体が曲面で構成されてもよく、曲面である部分と平坦である部分とから構成されてもよい。最近では、画像表示装置を備える各種機器(テレビ、パーソナルコンピュータ、スマートフォン、カーナビゲーション等)において、画像表示装置の表示面が曲面とされたものが登場している。透明基体2が曲面を有する形状である防眩膜付基体1は、このような画像表示装置の用途に有用である。   The shape of the transparent substrate 2 is not limited to a flat shape as illustrated, and may be a shape having a curved surface. In this case, the whole may be configured by a curved surface, or may be configured by a curved surface portion and a flat portion. In recent years, various devices including an image display device (televisions, personal computers, smartphones, car navigation systems, etc.) in which the display surface of the image display device is curved have appeared. The substrate 1 with an antiglare film in which the transparent substrate 2 has a curved surface is useful for such an image display device.

透明基体2としては、ガラス基体が好ましい。ガラス基体の製造方法は特に限定されない。ガラス基体は、所望のガラス原料を溶融炉に投入し、加熱溶融し清澄した後、成形装置に供給して溶融ガラスを成形し、徐冷することにより製造できる。なお、ガラス基体の成形方法は特に限定されず、例えば、フロート法、フュージョン法、ダウンドロー法等により成形されたガラス基体を使用できる。   As the transparent substrate 2, a glass substrate is preferable. The method for producing the glass substrate is not particularly limited. The glass substrate can be manufactured by putting a desired glass raw material into a melting furnace, heating and melting and clarifying, then supplying it to a molding apparatus to form molten glass and slowly cooling it. The method for forming the glass substrate is not particularly limited, and for example, a glass substrate formed by a float method, a fusion method, a downdraw method, or the like can be used.

透明基体2の厚さは、用途に応じて適宜選択でき、透明基体2としてガラス基体を用いる場合、その厚さは0.1〜5mmが好ましく、0.2〜2.5mmがより好ましい。   The thickness of the transparent substrate 2 can be appropriately selected depending on the application. When a glass substrate is used as the transparent substrate 2, the thickness is preferably 0.1 to 5 mm, and more preferably 0.2 to 2.5 mm.

透明基体2としてガラス基体を用いる場合、ガラス基体の主面に強化処理がなされたガラス基体が好ましい。強化処理でガラスの強度が向上し、例えば強度を維持しながら厚みを削減できる。未強化ガラス基体上に防眩膜を形成し、その後、強化処理をしてもよい。   When a glass substrate is used as the transparent substrate 2, a glass substrate in which the main surface of the glass substrate is tempered is preferable. The strength of the glass is improved by the strengthening treatment, and for example, the thickness can be reduced while maintaining the strength. An antiglare film may be formed on the unstrengthened glass substrate, and then a tempering treatment may be performed.

強化処理としては、風冷強化法(物理強化法)や化学強化法により、ガラス板表面に圧縮応力層を形成させる処理が挙げられる。ガラス基体表面の圧縮応力層が、傷や衝撃に対するガラス基体の強度を向上させる。このうちガラス基体の厚みが薄く(例えば2mm未満)なった場合にも、ガラス基体を十分に強化できることから、化学強化法が好ましい。   Examples of the strengthening treatment include a treatment for forming a compressive stress layer on the glass plate surface by an air cooling strengthening method (physical strengthening method) or a chemical strengthening method. The compressive stress layer on the surface of the glass substrate improves the strength of the glass substrate against scratches and impacts. Among these, the chemical strengthening method is preferable because the glass substrate can be sufficiently strengthened even when the thickness of the glass substrate is thin (for example, less than 2 mm).

化学強化法では、ガラスの歪点温度以下の温度でガラス板を溶融塩に浸漬して、ガラス板表層のイオン(例えばナトリウムイオン)を、より大きなイオン半径のイオン(例えばカリウムイオン)へと交換する。これにより、ガラス板表層に圧縮応力が生じる。   In the chemical strengthening method, a glass plate is immersed in a molten salt at a temperature lower than the strain point temperature of the glass, and ions (for example, sodium ions) on the surface of the glass plate are exchanged for ions having a larger ion radius (for example, potassium ions). To do. Thereby, compressive stress arises in a glass plate surface layer.

化学強化されたガラス基体(化学強化ガラス基体)は、例えば表面圧縮応力(CS)が450MPa〜1200MPa、応力層深さ(DOL)が10μm〜50μmである。   The chemically strengthened glass substrate (chemically strengthened glass substrate) has a surface compressive stress (CS) of 450 MPa to 1200 MPa and a stress layer depth (DOL) of 10 μm to 50 μm, for example.

防眩膜付基体1は、透明基体2と防眩膜3の間に、アンダーコート層、密着改善層、保護層等の機能層を有していてもよい。アンダーコート層は、アルカリバリア層やワイドバンドの低屈折率層としての機能を有する。アンダーコート層としては、アルコキシシランの加水分解物(ゾルゲルシリカ)を含むアンダーコート用形成用組成物を透明基体2に塗布することによって形成される層が好ましい。   The substrate 1 with an antiglare film may have a functional layer such as an undercoat layer, an adhesion improving layer, or a protective layer between the transparent substrate 2 and the antiglare film 3. The undercoat layer functions as an alkali barrier layer or a wide band low refractive index layer. The undercoat layer is preferably a layer formed by applying an undercoat forming composition containing a hydrolyzate of alkoxysilane (sol-gel silica) to the transparent substrate 2.

(防眩膜)
防眩膜3は表面に凹凸構造を有し、透明基体2に照射される外光を乱反射させて、外光の表面反射を抑制する。例えば、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)等の各種画像表示装置においては、一般に、室内照明(蛍光灯等)、太陽光等の外光が表示面に映り込むと、反射像によって視認性が低下する。これに対して、防眩膜3を透明基体2に設け、外光を乱反射させることで、反射像による視認性の低下を抑制できる。
(Anti-glare film)
The antiglare film 3 has a concavo-convex structure on the surface, and diffuses external light irradiated on the transparent substrate 2 to suppress surface reflection of external light. For example, in various image display devices such as a liquid crystal display (LCD) and a plasma display (PDP), in general, when external light such as indoor lighting (fluorescent lamp, etc.) or sunlight is reflected on the display surface, it is visually recognized by a reflected image. Sex is reduced. On the other hand, by providing the antiglare film 3 on the transparent substrate 2 and irregularly reflecting the external light, it is possible to suppress a decrease in visibility due to the reflected image.

防眩膜3は、シリカを主成分とし、CF(CH−基を含む。また、防眩膜3表面の、粗さ曲線のスキューネスRskが1.3以下であり、かつ、算術平均粗さRaが0.01μm以上である。 The antiglare film 3 is mainly composed of silica and contains a CF 3 (CH 2 ) n — group. Further, the skewness Rsk of the roughness curve on the surface of the antiglare film 3 is 1.3 or less, and the arithmetic average roughness Ra is 0.01 μm or more.

防眩膜3は、例えば、CF(CH−基を含有するシリカ前駆体(含フッ素シリカ前駆体)(A)と、鱗片状粒子(B)と、液状媒体(C)とを含む防眩膜形成用液状組成物を用いて形成される。この場合、含フッ素シリカ前駆体(A)がシリカを主成分とし、CF(CH−基を含有するマトリックスを形成する。そして、このマトリックス中に、鱗片状粒子(C)が分散して防眩膜3が形成される。このような防眩膜形成用液状組成物を用いた防眩膜3の形成方法については後で詳しく説明する。 The antiglare film 3 includes, for example, a silica precursor (fluorinated silica precursor) (A) containing a CF 3 (CH 2 ) n — group, a scaly particle (B), and a liquid medium (C). It forms using the liquid composition for anti-glare film formation containing. In this case, the fluorine-containing silica precursor (A) forms a matrix containing silica as a main component and containing CF 3 (CH 2 ) n — groups. In addition, the scale-like particles (C) are dispersed in the matrix to form the antiglare film 3. A method of forming the antiglare film 3 using such a liquid composition for forming an antiglare film will be described in detail later.

防眩膜3に含有されるCF(CH−基は、フッ素原子を有するために、加熱時に燃焼しにくい。そのため、この防眩膜形成用液状組成物を焼成して得られる防眩膜3の多孔質化を抑えられる。また、防眩膜3は、膜内部に、フッ素原子を有するCF(CH−基を含むことで、優れた耐薬品性及び耐湿性を発揮する。 Since the CF 3 (CH 2 ) n − group contained in the antiglare film 3 has a fluorine atom, it is difficult to burn during heating. Therefore, the formation of a porous antiglare film 3 obtained by baking the liquid composition for forming an antiglare film can be suppressed. Moreover, the anti-glare film 3 exhibits excellent chemical resistance and moisture resistance by including a CF 3 (CH 2 ) n — group having a fluorine atom inside the film.

防眩膜3中のCF(CH−基は、防眩膜3を透明基体2から削り取り、削り取った防眩膜3を用いて作成した粉末試料を、核磁気共鳴分光法(NMR)、赤外分光法(IR)等で分析することにより、同定できる。防眩膜3表面に後述する防汚膜が形成されている場合、当該防汚膜を除去してから上記分析できる。防汚膜は、コロナ処理やプラズマ処理により除去できる。防汚膜を除去した後の表面の、水の接触角が約20°以下であれば防汚膜が除去されたと判断できる。 The CF 3 (CH 2 ) n − group in the anti-glare film 3 is obtained by scraping the anti-glare film 3 from the transparent substrate 2, and preparing a powder sample prepared using the shaved anti-glare film 3 by nuclear magnetic resonance spectroscopy (NMR). ), Infrared spectroscopy (IR) or the like. When the antifouling film described later is formed on the surface of the antiglare film 3, the analysis can be performed after removing the antifouling film. The antifouling film can be removed by corona treatment or plasma treatment. If the contact angle of water on the surface after removing the antifouling film is about 20 ° or less, it can be determined that the antifouling film has been removed.

防眩膜3の表面の算術平均粗さRaは、0.01μm以上である。算術平均粗さRaは、基準面上にとった基準長さに含まれる粗さ曲線において、基準面からの絶対値偏差を平均した値である。算術平均粗さRaが0.01μm以上であることで、防眩膜3は、優れた防眩性を発揮する。また、防眩膜3は、算術平均粗さRaが0.1μm以下が好ましい。算術平均粗さRaが0.1μm以下であることが、ヘイズが高くなりすぎず、防眩膜3によって優れた防眩性と低いヘイズの両立を可能とするための一要因である。   The arithmetic average roughness Ra of the surface of the antiglare film 3 is 0.01 μm or more. The arithmetic average roughness Ra is a value obtained by averaging the absolute value deviations from the reference plane in the roughness curve included in the reference length taken on the reference plane. When the arithmetic average roughness Ra is 0.01 μm or more, the antiglare film 3 exhibits excellent antiglare properties. The antiglare film 3 preferably has an arithmetic average roughness Ra of 0.1 μm or less. Arithmetic average roughness Ra of 0.1 μm or less is one factor for enabling the antiglare film 3 to achieve both excellent antiglare property and low haze without excessively increasing the haze.

防眩膜3の表面の粗さ曲線のスキューネスRskが1.3以下である。ここで、粗さ曲線のスキューネスRskは、二乗平均平方根高さ(Zq)の三乗によって無次元化した基準長さにおける高さZ(x)の三乗平均を表し、凹凸形状の平均線に対する偏りを表わす指標である。粗さ曲線のスキューネスRskの値がプラス(Rsk>0)の方が、凹凸形状が凹側に偏って突形状が鋭くなり、マイナス(Rsk<0)の方が、凹凸形状が凸側に偏って突形状が鈍くなる傾向である。粗さ曲線の突形状が鈍い方が、鋭いものよりもヘイズは低くなる。   The skewness Rsk of the surface roughness curve of the antiglare film 3 is 1.3 or less. Here, the skewness Rsk of the roughness curve represents the cube average of the height Z (x) at the reference length made dimensionless by the cube of the root mean square height (Zq), and is relative to the uneven average line. It is an index representing bias. When the skewness Rsk value of the roughness curve is positive (Rsk> 0), the uneven shape is biased toward the concave side and the protruding shape becomes sharp, and when the negative value (Rsk <0) is uneven, the uneven shape is biased toward the convex side. The protrusion shape tends to become dull. The haze is lower when the protruding shape of the roughness curve is dull than when it is sharp.

防眩膜3の表面の粗さ曲線のスキューネスRskは1.3以下が、優れた防眩性を維持しヘイズを低くできるための一要因である。加えて防眩膜付基体1を介して黒色印刷部を見た際に白濁が視認されるのを抑えられる。防眩膜3表面の粗さ曲線のスキューネスRskは、優れた防眩性を維持しヘイズをより低くするために1.05以下がより好ましい。   The skewness Rsk of the surface roughness curve of the antiglare film 3 is 1.3 or less, which is one factor for maintaining excellent antiglare properties and reducing haze. In addition, it is possible to suppress the white turbidity from being visually recognized when the black printed portion is viewed through the base 1 with the antiglare film. The skewness Rsk of the roughness curve on the surface of the antiglare film 3 is more preferably 1.05 or less in order to maintain excellent antiglare properties and lower haze.

防眩膜3の表面の粗さ曲線の要素の平均長さRSmは18μm以下が好ましく、17.8μm以下がより好ましく、17.5μm以下がさらに好ましい。また、RSmは10μm以上が好ましく、11μm以上がより好ましく、14μm以上がさらに好ましい。粗さ曲線の要素の平均長さRSmは、大きすぎると防眩膜付基体1のヘイズ及びぎらつき指標値(Sparkle)が大きくなり易く、小さすぎると防眩性が低下し易いためである。   The average length RSm of the elements of the surface roughness curve of the antiglare film 3 is preferably 18 μm or less, more preferably 17.8 μm or less, and further preferably 17.5 μm or less. RSm is preferably 10 μm or more, more preferably 11 μm or more, and further preferably 14 μm or more. This is because if the average length RSm of the roughness curve element is too large, the haze and glare index value (Sparkle) of the substrate 1 with an antiglare film tends to increase, and if it is too small, the antiglare property tends to decrease.

防眩膜3の表面の、算術平均粗さRa、粗さ曲線のスキューネスRsk及び粗さ曲線の要素の平均長さRSmは、防眩膜3形成時の、防眩膜形成用液状組成物の組成(固形分濃度、鱗片状粒子の一次粒子径、二次粒子径及び各成分の含有量等)、透明基体2への防眩膜形成用液状組成物の塗布条件(例えば、スプレー法で塗布する場合には、防眩膜形成用液状組成物のスプレー圧、液量、透明基体の温度、塗布回数等)によって調整できる。   The arithmetic average roughness Ra, the skewness Rsk of the roughness curve, and the average length RSm of the elements of the roughness curve on the surface of the antiglare film 3 are the values of the liquid composition for forming the antiglare film when the antiglare film 3 is formed. Composition (solid content concentration, primary particle size, secondary particle size, content of each component, etc.), application conditions of liquid composition for forming antiglare film on transparent substrate 2 (for example, applied by spray method) In this case, it can be adjusted by the spray pressure, the liquid amount, the temperature of the transparent substrate, the number of coatings, etc. of the liquid composition for forming an antiglare film.

防眩膜3の表面の算術平均粗さRa、粗さ曲線のスキューネスRsk及び粗さ曲線の要素の平均長さRSmは、東京精密社製SURFCOM1500SD3−12を用いてJIS B0601−2001に規定されている方法に従って測定できる。   The arithmetic average roughness Ra of the surface of the antiglare film 3, the skewness Rsk of the roughness curve, and the average length RSm of the elements of the roughness curve are defined in JIS B0601-2001 using SURFCOM 1500SD3-12 manufactured by Tokyo Seimitsu Co., Ltd. Can be measured according to the method.

防眩膜3は、平均膜厚は15〜1500nmが好ましい。防眩膜3の平均膜厚が15〜50nmの場合はヘイズを低くしたりぎらつき指標値を下げたりしやすい。防眩膜3の平均膜厚が50nm以上で、防眩膜付基体1に十分な防眩性を付与できるためより好ましい。防眩膜3の平均膜厚は1500nm以下が、防眩性指標値やヘイズ等の光学特性を良好な範囲で両立させるための一要因である。ここで、防眩膜3の平均膜厚は、防眩膜3の断面を、集束イオンビーム加工により処理した後、走査型顕微鏡(SEM)によって、例えば、1万倍の倍率で観察し、撮影範囲全体にわたり透明基体2と防眩膜3の界面から防眩膜3の表面までの厚みを測定することで計測できる。膜厚は、SEMによる撮影のデジタルデータや画像処理ソフトを用いて算出できる。   The antiglare film 3 preferably has an average film thickness of 15 to 1500 nm. When the average film thickness of the anti-glare film 3 is 15 to 50 nm, it is easy to lower the haze or lower the glaring index value. Since the average film thickness of the antiglare film 3 is 50 nm or more, sufficient antiglare property can be imparted to the substrate 1 with the antiglare film, which is more preferable. The average film thickness of the antiglare film 3 is 1500 nm or less, which is one factor for achieving both optical characteristics such as an antiglare index value and haze in a favorable range. Here, the average film thickness of the anti-glare film 3 is obtained by processing the cross section of the anti-glare film 3 by focused ion beam processing, and then observing it with a scanning microscope (SEM) at a magnification of 10,000 times, for example. It can be measured by measuring the thickness from the interface between the transparent substrate 2 and the antiglare film 3 to the surface of the antiglare film 3 over the entire range. The film thickness can be calculated using digital data obtained by SEM and image processing software.

