JP2018059574A - Composite heat insulation material - Google Patents

Composite heat insulation material Download PDF

Info

Publication number
JP2018059574A
JP2018059574A JP2016197356A JP2016197356A JP2018059574A JP 2018059574 A JP2018059574 A JP 2018059574A JP 2016197356 A JP2016197356 A JP 2016197356A JP 2016197356 A JP2016197356 A JP 2016197356A JP 2018059574 A JP2018059574 A JP 2018059574A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
composite heat
bonding
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016197356A
Other languages
Japanese (ja)
Other versions
JP6993080B2 (en
Inventor
裕一 有戸
Yuichi Arito
裕一 有戸
政美 小宮山
Masami Komiyama
政美 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2016197356A priority Critical patent/JP6993080B2/en
Publication of JP2018059574A publication Critical patent/JP2018059574A/en
Priority to JP2021150642A priority patent/JP2022001793A/en
Application granted granted Critical
Publication of JP6993080B2 publication Critical patent/JP6993080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite heat insulation material high in heat insulation performance, and capable of preventing a crack from occurring, even in a case where the composite heat insulation material is used in a cryogenic substance in a liquefaction gas tank or the like where temperature difference between one surface and the other surface is made large in use.SOLUTION: A composite heat insulation material has a structure where two heat insulation materials are connected through a connection part. The connection part contains fiber and a connection material. An area ratio of the connection material occupied in the unit area of a vertical cross section of the connection part is within a range of 10-90%.SELECTED DRAWING: Figure 1

Description

本発明は、複合断熱材に関する。より詳細には、極低温物質の保冷に適した断熱材等に関するものである。   The present invention relates to a composite heat insulating material. More specifically, the present invention relates to a heat insulating material suitable for keeping a cryogenic substance cold.

液化ガス貯蔵用のタンク等、極低温物質の断熱には高い断熱性能が要求される。そのため、高い断熱性能を持つ発泡樹脂断熱材や、真空断熱材を、重ね合わせ、複合化して用いることがある。
複合化した断熱材の一例として特許文献1においては、断熱パネル同士を重ねる際に、断熱パネル同士が接する空間にウレタンフォームを注入する事により断熱パネルを接着した事例が開示されている。
High heat insulation performance is required for heat insulation of cryogenic substances such as tanks for storing liquefied gas. For this reason, a foamed resin heat insulating material having a high heat insulating performance or a vacuum heat insulating material may be overlapped and combined for use.
As an example of a composite heat insulating material, Patent Document 1 discloses an example in which a heat insulating panel is bonded by injecting urethane foam into a space where the heat insulating panels are in contact with each other when the heat insulating panels are overlapped.

特開2010−249174号公報JP 2010-249174 A

しかしながら、特許文献1に記載の発明の様に、断熱材を複合化して厚みを厚くして極低温タンクに用いる場合、外気との大きな温度差により変形応力が生じる。特に断熱材の接着に用いた接合材と断熱材との線膨張係数の違いにより接合界面で大きな応力が生じ、亀裂が発生して複合断熱材が破壊されるおそれがあった。
また、複数の複合断熱材同士を接合する部分からの熱の流入を少なくする目的で、複合断熱材の面積を大きくした場合には、応力による変位がより大きくなり、亀裂が発生する懸念がいっそう高まる。
However, as in the invention described in Patent Document 1, when a heat insulating material is combined and thickened to be used for a cryogenic tank, a deformation stress is generated due to a large temperature difference from the outside air. In particular, due to the difference in coefficient of linear expansion between the bonding material used for bonding the heat insulating material and the heat insulating material, a large stress is generated at the bonding interface, and there is a possibility that the composite heat insulating material may be broken due to cracks.
In addition, if the area of the composite heat insulating material is increased for the purpose of reducing the inflow of heat from the part where a plurality of composite heat insulating materials are joined together, there is a further concern that displacement due to stress will increase and cracks will occur. Rise.

従って、本発明は、断熱性能が高く、かつ、液化ガスタンク等の極低温物質に用いても亀裂が発生しにくい複合断熱材を提供する事を目的とする。   Accordingly, an object of the present invention is to provide a composite heat insulating material that has high heat insulating performance and is less likely to crack even when used for a cryogenic material such as a liquefied gas tank.

本発明者らは、上記課題を解決するため鋭意検討を行った結果、断熱材を接合して使用する際に、断熱材間の接合部を繊維と接合材とで構成し、かつ、繊維と接合材のバランスを図ることにより本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention, when joining and using a heat insulating material, constituted a joint between the heat insulating materials with fibers and a bonding material, and The present invention has been completed by balancing the bonding materials.

