JP2018060648A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2018060648A
JP2018060648A JP2016196564A JP2016196564A JP2018060648A JP 2018060648 A JP2018060648 A JP 2018060648A JP 2016196564 A JP2016196564 A JP 2016196564A JP 2016196564 A JP2016196564 A JP 2016196564A JP 2018060648 A JP2018060648 A JP 2018060648A
Authority
JP
Japan
Prior art keywords
resin
storage device
power storage
electrode
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016196564A
Other languages
Japanese (ja)
Other versions
JP6816437B2 (en
Inventor
泰亮 竹中
Yasuaki Takenaka
泰亮 竹中
泰有 秋山
Yasunari Akiyama
泰有 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2016196564A priority Critical patent/JP6816437B2/en
Publication of JP2018060648A publication Critical patent/JP2018060648A/en
Application granted granted Critical
Publication of JP6816437B2 publication Critical patent/JP6816437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device capable of improving heat dissipation of a laminate portion in which bipolar electrodes are laminated.SOLUTION: A power storage device 10 comprises a bipolar electrode 12 including a positive electrode layer 18 provided on one surface 16a of a collector 16, and a negative electrode layer 20 provided on the other surface 16b on the side opposite to the one surface. The bipolar electrode comprises a laminate 25 including a bipolar electrode group laminated in a Z-axis direction via a separator 14, and an insulating case 60 including a first resin part 60A which holds the collector by surrounding a side surface of the laminate and a second resin part 60B surrounding the first resin part. The first resin part is formed of a resin having corrosion resistance to an electrolytic solution. The second resin part is formed of a resin having a higher thermal conductivity than the first resin part.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電装置に関する。   The present invention relates to a power storage device.

集電体の一方の面に正極が形成され、他方の面に負極が形成されたバイポーラ電極がセパレータを介して一方向に積層された積層体を備えるバイポーラ電池が知られている。例えば、特許文献1には、バイポーラ電極の積層方向から集電体を見たときに、外形となる端部が樹脂により被覆されたバイポーラ電池が開示されている。   There is known a bipolar battery including a laminate in which a bipolar electrode having a positive electrode formed on one surface of a current collector and a negative electrode formed on the other surface is laminated in one direction through a separator. For example, Patent Document 1 discloses a bipolar battery in which an end portion which is an outer shape is covered with a resin when the current collector is viewed from the lamination direction of the bipolar electrodes.

特開2005−5163号公報JP 2005-5163 A

上記バイポーラ電極を含む蓄電装置では、充放電時に熱が発生する。しかしながら、上記従来のバイポーラ電池では、集電板の端部が樹脂により覆われているので、当該積層体部分で発生する熱を集電体の端部、すなわちバイポーラ電極の積層方向に直交する方向から放熱させることが難しく、放熱性に乏しい。   In a power storage device including the bipolar electrode, heat is generated during charging and discharging. However, in the conventional bipolar battery, since the end portion of the current collector plate is covered with the resin, the heat generated in the laminated body portion is orthogonal to the end portion of the current collector, that is, the bipolar electrode stacking direction. It is difficult to dissipate heat from, and heat dissipation is poor.

本発明は、バイポーラ電極が積層された積層体部分の放熱性を向上させることができる蓄電装置を提供することを目的とする。   An object of this invention is to provide the electrical storage apparatus which can improve the heat dissipation of the laminated body part by which the bipolar electrode was laminated | stacked.

本発明に係る蓄電装置は、集電体の一方の面に設けられた正極層と一方の面とは反対側の他方の面に設けられた負極層とを有するバイポーラ電極を有する蓄電装置であって、バイポーラ電極がセパレータを介して第一方向に積層されたバイポーラ電極群を含む積層体と、積層体の側面を取り囲んで保持する第一樹脂部と、第一樹脂部を取り囲む第二樹脂部とを有する絶縁性のケースと、を備え、第一樹脂部は、電解液に対する耐腐食性を有する樹脂から形成されており、第二樹脂部は、第一樹脂部よりも熱伝導率が高い樹脂から形成されている。   A power storage device according to the present invention is a power storage device having a bipolar electrode having a positive electrode layer provided on one surface of a current collector and a negative electrode layer provided on the other surface opposite to the one surface. A bipolar body including a bipolar electrode group in which bipolar electrodes are laminated in a first direction via a separator, a first resin part surrounding and holding a side surface of the multilayer body, and a second resin part surrounding the first resin part The first resin part is made of a resin having corrosion resistance to the electrolytic solution, and the second resin part has a higher thermal conductivity than the first resin part. It is formed from resin.

この蓄電装置では、積層体の側面を取り囲んで保持する第一樹脂部が電解液に対する耐腐食性を有しているので、電解液によって腐食されることがない。さらに、第一樹脂部の外側には、第一樹脂部よりも熱伝導率が高い第二樹脂部が設けられているので、積層体において発生した熱をケースの外側に効率的に逃がすことができる。この結果、バイポーラ電極が積層された積層体部分の放熱性を向上させることができる。   In this power storage device, the first resin portion that surrounds and holds the side surface of the laminate has corrosion resistance to the electrolytic solution, so that it is not corroded by the electrolytic solution. Furthermore, since the second resin part having higher thermal conductivity than the first resin part is provided outside the first resin part, the heat generated in the laminate can be efficiently released to the outside of the case. it can. As a result, it is possible to improve the heat dissipation of the stacked body portion where the bipolar electrodes are stacked.