防眩膜3は、透明基体2の主面全体(または、主面において、防眩性の付与される領域)を隙間なく覆って形成されていてもよく、例えば、後述の好ましい防眩性指標値及びヘイズを得られる限り、透明基体2の主面(または、上記領域)の一部が、防眩膜が形成されず露出した態様で、例えば、防眩膜3が島状に形成されていてもよい。防眩膜3の厚さが、例えば300nm以下になると、透明基体2の主面上に、防眩膜3が不連続に形成され、透明基体2の主面の一部に防眩膜が形成されず透明基体2が露出することがある。   The anti-glare film 3 may be formed so as to cover the entire main surface of the transparent substrate 2 (or a region to which anti-glare properties are imparted on the main surface) without any gap. For example, a preferable anti-glare index described later is used. As long as the value and haze can be obtained, a part of the main surface (or the above region) of the transparent substrate 2 is exposed without forming the antiglare film, for example, the antiglare film 3 is formed in an island shape. May be. When the thickness of the antiglare film 3 is, for example, 300 nm or less, the antiglare film 3 is discontinuously formed on the main surface of the transparent substrate 2, and the antiglare film is formed on a part of the main surface of the transparent substrate 2. Otherwise, the transparent substrate 2 may be exposed.

防眩膜3は直径が1μm以上の第一の凸部と直径が1μm未満の第二の凸部から構成されてもよく、また、第一の凸部どうし、または第二の凸部どうし、または第一の凸部と第二の凸部が重複した構造でもよい。このような表面構造はレーザー顕微鏡測定データを画像処理ソフトで解析して観測できる。   The antiglare film 3 may be composed of a first convex portion having a diameter of 1 μm or more and a second convex portion having a diameter of less than 1 μm, and the first convex portions or the second convex portions, Or the structure which the 1st convex part and the 2nd convex part overlapped may be sufficient. Such a surface structure can be observed by analyzing laser microscope measurement data with image processing software.

防眩膜3の膜厚は、透明基体2への防眩膜形成用液状組成物の塗布条件(例えば、スプレー法で塗布する場合には、防眩膜形成用液状組成物の液量や塗布回数など)や、防眩膜形成用液状組成物の組成(固形分濃度や各成分の含有量など)等によって調整できる。   The film thickness of the antiglare film 3 is determined based on the application conditions of the liquid composition for forming an antiglare film on the transparent substrate 2 (for example, when applied by a spray method, the liquid amount and application of the liquid composition for forming the antiglare film). The number of times), the composition of the liquid composition for forming an antiglare film (concentration of solid content, content of each component, etc.), and the like.

防眩膜3中のフッ素含有量は、フッ素(F)を1.0質量%含む比重2.48のガラスを標準サンプルとし、防眩膜3のフッ素測定値を標準サンプルのフッ素測定値で除した値(F量)として表し、このフッ素含有量は2.5以下が好ましく、2.2以下がより好ましく、1.8%以下がさらに好ましい。これはRSm増大を抑制するためである。F量は0.23以上が好ましく、0.3以上がより好ましく、0.4以上がさらに好ましい。これは温度・湿度耐久性のためである。上記F量は、例えば以下の方法で測定できる。リガク社製ZSX100eを用い、測定径30mm、測定線F−Kα、フィルタOUT、スリットStd.、分光結晶RX35、検出器PC、PHA100−300、ピーク角度38.794deg.(20sec)、B.G.角度43.000deg.(10sec)の条件で、測定対象膜のフッ素含有量(質量%)と標準サンプル中のフッ素含有量をそれぞれ測定する。測定対象膜のフッ素含有量測定値を標準サンプルのフッ素含有量測定値で除して、F量が算出される。   The fluorine content in the antiglare film 3 is obtained by dividing the glass with a specific gravity of 2.48 containing 1.0% by mass of fluorine (F) as a standard sample and dividing the fluorine measurement value of the antiglare film 3 by the fluorine measurement value of the standard sample. The fluorine content is preferably 2.5 or less, more preferably 2.2 or less, and even more preferably 1.8% or less. This is to suppress an increase in RSm. The amount of F is preferably 0.23 or more, more preferably 0.3 or more, and still more preferably 0.4 or more. This is for temperature and humidity durability. The amount of F can be measured, for example, by the following method. Using ZSX100e manufactured by Rigaku Corporation, measurement diameter 30 mm, measurement line F-Kα, filter OUT, slit Std. , Spectral crystal RX35, detector PC, PHA100-300, peak angle 38.794 deg. (20 sec), B.E. G. Angle 43.000 deg. Under the condition of (10 sec), the fluorine content (% by mass) of the measurement target film and the fluorine content in the standard sample are measured. The F content is calculated by dividing the measured fluorine content of the measurement target film by the measured fluorine content of the standard sample.

防眩膜3表面に後述の防汚膜が形成されている場合、防汚膜を除去後に防眩膜3中のF量を測定する。防汚膜はコロナ処理やプラズマ処理により除去できる。なお、防汚膜除去後の表面の、水の接触角が約20°以下であれば防汚膜が除去できていると判断できる。   When the antifouling film described later is formed on the surface of the antiglare film 3, the F amount in the antiglare film 3 is measured after removing the antifouling film. The antifouling film can be removed by corona treatment or plasma treatment. In addition, if the contact angle of water on the surface after removing the antifouling film is about 20 ° or less, it can be determined that the antifouling film has been removed.

防眩膜3中のF量は、防眩膜形成用液状組成物の組成や、防眩膜形成用液状組成物中のCF(CH−基の量、含フッ素シリカ前駆体(A)の種類や、含フッ素シリカ前駆体(A)の有するCF(CH−基の量などによって調整できる。 The amount of F in the antiglare film 3 depends on the composition of the liquid composition for forming an antiglare film, the amount of CF 3 (CH 2 ) n -group in the liquid composition for forming an antiglare film, and a fluorine-containing silica precursor ( It can be adjusted by the type of A), the amount of CF 3 (CH 2 ) n -group of the fluorine-containing silica precursor (A), and the like.

防眩膜付基体1のヘイズ(Haze)は8以下が好ましく、6.8以下がより好ましい。ヘイズが8以下であると防眩膜付基体1が防眩膜3と反対面に黒色印刷部を有する場合、黒色印刷部に白濁が視認されるのを抑制し、美観に優れた防眩膜付基体1を得られる。   The haze of the antiglare-coated substrate 1 is preferably 8 or less, and more preferably 6.8 or less. When the haze is 8 or less, when the substrate 1 with an antiglare film has a black printed part on the opposite surface to the antiglare film 3, it is possible to suppress the white turbidity from being visually recognized in the black printed part and to have an excellent antiglare film. The attached substrate 1 can be obtained.

防眩膜付基体1の表面の光沢は、60゜鏡面光沢度(%)(Gloss)が135%以下が好ましく、130%以下がより好ましく、120%以下がさらに好ましい。60゜鏡面光沢度(%)(Gloss)は50%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましい。ここで、防眩膜付基体1の60゜鏡面光沢度は、例えば、JIS Z8741:1997の60゜鏡面光沢度に規定されている方法で、オールインワン光沢度計(ローポイントインスツルメンツ社製、Rhоpоint IQ)を用い、裏面側に黒色フェルトを敷いて、防眩膜付基体1の裏面反射を消し、防眩膜3の平面略中央部で測定した値である。   As for the gloss of the surface of the substrate 1 with antiglare film, the 60 ° specular gloss (%) (Gloss) is preferably 135% or less, more preferably 130% or less, and further preferably 120% or less. The 60 ° specular gloss (%) (Gloss) is preferably 50% or more, more preferably 60% or more, and still more preferably 70% or more. Here, the 60 ° specular glossiness of the substrate 1 with antiglare film is, for example, a method defined by the 60 ° specular glossiness of JIS Z8741: 1997, and is an all-in-one gloss meter (Rohopintint IQ, manufactured by Low Point Instruments Co., Ltd.). ), A black felt is laid on the back surface side, the back surface reflection of the substrate 1 with the antiglare film is eliminated, and the value measured at the substantially central portion of the antiglare film 3 in the plane.

防眩膜付基体1の表面の防眩性指標値(Diffusion)は、0.05以上が好ましく、0.1以上がより好ましく、0.2以上がさらに好ましい。防眩膜付基体1表面の防眩性指標値は、0.05以上であることで、画像表示装置に用いた場合に、優れた防眩性を発揮する。   The antiglare index value (Diffusion) on the surface of the antiglare film-coated substrate 1 is preferably 0.05 or more, more preferably 0.1 or more, and further preferably 0.2 or more. When the antiglare index value on the surface of the substrate 1 with antiglare film is 0.05 or more, excellent antiglare properties are exhibited when used in an image display device.

防眩膜付基体1表面の防眩性指標値の測定は、日本電色工業株式会社製変角光度計、GC5000Lを用いて、以下の手順で実施できる。先ず、防眩膜付基体1の厚さ方向と平行な方向を角度0゜とする。このとき、防眩膜付基体1の主面側において、角度θ=−45゜±0.5゜の方向(以下「角度−45°の方向」ともいう。)から、防眩膜付基体1の主面に、第1の光を照射する。第1の光は、防眩膜付基体1の主面で反射される。防眩膜付基体1の主面から角度45°の方向に反射された45゜反射光の輝度を測定して、「45゜反射光の輝度」とする。   The measurement of the antiglare index value on the surface of the substrate 1 with an antiglare film can be carried out by the following procedure using a variable angle photometer, GC5000L, manufactured by Nippon Denshoku Industries Co., Ltd. First, an angle parallel to the thickness direction of the antiglare film-coated substrate 1 is set to 0 °. At this time, on the main surface side of the base 1 with the antiglare film, the base 1 with the antiglare film from the direction of angle θ = −45 ° ± 0.5 ° (hereinafter also referred to as “direction of angle −45 °”). The first surface is irradiated with the first light. The first light is reflected by the main surface of the base 1 with the antiglare film. The luminance of 45 ° reflected light reflected in the direction of an angle of 45 ° from the main surface of the base 1 with the antiglare film is measured to obtain “the luminance of 45 ° reflected light”.

次に、防眩膜付基体1の主面で反射された光の輝度を測定する角度θを、5゜〜85゜の範囲で変化させ、同様の操作を実施し、防眩膜付基体1の主面で反射される5゜〜85゜の範囲における反射光の輝度分布を測定して合計し、「全反射光の輝度」とする。   Next, the angle θ for measuring the luminance of the light reflected by the main surface of the substrate 1 with the antiglare film is changed in the range of 5 ° to 85 °, and the same operation is performed. The luminance distribution of the reflected light in the range of 5 ° to 85 ° reflected by the main surface is measured and summed to obtain “total reflected light luminance”.

次に、以下の式(1)から、防眩性指標値(Diffusion)を算定する。   Next, an antiglare index value (Diffusion) is calculated from the following equation (1).

防眩性指標値=
{(全反射光の輝度−45゜反射光の輝度)/(全反射光の輝度)} 式(1)
Anti-glare index value =
{(Brightness of total reflected light−Brightness of reflected light) / (Brightness of total reflected light)} Equation (1)

防眩性指標値は、観察者の目視による防眩性の判断結果と相関し、人の視感に近い挙動を示すことが確認されている。例えば、防眩性指標値が小さな(0に近い)値を示す防眩膜付基体は防眩性が劣り、逆に防眩性指標値が大きな値を示す防眩膜付基体は、良好な防眩性を有する。   It has been confirmed that the anti-glare index value correlates with the result of determination of anti-glare by visual observation by an observer and exhibits a behavior close to human visual feeling. For example, a substrate with an antiglare film having a small antiglare index value (close to 0) is inferior in antiglare properties, and conversely, a substrate with an antiglare film having a large antiglare index value is good. Has antiglare properties.

防眩膜付基体1の表面のぎらつき指標値(Sparkle)は90以下が好ましく、80以下がより好ましく、70以下がさらに好ましい。ぎらつき指標値は、液晶ディスプレイの表示面の上に防眩膜付基体を、防眩膜形成面(凹凸を有する表面)が上になるように置き、アイシステム社製アイスケールISC−Aを用いて測定できる。ぎらつき指標値は値が大きいほどぎらつきの大きいことを表わす。なお、ぎらつきとは、防眩膜付き基体1をピクセルマトリックスタイプの表示素子に用いた場合、防眩膜付き基体1表面に、ピクセルマトリックスよりも大きな周期を持つ光の粒が多く観察され、視認性を阻害する度合いを意味し、低ぎらつきであるほど光の粒が観察されにくく、視認性が向上する。   The glare index value (Sparkle) of the surface of the substrate 1 with antiglare film is preferably 90 or less, more preferably 80 or less, and even more preferably 70 or less. The glare index value is determined by placing an anti-glare film-coated substrate on the display surface of a liquid crystal display so that the anti-glare film-forming surface (surface having irregularities) is on top, and an eye scale ISC-A made by Eye System Co., Ltd. Can be measured. The larger the value of the glare index value, the greater the glare. Note that glare means that when the substrate 1 with an antiglare film is used for a pixel matrix type display element, a large number of light particles having a longer period than the pixel matrix are observed on the surface of the substrate 1 with an antiglare film. The degree of hindering visibility means that the lower the glare, the less likely the light particles are observed, and the better the visibility.

防眩膜付基体1のヘイズ、60゜鏡面光沢度、防眩性指標値、ぎらつき指標値は、上記したように、防眩膜3の表面の粗さ曲線のスキューネスRsk、算術平均粗さRa、粗さ曲線の要素の平均長さRSmなどによって調整できる。   As described above, the haze, 60 ° specular gloss, antiglare index value, and glare index value of the antiglare film-coated substrate 1 are the skewness Rsk of the surface roughness curve of the antiglare film 3, and the arithmetic average roughness. It can be adjusted by Ra, average length RSm of roughness curve elements, and the like.

<防眩膜形成用液状組成物>
防眩膜3は防眩膜形成用液状組成物を用いて形成できる。防眩膜形成用液状組成物は、CF(CH−基を含むシリカ前駆体(A)と鱗片状粒子(B)と液状媒体(C)とを含む。防眩膜形成用液状組成物は含フッ素シリカ前駆体(A)、鱗片状粒子(B)及び液状媒体(C)以外に、得られる防眩膜3の特性を損なわない限り、その他の成分を含有してもよい。その他の成分としてシリカ以外の金属酸化物前駆体(金属としてはチタン、ジルコニウム等)や、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等からなるバインダが挙げられる。以下、防眩膜形成用液状組成物に含まれる各成分について説明する。
<Liquid composition for antiglare film formation>
The antiglare film 3 can be formed using a liquid composition for forming an antiglare film. The liquid composition for forming an antiglare film includes a silica precursor (A) containing a CF 3 (CH 2 ) n — group, scaly particles (B), and a liquid medium (C). In addition to the fluorine-containing silica precursor (A), the scaly particles (B) and the liquid medium (C), the liquid composition for forming the antiglare film contains other components as long as the properties of the obtained antiglare film 3 are not impaired. You may contain. Examples of other components include metal oxide precursors other than silica (such as titanium and zirconium as metals), and binders made of thermoplastic resins, thermosetting resins, ultraviolet curable resins, and the like. Hereinafter, each component contained in the liquid composition for forming an antiglare film will be described.

(含フッ素シリカ前駆体(A))
含フッ素シリカ前駆体(A)は、加水分解縮合反応によりシリカを主成分としCF(CH−基(ただし、nは1〜6の整数である。)を含むマトリックスを形成する。
(Fluorine-containing silica precursor (A))
The fluorine-containing silica precursor (A) forms a matrix containing silica as a main component and CF 3 (CH 2 ) n — group (where n is an integer of 1 to 6) by hydrolysis condensation reaction.

上記マトリックスを形成し得る含フッ素シリカ前駆体(A)としては、例えば、ケイ素原子に結合した、CF(CH−基と加水分解性基とを有する含フッ素シラン化合物(A1)及びその加水分解縮合物が挙げられ、さらに、アルコキシシラン及びその加水分解縮合物(ゾルゲルシリカ)、シラザン等を含有していてもよい。含フッ素シラン化合物(A1)は、さらに、ケイ素原子に結合した炭化水素基を有していてもよい。含フッ素シリカ前駆体(A)は1種を単独で用いても2種以上を併用してもよい。 Examples of the fluorine-containing silica precursor (A) that can form the matrix include a fluorine-containing silane compound (A1) having a CF 3 (CH 2 ) n — group and a hydrolyzable group bonded to a silicon atom, and The hydrolysis condensate is mentioned, Furthermore, you may contain alkoxysilane, its hydrolysis condensate (sol-gel silica), silazane, etc. The fluorine-containing silane compound (A1) may further have a hydrocarbon group bonded to a silicon atom. A fluorine-containing silica precursor (A) may be used individually by 1 type, or may use 2 or more types together.

より具体的には、含フッ素シリカ前駆体(A)は、含フッ素シラン化合物(A1)及びその加水分解縮合物のいずれか一方又は両方からなってもよいし、含フッ素シラン化合物(A1)及びその加水分解縮合物のいずれか一方又は両方と、アルコキシシラン及びその加水分解縮合物のいずれか一方又は両方とを含んでもよい。防眩膜3のクラックや膜剥がれを防止する観点から、含フッ素シリカ前駆体(A)は、含フッ素シラン化合物(A1)及びその加水分解縮合物のいずれか一方又は両方と、アルコキシシラン及びその加水分解縮合物のいずれか一方又は両方と、を含むことが好ましい。   More specifically, the fluorine-containing silica precursor (A) may consist of either or both of the fluorine-containing silane compound (A1) and its hydrolysis condensate, or the fluorine-containing silane compound (A1) and Either one or both of the hydrolysis condensate and either one or both of alkoxysilane and its hydrolysis condensate may be included. From the viewpoint of preventing cracks and film peeling of the antiglare film 3, the fluorine-containing silica precursor (A) includes one or both of the fluorine-containing silane compound (A1) and its hydrolysis condensate, alkoxysilane and its It is preferable that one or both of the hydrolysis condensates are included.