すなわち、本発明は以下の[1]〜[3]を提供する。
[1]
2個の断熱材が接合部を介して接合された構造を有する複合断熱材であって、接合部が繊維と接合材とを含み、該接合部垂直断面の単位面積に占める前記接合材の面積割合が、10%以上90%以下である、複合断熱材。
That is, the present invention provides the following [1] to [3].
[1]
A composite heat insulating material having a structure in which two heat insulating materials are bonded via a bonding portion, the bonding portion including fibers and the bonding material, and the area of the bonding material occupying a unit area of the bonding portion vertical cross section The composite heat insulating material whose ratio is 10% or more and 90% or less.

[2]
前記接合部垂直断面において、前記接合材と前記断熱材とが接触する部分を有する[1]記載の複合断熱材。
[2]
The composite heat insulating material according to [1], wherein the bonding member has a portion in which the bonding material and the heat insulating material are in contact with each other in a vertical cross section.

[3]
少なくとも1個の前記断熱材の熱伝導率が0.001W/mK以上0.035W/mK以下である[1]又は[2]記載の複合断熱材。
[3]
The composite heat insulating material according to [1] or [2], wherein the thermal conductivity of at least one of the heat insulating materials is 0.001 W / mK or more and 0.035 W / mK or less.

本発明の複合断熱材は、上記構成を有することにより、極低温物質の保冷目的で用いた場合に、破壊することなく、かつ、高い断熱性能を維持しつつ使用することができる。   When the composite heat insulating material of the present invention has the above configuration, it can be used without breaking and maintaining high heat insulating performance when used for the purpose of keeping a cryogenic substance cold.

図1は、本実施形態の複合断熱材の一例の接合部の垂直断面概略図である。FIG. 1 is a schematic vertical cross-sectional view of a joint portion as an example of the composite heat insulating material of the present embodiment. 図2は、本実施形態の複合断熱材の一例の接合部の垂直断面概略図である。FIG. 2 is a schematic vertical cross-sectional view of a joint portion as an example of the composite heat insulating material of the present embodiment. 図3は、本実施形態の複合断熱材の一例の接合部の垂直断面概略図である。FIG. 3 is a schematic vertical cross-sectional view of a joint portion as an example of the composite heat insulating material of the present embodiment. 図4は、比較例の複合断熱材の一例の接合部の垂直断面概略図である。FIG. 4 is a schematic vertical cross-sectional view of a joint portion of an example of the composite heat insulating material of the comparative example.

本発明を実施するための形態(以下、「本実施形態」と称する場合がある。)について詳細に説明する。   A mode for carrying out the present invention (hereinafter sometimes referred to as “the present embodiment”) will be described in detail.

本実施形態における複合断熱材は、2個の断熱材が、繊維と接合材とを含む接合部を介して接合された構造を少なくとも有している。なお、複合断熱材は、3個以上の断熱材が接合部を介して接合されたものの一部を構成するものであってもよい。   The composite heat insulating material in this embodiment has at least a structure in which two heat insulating materials are bonded via a bonding portion including a fiber and a bonding material. In addition, a composite heat insulating material may comprise a part of what 3 or more heat insulating materials were joined via the junction part.

本実施形態で使用する断熱材としては、例えば、フェノール樹脂発泡板、ウレタン樹脂発泡板、スチレン樹脂発泡板等の樹脂系の発泡板断熱材、グラスウールやシリカエアロゲルを芯材として使用した真空断熱材等の断熱材を使用することが出来る。真空断熱材の場合、真空が破れるとたちまち熱伝導率が大きくなってしまうので、熱伝導率が安定して小さい樹脂発泡板が好ましく、中でもフェノール樹脂発泡板は樹脂発泡板としては最も熱伝導率が小さく、特に好ましい。本実施形態の断熱材の熱伝導率の好ましい範囲は、0.001W/mK以上0.035W/mK以下であり、より好ましくは0.001W/mK以上0.028W/mK以下、さらに好ましくは0.01W/mK以上0.021W/mK以下である。本実施形態の複合断熱材において、少なくとも1個の断熱材の熱伝導率が上記範囲であることが好ましい。   As a heat insulating material used in the present embodiment, for example, a resin-based foam heat insulating material such as a phenol resin foam plate, a urethane resin foam plate, a styrene resin foam plate, a vacuum heat insulating material using glass wool or silica airgel as a core material. Etc. can be used. In the case of vacuum insulation, the thermal conductivity increases as soon as the vacuum breaks, so a resin foam plate with a stable and low thermal conductivity is preferable. Among them, the phenol resin foam plate is the most thermally conductive resin foam plate. Is particularly preferable. The preferable range of the thermal conductivity of the heat insulating material of the present embodiment is 0.001 W / mK or more and 0.035 W / mK or less, more preferably 0.001 W / mK or more and 0.028 W / mK or less, and still more preferably 0. It is 0.01 W / mK or more and 0.021 W / mK or less. In the composite heat insulating material of the present embodiment, it is preferable that the thermal conductivity of at least one heat insulating material is in the above range.