第一方向から見たときのバイポーラ電極における集電体の端部は、第二樹脂部によって保持されていてもよい。この構成の蓄電装置では、バイポーラ電極の集電体は、第一樹脂部及び第二樹脂部の両方によって保持され、その端部は、熱伝導率が相対的に高い第二樹脂部によって保持されている。これにより、積層体において発生した熱を、集電体を介してケースの外側に効果的に放熱することができる。   The end portion of the current collector in the bipolar electrode when viewed from the first direction may be held by the second resin portion. In the power storage device having this configuration, the current collector of the bipolar electrode is held by both the first resin portion and the second resin portion, and the end portion thereof is held by the second resin portion having a relatively high thermal conductivity. ing. Thereby, the heat generated in the laminate can be effectively radiated to the outside of the case via the current collector.

上記蓄電装置は、ニッケル水素二次電池として構成してもよい。この構成のニッケル水素二次電池では、上記のとおり、バイポーラ電極が積層された積層体部分の放熱性を向上させることができる。   The power storage device may be configured as a nickel hydride secondary battery. In the nickel metal hydride secondary battery having this configuration, as described above, the heat dissipation of the stacked body portion where the bipolar electrodes are stacked can be improved.

第一樹脂部は、水酸化カリウムに対する耐腐食性を有する樹脂から形成されていてもよい。この構成の蓄電装置では、ニッケル水素二次電池として構成される場合であっても、積層体に保持される電解液によって腐食されることがない。   The 1st resin part may be formed from resin which has the corrosion resistance with respect to potassium hydroxide. The power storage device having this configuration is not corroded by the electrolytic solution retained in the laminate, even when configured as a nickel metal hydride secondary battery.

本発明によれば、バイポーラ電極が積層された積層体部分の放熱性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat dissipation of the laminated body part by which the bipolar electrode was laminated | stacked can be improved.

第一実施形態に係る蓄電装置を模式的に示す断面図である。It is sectional drawing which shows typically the electrical storage apparatus which concerns on 1st embodiment. 第二実施形態に係る蓄電装置を模式的に示す断面図である。It is sectional drawing which shows typically the electrical storage apparatus which concerns on 2nd embodiment. 第三実施形態に係る蓄電装置を模式的に示す断面図である。It is sectional drawing which shows typically the electrical storage apparatus which concerns on 3rd embodiment. 製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows an example of a manufacturing method typically. 製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows an example of a manufacturing method typically.

以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図1〜図5には、XYZ直交座標系が示される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and redundant descriptions are omitted. 1 to 5 show an XYZ orthogonal coordinate system.

(第一実施形態)
図1に示される蓄電装置10は、例えばフォークリフト、ハイブリッド自動車、又は電気自動車等の車両に搭載されるニッケル水素二次電池である。蓄電装置10は、複数のバイポーラ電極12(バイポーラ電極群)と、正極終端電極30と、正極端子部材35と、負極終端電極40と、負極端子部材45と、一対の拘束体50,50と、ケース60と、を備える。
(First embodiment)
A power storage device 10 shown in FIG. 1 is a nickel hydride secondary battery mounted on a vehicle such as a forklift, a hybrid vehicle, or an electric vehicle. The power storage device 10 includes a plurality of bipolar electrodes 12 (bipolar electrode group), a positive electrode termination electrode 30, a positive electrode terminal member 35, a negative electrode termination electrode 40, a negative electrode terminal member 45, a pair of restraining bodies 50 and 50, A case 60.

複数のバイポーラ電極12は、セパレータ14を介して直列に積層される。複数のバイポーラ電極12のそれぞれは、一方の面16a及び一方の面16aとは反対側の他方の面16bを有する集電体16と、一方の面16aに設けられた正極層18と、他方の面16bに設けられた負極層20とを有している。正極層18及び負極層20は、複数のバイポーラ電極12の積層方向(第一方向)(以下、Z軸方向ともいう)に交差する平面(例えばXY平面)に沿って延在している。   The plurality of bipolar electrodes 12 are stacked in series via the separator 14. Each of the bipolar electrodes 12 includes a current collector 16 having one surface 16a and the other surface 16b opposite to the one surface 16a, a positive electrode layer 18 provided on one surface 16a, and the other surface 16b. A negative electrode layer 20 provided on the surface 16b. The positive electrode layer 18 and the negative electrode layer 20 extend along a plane (for example, an XY plane) that intersects the stacking direction (first direction) of the plurality of bipolar electrodes 12 (hereinafter also referred to as the Z-axis direction).

セパレータ14は、互いに隣接するバイポーラ電極12の間、正極終端電極30とバイポーラ電極12との間、及びバイポーラ電極12と負極終端電極40との間に配置されている。例えば、セパレータ14は、Z軸方向から見た形状である矩形のシート状に形成されている。セパレータ14は例えば多孔膜又は不織布である。セパレータ14は電解液を透過させ得る。セパレータ14の材料としては、例えばポリエチレン、ポリプロピレン等のポリオレフィン、ポリイミド等が挙げられる。電解液としては、例えば水酸化カリウム水溶液等のアルカリ溶液が使用され得る。   The separator 14 is disposed between the bipolar electrodes 12 adjacent to each other, between the positive electrode termination electrode 30 and the bipolar electrode 12, and between the bipolar electrode 12 and the negative electrode termination electrode 40. For example, the separator 14 is formed in a rectangular sheet shape that is a shape viewed from the Z-axis direction. The separator 14 is a porous film or a nonwoven fabric, for example. The separator 14 can permeate the electrolytic solution. Examples of the material of the separator 14 include polyolefins such as polyethylene and polypropylene, and polyimide. As the electrolytic solution, for example, an alkaline solution such as an aqueous potassium hydroxide solution can be used.