含フッ素シラン化合物(A1)において、ケイ素原子に結合した加水分解性基としては、アルコキシ基、アシロキシ基、ケトオキシム基、アルケニルオキシ基、アミノ基、アミノキシ基、アミド基、イソシアネート基、ハロゲン原子等が挙げられる。これらの中では、含フッ素シラン化合物(A1)の安定性と加水分解のしやすさとのバランスの点から、メトキシ基やエトキシ基などのアルコキシ基、イソシアネート基及びハロゲン原子(特に塩素原子)が好ましい。含フッ素シラン化合物(A1)中に加水分解性基が複数存在する場合、加水分解性基は同じでも異なる基でもよく、同じ基が入手しやすさの点で好ましい。   In the fluorine-containing silane compound (A1), examples of the hydrolyzable group bonded to the silicon atom include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom. Can be mentioned. Among these, an alkoxy group such as a methoxy group and an ethoxy group, an isocyanate group, and a halogen atom (particularly a chlorine atom) are preferable from the viewpoint of the balance between the stability of the fluorinated silane compound (A1) and the ease of hydrolysis. . When a plurality of hydrolyzable groups are present in the fluorine-containing silane compound (A1), the hydrolyzable groups may be the same or different groups, and the same group is preferable in terms of availability.

含フッ素シラン化合物(A1)がケイ素原子に結合した炭化水素基を有する場合、当該炭化水素基は、1つのケイ素原子に結合した1価の炭化水素基でもよく、2つのケイ素原子に結合した2価の炭化水素基でもよい。1価の炭化水素基としては、アルキル基、アルケニル基、アリール基等が挙げられる。2価の炭化水素基としては、アルキレン基、アルケニレン基、アリーレン基等が挙げられる。さらに、含フッ素シラン化合物(A1)は、この炭化水素基の代わりに、炭化水素基の炭素原子間に−O−、−S−、−CO−及びNR’−(ただしR’は水素原子又は1価の炭化水素基である。)から選ばれる1つ又は2つ以上が挿入された基を有してもよい。   When the fluorine-containing silane compound (A1) has a hydrocarbon group bonded to a silicon atom, the hydrocarbon group may be a monovalent hydrocarbon group bonded to one silicon atom or 2 bonded to two silicon atoms. A valent hydrocarbon group may be used. Examples of the monovalent hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group. Examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, and an arylene group. Further, in the fluorine-containing silane compound (A1), in place of the hydrocarbon group, —O—, —S—, —CO— and NR′— (where R ′ is a hydrogen atom or It is a monovalent hydrocarbon group.) One or two or more selected from the group may be inserted.

含フッ素シラン化合物(A1)が、CF(CH−基中にフッ素原子を有することで、フッ素原子を有しない場合に比べて、防眩膜形成用液状組成物の表面張力が低下する。このため、これを焼成して得られる防眩膜3の粗さ曲線のスキューネスRskを下げ、防眩膜付基体1のヘイズを低くできる。 Since the fluorine-containing silane compound (A1) has a fluorine atom in the CF 3 (CH 2 ) n -group, the surface tension of the liquid composition for forming an antiglare film is reduced as compared with the case where it does not have a fluorine atom. To do. For this reason, the skewness Rsk of the roughness curve of the antiglare film 3 obtained by baking this can be lowered, and the haze of the base 1 with the antiglare film can be lowered.

また、CF(CH−基は、フッ素原子を有することで、加熱時に燃焼しにくい。そのため、この防眩膜形成用液状組成物を焼成して得られる防眩膜3の多孔質化を抑えられる。また、CF(CH−基がフッ素原子を含むことで、防眩膜3に優れた耐薬品性及び耐湿性を付与できる。 In addition, the CF 3 (CH 2 ) n — group has a fluorine atom, and thus hardly burns during heating. Therefore, the formation of a porous antiglare film 3 obtained by baking the liquid composition for forming an antiglare film can be suppressed. Also, CF 3 (CH 2) n - that groups containing a fluorine atom, can impart excellent chemical resistance and moisture resistance anti-glare film 3.

含フッ素シラン化合物(A1)の有するCF(CH−基において、nは1〜6の整数であり、好ましくは1〜3の整数である。CF(CH−基は、特に好ましくはnが2のトリフルオロプロピル基である。防眩膜形成用液状組成物が2種以上の含フッ素シラン化合物(A1)を含む場合、CF(CH−基におけるnの値は、それぞれ同一でも、異なってもよい。 In the CF 3 (CH 2 ) n — group contained in the fluorine-containing silane compound (A1), n is an integer of 1 to 6, preferably an integer of 1 to 3. The CF 3 (CH 2 ) n — group is particularly preferably a trifluoropropyl group in which n is 2. When the liquid composition for forming an antiglare film contains two or more fluorine-containing silane compounds (A1), the values of n in the CF 3 (CH 2 ) n — group may be the same or different.

含フッ素シラン化合物(A1)としては、下式(I)で表される化合物が好ましい。
{CF(CH−Si−R(4−p―q) ・・・(I)
式(I)中、Lは、加水分解性基である。加水分解性基は上述したものが挙げられ、好ましい態様も同様である。Rは、水素原子又は1価の炭化水素基である。1価の炭化水素としては、上述したものが挙げられる。
As the fluorine-containing silane compound (A1), a compound represented by the following formula (I) is preferable.
{CF 3 (CH 2) n } q -Si-R (4-p-q) L p ··· (I)
In formula (I), L is a hydrolyzable group. Examples of the hydrolyzable group include those described above, and preferred embodiments are also the same. R is a hydrogen atom or a monovalent hydrocarbon group. Examples of the monovalent hydrocarbon include those described above.

式(I)中、p及びqは、p+q≦4を満たす数である。pは1〜3の整数である。pは密着性を上げる点から3又は2が好ましく、3が特に好ましい。qは1又は2である。qは複数あると反応性低下を引き起こす場合があるため、密着性を確保する点から1が好ましい。   In formula (I), p and q are numbers satisfying p + q ≦ 4. p is an integer of 1 to 3. p is preferably 3 or 2 from the viewpoint of increasing adhesion, and 3 is particularly preferable. q is 1 or 2. When q is plural, it may cause a decrease in reactivity, and therefore 1 is preferable from the viewpoint of ensuring adhesion.

アルコキシシランは、ケイ素原子に結合したアルコキシ基を有するシラン化合物である。アルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシランが挙げられる。   Alkoxysilane is a silane compound having an alkoxy group bonded to a silicon atom. Examples of the alkoxysilane include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.

含フッ素シリカ前駆体(A)は、上記の含フッ素シラン化合物(A1)及びその加水分解縮合物の一方又は両方と、アルコキシシラン及びその加水分解縮合物の一方又は両方以外に、本発明の効果を損なわない範囲でマトリックスを形成し得るその他のシラン化合物を含んでよい。その他のシラン化合物はビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3−アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。   The fluorine-containing silica precursor (A) is an effect of the present invention in addition to one or both of the above-mentioned fluorine-containing silane compound (A1) and its hydrolysis condensate, and one or both of alkoxysilane and its hydrolysis condensate. Other silane compounds that can form a matrix may be included as long as they are not impaired. Other silane compounds include vinyl silane alkoxysilanes (vinyltrimethoxysilane, vinyltriethoxysilane, etc.), epoxy groups alkoxysilane (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycid Xylpropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, etc.), alkoxysilanes having an acryloyloxy group (3-acryloyloxypropyltrimethoxysilane, etc.), etc. It is done.

含フッ素シラン化合物(A1)及びアルコキシシランの加水分解縮合反応は、公知の方法により実施できる。例えば、アルコキシシランとしてテトラアルコキシシランを用いる場合、テトラアルコキシシランにテトラアルコキシシランの4倍モル以上の水、及び触媒として酸又はアルカリを添加して行う。   The hydrolytic condensation reaction of the fluorine-containing silane compound (A1) and alkoxysilane can be carried out by a known method. For example, when tetraalkoxysilane is used as the alkoxysilane, water is added to tetraalkoxysilane at least 4 moles of tetraalkoxysilane, and an acid or alkali is added as a catalyst.

触媒として使用される酸としては、例えば、硝酸、硫酸、塩酸等の無機酸やギ酸、シュウ酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸等の有機酸が挙げられる。触媒として使用されるアルカリとしては、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。触媒としては、含フッ素シラン化合物(A1)の加水分解縮合物の長期保存性の点では、酸が好ましい。   Examples of the acid used as the catalyst include inorganic acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids such as formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid. Examples of the alkali used as the catalyst include ammonia, sodium hydroxide, potassium hydroxide and the like. The catalyst is preferably an acid from the viewpoint of long-term storage stability of the hydrolyzed condensate of the fluorine-containing silane compound (A1).

(鱗片状粒子(B))
鱗片状粒子(B)は、単独で、又は含フッ素シリカ前駆体(A)に由来するマトリックス中に含有されることで防眩膜3を構成する。なお、鱗片状粒子(B)は、単独で鱗片状粒子(B)となるものに加え、本実施形態の鱗片状粒子(B)における好ましい平均粒子径、1次粒子の厚さ、2次粒子の厚さ、アスペクト比等を満たす形状となるように、その他の形状の粒子等を適宜組み合わされたものも含む。
(Scale-like particles (B))
The scaly particles (B) constitute the antiglare film 3 by being contained alone or in a matrix derived from the fluorine-containing silica precursor (A). The scaly particles (B) are not only those that become the scaly particles (B) alone, but also the preferred average particle diameter of the scaly particles (B) of the present embodiment, the thickness of the primary particles, and the secondary particles. In addition, a combination of particles having other shapes and the like, as appropriate, so as to obtain a shape satisfying the thickness, aspect ratio, and the like.

鱗片状粒子(B)の平均粒子径は、0.08〜0.42μmが好ましく、0.17〜0.21μmがより好ましい。鱗片状粒子(B)の平均粒子径が0.08μm以上であれば、膜厚が厚くても防眩膜3のクラックや膜剥がれが充分に抑えられる。鱗片状粒子(B)の平均粒子径が0.42μm以下であれば、防眩膜形成用液状組成物中における分散安定性が良好となる。   The average particle diameter of the scaly particles (B) is preferably 0.08 to 0.42 μm, and more preferably 0.17 to 0.21 μm. When the average particle diameter of the scale-like particles (B) is 0.08 μm or more, cracks and film peeling of the antiglare film 3 can be sufficiently suppressed even if the film thickness is large. When the average particle diameter of the scale-like particles (B) is 0.42 μm or less, the dispersion stability in the antiglare film-forming liquid composition is good.

鱗片状粒子(B)としては、鱗片状シリカ粒子、鱗片状アルミナ粒子、鱗片状チタニア粒子、鱗片状ジルコニア粒子等が挙げられる。なかでも、防眩膜3に優れた防眩性を付与する点から、鱗片状シリカ粒子が好ましい。   Examples of the scaly particles (B) include scaly silica particles, scaly alumina particles, scaly titania particles, and scaly zirconia particles. Among these, scaly silica particles are preferable from the viewpoint of imparting excellent antiglare properties to the antiglare film 3.

鱗片状シリカ粒子は、例えば、薄片状のシリカ1次粒子と複数枚の薄片状のシリカ1次粒子が、互いに面間が平行的に配向し重なって形成されるシリカ2次粒子からなる。シリカ2次粒子は、通常、積層構造の粒子形態を有する。鱗片状シリカ粒子はシリカ1次粒子とシリカ2次粒子のいずれか一方のみからなるものでもよい。   The scaly silica particles are composed of, for example, silica secondary particles formed by overlapping and laminating flaky silica primary particles and a plurality of flaky silica primary particles in parallel with each other. The silica secondary particles usually have a particle form of a laminated structure. The scaly silica particles may be composed of only one of silica primary particles and silica secondary particles.

シリカ1次粒子の厚さは、0.001〜0.1μmが好ましい。シリカ1次粒子の厚さが前記範囲内であれば、互いに面間が平行的に配向して1枚又は複数枚重なった鱗片状のシリカ2次粒子を形成できる。シリカ1次粒子のアスペクト比は、2以上が好ましく、5以上がより好ましく、10以上がさらに好ましい。   The thickness of the silica primary particles is preferably 0.001 to 0.1 μm. If the thickness of the silica primary particles is within the above range, scaly silica secondary particles in which one or a plurality of sheets are overlapped with the planes oriented in parallel with each other can be formed. The aspect ratio of the silica primary particles is preferably 2 or more, more preferably 5 or more, and still more preferably 10 or more.

シリカ2次粒子の厚さは、0.001〜1μmが好ましく、0.005〜0.5μmがより好ましい。シリカ2次粒子の厚さに対するアスペクト比は、2以上が好ましく、5以上がより好ましく、10以上がさらに好ましい。シリカ2次粒子は、融着することなく互いに独立に存在していることが好ましい。   The thickness of the silica secondary particles is preferably 0.001 to 1 μm, and more preferably 0.005 to 0.5 μm. The aspect ratio with respect to the thickness of the silica secondary particles is preferably 2 or more, more preferably 5 or more, and still more preferably 10 or more. The silica secondary particles are preferably present independently of each other without fusing.

防眩膜形成用液状組成物の調製には、複数の鱗片状シリカ粒子の集合体である粉体、又は該粉体を液状媒体に分散させた分散液が用いられる。分散液中のシリカ粒子濃度は、1〜80質量%が好ましい。   For the preparation of the liquid composition for forming an antiglare film, a powder that is an aggregate of a plurality of scaly silica particles or a dispersion in which the powder is dispersed in a liquid medium is used. The silica particle concentration in the dispersion is preferably 1 to 80% by mass.

(液状媒体(C))
液状媒体(C)は、含フッ素シリカ前駆体(A)を溶解する溶媒、又は分散する分散媒としての機能と、鱗片状粒子(B)を分散する分散媒としての機能を有する。液状媒体(C)は1種を単独で用いてもよく2種以上を併用してもよい。
(Liquid medium (C))
The liquid medium (C) has a function as a solvent for dissolving the fluorine-containing silica precursor (A) or a dispersion medium for dispersing, and a function as a dispersion medium for dispersing the scaly particles (B). A liquid medium (C) may be used individually by 1 type, and may use 2 or more types together.

液状媒体(C)は、少なくとも、沸点160℃以下の液状媒体(C1)と、沸点が160℃よりも高い液状媒体(C2)を含むことが好ましい。   The liquid medium (C) preferably includes at least a liquid medium (C1) having a boiling point of 160 ° C. or lower and a liquid medium (C2) having a boiling point higher than 160 ° C.

液状媒体(C1)の沸点が160℃以下であれば、防眩膜形成用液状組成物を、回転霧化頭を備える静電塗装ガンを備える静電塗装装置を用いて透明基体2上に塗布した後、焼成して形成される防眩膜3がより優れた防眩性を有する。液状媒体(C1)の沸点は、50〜150℃が好ましく、55〜140℃がより好ましい。液状媒体(C1)の沸点が前記範囲の下限値以上であれば、防眩膜形成用液状組成物の液滴が透明基体2上に付着した後、基板上で液滴が濡れ広がり、均一な膜を形成しやすい。液状媒体(C1)の沸点が前記範囲の上限値以下であれば、凹凸構造を形成しやすい。   If the boiling point of the liquid medium (C1) is 160 ° C. or less, the liquid composition for forming an antiglare film is applied onto the transparent substrate 2 using an electrostatic coating apparatus having an electrostatic coating gun having a rotary atomizing head. Then, the antiglare film 3 formed by firing has more excellent antiglare properties. The boiling point of the liquid medium (C1) is preferably 50 to 150 ° C, more preferably 55 to 140 ° C. If the boiling point of the liquid medium (C1) is equal to or higher than the lower limit of the above range, after the droplets of the liquid composition for forming an antiglare film adhere on the transparent substrate 2, the droplets spread and spread uniformly on the substrate. Easy to form a film. If the boiling point of a liquid medium (C1) is below the upper limit of the said range, it will be easy to form an uneven structure.

液状媒体(C1)としては、例えば、水や、沸点160℃以下の、アルコール類(メタノール、エタノール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、1−ペンタノール等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エーテル類(テトラヒドロフラン、1,4−ジオキサン等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、エステル類(酢酸メチル、酢酸エチル等)、グリコールエーテル類(エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等)等を使用できる。   Examples of the liquid medium (C1) include water, alcohols having a boiling point of 160 ° C. or lower (methanol, ethanol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 1-pentanol, etc.), ketones (acetone, methyl ethyl ketone). , Methyl isobutyl ketone, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), esters (methyl acetate, ethyl acetate, etc.), glycol ethers (ethylene glycol monomethyl ether) , Ethylene glycol monoethyl ether, etc.) can be used.

液状媒体(C2)の沸点が160℃よりも高いと、防眩膜形成用液状組成物が液状媒体(C2)を含む場合に、防眩膜3の粗さ曲線のスキューネスRskを下げられ、優れた防眩性と低いヘイズを両立し易い。   When the boiling point of the liquid medium (C2) is higher than 160 ° C., the skewness Rsk of the roughness curve of the antiglare film 3 can be lowered when the liquid composition for forming the antiglare film contains the liquid medium (C2), which is excellent. It is easy to achieve both anti-glare properties and low haze.

液状媒体(C2)としては、例えば、沸点160℃超の、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。アルコール類としては、ジアセトンアルコール、1−ヘキサノール、エチレングリコール、プロピレングリコール等が挙げられる。含窒素化合物としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチルピロリドン等が挙げられる。グリコールエーテル類としては、エチレングリコールモノブチルエーテル等が挙げられる。含硫黄化合物としては、ジメチルスルホキシド等が挙げられる。   Examples of the liquid medium (C2) include alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, sulfur-containing compounds and the like having a boiling point of over 160 ° C. Examples of alcohols include diacetone alcohol, 1-hexanol, ethylene glycol, and propylene glycol. Examples of nitrogen-containing compounds include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like. Examples of glycol ethers include ethylene glycol monobutyl ether. Examples of the sulfur-containing compound include dimethyl sulfoxide.

液状媒体(C)の全量に対する液状媒体(C1)の含有割合は、80〜99.9質量%が好ましく、液状媒体(C2)の含有割合は、0.01〜20質量%が好ましい。   The content ratio of the liquid medium (C1) with respect to the total amount of the liquid medium (C) is preferably 80 to 99.9% by mass, and the content ratio of the liquid medium (C2) is preferably 0.01 to 20% by mass.