本実施形態の複合断熱材は、接合材により接合されており、接合部に接合材と繊維が存在する。接合部垂直断面の単位面積に占める接合材の好ましい面積割合は、単位面積に対して10%以上90%以下、より好ましくは35%以上70%以下である。接合材の面積割合が10%未満の場合、接着強度が小さくなり断熱材が接合部から分離してしまう事が懸念され、接合材の面積割合が90%よりも大きい場合は、外気との大きな温度差により生じる変形応力により、破壊する恐れがある。   The composite heat insulating material of the present embodiment is bonded by a bonding material, and the bonding material and fibers are present at the bonded portion. The preferable area ratio of the bonding material to the unit area of the vertical cross section of the bonding portion is 10% or more and 90% or less, more preferably 35% or more and 70% or less with respect to the unit area. When the area ratio of the bonding material is less than 10%, there is a concern that the adhesive strength is reduced and the heat insulating material is separated from the bonded portion. When the area ratio of the bonding material is larger than 90%, it is large with the outside air. There is a risk of destruction due to deformation stress caused by the temperature difference.

本実施形態の複合断熱材の接合部垂直断面における好ましい接合材の形態としては、接合材の一部が断熱材に接している図2、図3の形態があげられる。図2、図3のような形態の場合は、図1の形態と比較すると接合部が応力に対してより安定化し、接合部の厚みが維持されやすくなるため好ましい。   As a preferable form of the bonding material in the vertical cross section of the bonded portion of the composite heat insulating material of the present embodiment, there are the forms of FIGS. 2 and 3 in which a part of the bonding material is in contact with the heat insulating material. 2 and 3 is preferable because the joint is more stable against stress and the thickness of the joint is easily maintained as compared to the form of FIG.

本実施形態で使用する断熱材の厚みは、5mm以上500mm以下が好ましく、より好ましくは10mm以上400mm以下、さらに好ましくは20mm以上300mm以下である。
断熱材の厚みが5mm以上であると断熱性能がより高まり、500mm以下であると応力抵抗性が高まる。断熱材の厚みは、定規やノギス等で測定できる。
The thickness of the heat insulating material used in the present embodiment is preferably 5 mm or more and 500 mm or less, more preferably 10 mm or more and 400 mm or less, and further preferably 20 mm or more and 300 mm or less.
When the thickness of the heat insulating material is 5 mm or more, the heat insulating performance is further increased, and when it is 500 mm or less, the stress resistance is increased. The thickness of the heat insulating material can be measured with a ruler or a caliper.

本実施形態で使用する繊維としては、高分子繊維が好ましく、高分子繊維としては、例えば、樹脂繊維、ガラス繊維、セルロース繊維などが利用できる。好ましい繊維の形態としては、糸を織った布帛や、繊維を接着剤や熱融着により接着、あるいは機械的作用でからませて布状にした不織布やフェルト、また繊維を抄造法によりシート状に成形したもの等が使用できる。特に好ましい繊維の形態としては、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、ナイロン繊維等の樹脂繊維からなる不織布があげられる。本実施形態で用いる不織布の好ましい破断伸度は、1%以上500%以下であり、より好ましくは5%以上100%以下である。破断伸度はJIS−L−1906−1994により測定する事ができる。   As the fiber used in the present embodiment, a polymer fiber is preferable. As the polymer fiber, for example, a resin fiber, a glass fiber, a cellulose fiber, or the like can be used. Preferable fiber forms include fabrics woven from yarn, non-woven fabrics or felts that are made by bonding fibers with adhesives or heat-sealing, or entangled by mechanical action, and fibers made into a sheet by papermaking. Molded ones can be used. Particularly preferred fiber forms include nonwoven fabrics made of resin fibers such as polypropylene fibers, polyethylene terephthalate fibers, and nylon fibers. The preferable breaking elongation of the nonwoven fabric used in the present embodiment is 1% or more and 500% or less, more preferably 5% or more and 100% or less. The breaking elongation can be measured according to JIS-L-1906-1994.