集電体16は、例えば、Z軸方向から見た形状が矩形であり、ニッケル、ステンレススチール、Niメッキされた鋼板等からなる金属箔である。集電体16の厚みは、例えば1〜50μmである。正極層18は、正極活物質を含む。正極活物質は、例えば水酸化ニッケル(Ni(OH))の粒子である。負極層20は、負極活物質を含む。負極活物質は、例えば水素吸蔵合金の粒子である。なお、集電体16は、例えば導電性樹脂でもよい。 The current collector 16 is, for example, a metal foil made of nickel, stainless steel, a Ni-plated steel plate, or the like, as viewed from the Z-axis direction. The thickness of the current collector 16 is, for example, 1 to 50 μm. The positive electrode layer 18 includes a positive electrode active material. The positive electrode active material is, for example, nickel hydroxide (Ni (OH) 2 ) particles. The negative electrode layer 20 includes a negative electrode active material. The negative electrode active material is, for example, hydrogen storage alloy particles. The current collector 16 may be a conductive resin, for example.

正極終端電極30は、複数のバイポーラ電極12(バイポーラ電極群)のZ軸方向における一方側の端部に配置される。すなわち、正極終端電極30は、Z軸方向において、複数のバイポーラ電極12の最も外側に配置される。正極終端電極30は、例えば、Z軸方向から見た形状が矩形であり、ニッケル、ステンレススチール、Niメッキされた鋼板等からなる金属箔である集電体31と、集電体31の一方の面31aに設けられた正極層33と、を有している。正極層33は、XY平面に沿って延在している。集電体31は、Z軸方向において集電体16よりも厚い。正極層33は、バイポーラ電極12における正極層18と同じ構成である。   The positive electrode termination electrode 30 is disposed at one end of the plurality of bipolar electrodes 12 (bipolar electrode group) in the Z-axis direction. That is, the positive electrode termination electrode 30 is disposed on the outermost side of the plurality of bipolar electrodes 12 in the Z-axis direction. For example, the positive electrode termination electrode 30 has a rectangular shape when viewed from the Z-axis direction, and a current collector 31 that is a metal foil made of nickel, stainless steel, a Ni-plated steel plate, or the like, and one of the current collectors 31 And a positive electrode layer 33 provided on the surface 31a. The positive electrode layer 33 extends along the XY plane. The current collector 31 is thicker than the current collector 16 in the Z-axis direction. The positive electrode layer 33 has the same configuration as the positive electrode layer 18 in the bipolar electrode 12.

負極終端電極40は、複数のバイポーラ電極12(バイポーラ電極群)のZ軸方向における他方側の端部に配置される。すなわち、負極終端電極40は、Z軸方向において、複数のバイポーラ電極12の最も外側に配置される。負極終端電極40は、例えば、Z軸方向から見た形状が矩形であり、ニッケル、ステンレススチール、Niメッキされた鋼板等からなる金属箔である集電体41と、集電体41の一方の面41aに設けられた負極層43と、を有している。負極層43は、XY平面に沿って延在している。集電体41は、Z軸方向において集電体16よりも厚い。負極層43は、バイポーラ電極12における負極層20と同じ構成である。   The negative electrode termination electrode 40 is disposed at the other end of the plurality of bipolar electrodes 12 (bipolar electrode group) in the Z-axis direction. That is, the negative electrode termination electrode 40 is disposed on the outermost side of the plurality of bipolar electrodes 12 in the Z-axis direction. The negative electrode termination electrode 40 has, for example, a rectangular shape as viewed from the Z-axis direction, and a current collector 41 that is a metal foil made of nickel, stainless steel, a Ni-plated steel plate, or the like, and one of the current collectors 41 And a negative electrode layer 43 provided on the surface 41a. The negative electrode layer 43 extends along the XY plane. The current collector 41 is thicker than the current collector 16 in the Z-axis direction. The negative electrode layer 43 has the same configuration as the negative electrode layer 20 in the bipolar electrode 12.

正極端子部材35は、正極終端電極30と拘束体50との間に配置され、正極終端電極30における集電体31に接触配置されている。正極端子部材35は、接触部37と、引出部39と、を有している。接触部37は、例えば、Z軸方向から見た形状が矩形であり、正極終端電極30における集電体31の他方の面31bに、接触配置されている。引出部39は、後段にて詳述するケース60における貫通部60cに挿通され、ケース60の外側に引き出される。引出部39は、蓄電装置10の充放電を行うことができる端子として機能する。   The positive electrode terminal member 35 is disposed between the positive electrode termination electrode 30 and the restraining body 50, and is disposed in contact with the current collector 31 in the positive electrode termination electrode 30. The positive electrode terminal member 35 has a contact portion 37 and a lead portion 39. For example, the contact portion 37 has a rectangular shape as viewed from the Z-axis direction, and is in contact with the other surface 31 b of the current collector 31 in the positive electrode termination electrode 30. The lead-out portion 39 is inserted through a through portion 60 c in the case 60 described in detail later, and is pulled out to the outside of the case 60. The lead portion 39 functions as a terminal that can charge and discharge the power storage device 10.