含フッ素シリカ前駆体(A)におけるアルコキシシラン等の加水分解に水が必要となる。このため、液状媒体(C)は液状媒体(C1)として少なくとも水を含むことが好ましい。この場合、液状媒体(C)は、水のみでもよく、水以外の液状媒体(C1)及び液状媒体(C2)のうち1種以上を含んでもよい。水以外の液状媒体(C1)としては、アルコール類が好ましく、メタノール、エタノール、イソプロピルアルコール、ブタノールが特に好ましい。また、液状媒体(C)が水を含む場合、液状媒体(C)に含有される液状媒体(C2)としては、ジアセトンアルコール、プロピレングリコールが好ましい。   Water is required for hydrolysis of alkoxysilane and the like in the fluorine-containing silica precursor (A). Therefore, the liquid medium (C) preferably contains at least water as the liquid medium (C1). In this case, the liquid medium (C) may be water alone, or may include at least one of the liquid medium (C1) and the liquid medium (C2) other than water. As the liquid medium (C1) other than water, alcohols are preferable, and methanol, ethanol, isopropyl alcohol, and butanol are particularly preferable. Moreover, when a liquid medium (C) contains water, as a liquid medium (C2) contained in a liquid medium (C), diacetone alcohol and propylene glycol are preferable.

(組成)
防眩膜形成用液状組成物が、含フッ素シラン化合物(A1)及びその加水分解縮合物のいずれか一方又は両方と、テトラアルコキシシラン及びその加水分解縮合物のいずれか一方又は両方と、の両者を含む場合、含フッ素シリカ前駆体(A)のSiO換算固形分の全量(100質量%)に対し、含フッ素シラン化合物(A1)及びその加水分解縮合物のいずれか一方又は両方の割合が3〜50質量%(より好ましくは5〜30質量%)で、テトラアルコキシシラン及びその加水分解縮合物のいずれか一方又は両方の割合が50〜97質量%(より好ましくは70〜90質量%)が好ましい。含フッ素シラン化合物(A1)及びその加水分解縮合物のいずれか一方又は両方の含有量が前記範囲の上限値以下であれば、防眩膜3と透明基体2との充分な密着強度が得られる。含フッ素シラン化合物(A1)及びその加水分解縮合物のいずれか一方又は両方の含有量が前記範囲の下限値以上であれば、防眩膜3の膜厚が厚くても防眩膜3のクラックや膜剥がれが充分に抑えられる。
(composition)
The liquid composition for forming an antiglare film is either one or both of the fluorine-containing silane compound (A1) and its hydrolysis condensate, and one or both of the tetraalkoxysilane and its hydrolysis condensate. Is included, the proportion of either one or both of the fluorine-containing silane compound (A1) and its hydrolysis-condensation product is based on the total amount (100% by mass) of the SiO 2 converted solid content of the fluorine-containing silica precursor (A). It is 3 to 50% by mass (more preferably 5 to 30% by mass), and the ratio of one or both of tetraalkoxysilane and its hydrolysis condensate is 50 to 97% by mass (more preferably 70 to 90% by mass). Is preferred. If the content of either one or both of the fluorine-containing silane compound (A1) and its hydrolysis condensate is not more than the upper limit of the above range, sufficient adhesion strength between the antiglare film 3 and the transparent substrate 2 can be obtained. . If the content of either one or both of the fluorine-containing silane compound (A1) and its hydrolysis condensate is not less than the lower limit of the above range, the antiglare film 3 is cracked even if the antiglare film 3 is thick. And film peeling can be sufficiently suppressed.

防眩膜形成用液状組成物中の鱗片状粒子(B)の含有量は、防眩膜形成用液状組成物中の固形分の全量(100質量%)に対して、3〜15質量%が好ましく、5〜10質量%がより好ましい。鱗片状粒子(B)の含有量が前記範囲の下限値以上であれば、防眩膜付基体1によって優れた防眩性が発揮される。また、膜のクラック発生を防止できる。鱗片状粒子(B)の含有量が前記範囲の上限値以下であれば、優れた防眩性を維持しつつ、ヘイズを低くできる。   The content of the scaly particles (B) in the antiglare film-forming liquid composition is 3 to 15% by mass with respect to the total solid content (100% by mass) in the antiglare film-forming liquid composition. Preferably, 5 to 10% by mass is more preferable. If the content of the scaly particles (B) is not less than the lower limit of the above range, the antiglare property with the antiglare film-coated substrate 1 is exhibited. Moreover, the generation of cracks in the film can be prevented. If content of scale-like particle | grains (B) is below the upper limit of the said range, haze can be made low, maintaining the outstanding anti-glare property.

防眩膜形成用液状組成物中の液状媒体(C)の含有量は、防眩膜形成用液状組成物の固形分濃度に応じた量とされる。防眩膜形成用液状組成物の固形分濃度は、防眩膜形成用液状組成物の全量(100質量%)に対して、0.1〜8質量%が好ましく、0.2〜1質量%がより好ましい。固形分濃度が前記範囲の下限値以上であれば、防眩膜形成用液状組成物の液量を少なくできる。固形分濃度が前記範囲の上限値以下であれば、防眩膜の膜厚の均一性が向上する。   The content of the liquid medium (C) in the liquid composition for forming an antiglare film is an amount corresponding to the solid content concentration of the liquid composition for forming an antiglare film. 0.1-8 mass% is preferable with respect to the whole quantity (100 mass%) of the liquid composition for anti-glare film formation, and solid content concentration of the liquid composition for anti-glare film formation is 0.2-1 mass%. Is more preferable. If solid content concentration is more than the lower limit of the said range, the liquid quantity of the liquid composition for glare-proof film formation can be decreased. If solid content concentration is below the upper limit of the said range, the uniformity of the film thickness of an anti-glare film will improve.

防眩膜形成用液状組成物の固形分濃度は、防眩膜形成用液状組成物中の、液状媒体(C)以外の全成分の含有量の合計である。ただし、本明細書において、特に断らない限り、防眩膜形成用液状組成物の固形分濃度を算出する際の、含フッ素シリカ前駆体(A)の含有量は、SiO換算である。 The solid content concentration of the liquid composition for forming an antiglare film is the total content of all components other than the liquid medium (C) in the liquid composition for forming an antiglare film. However, in this specification, unless otherwise specified, the content of the fluorine-containing silica precursor (A) when calculating the solid content concentration of the liquid composition for forming an antiglare film is in terms of SiO 2 .

防眩膜形成用液状組成物中の含フッ素シリカ前駆体(A)と鱗片状粒子(B)との合計の含有量は、防眩膜形成用液状組成物中の固形分の全量(100質量%)に対して、30〜100質量%が好ましく、40〜100質量%がより好ましい。含フッ素シリカ前駆体(A)と鱗片状粒子(B)との合計の含有量が前記範囲の下限値以上であれば、得られる防眩膜3は、透明基体2との密着性に優れる。含フッ素シリカ前駆体(A)と鱗片状粒子(B)との合計の含有量が前記範囲の上限値以下であれば、防眩膜3のクラックや膜はがれが抑えられる。   The total content of the fluorine-containing silica precursor (A) and the scaly particles (B) in the antiglare film-forming liquid composition is the total solid content (100 mass) in the antiglare film-forming liquid composition. %) Is preferably 30 to 100% by mass, and more preferably 40 to 100% by mass. If the total content of the fluorinated silica precursor (A) and the scaly particles (B) is not less than the lower limit of the above range, the resulting antiglare film 3 is excellent in adhesion to the transparent substrate 2. If the total content of the fluorine-containing silica precursor (A) and the scaly particles (B) is not more than the upper limit of the above range, cracks and film peeling of the antiglare film 3 can be suppressed.

含フッ素シリカ前駆体(A)がテトラアルコキシシランの加水分解縮合物を含む場合は、所望の性能を有する防眩膜3を高いレベルで再現性よく製造できる点から、テトラアルコキシシランの溶液、又はテトラアルコキシシラン及びその加水分解縮合物の混合物の溶液と、鱗片状粒子(B)の分散液とを混合した後、鱗片状粒子(B)の存在下でテトラアルコキシシランを加水分解し、縮合させることが好ましい。   When the fluorine-containing silica precursor (A) contains a hydrolyzed condensate of tetraalkoxysilane, a solution of tetraalkoxysilane from the point that the antiglare film 3 having the desired performance can be produced with high reproducibility, or After mixing a solution of a mixture of tetraalkoxysilane and its hydrolysis condensate and a dispersion of scale-like particles (B), tetraalkoxysilane is hydrolyzed and condensed in the presence of scale-like particles (B). It is preferable.

<防眩膜付基体の製造方法>
本実施形態の防眩膜付基体の製造方法は、前記で説明した防眩膜形成用液状組成物を、透明基体2上にスプレーコート法により塗布して塗膜を形成し、その塗膜を焼成することにより防眩膜3を形成して、防眩膜付基体1を得る方法である。前記の製造方法は、必要に応じて、防眩膜3の形成前に、透明基体2本体の表面に機能層を形成する工程を有してよい。また、防眩膜3の形成後に、その他の後加工を施す工程を有してよい。
<Method of manufacturing substrate with antiglare film>
The method for producing a substrate with an antiglare film according to this embodiment comprises forming the coating film by applying the liquid composition for forming an antiglare film described above on the transparent substrate 2 by a spray coating method. In this method, the antiglare film 3 is formed by firing to obtain the antiglare film-coated substrate 1. The manufacturing method may include a step of forming a functional layer on the surface of the transparent substrate 2 main body before forming the antiglare film 3 as necessary. Moreover, after forming the anti-glare film 3, another post-processing step may be performed.

(防眩膜形成用液状組成物の調製)
防眩膜形成用液状組成物は、例えば、含フッ素シラン前駆体(A)が液体媒体(C)に溶解した溶液を調製し、これに、鱗片状粒子(B)の分散液と、必要に応じて追加の液状媒体(C)とを混合して調製できる。
(Preparation of liquid composition for antiglare film formation)
The liquid composition for forming an antiglare film is prepared, for example, by preparing a solution in which the fluorine-containing silane precursor (A) is dissolved in the liquid medium (C), and a dispersion of the scaly particles (B). Accordingly, it can be prepared by mixing with an additional liquid medium (C).

(塗布)
前記の防眩膜形成用液状組成物を、スプレーコート法により透明基体2上に塗布する。これは、例えば、回転霧化頭を備える静電塗装ガンを備える静電塗装装置を用いて、防眩膜形成用液状組成物を帯電させ、透明基体2に向けて噴霧して行われる。これにより透明基体2上に防眩膜形成用液状組成物の塗膜が形成される。静電塗装装置はガン本体と回転霧化頭とを備え、回転霧化頭を回転駆動し回転霧化頭に供給された防眩膜形成用液状組成物を遠心力により霧化して放出し、透明基体2に向けて噴霧する。
(Application)
The liquid composition for forming an antiglare film is applied onto the transparent substrate 2 by a spray coating method. This is performed, for example, by charging the liquid composition for forming an antiglare film and spraying it toward the transparent substrate 2 using an electrostatic coating apparatus including an electrostatic coating gun including a rotary atomizing head. As a result, a coating film of the liquid composition for forming an antiglare film is formed on the transparent substrate 2. The electrostatic coating apparatus includes a gun body and a rotary atomizing head, and rotates and rotates the rotary atomizing head to atomize and discharge the antiglare film-forming liquid composition supplied to the rotary atomizing head, Spray toward the transparent substrate 2.

防眩膜形成用液状組成物を透明基体2に塗布する際の、静電塗装ガンのノズル先端(すなわち、防眩膜形成用液状組成物の噴霧方向における回転霧化頭の前端)から透明基体2までの距離(以下「ガン高さ」ともいう。)は、透明基体2の幅、透明基体2上に塗布される防眩膜形成用液状組成物の膜厚等に応じて適宜調整される。   When applying the liquid composition for forming an antiglare film to the transparent substrate 2, the transparent substrate from the nozzle tip of the electrostatic coating gun (that is, the front end of the rotary atomizing head in the spray direction of the liquid composition for forming the antiglare film) The distance up to 2 (hereinafter also referred to as “gun height”) is appropriately adjusted according to the width of the transparent substrate 2, the film thickness of the antiglare film-forming liquid composition applied on the transparent substrate 2, and the like. .

ガン高さは、150〜280mmが好ましく、180〜240mmがより好ましく、230〜240mmがさらに好ましい。透明基体2までの距離を近づけ過ぎると、防眩膜付基体1のヘイズが上昇し易く、さらに近づきすぎると放電を起こす可能性が高くなる。一方、透明基体2までの距離が離れ過ぎると塗布効率が低下するほか、粗さ曲線のスキューネスRskが高くなりすぎて、防眩性が低下し易い。   The gun height is preferably 150 to 280 mm, more preferably 180 to 240 mm, and even more preferably 230 to 240 mm. If the distance to the transparent substrate 2 is too close, the haze of the substrate 1 with antiglare film tends to increase, and if it is too close, the possibility of causing discharge increases. On the other hand, if the distance to the transparent substrate 2 is too large, the coating efficiency is lowered, and the skewness Rsk of the roughness curve is too high, so that the antiglare property tends to be lowered.

またこの際の、静電塗装装置から噴霧された防眩膜形成用液状組成物の液滴の粒径(吐出粒径)は、ザウター平均粒径で12μm以下が好ましく、10μm以下がより好ましい。ザウター平均粒径が12μm以下であることで、防眩膜3が優れた防眩性を発揮する。   In this case, the particle size (discharge particle size) of the droplets of the antiglare film-forming liquid composition sprayed from the electrostatic coating apparatus is preferably 12 μm or less, more preferably 10 μm or less in terms of the Sauter average particle size. When the Sauter average particle diameter is 12 μm or less, the antiglare film 3 exhibits excellent antiglare properties.

ここでザウター(Sauter)平均粒径は、液滴の表面積の合計と体積の合計が等しいと仮定し、計測した液滴の体積の総和と表面積の総和の比から求めた値となる。ザウター平均粒径は、xを粒径、nを粒径xの粒子数とし、次式(2)であらわされる。 Here, the Sauter average particle diameter is a value obtained from the ratio of the total volume of the measured droplets and the total surface area, assuming that the total surface area of the droplets is equal to the total volume. Sauter mean diameter, the particle size of the x i, the n i the number of particles of a particle diameter x i, represented by the following formula (2).

Figure 2018063419
Figure 2018063419

ザウター平均粒径は、透明基体表面からの高さ60mmで、静電塗装ガンのカップ中心から水平方向に測定位置をずらして測定したときにザウター平均粒径が最大となる位置における値として測定できる。   The Sauter average particle diameter can be measured as a value at a position where the Sauter average particle diameter is maximum when measured at a height of 60 mm from the surface of the transparent substrate and shifted in the horizontal direction from the cup center of the electrostatic coating gun. .

(焼成)
次いで、透明基体2上に形成された、防眩膜形成用液状組成物の塗膜を焼成する。
これにより、塗膜中の液状媒体(C)が揮発して除去され、塗膜中に残存する含フッ素シリカ前駆体(A)のシリカ系マトリクスへの転化が進行する(例えば、含フッ素シリカ前駆体(A)が、ケイ素原子に結合した加水分解性基を有するシラン化合物である場合に、加水分解性基がほぼ分解し、加水分解物の縮合が進行する)とともに膜が緻密化して、防眩膜3が形成される。
(Baking)
Next, the coating film of the liquid composition for forming an antiglare film formed on the transparent substrate 2 is baked.
Thereby, the liquid medium (C) in the coating film is volatilized and removed, and conversion of the fluorine-containing silica precursor (A) remaining in the coating film into a silica-based matrix proceeds (for example, fluorine-containing silica precursor). When the body (A) is a silane compound having a hydrolyzable group bonded to a silicon atom, the hydrolyzable group is almost decomposed and the condensation of the hydrolyzate proceeds). The glare film 3 is formed.

塗膜の焼成は、防眩膜形成用液状組成物を透明基体2に塗布する際に、透明基体2を加熱して塗布と同時でもよく、防眩膜形成用液状組成物を透明基体2に塗布した後、塗膜を加熱してもよい。焼成温度は、30℃以上が好ましく、例えば透明基体2がガラスの場合は100〜750℃がより好ましく、150〜550℃がさらに好ましい。   The coating film may be baked when the antiglare film-forming liquid composition is applied to the transparent substrate 2, by heating the transparent substrate 2 and simultaneously with the application. The antiglare film-forming liquid composition is applied to the transparent substrate 2. After coating, the coating film may be heated. The baking temperature is preferably 30 ° C. or higher. For example, when the transparent substrate 2 is glass, 100 to 750 ° C. is more preferable, and 150 to 550 ° C. is more preferable.

防眩膜形成用液状組成物を塗布する際の透明基体2の表面温度は、60℃以下が好ましく、15〜50℃が好ましく、20〜40℃がより好ましい。透明基体2の表面温度が前記範囲の下限値以上であれば、防眩膜形成用液状組成物に含有される液状媒体(C)がすばやく蒸発するため、所望の凹凸を形成しやすい。透明基体2の表面温度が前記範囲の上限値以下であれば、透明基体2と防眩膜3との密着性が良好となる。なお、静電塗装ガンから噴霧される防眩膜形成用液状組成物の温度(塗布温度)も前記と同様である。   The surface temperature of the transparent substrate 2 when the antiglare film-forming liquid composition is applied is preferably 60 ° C. or less, preferably 15 to 50 ° C., and more preferably 20 to 40 ° C. If the surface temperature of the transparent substrate 2 is equal to or higher than the lower limit of the above range, the liquid medium (C) contained in the liquid composition for forming an antiglare film evaporates quickly, so that desired irregularities are easily formed. When the surface temperature of the transparent substrate 2 is not more than the upper limit of the above range, the adhesion between the transparent substrate 2 and the antiglare film 3 is good. The temperature (application temperature) of the antiglare film-forming liquid composition sprayed from the electrostatic coating gun is the same as described above.