本実施形態で使用する接合材としては、例えば、ウレタン系接着剤、SBR系接着剤、ニトリルゴム系接着剤、エポキシ系接着剤、でんぷん糊、ニカワ等が挙げられる。中でも、低温で亀裂が発生しにくいという観点から、ウレタン系接着剤が好ましい。   Examples of the bonding material used in the present embodiment include urethane adhesives, SBR adhesives, nitrile rubber adhesives, epoxy adhesives, starch pastes, glues, and the like. Among these, urethane adhesives are preferable from the viewpoint that cracks hardly occur at low temperatures.

本実施形態における好ましい接合部の厚みは、1μm以上5000μm以下であり、より好ましくは10μm以上4000μm以下であり、更に好ましくは100μm以上3000μm以下である。接合部分の厚みは、デジタル顕微鏡やSEM等で確認することが出来る。   In the present embodiment, a preferable thickness of the bonding portion is 1 μm or more and 5000 μm or less, more preferably 10 μm or more and 4000 μm or less, and further preferably 100 μm or more and 3000 μm or less. The thickness of the joined portion can be confirmed with a digital microscope, SEM, or the like.

本実施形態の複合断熱材は、例えば、極低温物質を貯蔵又は輸送する際の極低温タンクの保冷に利用でき、この場合、タンク表面温度と外気との温度差が150℃以上の貯蔵又は輸送用極低温タンクに、特に有意な効果を発現することができる。   The composite heat insulating material of the present embodiment can be used, for example, for cold storage of a cryogenic tank when storing or transporting a cryogenic substance. In this case, the temperature difference between the tank surface temperature and the outside air is 150 ° C. or more. A particularly significant effect can be exhibited in the cryogenic tank.

本実施形態の複合断熱材の製造方法としては、例えば、(1)接合材を塗布した不織布等の繊維に断熱材を貼り合わせて接合する方法;(2)不織布等の繊維上に樹脂発泡体等の断熱材を形成した、繊維/断熱材/繊維が一体となった部材の繊維に接合材を塗布し、接合材を塗布した繊維に断熱材を貼り合わせて接合する方法;(3)繊維/断熱材/繊維が一体となった部材の繊維に接合材を塗布し、同様の他の部材と貼り合わせて接合する方法;等が挙げられる。
ここで注意すべきは、繊維を接合材で埋め尽くさないことである。このようにすると複合断熱材を外気との大きな温度差のある環境下で使用すると、これにより生じる変形応力により、破壊する恐れがある。
Examples of the method for producing the composite heat insulating material of the present embodiment include: (1) a method of bonding a heat insulating material to a fiber such as a nonwoven fabric coated with a bonding material; and (2) a resin foam on a fiber such as a non-woven fabric. A method of applying a bonding material to a fiber / heat insulating material / fiber integrated member formed with a heat insulating material such as, and bonding the heat insulating material to the fiber coated with the bonding material; (3) Fiber A method in which a bonding material is applied to a fiber of a member in which / a heat insulating material / fiber is integrated, and bonded to another similar member is bonded.
It should be noted here that the fibers are not filled with the bonding material. In this case, when the composite heat insulating material is used in an environment having a large temperature difference from the outside air, the composite heat insulating material may be broken due to the deformation stress generated thereby.

複合断熱材の特性は以下の方法によって求めた。   The characteristics of the composite heat insulating material were determined by the following method.