負極端子部材45は、負極終端電極40と拘束体50との間に配置され、負極終端電極40における集電体41に接触配置されている。負極端子部材45は、接触部47と、引出部49と、を有している。接触部47は、例えば、Z軸方向から見た形状が矩形であり、負極終端電極40における集電体41の他方の面41bに、接触配置されている。引出部49は、後段にて詳述するケース60における貫通部60cに挿通され、ケース60の外側に引き出される。引出部49は、蓄電装置10の充放電を行うことができる端子として機能する。   The negative electrode terminal member 45 is disposed between the negative electrode termination electrode 40 and the restraining body 50, and is disposed in contact with the current collector 41 in the negative electrode termination electrode 40. The negative terminal member 45 has a contact portion 47 and a lead portion 49. For example, the contact portion 47 is rectangular when viewed from the Z-axis direction, and is in contact with the other surface 41 b of the current collector 41 in the negative electrode termination electrode 40. The lead-out portion 49 is inserted through a through portion 60 c in the case 60 described in detail later, and is pulled out to the outside of the case 60. The lead portion 49 functions as a terminal that can charge and discharge the power storage device 10.

図1に示されるように、ケース60は、Z軸方向において、複数のバイポーラ電極12と、正極終端電極30と、負極終端電極40とを含んで構成される積層体25のZ軸方向と直交する方向における端部(Z軸方向から積層体25を見たときの外形となる端部)を覆う。言い換えれば、積層体25の側面を取り囲んで保持する。ケース60は、筒状に形成された樹脂ケースであり、ケース60内には電解液が充填される。   As shown in FIG. 1, the case 60 is orthogonal to the Z-axis direction of the multilayer body 25 including the plurality of bipolar electrodes 12, the positive electrode termination electrode 30, and the negative electrode termination electrode 40 in the Z-axis direction. The edge part in the direction (end part used as the external shape when the laminated body 25 is seen from a Z-axis direction) is covered. In other words, the laminated body 25 is surrounded and held. The case 60 is a resin case formed in a cylindrical shape, and the case 60 is filled with an electrolytic solution.

ケース60は、積層体25の側面を取り囲んで保持する第一樹脂部60Aと、第一樹脂部60Aを取り囲む第二樹脂部60Bとを有している。第一樹脂部60Aは、電解液(水酸化カリウム)に対する耐腐食性を有する絶縁性の樹脂から形成されている。第一樹脂部60Aを形成する樹脂の例は、変性PPE(変性ポリフェニレンエーテル)及びPPS(ポリフェニレンサルファイド)が含まれる。   The case 60 includes a first resin portion 60A that surrounds and holds the side surface of the laminate 25, and a second resin portion 60B that surrounds the first resin portion 60A. 60 A of 1st resin parts are formed from the insulating resin which has corrosion resistance with respect to electrolyte solution (potassium hydroxide). Examples of the resin forming the first resin portion 60A include modified PPE (modified polyphenylene ether) and PPS (polyphenylene sulfide).

第二樹脂部60Bは、第一樹脂部60Aよりも熱伝導率が高い、絶縁性の樹脂から形成されている。なお、第二樹脂部60Bは、電解液(水酸化カリウム)に対する耐腐食性を有していなくてもよい。第一樹脂部60Aよりも熱伝導率が高い第二樹脂部60Bは、例えば、PP(ポリプロピレン)、変性PPE及びPPS等の樹脂に、フィラーを含有させることにより形成されてもよい。フィラーの例には、アルミナ及び銅等が含まれる。   The second resin portion 60B is formed of an insulating resin having a higher thermal conductivity than the first resin portion 60A. Note that the second resin portion 60B may not have corrosion resistance to the electrolytic solution (potassium hydroxide). The second resin portion 60B having a higher thermal conductivity than the first resin portion 60A may be formed, for example, by adding a filler to a resin such as PP (polypropylene), modified PPE, and PPS. Examples of the filler include alumina and copper.

本実施形態では、Z軸方向(第一方向)から見たときの各バイポーラ電極12における集電体16の端部16c、正極終端電極30における集電体31の端部31c及び負極終端電極40における集電体41の端部41cは、第二樹脂部60Bによって保持されている。例えば、各バイポーラ電極12の集電体16の端部、正極終端電極30の集電体31の端部31c及び負極終端電極40の集電体41の端部41cがケース60内に埋設される。各集電体の端部が第二樹脂部60Bによって保持される場合には、フィラーの導電経路となって集電体同士が短絡しないようにフィラーが調整されている。   In the present embodiment, the end portion 16c of the current collector 16 in each bipolar electrode 12 when viewed from the Z-axis direction (first direction), the end portion 31c of the current collector 31 in the positive electrode termination electrode 30, and the negative electrode termination electrode 40. The end portion 41c of the current collector 41 is held by the second resin portion 60B. For example, the end of the current collector 16 of each bipolar electrode 12, the end 31 c of the current collector 31 of the positive electrode termination electrode 30, and the end 41 c of the current collector 41 of the negative electrode termination electrode 40 are embedded in the case 60. . When the end portions of the respective current collectors are held by the second resin portion 60B, the fillers are adjusted so that the current collectors are not short-circuited as conductive paths of the fillers.