以上で説明した実施形態の製造方法によれば、防眩膜形成用液状組成物を、好ましくは、回転霧化頭を備える静電塗装装置を用いて噴霧することで、優れた防眩性を有する防眩膜3を形成できる。これは、防眩膜形成用液状組成物の液滴が、静電塗装装置以外の従来汎用されているスプレー法(例えば、二流体ノズルを用いる方法)を適用した場合に比べて、緩やかな速度で透明基体2上に付着し、また、付着した液滴中の液状媒体(C)が迅速に揮発することで、液滴が透明基体2上で広がりにくく、付着した時点の形状を充分に保った状態で成膜されるためと考えられる。   According to the production method of the embodiment described above, the antiglare film-forming liquid composition is preferably sprayed using an electrostatic coating apparatus having a rotary atomizing head, thereby providing excellent antiglare properties. The anti-glare film 3 can be formed. This is because the droplets of the liquid composition for forming an antiglare film have a slower speed than when a conventionally used spray method other than the electrostatic coating apparatus is applied (for example, a method using a two-fluid nozzle). And the liquid medium (C) in the attached droplets volatilizes quickly, so that the droplets are difficult to spread on the transparent substrate 2 and the shape at the time of attachment is sufficiently maintained. This is presumably because the film is formed in a wet state.

また、前記で説明した実施形態の製造方法にあっては、防眩膜形成用液状組成物の粘度、塗布条件、焼成温度等によって、形成される防眩膜3の表面形状を制御できる。   Moreover, in the manufacturing method of embodiment described above, the surface shape of the anti-glare film 3 formed can be controlled by the viscosity of the liquid composition for forming an anti-glare film, coating conditions, the firing temperature, and the like.

(第2の実施形態)
図2は、本実施形態の防眩膜付基体10を示す模式断面図である。図3は、防眩膜付基体10を示す模式底面図である。図2及び図3に示す防眩膜付基体10は、図1に示す防眩膜付基体1の防眩膜3上に、低反射膜4と、防汚膜5とを備え、防眩膜付基体1の防眩膜3と反対の面の周縁部に印刷層6を備える点で、防眩膜付基体1と異なっているが、その他の構成は共通する。そのため防眩膜付基体10において、防眩膜付基体1に対応する構成には同一の符号を付してその詳細な説明を省略する。なお、低反射膜4、防汚膜5及び印刷層6のすべてを備えなくてもよく、何れか1種又は2種を備えていてもよい。
(Second Embodiment)
FIG. 2 is a schematic cross-sectional view showing the substrate 10 with an antiglare film according to this embodiment. FIG. 3 is a schematic bottom view showing the base 10 with the antiglare film. A substrate 10 with an antiglare film shown in FIGS. 2 and 3 includes a low reflection film 4 and an antifouling film 5 on the antiglare film 3 of the substrate 1 with an antiglare film shown in FIG. Although it differs from the base 1 with an anti-glare film in that the printed layer 6 is provided on the peripheral edge of the surface opposite to the anti-glare film 3 of the substrate 1 with coating, other configurations are common. Therefore, in the base | substrate 10 with an anti-glare film, the same code | symbol is attached | subjected to the structure corresponding to the base | substrate 1 with an anti-glare film, and the detailed description is abbreviate | omitted. In addition, it is not necessary to provide all of the low reflection film 4, the antifouling film 5, and the printing layer 6, and any one or two of them may be provided.

(低反射膜)
低反射膜4は防眩膜3上に備えられ、透明基体2への入射光の反射自体を抑え、反射像を不鮮明にする膜である。低反射膜4の構成として、例えば、波長550nmでの屈折率が1.9以上の高屈折率層と、波長550nmでの屈折率が1.6以下の低屈折率層とを積層した構成とできる。低反射膜4は光の反射を抑制できる構成であれば限定されない。
(Low reflective film)
The low reflection film 4 is provided on the antiglare film 3 and is a film that suppresses reflection of incident light to the transparent substrate 2 and blurs the reflected image. As a configuration of the low reflection film 4, for example, a configuration in which a high refractive index layer having a refractive index of 1.9 or more at a wavelength of 550 nm and a low refractive index layer having a refractive index of 1.6 or less at a wavelength of 550 nm are laminated. it can. The low reflection film 4 is not limited as long as it can suppress light reflection.

低反射膜4が、高屈折率層と、低屈折率層とを積層した構成である場合、低反射膜における高屈折率層と低屈折率層とは、それぞれ1層ずつ含む形態でよいが、それぞれ2層以上含む構成でもよい。高屈折率層と低屈折率層とをそれぞれ2層以上含む場合に、高屈折率層と低屈折率層とを交互に積層した形態が好ましい。   When the low reflective film 4 has a structure in which a high refractive index layer and a low refractive index layer are laminated, the high refractive index layer and the low refractive index layer in the low reflective film may include one layer each. Each may include two or more layers. In the case where two or more high refractive index layers and low refractive index layers are included, a form in which high refractive index layers and low refractive index layers are alternately laminated is preferable.

高屈折率層、低屈折率層の材料は特に限定されず、要求される低反射性の程度や生産性等を考慮して適宜選択できる。高屈折率層を構成する材料として、例えば酸化ニオブ(Nb)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化タンタル(Ta)、窒化ケイ素(Si)から選択された1種以上を好ましく使用できる。低屈折率層を構成する材料としては、酸化ケイ素(SiO)、SiとSnとの混合酸化物を含む材料、SiとZrとの混合酸化物を含む材料、SiとAlとの混合酸化物を含む材料から選択された1種以上を好ましく使用できる。 The materials for the high refractive index layer and the low refractive index layer are not particularly limited, and can be appropriately selected in consideration of the required low reflectivity and productivity. As a material constituting the high refractive index layer, for example, niobium oxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), silicon nitride (Si 3 N 4). One or more selected from (1) can be preferably used. The material constituting the low refractive index layer includes silicon oxide (SiO 2 ), a material containing a mixed oxide of Si and Sn, a material containing a mixed oxide of Si and Zr, and a mixed oxide of Si and Al. One or more selected from materials containing can be preferably used.

低反射膜4は、生産性や屈折率の観点から、高屈折率層が酸化ニオブ、酸化タンタル、窒化ケイ素から選択される1種からなる層であり、低屈折率層が酸化ケイ素からなる層である構成が好ましい。   The low reflective film 4 is a layer in which the high refractive index layer is made of one selected from niobium oxide, tantalum oxide, and silicon nitride from the viewpoint of productivity and refractive index, and the low refractive index layer is a layer made of silicon oxide. The structure which is is preferable.

低反射膜4を構成する各層を成膜する方法は特に限定されず、例えば、真空蒸着法、イオンビームアシスト蒸着法、イオンプレート法、スパッタリング法、プラズマCVD法等を使用できる。これらの成膜方法のなかで、スパッタリング法を用いることで、緻密で耐久性の高い膜を形成できるので好ましい。特に、パルススパッタリング法、ACスパッタリング法、デジタルスパッタリング法等のスパッタリング法が好ましい。   A method for forming each layer constituting the low reflective film 4 is not particularly limited, and for example, a vacuum deposition method, an ion beam assisted deposition method, an ion plate method, a sputtering method, a plasma CVD method, or the like can be used. Among these film forming methods, it is preferable to use a sputtering method because a dense and highly durable film can be formed. In particular, sputtering methods such as a pulse sputtering method, an AC sputtering method, and a digital sputtering method are preferable.

例えば、パルススパッタリング法により成膜する場合は、不活性ガスと酸素ガスとの混合ガス雰囲気のチャンバ内に、透明基体2を配置し、密着層形成材料として、所望の組成となるようにターゲットを選択して成膜する。このとき、チャンバ内の不活性ガスのガス種は特に限定されるものではなく、アルゴンやヘリウム等、各種不活性ガスを使用できる。パルススパッタリング法により高屈折率層及び低屈折率層を成膜する場合、各層の層厚の調整は、例えば、放電電力の調整、成膜時間の調整等により可能である。   For example, when a film is formed by a pulse sputtering method, the transparent substrate 2 is placed in a chamber of a mixed gas atmosphere of an inert gas and oxygen gas, and a target is formed as an adhesion layer forming material so as to have a desired composition. Select and deposit. At this time, the gas type of the inert gas in the chamber is not particularly limited, and various inert gases such as argon and helium can be used. When the high refractive index layer and the low refractive index layer are formed by the pulse sputtering method, the layer thickness of each layer can be adjusted, for example, by adjusting the discharge power, adjusting the film formation time, or the like.

本実施形態の防眩膜付基体10においては、防眩膜3がシリカを主成分とし、防眩膜3上に、高屈折率層と低屈折率層からなる低反射膜4を形成した場合に、高防眩性、低ヘイズ率に加えて、優れた低反射性を実現できる。   In the base 10 with the antiglare film of the present embodiment, the antiglare film 3 is mainly composed of silica, and the low reflection film 4 including the high refractive index layer and the low refractive index layer is formed on the antiglare film 3. In addition to high anti-glare properties and low haze ratio, excellent low reflectivity can be realized.

(防汚膜)
防汚膜5は、低反射膜4上に備えられる。防汚膜5は、表面への有機物、無機物の付着を抑制する膜、又は、表面に有機物、無機物が付着した場合においても、ふき取り等のクリーニングにより付着物が容易に除去できる効果をもたらす膜である。
(Anti-fouling film)
The antifouling film 5 is provided on the low reflection film 4. The antifouling film 5 is a film that suppresses the adhesion of organic substances and inorganic substances to the surface, or a film that provides an effect that the adhering substances can be easily removed by cleaning such as wiping even when organic substances or inorganic substances adhere to the surface. is there.

防汚膜5としては、例えば、撥水・撥油性を有し、得られる防眩膜付基体10に防汚性を付与できれば限定されないが、含フッ素有機ケイ素化合物を加水分解縮合反応により硬化させて得られる、含フッ素有機ケイ素化合物被膜からなることが好ましい。   The antifouling film 5 is not limited as long as it has water and oil repellency and can impart antifouling properties to the resulting antiglare film-coated substrate 10. However, the fluorine-containing organosilicon compound is cured by a hydrolysis condensation reaction. It is preferable that it consists of a fluorine-containing organosilicon compound film obtained.

また、防汚膜5の厚さは、例えば、防汚膜5が含フッ素有機ケイ素化合物被膜からなる場合、2〜30nmが好ましく、5〜20nmがより好ましい。防汚膜5の膜厚が2nm以上であれば、防汚性の他、防汚膜5の耐擦り性に優れるものとなる。また、防汚膜5の膜厚が30nm以下であれば、防汚膜5が形成された状態での防眩膜付基体10の防眩性やヘイズ等の光学特性が良好である。   The antifouling film 5 has a thickness of preferably 2 to 30 nm, more preferably 5 to 20 nm, for example, when the antifouling film 5 is made of a fluorine-containing organosilicon compound film. If the film thickness of the antifouling film 5 is 2 nm or more, the antifouling property and the abrasion resistance of the antifouling film 5 are excellent. Moreover, if the film thickness of the antifouling film 5 is 30 nm or less, the optical characteristics such as antiglare property and haze of the antiglare film-coated substrate 10 in a state where the antifouling film 5 is formed are good.

含フッ素有機ケイ素化合物被膜を形成する方法としては、パーフルオロアルキル基;パーフルオロ(ポリオキシアルキレン)鎖を含むフルオロアルキル基等のフルオロアルキル基を有するシランカップリング剤の組成物を、低反射膜4の表面に、スピンコート法、ディップコート法、キャスト法、スリットコート法、スプレーコート法等により塗布後必要に応じて加熱処理する方法、又は含フッ素有機ケイ素化合物を低反射膜4の表面に気相蒸着後、必要に応じて加熱処理する真空蒸着法等が挙げられる。密着性の高い含フッ素有機ケイ素化合物被膜を得るには、真空蒸着法が好ましい。真空蒸着法による含フッ素有機ケイ素化合物被膜の形成は、含フッ素加水分解性ケイ素化合物を含有する被膜形成用組成物を用いて行うことが好ましい。   As a method for forming a fluorine-containing organosilicon compound film, a composition of a silane coupling agent having a fluoroalkyl group such as a perfluoroalkyl group; a fluoroalkyl group containing a perfluoro (polyoxyalkylene) chain, 4 is applied to the surface of the low reflective film 4 by spin coating, dip coating, casting, slit coating, spray coating, etc., or by applying a heat treatment as necessary. Examples include a vacuum deposition method in which heat treatment is performed as necessary after vapor deposition. In order to obtain a fluorine-containing organosilicon compound film having high adhesion, vacuum deposition is preferred. The formation of the fluorine-containing organosilicon compound film by a vacuum deposition method is preferably performed using a film-forming composition containing a fluorine-containing hydrolyzable silicon compound.

被膜形成用組成物は、含フッ素加水分解性ケイ素化合物を含有する組成物であって、真空蒸着法による被膜形成が可能な組成物であれば制限ない。加水分解性ケイ素化合物は、化合物自体に加えて部分加水分解縮合物や部分加水分解共縮合物を含んでもよい。   The film-forming composition is not limited as long as it is a composition containing a fluorine-containing hydrolyzable silicon compound and can form a film by a vacuum deposition method. The hydrolyzable silicon compound may contain a partial hydrolysis condensate and a partial hydrolysis cocondensate in addition to the compound itself.

本実施形態の含フッ素有機ケイ素化合物被膜の形成に用いる含フッ素加水分解性ケイ素化合物として、具体的には、パーフルオロポリエーテル基、パーフルオロアルキレン基及びパーフルオロアルキル基からなる群から選ばれる1つ以上の基を有する含フッ素加水分解性ケイ素化合物が挙げられる。これらの基は加水分解性シリル基のケイ素原子に連結基を介して又は直接結合する含フッ素有機基として存在する。   Specifically, the fluorine-containing hydrolyzable silicon compound used for forming the fluorine-containing organosilicon compound film of this embodiment is selected from the group consisting of a perfluoropolyether group, a perfluoroalkylene group, and a perfluoroalkyl group. Examples thereof include fluorine-containing hydrolyzable silicon compounds having one or more groups. These groups exist as a fluorine-containing organic group bonded directly to the silicon atom of the hydrolyzable silyl group via a linking group.

このような含フッ素加水分解性ケイ素化合物を含む被膜形成用組成物を、低反射膜4表面に付着させ反応させ、含フッ素有機ケイ素化合物被膜が得られる。なお、具体的な真空蒸着方法、反応条件については従来公知の方法、条件等が適用できる。   A film-forming composition containing such a fluorine-containing hydrolyzable silicon compound is adhered to the surface of the low reflective film 4 and reacted to obtain a fluorine-containing organic silicon compound film. As specific vacuum deposition methods and reaction conditions, conventionally known methods and conditions can be applied.

このとき、防眩膜3の表面に、低反射膜4を形成せず、直接、防汚膜5を形成してもよい。この場合、前記のように、防眩膜3は、CF(CH)n−基を膜内部に含むことで、多孔質化が抑制され、多孔質に被膜形成用組成物がしみ込むという現象が生じない。そのため、防眩膜3との密着性に優れ、優れた防汚性を有する防汚膜5を得られる。 At this time, the antifouling film 5 may be formed directly on the surface of the antiglare film 3 without forming the low reflection film 4. In this case, as described above, the anti-glare film 3 includes CF 3 (CH 2 ) n − groups in the film, so that the formation of a porous film is suppressed and the film forming composition is soaked into the porous film. Does not occur. Therefore, the antifouling film 5 having excellent adhesion with the antiglare film 3 and excellent antifouling properties can be obtained.

防汚膜5は、例えば、公知のスプレー装置等を用いて被膜形成用組成物を塗布して成膜できる。スプレー装置のノズルを防眩膜付基体1に対し一方の端部から他方の端部に向けた第1の方向に平行移動させて被膜形成用組成物を塗布する。他方の端部に到達したノズルを所定の間隔(以下、ピッチと称する。)だけ第1の方向に対して垂直な第2の方向に平行移動させる。他方の端部から一方の端部に向けて再度ノズルを平行移動させる。これを繰り返し、塗布領域が防眩膜付基体1の全面に亘るように塗布する。   The antifouling film 5 can be formed, for example, by applying a film forming composition using a known spray device or the like. The film forming composition is applied by moving the nozzle of the spray device in the first direction from one end to the other end with respect to the substrate 1 with antiglare film. The nozzle that has reached the other end is translated in a second direction perpendicular to the first direction by a predetermined interval (hereinafter referred to as pitch). The nozzle is again translated from the other end toward the one end. This is repeated so that the coating region extends over the entire surface of the antiglare film-coated substrate 1.

ピッチが小さい場合は、ピッチが大きい場合と比較してノズルが防眩膜付基体1上を往復する回数が多いためノズルの移動速度を早くすることで単位面積当たりへの吐出量を一定にできると考えられる。表1にノズルの移動速度とピッチによる基板上のF原子の量の測定結果を示す。   When the pitch is small, the number of times that the nozzle reciprocates on the antiglare film-coated substrate 1 is larger than when the pitch is large, so that the discharge amount per unit area can be made constant by increasing the moving speed of the nozzle. it is conceivable that. Table 1 shows the measurement results of the amount of F atoms on the substrate according to the moving speed and pitch of the nozzle.