<接合部垂直断面の単位面積に占める接合材の面積割合>
接合部垂直断面の単位面積に占める接合材の面積割合は、次のようにして測定した。
複合断熱材から、接合部が概略水平になる向きに見て任意の面を定め、幅約8mm×奥行約30mm×厚み約8mmの試験片を、接合部が厚みの中央に位置するように幅方向10cmおきに3個切り出した。更に、互いに異なる他の2つの面を定め、同様にして各面から3個ずつ試験片を採取し、合計9個の試験片を用意した。その後、上記試験片を、幅×厚み面から奥行き方向約1mmの位置でフェザー剃刀により切削し、観察試料とした。次に、観察試料をサンプル台にカーボンテープで貼りつけ、金をスパッタリング(放電電流値20mA、スパッタ時間240秒)し、走査型電子顕微鏡(日本電子株式会社製、JSM−6060LV)で接合している2個の断熱材が視野に収まり、かつ接合部の写真における面積割合が30%以上となるように倍率を調整しながら観察試料の任意の場所における接合部垂直断面の写真を撮影した。次に、各写真を紙に印刷して、接合部断面を、繊維状の形態が認められる繊維部分(図1〜3の4)と繊維状の形態が認められない固体の接合材部分(図1〜4の5)とに切り分け、切り分けた各部分の紙の重さを測り、以下の式から各写真における面積割合を算出した。なお、底の見えない空洞は接合部垂直断面積には含めるが、繊維部分と接合材部分には含めない。
接合材の面積割合(%)=((接合材部分の重さ)/(接合部垂直断面部分の重さ))×100
また、接合材が断熱材と接触している構造の有無は、上記のいずれの写真においても、接合部垂直断面において接合材と断熱材とが接触する部分が確認できなかった場合を「無」、いずれかの写真で確認できた場合を「有」と評価した。
<The ratio of the area of the bonding material to the unit area of the vertical section of the bonding part>
The area ratio of the bonding material to the unit area of the vertical cross section of the bonding portion was measured as follows.
An arbitrary surface is defined from the composite heat insulating material when the joint portion is substantially horizontal, and a test piece having a width of about 8 mm, a depth of about 30 mm, and a thickness of about 8 mm is placed so that the joint portion is positioned at the center of the thickness. Three pieces were cut every 10 cm in the direction. Further, two other surfaces different from each other were determined, and three test pieces were sampled from each surface in the same manner to prepare a total of nine test pieces. Then, the said test piece was cut with the feather razor in the position of about 1 mm in the depth direction from the width x thickness surface, and it was set as the observation sample. Next, the observation sample is attached to the sample table with carbon tape, gold is sputtered (discharge current value 20 mA, sputtering time 240 seconds), and bonded with a scanning electron microscope (JSM-6060LV, manufactured by JEOL Ltd.). A photograph of a vertical cross section of the joint at an arbitrary position of the observation sample was taken while adjusting the magnification so that the two heat insulating materials contained in the field of view and the area ratio in the photograph of the joint became 30% or more. Next, each photograph is printed on paper, and the cross section of the joint portion is a fiber portion (4 in FIGS. 1 to 3) in which a fibrous form is recognized and a solid joint material portion (FIG. 1) in which the fibrous form is not recognized. 1 to 4) and the weight of each cut paper was measured, and the area ratio in each photograph was calculated from the following formula. In addition, although the cavity where the bottom cannot be seen is included in the joint vertical sectional area, it is not included in the fiber portion and the joint material portion.
Area ratio (%) of bonding material = ((weight of bonding material portion) / (weight of bonding portion vertical cross-section portion)) × 100
In addition, the presence or absence of a structure in which the bonding material is in contact with the heat insulating material is “no” in any of the above photographs when the portion where the bonding material and the heat insulating material are in contact with each other in the vertical cross section of the bonding portion cannot be confirmed. The case where it was confirmed by any of the photos was evaluated as “Yes”.

<断熱材の熱伝導率>
複合断熱材を構成する断熱材の熱伝導率は、600mm角に切り出した板状断熱材を、低温板5℃、高温板35℃の条件で、平板熱流計法に従い、JIS A1412に準拠して測定した。
<Thermal conductivity of thermal insulation>
The thermal conductivity of the heat insulating material constituting the composite heat insulating material is a plate heat insulating material cut into a 600 mm square, according to JIS A1412 in accordance with a plate heat flow meter method under conditions of a low temperature plate of 5 ° C. and a high temperature plate of 35 ° C. It was measured.

以下に、実施例に基づいて本実施形態の複合断熱材をより詳細に説明する。
フェノール樹脂発泡板を以下の要領で製造し、さらに接合材で接合して複合断熱材を作製し、液体窒素に浸漬して亀裂の発生等を評価した。
Below, based on an Example, the composite heat insulating material of this embodiment is demonstrated in detail.
A phenolic resin foam board was produced in the following manner, further joined with a joining material to produce a composite heat insulating material, and immersed in liquid nitrogen to evaluate the occurrence of cracks and the like.

<フェノール樹脂の合成>
反応器に52質量%ホルムアルデヒド水溶液3500kgと99質量%フェノール2510kgを仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで50質量%水酸化ナトリウム水溶液を加えながら昇温して、反応を進行させた。オストワルド粘度が60センチストークス(25℃における測定値)に到達した段階で、反応液を冷却し、尿素を570kg(ホルムアルデヒド仕込み量の15モル%に相当)添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50質量%水溶液でpHを6.4に中和した。60℃で脱水処理して、得られた反応液(熱硬化型樹脂組成物)の粘度を測定したところ、40℃における粘度は5,800mPa・sであった。
<Synthesis of phenolic resin>
The reactor was charged with 3500 kg of a 52% by weight aqueous formaldehyde solution and 2510 kg of 99% by weight phenol, stirred with a propeller rotating stirrer, and the temperature inside the reactor was adjusted to 40 ° C. with a temperature controller. Next, the temperature was raised while adding a 50 mass% aqueous sodium hydroxide solution to advance the reaction. When the Ostwald viscosity reached 60 centistokes (measured value at 25 ° C.), the reaction solution was cooled, and 570 kg of urea (corresponding to 15 mol% of the charged amount of formaldehyde) was added. Thereafter, the reaction solution was cooled to 30 ° C., and the pH was neutralized to 6.4 with a 50 mass% aqueous solution of paratoluenesulfonic acid monohydrate. When the viscosity of the resulting reaction solution (thermosetting resin composition) was measured after dehydration at 60 ° C., the viscosity at 40 ° C. was 5,800 mPa · s.