一対の拘束体50,50は、Z軸方向において、複数のバイポーラ電極12と、正極終端電極30と、負極終端電極40とを含んで構成される積層体25を挟持する。また、一対の拘束体50,50は、積層体25に加え、ケース60も挟持する。一対の拘束体50,50は、水酸化カリウムに対する腐食耐性を有する、例えば、PPS(ポリフェニレンサルファイド)等の樹脂材料により形成されている。なお、一つの拘束体50,50は、導電性を有する材料により形成されていてもよい。この場合、拘束体50と正極端子部材35との間に、絶縁シートを配置すればよい。   The pair of restraining bodies 50, 50 sandwich the stacked body 25 including the plurality of bipolar electrodes 12, the positive terminal electrode 30, and the negative terminal electrode 40 in the Z-axis direction. Further, the pair of restraining bodies 50, 50 sandwich the case 60 in addition to the stacked body 25. The pair of restraining bodies 50, 50 are made of a resin material having corrosion resistance to potassium hydroxide, such as PPS (polyphenylene sulfide). In addition, the one restraint body 50 and 50 may be formed with the material which has electroconductivity. In this case, an insulating sheet may be disposed between the restraining body 50 and the positive electrode terminal member 35.

一対の拘束体50,50には、Z軸方向に延びるボルトBを貫通するための貫通孔50aが設けられる。貫通孔50aは、Z軸方向から見てケース60の外側に配置される。ボルトBは、一方の拘束体50から他方の拘束体50に向かって挿通される。ボルトBの先端にはナットNが螺合される。これにより、一対の拘束体50,50は、複数のバイポーラ電極12、複数のセパレータ14、正極終端電極30、負極終端電極40及びケース60に対して、拘束荷重を付加する。その結果、ケース60内は密封される。   The pair of restraining bodies 50, 50 are provided with through holes 50a for penetrating bolts B extending in the Z-axis direction. The through hole 50a is disposed outside the case 60 when viewed from the Z-axis direction. The bolt B is inserted from one restraint body 50 toward the other restraint body 50. A nut N is screwed to the tip of the bolt B. Accordingly, the pair of restraining bodies 50, 50 apply a restraining load to the plurality of bipolar electrodes 12, the plurality of separators 14, the positive electrode termination electrode 30, the negative electrode termination electrode 40, and the case 60. As a result, the inside of the case 60 is sealed.

上記のような第一樹脂部60Aと第二樹脂部60Bとを有するケース60を備える蓄電装置10は、下記のように製造される。すなわち、まず、成形金型にインサート部品となる複数のバイポーラ電極12、正極終端電極30及び負極終端電極40を固定した後、成形金型に第一樹脂部60Aを形成する樹脂を注入し、インサート部品複数のバイポーラ電極12、正極終端電極30及び負極終端電極40の端部を溶融樹脂で包み込み固化させる。これにより、樹脂とインサート部品とが一体化された一次製品が完成する。   The power storage device 10 including the case 60 having the first resin portion 60A and the second resin portion 60B as described above is manufactured as follows. That is, first, after fixing the plurality of bipolar electrodes 12, the positive electrode termination electrode 30 and the negative electrode termination electrode 40 as insert parts to the molding die, a resin for forming the first resin portion 60A is injected into the molding die, and the insert The ends of the bipolar electrodes 12, the positive electrode termination electrode 30, and the negative electrode termination electrode 40 are wrapped with molten resin and solidified. Thereby, the primary product in which the resin and the insert part are integrated is completed.

次に、成形金型に当該一次製品を固定し、第二樹脂部60Bを形成する樹脂を注入し、一次製品と第二樹脂部60Bとを一体化させる。これにより、第一樹脂部60Aと第二樹脂部60Bとを有するケース60に積層体25の側面が保持された二次製品が完成する。次に、当該二次製品を一対の拘束体50,50により挟持し、ボルトB及びナットNによって一対の拘束体50,50同士を締結する。これにより、一対の拘束体50,50によって、積層体25が加圧された状態の蓄電装置10が完成する。   Next, the primary product is fixed to the molding die, a resin for forming the second resin portion 60B is injected, and the primary product and the second resin portion 60B are integrated. Thereby, the secondary product by which the side surface of the laminated body 25 was hold | maintained in case 60 which has 60 A of 1st resin parts and 2nd resin part 60B is completed. Next, the secondary product is sandwiched between the pair of restraining bodies 50, 50, and the pair of restraining bodies 50, 50 are fastened with the bolts B and the nuts N. Thereby, the power storage device 10 in a state in which the stacked body 25 is pressurized by the pair of restraining bodies 50 and 50 is completed.