Figure 2018063419
Figure 2018063419

表1の結果より、単位面積当たりへの吐出量を一定とした場合であっても、ノズルの移動速度を遅くしてピッチを大きくするよりも、ノズルの移動速度を早くしてピッチを小さくする方が被膜形成用組成物の塗着効率が良いことが分かる。特に、ピッチを12mm以下とすることで被膜形成用組成物の塗着効率が良くなるため好ましい。表1の結果は防眩膜を成膜していないガラス板に対して被膜形成用組成物を塗布し、F原子の量を測定したものであるが、防眩膜付基体1に対しても同様の傾向となる。   From the results shown in Table 1, even when the discharge amount per unit area is constant, the nozzle moving speed is made faster and the pitch is made smaller than the nozzle moving speed is made slower and the pitch is made larger. It can be seen that the coating efficiency of the film-forming composition is better. In particular, the pitch is preferably 12 mm or less because the coating efficiency of the film-forming composition is improved. The results in Table 1 are obtained by applying a film-forming composition to a glass plate not formed with an antiglare film and measuring the amount of F atoms. The same tendency is observed.

(印刷層)
印刷層6は、例えば、表示の視認性と美観を高める目的で、携帯機器等の画像表示装置の外周近傍に配置された配線回路や、携帯機器の筺体と防眩膜付基体10の接着部等を隠ぺいするように必要に応じて備えられる。ここで、周縁部とは、外周から中央部に向かって、所定の幅を有する帯状領域を意味する。印刷層6は、透明基体2の主面の反対側の面の周縁全周に備えられてもよく、周縁一部に備えられてもよい。
(Print layer)
The printed layer 6 is, for example, a wiring circuit arranged in the vicinity of the outer periphery of an image display device such as a portable device or an adhesive portion between the casing of the portable device and the antiglare film-coated substrate 10 for the purpose of enhancing the visibility and aesthetics of the display Provided as necessary to conceal etc. Here, the peripheral portion means a band-like region having a predetermined width from the outer periphery toward the central portion. The print layer 6 may be provided on the entire periphery of the surface opposite to the main surface of the transparent substrate 2 or may be provided on a part of the periphery.

印刷層6は、例えば、前記配線回路や接着部を隠ぺい可能な幅で、目的に応じて所望の色で形成される。印刷層6は、例えば、インクを用いて形成される。   The print layer 6 is formed in a desired color according to the purpose, for example, with a width that can conceal the wiring circuit and the adhesive portion. The print layer 6 is formed using, for example, ink.

インクとしては、例えば、セラミックス焼成体等を含む無機系インク、染料又は顔料のような色料と有機樹脂を含む有機系インクが挙げられる。例えば、印刷層6を黒色で形成する場合、黒色の無機系インクに含有されるセラミックスとしては、酸化クロム、酸化鉄などの酸化物、炭化クロム、炭化タングステン等の炭化物、カーボンブラック、雲母等が挙げられる。黒色の印刷層6は、前記セラミックスとシリカからなるインクを溶融し、所望のパターンで印刷した後、乾燥して得られる。この無機系インクは、溶融、乾燥工程を必要とし、一般にガラス専用インクとして用いられている。   Examples of the ink include inorganic ink containing a ceramic fired body and the like, and organic ink containing a colorant such as a dye or a pigment and an organic resin. For example, when the printing layer 6 is formed in black, ceramics contained in the black inorganic ink include oxides such as chromium oxide and iron oxide, carbides such as chromium carbide and tungsten carbide, carbon black, mica, and the like. Can be mentioned. The black printed layer 6 is obtained by melting the ink made of the ceramic and silica, printing it in a desired pattern, and then drying it. This inorganic ink requires a melting and drying process and is generally used as a glass-only ink.

有機系インクは、所望の色の染料又は顔料と有機系樹脂を含む組成物である。有機系樹脂としては、エポキシ系樹脂、アクリル系樹脂、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリアリレート、ポリカーボネート、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、フェノール樹脂、透明ABS樹脂、ポリウレタン、ポリメタクリル酸メチル、ポリビニル、ポリビニルブチラール、ポリエーテルエーテルケトン、ポリエチレン、ポリエステル、ポリプロピレン、ポリアミド、ポリイミド等のホモポリマー、及びこれらの樹脂のモノマーと共重合可能なモノマーとのコポリマーからなる樹脂が挙げられる。   The organic ink is a composition containing a desired color dye or pigment and an organic resin. Organic resins include epoxy resins, acrylic resins, polyethylene terephthalate, polyethersulfone, polyarylate, polycarbonate, acrylonitrile-butadiene-styrene (ABS) resin, phenol resin, transparent ABS resin, polyurethane, polymethyl methacrylate , Polyvinyl, polyvinyl butyral, polyetheretherketone, polyethylene, polyester, polypropylene, polyamide, polyimide, and other homopolymers, and resins composed of copolymers of these resins with monomers.

前記無機系インク及び有機系インクのなかでは、乾燥温度が低いことから、有機系インクの使用が好ましい。また、耐薬品性の観点から、顔料を含む有機系インクが好ましい。   Among the inorganic inks and organic inks, it is preferable to use organic inks because the drying temperature is low. From the viewpoint of chemical resistance, an organic ink containing a pigment is preferable.

印刷層6は、透明基体2の主面と反対の面の所定の箇所に前記インクが印刷されて形成される。印刷法としては、バーコート法、リバースコート法、グラビアコート法、ダイコート法、ロールコート法、スクリーン法、インクジェット法等があるが、簡便に印刷できるうえ、種々の基材に所望のサイズで印刷できるため、スクリーン印刷法が好ましい。印刷層6は複数の層を積層した複層からなってもよく、単一の層からなってもよい。印刷層6が複層からなる場合、印刷層6は、前記インクの印刷、乾燥を繰り返し形成できる。   The print layer 6 is formed by printing the ink on a predetermined portion of the surface opposite to the main surface of the transparent substrate 2. Printing methods include bar coating method, reverse coating method, gravure coating method, die coating method, roll coating method, screen method, ink jet method, etc., but it can be printed easily and printed on various substrates in a desired size. Therefore, the screen printing method is preferable. The print layer 6 may be composed of a plurality of layers in which a plurality of layers are laminated, or may be composed of a single layer. When the printing layer 6 is composed of multiple layers, the printing layer 6 can be repeatedly formed by printing and drying the ink.

印刷層6の備えられた防眩膜付基体10を画像表示装置等の前面板として用いる場合、印刷層側が、画像表示装置側に配置されるように、防眩膜付基体10が画像表示装置の視認側(前面)に設けられる。防眩膜付基体10の設けられた画像表示装置を、前面から視認すると、その周縁部に黒色印刷部が、周縁部の内側に表示部が、それぞれ、防眩膜3及び透明基体2を介して視認される。   When the substrate 10 with the antiglare film provided with the printing layer 6 is used as a front plate of an image display device or the like, the substrate 10 with the antiglare film is arranged so that the printing layer side is disposed on the image display device side. Is provided on the viewing side (front surface). When the image display device provided with the base 10 with the antiglare film is viewed from the front, the black printed portion is on the peripheral portion and the display portion is on the inner side of the peripheral portion via the antiglare film 3 and the transparent base 2, respectively. Is visually recognized.

このとき、前面板のヘイズが高いと黒色印刷部が白濁したように見えて、表示部が表示パネルに通電しない状態で黒色となる場合に黒色印刷部と、前面板を通して見られる表示部の黒色の間に境界が生じて美観を損ねることがある。本実施形態の防眩膜付基体10は、ヘイズを低くしているので、黒色印刷部と前面板を通して見られる表示部の黒色の間に境界が生じにくく、これらの境界なく連続的に視認されて、美観に優れたものとなる。   At this time, when the haze of the front plate is high, the black printed portion appears clouded, and when the display portion turns black without energizing the display panel, the black printed portion and the black portion of the display portion seen through the front plate A boundary may be created between them and the beauty may be impaired. Since the base 10 with the antiglare film of the present embodiment has a low haze, no boundary is generated between the black printed portion and the black color of the display portion seen through the front plate, and the substrate is visually recognized without these boundaries. It is excellent in aesthetics.

<防眩膜付基体の用途>
本発明の防眩膜付基体の用途は、例えば、車両用透明部品(ヘッドライトカバー、サイドミラー、フロント透明基板、サイド透明基板、リア透明基板、インスツルメントパネル表面等)、メータ、建築窓、ショーウインドウ、ディスプレイ(ノート型パソコン、モニタ、LCD、PDP、ELD、CRT、PDA等)、LCDカラーフィルタ、タッチパネル用基板、ピックアップレンズ、光学レンズ、眼鏡レンズ、カメラ部品、ビデオ部品、CCD用カバー基板、光ファイバ端面、プロジェクタ部品、複写機部品、太陽電池用透明基板(カバーガラス等)、携帯電話窓、バックライトユニット部品(導光板、冷陰極管等)、バックライトユニット部品液晶輝度向上フィルム(プリズム、半透過フィルム等)、液晶輝度向上フィルム、有機EL発光素子部品、無機EL発光素子部品、蛍光体発光素子部品、光学フィルタ、光学部品の端面、照明ランプ、照明器具のカバー、増幅レーザー光源、反射防止フィルム、偏光フィルム、農業用フィルム等である。
<Use of substrate with antiglare film>
Applications of the base with an antiglare film of the present invention include, for example, vehicle transparent parts (headlight covers, side mirrors, front transparent substrates, side transparent substrates, rear transparent substrates, instrument panel surfaces, etc.), meters, architectural windows , Show windows, displays (notebook computers, monitors, LCDs, PDPs, ELDs, CRTs, PDAs, etc.), LCD color filters, touch panel substrates, pickup lenses, optical lenses, eyeglass lenses, camera parts, video parts, CCD covers Substrate, optical fiber end face, projector part, copier part, transparent substrate for solar cell (cover glass, etc.), mobile phone window, backlight unit part (light guide plate, cold cathode tube, etc.), backlight unit part, LCD brightness enhancement film (Prism, transflective film, etc.), LCD brightness enhancement film, organic EL Optical device components, inorganic EL light emitting device component, a phosphor light emitting device component, an optical filter, the end face of the optical component, the illumination lamp, the cover of the luminaire, amplified laser light source, an antireflection film, a polarizing film, an agricultural film, or the like.

本発明の防眩膜付基体の用途は、高い水準で優れた防眩性と低いヘイズが両立出来る点から、輸送機の内装物品が好ましく、車載物品がさらに好ましい。車載物品は、画像表示装置を備える車載システム(カーナビゲーション、インストルメントパネル、ヘッドアップディスプレイ、ダッシュボード、センターコンソール、シフトノブ)が好ましい。   The use of the antiglare film-coated substrate of the present invention is preferably an interior article for a transport aircraft, and more preferably an in-vehicle article, from the viewpoint that both excellent antiglare properties and low haze can be achieved at a high level. The in-vehicle article is preferably an in-vehicle system (car navigation system, instrument panel, head-up display, dashboard, center console, shift knob) including an image display device.

以下、実施例を示して本発明を詳細に説明するが、以下の実施例に限定されない。例1〜28のうち、例1〜17は実施例、例18〜28は比較例である。
各例で使用した評価方法及び材料を以下に示す。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in detail, it is not limited to a following example. Of Examples 1 to 28, Examples 1 to 17 are Examples, and Examples 18 to 28 are Comparative Examples.
The evaluation methods and materials used in each example are shown below.

<光学特性評価方法>
(粗さ曲線のスキューネスRsk、算術平均粗さRa、粗さ曲線の要素平均長さRSm)
防眩膜の表面の、粗さ曲線のスキューネスRsk、算術平均粗さRa、粗さ曲線の要素の平均長さRSmを、それぞれ、東京精密社製SURFCOM1500SD3−12を用いてJIS B0601−2001に規定されている方法に従って測定した。
<Optical property evaluation method>
(Roughness curve skewness Rsk, arithmetic average roughness Ra, roughness curve element average length RSm)
The roughness curve skewness Rsk, arithmetic average roughness Ra, and average length RSm of roughness curve elements on the surface of the antiglare film are defined in JIS B0601-2001 using SURFCOM 1500SD3-12 manufactured by Tokyo Seimitsu Co., Ltd. Measured according to the method being used.

(平均膜厚)
防眩膜の膜厚を次のように測定した。集束イオンビーム加工により処理した防眩膜断面を1万〜10万倍の倍率でSEM観察し、ガラスと防眩膜の界面から防眩膜の表面までの厚みを撮影範囲全体にわたり測定した。撮影範囲全体にわたる膜厚は、デジタルデータ上で防眩膜の断面全体のピクセル数をカウントし、スケールバー及び膜厚と垂直な方向のピクセル数から算出できる。また、市販の画像処理ソフトを用いて算出してもよい。SEM観察は膜厚と垂直な方向に70μmの視野以上の観察を行い、平均値を平均膜厚とした。
(Average film thickness)
The film thickness of the antiglare film was measured as follows. The cross section of the antiglare film treated by focused ion beam processing was observed by SEM at a magnification of 10,000 to 100,000 times, and the thickness from the interface between the glass and the antiglare film to the surface of the antiglare film was measured over the entire imaging range. The film thickness over the entire imaging range can be calculated from the number of pixels in the direction perpendicular to the scale bar and film thickness by counting the number of pixels in the entire cross section of the antiglare film on the digital data. Further, it may be calculated using commercially available image processing software. In the SEM observation, the observation was performed over a visual field of 70 μm in the direction perpendicular to the film thickness, and the average value was defined as the average film thickness.

(F量)
防眩膜中のF量は、以下の方法によって測定した。フッ素(F)を1.0質量%含む比重2.48のガラスを標準サンプルとした。リガク社製ZSX100eを用い、測定径30mm、測定線F−Kα、フィルタOUT、スリットStd.、分光結晶RX35、検出器PC、PHA100−300、ピーク角度38.794deg.(20sec)、B.G.角度43.000deg.(10sec)の条件で、測定対象膜中のフッ素含有量(質量%)と、標準サンプル中のフッ素含有量(質量%)をそれぞれ測定した。上記で測定された測定対象膜中のフッ素含有量の測定値を標準サンプルのフッ素含有量の測定値で除して、F量を算出した。
(F amount)
The amount of F in the antiglare film was measured by the following method. A glass having a specific gravity of 2.48 containing 1.0% by mass of fluorine (F) was used as a standard sample. Using ZSX100e manufactured by Rigaku Corporation, measurement diameter 30 mm, measurement line F-Kα, filter OUT, slit Std. , Spectral crystal RX35, detector PC, PHA100-300, peak angle 38.794 deg. (20 sec), B.E. G. Angle 43.000 deg. Under the condition of (10 sec), the fluorine content (mass%) in the measurement target film and the fluorine content (mass%) in the standard sample were measured. The amount of F was calculated by dividing the measured value of the fluorine content in the measurement target film measured above by the measured value of the fluorine content of the standard sample.

(ヘイズ(Haze))
防眩膜付基体のヘイズ(%)は、ヘイズメーター(村上色彩研究所社製HR−100型)を用いて、JIS K7136:2000に規定されている方法に従って測定した。
(Haze)
The haze (%) of the base with an antiglare film was measured according to the method specified in JIS K7136: 2000 using a haze meter (HR-100 model, manufactured by Murakami Color Research Laboratory).

(60°鏡面光沢度(Gloss))
防眩膜付基体の表面の光沢度として60゜鏡面光沢度(%)を測定した。60゜鏡面光沢度は、JIS Z8741:1997の60゜鏡面光沢度に規定されている方法で、オールインワン光沢度計(ローポイントインスツルメンツ社製、Rhоpоint IQ)を用い、裏面(主面と反対側の面)側に黒色フェルトを敷いて、防眩膜付基体の裏面反射を消し、防眩膜のほぼ中央部で測定した。
(60 ° specular gloss (Gloss))
As the glossiness of the surface of the substrate with antiglare film, 60 ° specular glossiness (%) was measured. The 60 ° specular glossiness is a method specified in 60 ° specular glossiness of JIS Z8741: 1997, using an all-in-one gloss meter (Rohopint IQ, manufactured by Low Point Instruments Co., Ltd.), and the back surface (on the opposite side of the main surface) A black felt was laid on the (surface) side, the back surface reflection of the substrate with antiglare film was eliminated, and the measurement was made at almost the center of the antiglare film.

(防眩性指標値(Diffusion))
眩膜付基体の防眩性指標値の測定は、日本電色工業株式会社製変角光度計、GC5000Lを用いて、以下の手順で行った。
(Anti-glare index value (Diffusion))
The measurement of the antiglare index value of the substrate with a glare film was performed by the following procedure using a variable angle photometer, GC5000L, manufactured by Nippon Denshoku Industries Co., Ltd.

防眩膜付基体の厚さ方向と平行な方向を0゜とする。このとき、防眩膜付基体の主面側において、角度θ=−45゜±0.5゜の方向(以下「角度−45°の方向」ともいう。)から、防眩膜付基体の主面に、第1の光を照射する。第1の光は、防眩膜付基体の主面で反射される。防眩膜付基体の主面から角度45°の方向に反射された45゜反射光の輝度を測定して、「45゜反射光の輝度」とする。   A direction parallel to the thickness direction of the antiglare-coated substrate is defined as 0 °. At this time, on the main surface side of the base with an antiglare film, from the direction of angle θ = −45 ° ± 0.5 ° (hereinafter also referred to as “angle −45 ° direction”), The surface is irradiated with the first light. The first light is reflected by the main surface of the base with the antiglare film. The luminance of 45 ° reflected light reflected in the direction of an angle of 45 ° from the main surface of the substrate with the antiglare film is measured to obtain “45 ° reflected light”.

次に、防眩膜付基体1の主面で反射された光の輝度を測定する角度θを、5゜〜85゜の範囲で変化させ、同様の操作を実施し、防眩膜付基体1の主面で反射される5゜〜85゜の範囲における反射光の輝度分布を測定して合計し、「全反射光の輝度」とする。   Next, the angle θ for measuring the luminance of the light reflected by the main surface of the substrate 1 with the antiglare film is changed in the range of 5 ° to 85 °, and the same operation is performed. The luminance distribution of the reflected light in the range of 5 ° to 85 ° reflected by the main surface is measured and summed to obtain “total reflected light luminance”.

次に、前記の式(1)から、防眩性指標値(Diffusion)を算定する。   Next, an anti-glare index value (Diffusion) is calculated from the equation (1).