<フェノール樹脂組成物の調製>
フェノール樹脂を主成分とする脱水をした上記反応液96.5質量部に対して、界面活性剤としてエチレンオキサイド−プロピレンオキサイドのブロック共重合体(BASF製、製品名「プルロニック(登録商標)F−127」)を3.5質量部の割合で混合した。
得られた界面活性剤含有フェノール樹脂組成物100質量部に対して、発泡剤としてイソペンタン50質量%とイソブタン50質量%との混合物7質量部、硬化触媒としてキシレンスルホン酸80質量%とジエチレングリコール20質量%との混合物11質量部を、25℃に温調したミキシングヘッドに供給し、フェノール樹脂組成物を得た。
ここで、使用する混合機は、上部側面に界面活性剤含有フェノール樹脂組成物、及び発泡剤の導入口があり、回転子が攪拌する攪拌部の中央付近の側面に硬化触媒の導入口を備え、攪拌部以降はフォームを吐出するためのノズルを有する分配部に繋がっているピンミキサーを使用した。
<Preparation of phenol resin composition>
A block copolymer of ethylene oxide-propylene oxide (product of BASF, product name “Pluronic® F— 127 ") was mixed in a proportion of 3.5 parts by weight.
7 parts by mass of a mixture of 50% by mass of isopentane and 50% by mass of isobutane as a blowing agent, 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol as a curing catalyst with respect to 100 parts by mass of the obtained phenol resin composition containing a surfactant. 11 parts by mass of a mixture with% was supplied to a mixing head whose temperature was adjusted to 25 ° C. to obtain a phenol resin composition.
Here, the mixer to be used has a surfactant-containing phenol resin composition and a foaming agent inlet on the upper side surface, and a curing catalyst inlet on the side surface near the center of the stirring unit where the rotor stirs. After the stirring unit, a pin mixer connected to a distribution unit having a nozzle for discharging foam was used.

<フェノール樹脂発泡板1の製造>
不織布(旭化成株式会社製、「旭化成エルタス PC8100」、坪量100g/m、厚み0.80mm、破断伸度90%)を移動させながら、その上に上記フェノール樹脂組成物を供給した。不織布上に供給されたフェノール樹脂組成物は、さらにその上から同種の不織布で被覆して上下の不織布で挟み込んで、85℃のスラット型ダブルコンベアへ送り、30分の滞留時間で硬化させた後、110℃のオーブンで2時間キュアして厚み80mmのフェノール樹脂発泡板1を得た。
<Manufacture of phenolic resin foam board 1>
While moving the non-woven fabric (Asahi Kasei Elutus PC8100, manufactured by Asahi Kasei Co., Ltd., basis weight 100 g / m 2 , thickness 0.80 mm, elongation at break 90%), the above phenol resin composition was supplied thereon. The phenol resin composition supplied on the nonwoven fabric is further coated with the same kind of nonwoven fabric from above, sandwiched between upper and lower nonwoven fabrics, sent to a 85 ° C. slat type double conveyor, and cured after a residence time of 30 minutes. And curing in an oven at 110 ° C. for 2 hours to obtain a phenolic resin foam board 1 having a thickness of 80 mm.

<フェノール樹脂発泡板2の製造>
上下の不織布として、不織布(旭化成株式会社製、「旭化成エルタス E05030」、坪量30g/m、厚み0.15mm、破断伸度20%)を用いたこと以外は、フェノール樹脂発泡板1と同様にして厚み80mmのフェノール樹脂発泡板2を得た。
<Manufacture of phenolic resin foam board 2>
As the upper and lower nonwoven fabrics, the same as the phenolic resin foam board 1 except that non-woven fabrics (Asahi Kasei Elutus E05030, basis weight 30 g / m 2 , thickness 0.15 mm, elongation at break 20%) were used. Thus, a phenol resin foam plate 2 having a thickness of 80 mm was obtained.