次に、第一実施形態の蓄電装置10の作用効果について説明する。第一実施形態の蓄電装置10では、積層体25の側面を取り囲んで保持する第一樹脂部60Aが電解液(水酸化カリウム)に対する耐腐食性を有しているので、電解液によって腐食されることがない。さらに、第一樹脂部60Aの外側には、第一樹脂部60Aよりも熱伝導率が高い第二樹脂部60Bが設けられているので、積層体25において発生した熱をケース60の外側に効率的に逃がすことができる。この結果、バイポーラ電極12が積層された積層体25部分の放熱性を向上させることができる。   Next, the effect of the electrical storage apparatus 10 of 1st embodiment is demonstrated. In the power storage device 10 of the first embodiment, the first resin portion 60A that surrounds and holds the side surface of the laminate 25 has corrosion resistance against the electrolytic solution (potassium hydroxide), and therefore is corroded by the electrolytic solution. There is nothing. Furthermore, since the second resin part 60B having higher thermal conductivity than the first resin part 60A is provided outside the first resin part 60A, the heat generated in the laminate 25 is efficiently transferred to the outside of the case 60. Can be escaped. As a result, it is possible to improve the heat dissipation of the laminated body 25 portion where the bipolar electrode 12 is laminated.

また、本実施形態の蓄電装置10では、バイポーラ電極12の集電体16は、第一樹脂部60A及び第二樹脂部60Bの両方によって保持され、その端部16cは、熱伝導率が相対的に高い第二樹脂部60Bによって保持されている。これにより、積層体25において発生した熱を、集電体16を介してケース60の外側に効果的に放熱することができる。   In the power storage device 10 of the present embodiment, the current collector 16 of the bipolar electrode 12 is held by both the first resin portion 60A and the second resin portion 60B, and the end portion 16c has a relative thermal conductivity. Is held by the second resin portion 60B. Thereby, the heat generated in the stacked body 25 can be effectively radiated to the outside of the case 60 via the current collector 16.

(第二実施形態)
次に、第二実施形態に係る蓄電装置110について説明する。図2に示される蓄電装置110は、第一樹脂部60A及び第二樹脂部60Bからなるケース60を備える点において共通するが、その製造方法が第一実施形態と異なっている。すなわち、第一実施形態では、複数のバイポーラ電極12、正極終端電極30及び負極終端電極40をインサート品として、一次製品を完成させたのに対し、第二実施形態では、図4に示されるように、一のバイポーラ電極12、正極終端電極30、及び負極終端電極40ごとに一次製品P1を完成させる。なお、図4では、正極終端電極30を含む一次製品、及び負極終端電極40を含む一次製品の図示は省略している。次に、一次製品P1における第一樹脂部60A同士を熱溶着しながら積層する。これにより、一次製品P1が積層された二次製品が完成する。
(Second embodiment)
Next, the power storage device 110 according to the second embodiment will be described. The power storage device 110 shown in FIG. 2 is common in that it includes a case 60 composed of a first resin portion 60A and a second resin portion 60B, but its manufacturing method is different from that of the first embodiment. That is, in the first embodiment, the primary product is completed using a plurality of bipolar electrodes 12, the positive electrode termination electrode 30 and the negative electrode termination electrode 40 as inserts, whereas in the second embodiment, as shown in FIG. In addition, the primary product P <b> 1 is completed for each bipolar electrode 12, positive electrode termination electrode 30, and negative electrode termination electrode 40. In FIG. 4, illustration of the primary product including the positive electrode termination electrode 30 and the primary product including the negative electrode termination electrode 40 is omitted. Next, the first resin parts 60A in the primary product P1 are laminated while being thermally welded. Thereby, the secondary product on which the primary product P1 is laminated is completed.

次に、成形金型に当該二次製品を固定し、第二樹脂部60Bを形成する樹脂を注入し、二次製品と第二樹脂部60Bとを一体化させる。これにより、第一樹脂部60Aと第二樹脂部60Bとを有するケース60に積層体25の側面が保持された三次製品が完成する。次に、当該三次製品を一対の拘束体50,50により挟持し、ボルトB及びナットNによって一対の拘束体50,50同士を締結する。これにより、一対の拘束体50,50によって、積層体25が加圧された状態の蓄電装置110が完成する。   Next, the secondary product is fixed to the molding die, a resin for forming the second resin portion 60B is injected, and the secondary product and the second resin portion 60B are integrated. Thereby, the tertiary product by which the side surface of the laminated body 25 was hold | maintained in case 60 which has 60 A of 1st resin parts and the 2nd resin part 60B is completed. Next, the tertiary product is sandwiched between a pair of restraining bodies 50, 50, and the pair of restraining bodies 50, 50 are fastened with bolts B and nuts N. Thereby, the power storage device 110 in a state where the stacked body 25 is pressurized by the pair of restraining bodies 50 and 50 is completed.

この蓄電装置110も第一実施形態の蓄電装置10と同様の効果を得ることができる。   This power storage device 110 can also obtain the same effects as the power storage device 10 of the first embodiment.

(第三実施形態)
次に、第三実施形態に係る蓄電装置210について説明する。図3に示される蓄電装置210は、第一樹脂部60A及び第二樹脂部60Bからなるケース60を備える点において共通するが、その製造方法が、第一実施形態及び第二実施形態と異なっている。すなわち、第一実施形態では、複数のバイポーラ電極12、正極終端電極30及び負極終端電極40をインサート品として、一次製品を完成させたのに対し、第三実施形態では、図4に示されるように、一のバイポーラ電極12、正極終端電極30、及び負極終端電極40ごとに一次製品P1を完成させる。
(Third embodiment)
Next, the power storage device 210 according to the third embodiment will be described. The power storage device 210 shown in FIG. 3 is common in that it includes a case 60 composed of a first resin portion 60A and a second resin portion 60B, but its manufacturing method is different from the first embodiment and the second embodiment. Yes. That is, in the first embodiment, the primary product is completed using a plurality of bipolar electrodes 12, the positive electrode termination electrode 30 and the negative electrode termination electrode 40 as inserts, whereas in the third embodiment, as shown in FIG. In addition, the primary product P <b> 1 is completed for each bipolar electrode 12, positive electrode termination electrode 30, and negative electrode termination electrode 40.