(ぎらつき指標値(Sparkle)測定)
液晶ディスプレイ(i−Phone4、アップルインコーポレイテッド社製、ピクセル密度326ppi)の表示面の上に防眩膜付基体を、防眩膜の形成された主面(凹凸を有する表面)が上になるように置き、アイシステム社製アイスケールISC−Aを用いてぎらつき指標値を測定した。
(Glitter index value (Sparkle) measurement)
A substrate with an antiglare film is placed on the display surface of a liquid crystal display (i-Phone4, manufactured by Apple Inc., pixel density of 326 ppi) so that the main surface (surface with irregularities) on which the antiglare film is formed Then, the index value of glare was measured using an eye scale ISC-A manufactured by Eye System.

(温度耐久性)
防眩膜の耐久性は、ヒートショック試験(−40℃で30分と90℃で30分の条件を交互に繰り返す処理を、500サイクル)において、試験前後のヘイズ変化が0.5%以上であったものを「不良」、0.5%未満であったものを「良」とした。
(Temperature durability)
The durability of the anti-glare film is such that the haze change before and after the test is 0.5% or more in the heat shock test (treatment of alternately repeating the conditions of −40 ° C. for 30 minutes and 90 ° C. for 30 minutes for 500 cycles). What was there was rated as “bad”, and what was less than 0.5% as “good”.

(ガン高さ)
防眩膜形成溶液状組成物を噴霧する静電塗装ガン(後述の静電自動ガン)の中心部の最下端から透明基体表面までの距離をガン高さとして表記した。
(Gun height)
The distance from the lowermost end of the center of an electrostatic coating gun (electrostatic automatic gun described later) spraying the antiglare film-forming solution-like composition to the surface of the transparent substrate was expressed as the gun height.

<材料>
(シリカ前駆体)
シリカ前駆体(A)として、テトラエトキシシラン及び有機シランを用いた。
有機シランは、トリフルオロプロピルトリメトキシシラン、ビストリメトキシシリルエタン、プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリエトキシシラン(いずれも信越シリコーン社製)のいずれか1種を用いた。
<Material>
(Silica precursor)
Tetraethoxysilane and organosilane were used as the silica precursor (A).
As the organic silane, any one of trifluoropropyltrimethoxysilane, bistrimethoxysilylethane, propyltrimethoxysilane, hexyltrimethoxysilane, and octyltriethoxysilane (all manufactured by Shin-Etsu Silicone) was used.

(鱗片状粒子分散液)
鱗片状粒子分散液としてSLV液(AGCエスアイテック社製、サンラブリーLFS HN150を解砕し、水に分散させた鱗片状シリカ粒子の分散液)を用いた。SLV液中の鱗片状シリカ粒子の平均粒子径:175nm、平均アスペクト比(平均粒子径/平均厚み):80、鱗片状シリカ粒子濃度5質量%である。
(Scaly particle dispersion)
As a scaly particle dispersion, an SLV liquid (a dispersion of scaly silica particles obtained by crushing Sun Lovely LFS HN150 manufactured by AGC S-Tech Co., Ltd. and dispersing in water) was used. The average particle diameter of the flaky silica particles in the SLV liquid is 175 nm, the average aspect ratio (average particle diameter / average thickness) is 80, and the flaky silica particle concentration is 5% by mass.

(液状媒体)
液状媒体として、ソルミックス(登録商標)AP−11(日本アルコール販売社製)に、ジアセトンアルコール又はプロピレングリコールを混合したものを用いた。ソルミックスAP−11は、エタノール85質量%、イソプロピルアルコール10質量%、メタノール5質量%の混合溶媒である。
(Liquid medium)
As the liquid medium, Solmix (registered trademark) AP-11 (manufactured by Nippon Alcohol Sales Co., Ltd.) mixed with diacetone alcohol or propylene glycol was used. Solmix AP-11 is a mixed solvent of 85% by mass of ethanol, 10% by mass of isopropyl alcohol, and 5% by mass of methanol.

(例1)
テトラエトキシシランと、有機シランとしてトリフルオロプロピルトリメトキシシラン、SLV液を、含フッ素シリカ前駆体(テトラエトキシシラン、有機シラン、SLV粒子)のSiO換算固形分濃度が3.11質量%であり、各成分の固形分の全量に対する量が表2の割合となるように調合した。このとき、前記液状媒体を用いて、液状媒体を、マグネチックスターラーを用いて撹拌しながら、これに、テトラエトキシシラン、有機シラン、SLV液を添加し、25℃にて30分間混合した。その後、濃度60質量%の硝酸水溶液を、前記のテトラエトキシシラン、トリフルオロプロピルトリメトキシシラン、SLV液及び液状媒体の混合液の量に対して0.54質量%滴下し、さらに、60℃で60分間混合して、防眩膜形成用液状組成物の前駆体液を得た。
(Example 1)
Tetraethoxysilane, trifluoropropyltrimethoxysilane as organic silane, and SLV liquid, and the fluorine-containing silica precursor (tetraethoxysilane, organic silane, SLV particles) has a solid content concentration in terms of SiO 2 of 3.11% by mass. The amount of each component relative to the total amount of solids was adjusted to the ratio shown in Table 2. At this time, tetraethoxysilane, organosilane, and SLV liquid were added to the liquid medium while stirring the liquid medium using a magnetic stirrer, and mixed at 25 ° C. for 30 minutes. Thereafter, a nitric acid aqueous solution having a concentration of 60% by mass was dropped by 0.54% by mass with respect to the amount of the mixture of tetraethoxysilane, trifluoropropyltrimethoxysilane, SLV liquid and liquid medium, and further at 60 ° C. The mixture was mixed for 60 minutes to obtain a precursor liquid of a liquid composition for forming an antiglare film.

前記で得られた前駆体液を、表2の固形分濃度となるように、AP−11で希釈することで防眩膜形成用液状組成物を得た。   The precursor liquid obtained above was diluted with AP-11 so that the solid content concentration shown in Table 2 was obtained, thereby obtaining a liquid composition for forming an antiglare film.

透明基体としては、旭硝子社製化学強化用特殊ガラスDragontrail(登録商標)(サイズ:100mm×100mm、厚さ:1.1mm)に対して、KNO溶融塩を用いて、410℃で2.5時間の化学強化処理を施したガラス基体を使用した。化学強化処理の施されたガラス基体は、圧縮応力層深さが25μm、表面圧縮応力が750MPaであった。 As the transparent substrate, manufactured by Asahi Glass Co., Ltd. Chemical strengthening special glass Dragontrail (TM) (Size: 100 mm × 100 mm, thickness: 1.1 mm) with respect to, with KNO 3 molten salt, 2.5 410 ° C. A glass substrate subjected to chemical strengthening treatment for hours was used. The glass substrate subjected to the chemical strengthening treatment had a compressive stress layer depth of 25 μm and a surface compressive stress of 750 MPa.

前記化学強化処理の施されたガラス基体(透明基体)の表面を中性洗剤で洗浄し、その後、純水で洗浄して、乾燥させた。   The surface of the glass substrate (transparent substrate) subjected to the chemical strengthening treatment was washed with a neutral detergent, then washed with pure water and dried.

前記で得られた防眩膜形成用液状組成物を、静電塗装装置(液体静電コーター、旭サナック社製)によって、洗浄、乾燥後の透明基体上に塗布して塗膜を形成した。静電塗装装置の静電塗装ガンとしては、回転霧化式静電自動ガン(旭サナック社製、サンベル、ESA120、カップ径70mm)を用いた。   The liquid composition for forming an antiglare film obtained above was applied onto a transparent substrate after washing and drying with an electrostatic coating apparatus (liquid electrostatic coater, manufactured by Asahi Sunac Corporation) to form a coating film. As the electrostatic coating gun of the electrostatic coating apparatus, a rotary atomizing electrostatic automatic gun (manufactured by Asahi Sunac Corporation, Sambel, ESA120, cup diameter 70 mm) was used.

静電塗装装置のコーティングブース内の温度を25±3℃の範囲内、湿度を50%±10%の範囲内に調節した。静電塗装装置のチェーンコンベア上に、あらかじめ30℃±3℃に加熱しておいた洗浄済みの透明基体を、ステンレス板を介して置いた。チェーンコンベアで3.0m/分で等速搬送しながら、ガラス基体のトップ面(フロート法による製造時に溶融スズに接した面の反対側の面)に、表2に示すガン高さによる静電塗装法によって、25±3℃の範囲内の温度の防眩膜形成用液状組成物を2回塗布した後、大気中、450℃で30分間焼成して防眩膜を形成し、防眩膜付基体を得た。得られた防眩膜付基体について、前記の評価を行った。結果を表3に示す。   The temperature in the coating booth of the electrostatic coating apparatus was adjusted within the range of 25 ± 3 ° C. and the humidity within the range of 50% ± 10%. A cleaned transparent substrate that had been heated to 30 ° C. ± 3 ° C. in advance was placed on a chain conveyor of the electrostatic coating apparatus via a stainless steel plate. Electrostatic discharge with the gun height shown in Table 2 on the top surface of the glass substrate (the surface opposite to the surface in contact with molten tin at the time of manufacturing by the float process) while transporting at a constant speed of 3.0 m / min with a chain conveyor After applying twice the liquid composition for forming an antiglare film having a temperature within a range of 25 ± 3 ° C. by a coating method, the antiglare film is formed by baking at 450 ° C. for 30 minutes in the air. An attached substrate was obtained. Said evaluation was performed about the obtained base | substrate with an anti-glare film. The results are shown in Table 3.

(例2〜28)
有機シランの種類および量、テトラエトキシシラン及びSLV液の量、各成分の固形分の全量に対する量が表2の割合となるように調合した他は例1と同様の操作によって、各例の防眩膜形成用液状組成物を得た。得られた防眩膜形成用液状組成物を用いて、表2のガン高さとし、例1と同様に、防眩膜付基体を製造し、得られた防眩膜付基体について、前記の評価を行った。結果を表3に示す。例16のみは、防眩膜形成用液状組成物の塗布回数を1回とした。
(Examples 2-28)
The same procedure as in Example 1 was applied except that the types and amounts of organosilane, the amounts of tetraethoxysilane and SLV liquid, and the amounts of each component relative to the total amount of solids were adjusted to the ratios shown in Table 2. A liquid composition for forming a glare film was obtained. Using the obtained liquid composition for forming an antiglare film, the gun height shown in Table 2 was used, and in the same manner as in Example 1, a substrate with an antiglare film was produced. Went. The results are shown in Table 3. Only in Example 16, the number of times of application of the liquid composition for forming an antiglare film was set to one.

また、前記静電塗装装置の回転霧化式静電自動ガンから吐出された防眩膜形成用液状組成物の液滴の粒径(吐出粒径)を、日本レーザー社製画像解析式粒度分布測定システムVisiSize6を用いて測定を行った。吐出粒径の測定条件は次のとおりである。   In addition, the particle size (discharge particle size) of the liquid composition for forming the antiglare film discharged from the rotary atomizing electrostatic automatic gun of the electrostatic coating apparatus is determined by an image analysis type particle size distribution manufactured by Nippon Laser Co., Ltd. Measurement was performed using the measurement system VisiSize6. The measurement conditions of the discharge particle diameter are as follows.

(測定条件)
スプレー種類:回転霧化式静電自動ガン
ガン高さ:基板表面からカップ先端まで235mm
測定位置:ガラス基体表面からの高さ60mmで、回転霧化式静電自動ガンのカップ中心の真下から水平方向に測定位置をずらして測定したときに、防眩膜形成用液状組成物の液滴の飛来頻度が最大となる位置
測定粒子数:1000個
平均粒径の算出:1000個測定した粒径につきザウター平均粒径を算出した。
各測定位置における測定領域:2623μm(高さ)×1475μm(幅)×1795μm(奥行)
(Measurement condition)
Spray type: Rotating atomizing electrostatic automatic gun Gun height: 235mm from substrate surface to cup tip
Measurement position: liquid composition for forming an antiglare film when measured at a height of 60 mm from the surface of the glass substrate and shifted in the horizontal direction from directly below the center of the cup of the rotary atomizing electrostatic automatic gun. Position at which drop flying frequency becomes maximum Number of measured particles: 1000 particles Calculation of average particle size: Sauter average particle size was calculated for 1000 measured particle sizes.
Measurement area at each measurement position: 2623 μm (height) × 1475 μm (width) × 1795 μm (depth)

(測定結果)
例1〜28のうち、ガン高さ235mmの例において、基板表面からの高さ60mmで、ガンのカップ中心から水平方向に測定位置をずらして測定したときにザウター平均粒径が最大となる位置でのザウター平均粒径は、いずれも10.7μm±1μmであった。
(Measurement result)
Among Examples 1 to 28, in an example where the gun height is 235 mm, the position where the Sauter average particle diameter becomes maximum when the measurement position is shifted in the horizontal direction from the center of the gun cup at a height of 60 mm from the substrate surface. The Sauter average particle diameter was 10.7 μm ± 1 μm.

Figure 2018063419
Figure 2018063419

Figure 2018063419
Figure 2018063419

表2、3より、実施例の防眩膜付基体(例1〜17)では、防眩性指標値が、0.05以上で、ヘイズが8以下を得られており、優れた防眩性と低いヘイズが両立できることが分かる。比較例の防眩膜付基体(例18〜28)では、防眩性指標値が良好な結果となったが、ヘイズが高くなり視認性は悪化した。これは、Rskが1.3超となっていることが原因と考えられる。よって、本発明によると、優れた防眩性と低いヘイズが両立した防眩性付基体が得られることが分かった。   From Tables 2 and 3, the antiglare film-coated substrates of Examples (Examples 1 to 17) have an antiglare index value of 0.05 or more and a haze of 8 or less, and excellent antiglare properties. And low haze can be achieved. In the substrate with antiglare film of Examples (Examples 18 to 28), the antiglare index value was good, but the haze was high and the visibility was deteriorated. This is considered to be because Rsk is over 1.3. Therefore, according to this invention, it turned out that the base | substrate with an anti-glare property in which the outstanding anti-glare property and low haze were compatible was obtained.

<油脂拭取り性評価試験>
油脂拭取り性は以下のようにして実施した。清浄な防眩膜付基体の防眩膜に、油脂として花王株式会社製ニベアクリーム0.05gを乗せた。次にその上に1kgの荷重を乗せた底面がφ15mmのシリコン栓を乗せることで、シリコン栓に油脂を転写した。続いて油脂を転写した1kgの荷重を乗せたシリコン栓を、紙ウェスに80秒間乗せ、余剰な油脂を除去した。続いて、1kgの荷重を乗せたシリコン栓をサンプル表面に乗せ、サンプル表面に油脂を転写し、評価サンプルとした。
評価サンプルの油脂上を、底面積が20mm×20mmで100gの荷重を乗せた短冊状にカットした拭取り布(東レ株式会社製トレシーMK MK24H−CPMK)に転写させ油脂が視認できなくなるまでに要する回数をカウントした。拭取り布の油脂に触れた部分は再利用せず、常に清浄な箇所が油脂にあたるように拭取りを実施した。20回以内に拭取れれば拭き取り性良好として「良」、10回以内であれば非常に良好として「優良」とした。拭取りに21回以上要した場合には「不良」とし、その結果を表4に示した。
<Oil and fat wiping property evaluation test>
The oil and fat wiping property was carried out as follows. 0.05 g of Nivea cream manufactured by Kao Corporation was placed as an oil on the anti-glare film of a clean substrate with an anti-glare film. Next, oil and fat were transferred to the silicone plug by placing a silicone plug having a bottom of φ15 mm on which a 1 kg load was placed. Subsequently, a silicone plug with 1 kg of load to which the oil and fat was transferred was placed on a paper waste for 80 seconds to remove excess oil and fat. Subsequently, a silicon stopper loaded with a 1 kg load was placed on the sample surface, and oil and fat were transferred to the sample surface to obtain an evaluation sample.
It is necessary to transfer the oil and fat of the evaluation sample to a wiping cloth (Toroshi MK MK24H-CPMK manufactured by Toray Industries, Inc.) cut into a strip shape with a bottom area of 20 mm × 20 mm and a load of 100 g, and the oil and fat cannot be visually recognized. Counted the number of times. The part of the wiping cloth that was in contact with the oil and fat was not reused, and wiping was performed so that the clean part was always in contact with the oil and fat. If it can be wiped within 20 times, the wiping property is good as “good”, and if it is within 10 times, it is very good as “excellent”. When the wiping required 21 times or more, it was judged as “bad” and the result is shown in Table 4.

<耐擦傷性試験>
耐擦傷性サンプル表面を、底面積が20mm×20mmの圧子にカナキン3号(日本規格協会JIS L 0803準拠 試験用添付白布 綿)を取り付け、1kgの荷重をかけた状態で、擦動速度毎分80往復、擦動距離40mmで100,000回往復擦動させた。擦動後のサンプル表面が、目視で全く変化がなければ耐擦傷性が非常に良好として「優良」、幅0.8mm以下のキズが3本以内であれば耐擦傷性が良好として「良」とした。幅0.8mm以上のキズが確認されたり、幅0.8mm以下のキズが4本以上確認される場合には、耐擦傷性が不良として「不良」とし、その結果を表4に示した。
<Abrasion resistance test>
Attach the surface of the scratch-resistant sample to a 20 mm x 20 mm indenter with Kanakin No. 3 (attached white cloth cotton for testing conforming to JIS L 0803) and apply a load of 1 kg. Reciprocating was performed 100,000 times at 80 reciprocations and a rubbing distance of 40 mm. If the sample surface after rubbing is not visually changed at all, the scratch resistance is very good as “excellent”, and if there are 3 scratches having a width of 0.8 mm or less, the scratch resistance is good and “good”. It was. When scratches with a width of 0.8 mm or more were confirmed, or when four or more scratches with a width of 0.8 mm or less were confirmed, the scratch resistance was judged as “bad”, and the results are shown in Table 4.