ウレタン系接着剤LOCTITE UK 5400(ヘンケル社製)1kgとLOCTITE UK 8202(ヘンケル社製)4kgをペール缶に計量し、均一に混合し接合材とした。
幅1500mm×長さ1200mm×厚み0.2mmのPPシートに、幅1000mm×長さ1000mmの枠を書き、枠の中に上記接合材を均一に塗布した。重量を測定した、幅1000mm×長さ1000mmに切り出したフェノール樹脂発泡板1(断熱材A)を、不織布が下になるように、接合材が塗布されたPPシートの枠に合わせて伏せ、PPシートとフェノール樹脂発泡板1とがずれない様に裏返し、PPシートを押して、接合材をフェノール樹脂発泡板1の不織布に転写した。PPシートをフェノール樹脂発泡板1から剥がし、小口に付着した接合材を拭き取った。接合材を転写した後のフェノール樹脂発泡板1の重量を測定し、転写前のフェノール樹脂発泡板1の重量から計算した、転写した接合材量は160g/mであった。接合材を転写させた不織布上に、別途幅1000mm×長さ1000mmに切り出したフェノール樹脂発泡板1(断熱材B)を、不織布が断熱材A側に向くように、ずれない様に合わせ、上に20kgの錘10個をのせ、24時間以上経過後に錘を外し、複合断熱材を得た。
1 kg of urethane adhesive LOCTITE UK 5400 (manufactured by Henkel) and 4 kg of LOCTITE UK 8202 (manufactured by Henkel) were weighed into a pail can and mixed uniformly to obtain a bonding material.
A PP sheet having a width of 1500 mm, a length of 1200 mm, and a thickness of 0.2 mm was written on a frame having a width of 1000 mm and a length of 1000 mm, and the bonding material was uniformly applied in the frame. The phenolic resin foam board 1 (heat insulating material A) cut out to a width of 1000 mm and a length of 1000 mm was weighed in accordance with the frame of the PP sheet on which the bonding material was applied so that the nonwoven fabric was on the bottom, and PP The sheet and the phenolic resin foam board 1 were turned over so that they did not shift, and the PP sheet was pressed to transfer the bonding material to the nonwoven fabric of the phenolic resin foam board 1. The PP sheet was peeled off from the phenolic resin foam plate 1, and the bonding material adhering to the fore edge was wiped off. The weight of the phenolic resin foam plate 1 after transferring the bonding material was measured, and the amount of the transferred bonding material calculated from the weight of the phenolic resin foam plate 1 before transfer was 160 g / m 2 . On the nonwoven fabric to which the bonding material has been transferred, the phenolic resin foam board 1 (heat insulating material B) separately cut into a width of 1000 mm × length of 1000 mm is aligned so that the nonwoven fabric faces the heat insulating material A side, 10 weights of 20 kg were put on the plate, and after 24 hours or more, the weight was removed to obtain a composite heat insulating material.

断熱材Bをフェノール樹脂発泡板2に変更し、接合材量が210g/mで有った以外は、実施例1と同様にして複合断熱材を得た。 A composite heat insulating material was obtained in the same manner as in Example 1 except that the heat insulating material B was changed to the phenol resin foam plate 2 and the amount of the bonding material was 210 g / m 2 .

接合材量が503g/mで有った以外は、実施例1と同様にして複合断熱材を得た。 A composite heat insulating material was obtained in the same manner as in Example 1 except that the amount of the bonding material was 503 g / m 2 .

断熱材Aと断熱材Bをフェノール樹脂発泡板2に変更し、接合材量が62g/mで有った以外は、実施例1と同様にして複合断熱材を得た。 The heat insulating material A and the heat insulating material B were changed to the phenol resin foam board 2, and the composite heat insulating material was obtained like Example 1 except having had the amount of bonding materials of 62 g / m < 2 >.

接合材量が88g/mで有った以外は、実施例1と同様にして複合断熱材を得た。 A composite heat insulating material was obtained in the same manner as in Example 1 except that the amount of the bonding material was 88 g / m 2 .

比較例1Comparative Example 1

断熱材Aと断熱材Bをフェノール樹脂発泡板2に変更し、接合材量が310g/mで有った以外は、実施例1と同様にして複合断熱材を得た。 A heat insulating material A and a heat insulating material B were changed to the phenol resin foamed plate 2 and a composite heat insulating material was obtained in the same manner as in Example 1 except that the amount of the bonding material was 310 g / m 2 .

比較例2Comparative Example 2

接合材量が1021g/mで有った以外は、実施例1と同様にして複合断熱材を得た。 A composite heat insulating material was obtained in the same manner as in Example 1 except that the amount of the bonding material was 1021 g / m 2 .