次に、成形金型に当該一次製品P1を固定し、第二樹脂部60Bを形成する樹脂を注入し、一次製品P1と第二樹脂部60Bとを一体化させる。これにより、図5に示されるような一のバイポーラ電極12、正極終端電極30、及び負極終端電極40ごとに第一樹脂部60A及び第二樹脂部60Bが一体化された二次製品P2が完成する。次に、当該二次製品P2における第一樹脂部60A及び第二樹脂部60B同士を熱溶着しながら積層する。これにより、二次製品P2が積層された三次製品が完成する。次に、当該三次製品を一対の拘束体50,50により挟持し、ボルトB及びナットNによって一対の拘束体50,50同士を締結する。これにより、一対の拘束体50,50によって、積層体25が加圧された状態の蓄電装置110が完成する。   Next, the primary product P1 is fixed to the molding die, the resin forming the second resin portion 60B is injected, and the primary product P1 and the second resin portion 60B are integrated. Thereby, the secondary product P2 in which the first resin portion 60A and the second resin portion 60B are integrated for each of the bipolar electrode 12, the positive electrode termination electrode 30, and the negative electrode termination electrode 40 as shown in FIG. 5 is completed. To do. Next, the first resin portion 60A and the second resin portion 60B in the secondary product P2 are stacked while being thermally welded. Thereby, the tertiary product on which the secondary product P2 is laminated is completed. Next, the tertiary product is sandwiched between a pair of restraining bodies 50, 50, and the pair of restraining bodies 50, 50 are fastened with bolts B and nuts N. Thereby, the power storage device 110 in a state where the stacked body 25 is pressurized by the pair of restraining bodies 50 and 50 is completed.

この蓄電装置210も第一実施形態の蓄電装置10と同様の効果を得ることができる。   This power storage device 210 can also achieve the same effects as the power storage device 10 of the first embodiment.

以上、第一、第二及び第三実施形態について詳細に説明されたが、本発明は上記実施形態に限定されない。   As mentioned above, although 1st, 2nd, and 3rd embodiment was described in detail, this invention is not limited to the said embodiment.

上記実施形態又は変形例では、蓄電装置10の充放電を行うことができる端子を積層体25の側面から引き出す例を挙げて説明したが、これに限定されない。例えば、Z軸方向における両端、すなわち、積層方向における両端に設けられてもよい。この場合、一対の拘束体50,50のそれぞれを導電部材によって形成し、それぞれの拘束体50,50に電気的に接続される端子を設けることができる。また、端子に電気的に接続される導通部材が一対の拘束体50,50のそれぞれに埋め込まれてもよい。   In the said embodiment or modification, although the example which draws out the terminal which can perform charging / discharging of the electrical storage apparatus 10 from the side surface of the laminated body 25 was given and demonstrated, it is not limited to this. For example, it may be provided at both ends in the Z-axis direction, that is, at both ends in the stacking direction. In this case, each of the pair of restraining bodies 50, 50 can be formed of a conductive member, and a terminal electrically connected to each of the restraining bodies 50, 50 can be provided. In addition, a conductive member electrically connected to the terminal may be embedded in each of the pair of restraining bodies 50 and 50.

また、上記実施形態又は変形例では、蓄電装置10がニッケル水素二次電池の例を挙げて説明したが、リチウムイオン二次電池であってもよい。この場合、正極活物質は、例えば複合酸化物、金属リチウム、硫黄等である。負極活物質は、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素等である。   Moreover, although the electrical storage apparatus 10 gave and demonstrated the example of the nickel hydride secondary battery in the said embodiment or modification, a lithium ion secondary battery may be sufficient. In this case, the positive electrode active material is, for example, a composite oxide, metallic lithium, sulfur or the like. Examples of the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, and SiOx (0.5 ≦ x ≦ 1.5). And metal oxides such as boron and carbon added with boron.

10,110,210…蓄電装置、12…バイポーラ電極、14…セパレータ、16…集電体、18…正極層、20…負極層、25…積層体、30…正極終端電極、31…集電体、33…正極層、35…正極端子部材、40…負極終端電極、41…集電体、43…負極層、45…負極端子部材、50…拘束体、60…ケース、60A…第一樹脂部、60B…第二樹脂部。   DESCRIPTION OF SYMBOLS 10,110,210 ... Power storage device, 12 ... Bipolar electrode, 14 ... Separator, 16 ... Current collector, 18 ... Positive electrode layer, 20 ... Negative electrode layer, 25 ... Laminate, 30 ... Positive electrode termination electrode, 31 ... Current collector 33 ... Positive electrode layer, 35 ... Positive electrode terminal member, 40 ... Negative electrode termination electrode, 41 ... Current collector, 43 ... Negative electrode layer, 45 ... Negative electrode terminal member, 50 ... Restraint body, 60 ... Case, 60A ... First resin part , 60B ... second resin part.