Figure 2018063419
Figure 2018063419

表4より、実施例のうち防眩膜付基体(例1〜17)では、油脂拭取り性、耐擦傷性についても良好であった。これは、Rskが関連すると考えており、Rskが大きすぎると防眩膜に由来する凹凸形状の凸形状が鋭くなるため、油脂が除去しにくく、また凸形状の先端が破壊されやすいため耐擦傷性が低くなると考えられる。本発明の防眩膜付基体では、Rskを1.3以下とすることで、良好な光学特性を得るのみならず、指紋の拭取りやすさに関連する油脂拭き取り性や、摩耗性に関連する耐擦傷性についても良好な結果が得られた。さらに、Rskを1.07未満とすることで、より良好な油脂拭き取り性や耐擦傷性が得られることも分かった。   From Table 4, the antiglare film-coated substrates (Examples 1 to 17) among the examples were also excellent in oil and fat wiping property and scratch resistance. This is considered to be related to Rsk, and if Rsk is too large, the uneven shape of the concavo-convex shape derived from the anti-glare film becomes sharp, so it is difficult to remove oil and fat, and the tip of the convex shape is likely to be destroyed. It is thought that the nature becomes low. In the base with an antiglare film of the present invention, by setting Rsk to 1.3 or less, not only good optical characteristics are obtained, but also oil and fat wiping properties related to ease of fingerprint wiping and wear properties are related. Good results were also obtained with respect to scratch resistance. Furthermore, it was also found that by making Rsk less than 1.07, better oil and fat wiping properties and scratch resistance can be obtained.

1,10…防眩膜付基体、2…透明基体、3…防眩膜、4…低反射膜、5…防汚膜、6…印刷層 DESCRIPTION OF SYMBOLS 1,10 ... Base | substrate with anti-glare film, 2 ... Transparent base | substrate, 3 ... Anti-glare film, 4 ... Low reflection film, 5 ... Anti-fouling film, 6 ... Printing layer

Claims (18)

透明基体と、前記透明基体上に設けられた防眩膜を有し、
前記防眩膜は、シリカを主成分とし、CF(CH−基(ただし、nは1〜6の整数である。)を含み、
前記防眩膜表面の粗さ曲線のスキューネスRskが1.3以下であり、かつ、算術平均粗さRaが0.01μm以上であることを特徴とする防眩膜付基体。
A transparent substrate and an antiglare film provided on the transparent substrate;
The antiglare film contains silica as a main component and includes a CF 3 (CH 2 ) n — group (where n is an integer of 1 to 6),
A substrate with an antiglare film, wherein the skewness Rsk of the roughness curve of the antiglare film surface is 1.3 or less and the arithmetic average roughness Ra is 0.01 μm or more.
前記防眩膜は、平均膜厚が15〜1500nmである請求項1に記載の防眩膜付基体。   The antiglare film-coated substrate according to claim 1, wherein the antiglare film has an average film thickness of 15 to 1500 nm. 前記防眩膜は、平均膜厚が50〜1500nmである請求項1又は2に記載の防眩膜付基体。   The substrate with an antiglare film according to claim 1 or 2, wherein the antiglare film has an average film thickness of 50 to 1500 nm. 前記防眩膜は、前記透明基体の一部が露出するように備えられている請求項1〜3のいずれか1項に記載の防眩膜付基体。   The substrate with an antiglare film according to any one of claims 1 to 3, wherein the antiglare film is provided so that a part of the transparent substrate is exposed. 前記防眩膜表面の粗さ曲線の要素の平均長さRSmが18μm以下である請求項1〜4のいずれか1項に記載の防眩膜付基体。   The substrate with an antiglare film according to any one of claims 1 to 4, wherein an average length RSm of elements of a roughness curve on the surface of the antiglare film is 18 µm or less. 前記防眩膜表面の粗さ曲線のスキューネスRskが1.05以下である請求項1〜5のいずれか1項に記載の防眩膜付基体。   The substrate with an antiglare film according to any one of claims 1 to 5, wherein a skewness Rsk of a roughness curve of the surface of the antiglare film is 1.05 or less. 前記防眩膜表面の算術平均粗さRaが0.1μm以下である請求項1〜6のいずれか1項に記載の防眩膜付基体。   The substrate with an antiglare film according to any one of claims 1 to 6, wherein an arithmetic average roughness Ra of the surface of the antiglare film is 0.1 µm or less. 前記防眩膜表面の、粗さ曲線の要素の平均長さRSmが10μm以上である請求項1〜7のいずれか1項に記載の防眩膜付基体。   The substrate with an antiglare film according to any one of claims 1 to 7, wherein an average length RSm of an element of a roughness curve on the surface of the antiglare film is 10 µm or more. フッ素を1.0質量%含む比重2.48のガラスを標準サンプルとしたときに、前記防眩膜のフッ素含有量の測定値を前記標準サンプルのフッ素測定値で除した値(F量)が、0.23〜2.5である請求項1〜8のいずれか1項に記載の防眩膜付基体。   When a glass having a specific gravity of 2.48 containing 1.0% by mass of fluorine is used as a standard sample, a value (F amount) obtained by dividing the measured value of the fluorine content of the antiglare film by the measured fluorine value of the standard sample is The substrate with an antiglare film according to any one of claims 1 to 8. 前記CF(CH−基は、CFCHCH−基である請求項1〜9のいずれか1項に記載の防眩膜付基体。 The substrate with an antiglare film according to claim 1, wherein the CF 3 (CH 2 ) n — group is a CF 3 CH 2 CH 2 — group. 前記防眩膜表面における60゜鏡面光沢度が135%以下である請求項1〜10のいずれか1項に記載の防眩膜付基体。   The substrate with an antiglare film according to any one of claims 1 to 10, wherein a 60 ° specular gloss on the surface of the antiglare film is 135% or less. 前記透明基体がガラス基体からなる、請求項1〜11のいずれか1項に記載の防眩膜付基体。   The substrate with an antiglare film according to any one of claims 1 to 11, wherein the transparent substrate comprises a glass substrate. 前記透明基体が化学強化ガラス基体からなる、請求項1〜11のいずれか1項に記載の防眩膜付基体。   The substrate with an antiglare film according to any one of claims 1 to 11, wherein the transparent substrate comprises a chemically strengthened glass substrate. 前記透明基体が曲面を有する、請求項1〜13のいずれか1項に基材の防眩膜付基体。   The substrate with an antiglare film as a substrate according to any one of claims 1 to 13, wherein the transparent substrate has a curved surface. 前記透明基体の厚さが0.1〜5mmである、請求項1〜14のいずれか1項に記載の防眩膜付基体。   The substrate with an antiglare film according to any one of claims 1 to 14, wherein the transparent substrate has a thickness of 0.1 to 5 mm. トリフルオロプロピルトリメトキシシランと、鱗片状シリカ粒子と、液状媒体とを含む防眩膜形成用液状組成物。   A liquid composition for forming an antiglare film, comprising trifluoropropyltrimethoxysilane, scaly silica particles, and a liquid medium. トリフルオロプロピルトリメトキシシランと、鱗片状シリカ粒子と、液状媒体とを含む防眩膜形成用液状組成物を、透明基体上にスプレーコート法により塗布して塗膜を形成し、前記塗膜を焼成することで、
シリカを主成分とし、CF(CH−基(ただし、nは1〜6の整数である。)を含み、表面の粗さ曲線のスキューネスRskが1.3以下であり、かつ、算術平均粗さRaが0.01μm以上である防眩膜を前記透明基体上に形成して、防眩膜付基体を製造する防眩膜付基体の製造方法。
An antiglare film-forming liquid composition containing trifluoropropyltrimethoxysilane, scaly silica particles, and a liquid medium is applied onto a transparent substrate by a spray coating method to form a coating film. By firing,
The main component is silica, CF 3 (CH 2 ) n — group (where n is an integer of 1 to 6), the skewness Rsk of the surface roughness curve is 1.3 or less, and A method for producing a substrate with an antiglare film, wherein an antiglare film having an arithmetic average roughness Ra of 0.01 μm or more is formed on the transparent substrate to produce a substrate with an antiglare film.
前記防眩膜形成用液状組成物は、静電スプレーコート法により前記透明基体上に塗布される請求項17に記載の防眩膜付基体の製造方法。   The method for producing a substrate with an antiglare film according to claim 17, wherein the liquid composition for forming an antiglare film is applied onto the transparent substrate by an electrostatic spray coating method.
JP2017160279A 2016-10-07 2017-08-23 Substrate with antiglare film, liquid composition for forming antiglare film, and method for producing substrate with antiglare film Active JP6696486B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201710907342.5A CN107918167B (en) 2016-10-07 2017-09-29 Substrate with antiglare film, liquid composition for forming antiglare film, and method for producing substrate with antiglare film
CN202110992449.0A CN113835143B (en) 2016-10-07 2017-09-29 Substrate with antiglare film, liquid composition for forming antiglare film, and process for producing substrate with antiglare film
US15/723,801 US11772125B2 (en) 2016-10-07 2017-10-03 Antiglare film-coated substrate, antiglare film forming liquid composition, and method of producing antiglare film-coated substrate
DE102017012414.0A DE102017012414B4 (en) 2016-10-07 2017-10-04 Anti-glare film coated substrate
DE102017009250.8A DE102017009250B4 (en) 2016-10-07 2017-10-04 Anti-glare film-coated substrate, anti-glare film-forming liquid composition and method for producing an anti-glare film-coated substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016198922 2016-10-07
JP2016198922 2016-10-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020076719A Division JP7010324B2 (en) 2016-10-07 2020-04-23 Hypokeimenon with anti-glare film

Publications (2)

Publication Number Publication Date
JP2018063419A true JP2018063419A (en) 2018-04-19
JP6696486B2 JP6696486B2 (en) 2020-05-20

Family

ID=61966741

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017160279A Active JP6696486B2 (en) 2016-10-07 2017-08-23 Substrate with antiglare film, liquid composition for forming antiglare film, and method for producing substrate with antiglare film
JP2020076719A Active JP7010324B2 (en) 2016-10-07 2020-04-23 Hypokeimenon with anti-glare film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020076719A Active JP7010324B2 (en) 2016-10-07 2020-04-23 Hypokeimenon with anti-glare film

Country Status (1)

Country Link
JP (2) JP6696486B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215448A (en) * 2018-06-13 2019-12-19 日本板硝子株式会社 Substrate with antiglare films, image display device, and digital signage
WO2020218056A1 (en) * 2019-04-25 2020-10-29 日本電気硝子株式会社 Cover glass and digital signage
WO2021014776A1 (en) * 2019-07-22 2021-01-28 株式会社ダイセル Anti-glare film, method for producing same and use of same
WO2021200884A1 (en) * 2020-03-31 2021-10-07 大日本印刷株式会社 Optical laminated body, and polarizing plate, surface plate, and image display device that are provided with said optical laminated body
WO2022024678A1 (en) * 2020-07-31 2022-02-03 Agc株式会社 Display unit
EP3978232A4 (en) * 2019-05-31 2023-08-09 Agc Inc. Transparent substrate with antifouling layer
US11852785B2 (en) 2017-04-11 2023-12-26 Nippon Electric Glass Co., Ltd. Transparent article having a roughened uneven surface
US11953652B2 (en) 2018-04-04 2024-04-09 Nippon Electric Glass Co., Ltd. Article with anti-glare surface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023068462A (en) 2021-11-02 2023-05-17 アルプスアルパイン株式会社 Display device and display system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256222A (en) * 2001-02-28 2002-09-11 Dokai Chemical Industries Co Ltd Cured coating film having high warm water resistance and holding photooxidation catalyst
JP2009104076A (en) * 2007-10-25 2009-05-14 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display device
JP2009115882A (en) * 2007-11-02 2009-05-28 Toray Ind Inc Filter for plasma display panel
JP2009288732A (en) * 2008-06-02 2009-12-10 Asahi Kasei Corp Anti-glare film
WO2010007900A1 (en) * 2008-07-17 2010-01-21 東レフィルム加工株式会社 Filter for display
JP2010244016A (en) * 2009-03-18 2010-10-28 Toppan Printing Co Ltd Anti-glare film, polarizing plate and transmission type liquid crystal display
CN102234183A (en) * 2010-04-28 2011-11-09 中国科学院理化技术研究所 Anti-reflection coating and super-hydrophobic self-cleaning anti-reflection coating and preparation method thereof
JP2012163652A (en) * 2011-02-04 2012-08-30 Konica Minolta Advanced Layers Inc Optical film, manufacturing method of optical film, polarizing plate and image display device
JP2015527445A (en) * 2012-08-03 2015-09-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Effect pigment
WO2015186669A1 (en) * 2014-06-02 2015-12-10 旭硝子株式会社 Substrate having anti-glare film, method for manufacturing same, and product
JP2016041481A (en) * 2014-08-18 2016-03-31 旭硝子株式会社 Transparent base material with antiglare antireflection film, and article
JP2016114919A (en) * 2014-12-18 2016-06-23 Dic株式会社 Optical film, manufacturing method therefor, information display device, and vehicle-mounted information display device
JP2016128241A (en) * 2015-01-09 2016-07-14 大日本印刷株式会社 Component, touch panel having the component, and picture display unit having the touch panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029240A (en) 2002-06-24 2004-01-29 Fuji Photo Film Co Ltd Method for manufacturing antidazzle reflection preventing film
KR101916507B1 (en) 2013-01-30 2018-11-07 에이지씨 가부시키가이샤 Transparent base having stain-proof film attached thereto
JP2016018068A (en) 2014-07-08 2016-02-01 旭硝子株式会社 Substrate with anti-glare film, and articles having the same
CN117331157A (en) 2015-09-11 2024-01-02 日本电气硝子株式会社 Cover member for display and method for manufacturing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256222A (en) * 2001-02-28 2002-09-11 Dokai Chemical Industries Co Ltd Cured coating film having high warm water resistance and holding photooxidation catalyst
JP2009104076A (en) * 2007-10-25 2009-05-14 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display device
JP2009115882A (en) * 2007-11-02 2009-05-28 Toray Ind Inc Filter for plasma display panel
JP2009288732A (en) * 2008-06-02 2009-12-10 Asahi Kasei Corp Anti-glare film
WO2010007900A1 (en) * 2008-07-17 2010-01-21 東レフィルム加工株式会社 Filter for display
JP2010244016A (en) * 2009-03-18 2010-10-28 Toppan Printing Co Ltd Anti-glare film, polarizing plate and transmission type liquid crystal display
CN102234183A (en) * 2010-04-28 2011-11-09 中国科学院理化技术研究所 Anti-reflection coating and super-hydrophobic self-cleaning anti-reflection coating and preparation method thereof
JP2012163652A (en) * 2011-02-04 2012-08-30 Konica Minolta Advanced Layers Inc Optical film, manufacturing method of optical film, polarizing plate and image display device
JP2015527445A (en) * 2012-08-03 2015-09-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Effect pigment
WO2015186669A1 (en) * 2014-06-02 2015-12-10 旭硝子株式会社 Substrate having anti-glare film, method for manufacturing same, and product
JP2016041481A (en) * 2014-08-18 2016-03-31 旭硝子株式会社 Transparent base material with antiglare antireflection film, and article
JP2016114919A (en) * 2014-12-18 2016-06-23 Dic株式会社 Optical film, manufacturing method therefor, information display device, and vehicle-mounted information display device
JP2016128241A (en) * 2015-01-09 2016-07-14 大日本印刷株式会社 Component, touch panel having the component, and picture display unit having the touch panel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11852785B2 (en) 2017-04-11 2023-12-26 Nippon Electric Glass Co., Ltd. Transparent article having a roughened uneven surface
US11953652B2 (en) 2018-04-04 2024-04-09 Nippon Electric Glass Co., Ltd. Article with anti-glare surface
JP2019215448A (en) * 2018-06-13 2019-12-19 日本板硝子株式会社 Substrate with antiglare films, image display device, and digital signage
WO2020218056A1 (en) * 2019-04-25 2020-10-29 日本電気硝子株式会社 Cover glass and digital signage
EP3978232A4 (en) * 2019-05-31 2023-08-09 Agc Inc. Transparent substrate with antifouling layer
WO2021014776A1 (en) * 2019-07-22 2021-01-28 株式会社ダイセル Anti-glare film, method for producing same and use of same
JP2021018344A (en) * 2019-07-22 2021-02-15 株式会社ダイセル Anti-glare film, method for manufacturing the same, and application
WO2021200884A1 (en) * 2020-03-31 2021-10-07 大日本印刷株式会社 Optical laminated body, and polarizing plate, surface plate, and image display device that are provided with said optical laminated body
WO2022024678A1 (en) * 2020-07-31 2022-02-03 Agc株式会社 Display unit

Also Published As

Publication number Publication date
JP2020118992A (en) 2020-08-06
JP6696486B2 (en) 2020-05-20
JP7010324B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
US11772125B2 (en) Antiglare film-coated substrate, antiglare film forming liquid composition, and method of producing antiglare film-coated substrate
JP7010324B2 (en) Hypokeimenon with anti-glare film
US10948633B2 (en) Translucent structure, method for manufacturing same, and article
JP6939573B2 (en) Translucent structure
JP6399237B2 (en) Bent substrate with film, method for manufacturing the same, and image display device
JP6458804B2 (en) Translucent structure
JP6911828B2 (en) Glass laminate, display front plate and display device
JP2018198050A (en) Antifouling-film equipped transparent substrate and electrostatic capacitive in-cell touch panel type liquid crystal display device
WO2015186753A1 (en) Chemically toughened glass plate with function film, method for producing same, and article
WO2015163330A1 (en) Anti-glare-layer substrate and article
JP2016041481A (en) Transparent base material with antiglare antireflection film, and article
JP2019184709A (en) Article
JP2017186205A (en) Article having low reflective film
US20200055771A1 (en) Film-attached glass substrate, article, and method for producing film-attached glass substrate
US20220073760A1 (en) Antifouling layer-provided transparent substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190109

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6696486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250