Claims (4)

集電体の一方の面に設けられた正極層と前記一方の面とは反対側の他方の面に設けられた負極層とを有するバイポーラ電極を有する蓄電装置であって、
前記バイポーラ電極がセパレータを介して第一方向に積層されたバイポーラ電極群を含む積層体と、
前記積層体の側面を取り囲んで保持する第一樹脂部と、前記第一樹脂部を取り囲む第二樹脂部とを有する絶縁性のケースと、を備え、
前記第一樹脂部は、電解液に対する耐腐食性を有する樹脂から形成されており、前記第二樹脂部は、前記第一樹脂部よりも熱伝導率が高い樹脂から形成されている、蓄電装置。
A power storage device having a bipolar electrode having a positive electrode layer provided on one surface of a current collector and a negative electrode layer provided on the other surface opposite to the one surface,
A laminate including a bipolar electrode group in which the bipolar electrode is laminated in a first direction via a separator;
A first resin part surrounding and holding the side surface of the laminate, and an insulating case having a second resin part surrounding the first resin part,
The first resin portion is formed of a resin having corrosion resistance to an electrolytic solution, and the second resin portion is formed of a resin having a higher thermal conductivity than the first resin portion. .
前記第一方向から見たときの前記バイポーラ電極における集電体の端部は、前記第二樹脂部によって保持されている、請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein an end portion of the current collector in the bipolar electrode when viewed from the first direction is held by the second resin portion. ニッケル水素二次電池である、請求項1又は2記載の蓄電装置。   The electrical storage apparatus of Claim 1 or 2 which is a nickel hydride secondary battery. 前記第一樹脂部は、水酸化カリウムに対する耐腐食性を有する樹脂から形成されている、請求項3記載の蓄電装置。   The power storage device according to claim 3, wherein the first resin portion is made of a resin having corrosion resistance to potassium hydroxide.
JP2016196564A 2016-10-04 2016-10-04 Power storage device Active JP6816437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016196564A JP6816437B2 (en) 2016-10-04 2016-10-04 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016196564A JP6816437B2 (en) 2016-10-04 2016-10-04 Power storage device

Publications (2)

Publication Number Publication Date
JP2018060648A true JP2018060648A (en) 2018-04-12
JP6816437B2 JP6816437B2 (en) 2021-01-20

Family

ID=61907697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016196564A Active JP6816437B2 (en) 2016-10-04 2016-10-04 Power storage device

Country Status (1)

Country Link
JP (1) JP6816437B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035598A (en) * 2018-08-29 2020-03-05 株式会社豊田自動織機 Power storage module
JP2020053151A (en) * 2018-09-25 2020-04-02 株式会社豊田自動織機 Method for manufacturing power storage module
JP2020102411A (en) * 2018-12-25 2020-07-02 株式会社豊田自動織機 Manufacturing device for power storage module, and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186595A (en) * 2007-01-26 2008-08-14 Toyota Motor Corp Secondary battery
JP2011501384A (en) * 2007-10-26 2011-01-06 ジー4 シナジェティクス, インコーポレイテッド Dish-shaped pressure equalizing electrode for electrochemical cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186595A (en) * 2007-01-26 2008-08-14 Toyota Motor Corp Secondary battery
JP2011501384A (en) * 2007-10-26 2011-01-06 ジー4 シナジェティクス, インコーポレイテッド Dish-shaped pressure equalizing electrode for electrochemical cells

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035598A (en) * 2018-08-29 2020-03-05 株式会社豊田自動織機 Power storage module
JP7096737B2 (en) 2018-08-29 2022-07-06 株式会社豊田自動織機 Power storage module
JP2020053151A (en) * 2018-09-25 2020-04-02 株式会社豊田自動織機 Method for manufacturing power storage module
JP7161356B2 (en) 2018-09-25 2022-10-26 株式会社豊田自動織機 Method for manufacturing power storage module
JP2020102411A (en) * 2018-12-25 2020-07-02 株式会社豊田自動織機 Manufacturing device for power storage module, and manufacturing method therefor
JP7188062B2 (en) 2018-12-25 2022-12-13 株式会社豊田自動織機 Storage module manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JP6816437B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6780345B2 (en) Power storage device and manufacturing method of power storage device
JP2018125142A (en) Power storge module
JP6575557B2 (en) All-solid battery and method for producing all-solid battery
JP6705358B2 (en) Method for manufacturing power storage device
JP2018049793A (en) Power storage device
JP2018085293A (en) Power storage device
JP2018092717A (en) Power storage device
JP2018133201A (en) Power storage module
JP6816437B2 (en) Power storage device
WO2014115688A1 (en) Lithium ion electricity storage device
JP6838640B2 (en) Power storage device
JP2018106962A (en) Power storage module and manufacturing method thereof
JP2018018666A (en) Power storage device and method for manufacturing power storage device
US8574756B1 (en) Prismatic secondary battery
JP2019185927A (en) Power storage device
JP2014143134A (en) Power storage device
JP2017212145A (en) Power storage device
WO2018025867A1 (en) Power storage device
JP6683089B2 (en) Power storage device
JP2020024828A (en) Bipolar battery and manufacturing method of bipolar battery
JP2019212440A (en) Power storage device
JP2020024827A (en) Bipolar battery and manufacturing method of bipolar battery
JP2018067382A (en) Power storage device
WO2018116735A1 (en) Electricity storage device
JP2018085253A (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R151 Written notification of patent or utility model registration

Ref document number: 6816437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151