比較例3Comparative Example 3

断熱材Bをフェノール樹脂発泡板2に変更し、接合材量が807g/mで有った以外は、実施例1と同様にして複合断熱材を得た。
複合断熱材の製造に用いた断熱材の熱伝導率は、上記フェノール樹脂発泡板1は0.020W/mK、上記フェノール樹脂発泡板2は0.020W/mKであった。
A composite heat insulating material was obtained in the same manner as in Example 1 except that the heat insulating material B was changed to the phenol resin foam board 2 and the amount of the bonding material was 807 g / m 2 .
The heat conductivity of the heat insulating material used for the production of the composite heat insulating material was 0.020 W / mK for the phenol resin foam plate 1 and 0.020 W / mK for the phenol resin foam plate 2.

<複合断熱材の接合部の変位>
幅1000mm×長さ1000mmの複合断熱材の4辺中央部で接合部厚みをノギスで測定し、その平均値を液体窒素浸漬前の接合部厚みとする。次に幅1200mm×長さ1200mm×深さ500mmのSUS304製の浴槽に液体窒素を深さ100mm程度まで入れて、断熱材Aが下側となるようにして複合断熱材を浮かべ、上から押さえつけて、断熱材Aと接合部との界面の10mm下まで液体窒素に浸漬した。60分間経過後、複合断熱材を取り出し、24時間以上経過後、液体窒素浸漬前と同様にして接合部厚みを測定し、液体窒素浸漬後の接合部厚みとする。厚みの測定はデジタルノギスにより測定した。液体窒素浸漬後の接合部厚みを液体窒素浸漬前の接合部厚みで割って小数点2位を四捨五入し、接合部の変位とした。
最後に、複合断熱材周縁部に水性インクをしみこませて亀裂の有無を目視で確認した。
なお、上記実験での外気温は23℃であった。
<Displacement of joint part of composite heat insulating material>
The joint thickness is measured with calipers at the center of the four sides of the composite heat insulating material having a width of 1000 mm and a length of 1000 mm, and the average value is defined as the joint thickness before immersion in liquid nitrogen. Next, liquid nitrogen is put in a SUS304 bathtub of width 1200 mm × length 1200 mm × depth 500 mm to a depth of about 100 mm, the composite heat insulating material is floated so that the heat insulating material A is on the lower side, and pressed from above. Then, it was immersed in liquid nitrogen up to 10 mm below the interface between the heat insulating material A and the joint. After the elapse of 60 minutes, the composite heat insulating material is taken out, and after the elapse of 24 hours or more, the junction thickness is measured in the same manner as before immersion in liquid nitrogen to obtain the junction thickness after immersion in liquid nitrogen. The thickness was measured with a digital caliper. The junction thickness after immersion in liquid nitrogen was divided by the junction thickness before immersion in liquid nitrogen, and rounded off to the second decimal place to obtain the displacement of the junction.
Finally, water-based ink was soaked into the peripheral edge portion of the composite heat insulating material to visually check for cracks.
In addition, the external temperature in the said experiment was 23 degreeC.

実施例と比較例の結果を表1にまとめた。   The results of Examples and Comparative Examples are summarized in Table 1.

Figure 2018059574
Figure 2018059574

本発明は、液化石油ガス(LPG)、液化天然ガス(LNG)、液化水素(LH)、液化窒素(LN)、液化酸素(LO)、液化ヘリウム(LHe)等の極低温物質を貯蔵又は輸送する際の極低温タンクに適した複合断熱材である。 The present invention relates to cryogenic substances such as liquefied petroleum gas (LPG), liquefied natural gas (LNG), liquefied hydrogen (LH 2 ), liquefied nitrogen (LN 2 ), liquefied oxygen (LO 2 ), and liquefied helium (LHe). It is a composite insulation suitable for cryogenic tanks for storage or transportation.

1 複合断熱材
2 断熱材
3 接合部
4 繊維部分
5 接合材部分
DESCRIPTION OF SYMBOLS 1 Composite heat insulating material 2 Heat insulating material 3 Joint part 4 Fiber part 5 Joint material part

Claims (3)

2個の断熱材が接合部を介して接合された構造を有する複合断熱材であって、
接合部が繊維と接合材とを含み、該接合部垂直断面の単位面積に占める、前記接合材の面積割合が、10%以上90%以下である、複合断熱材。
A composite heat insulating material having a structure in which two heat insulating materials are joined via a joint,
A composite heat insulating material, wherein a bonding portion includes fibers and a bonding material, and an area ratio of the bonding material in a unit area of the vertical cross section of the bonding portion is 10% or more and 90% or less.
前記接合部垂直断面において、前記接合材と前記断熱材とが接触する部分を有する請求項1記載の複合断熱材。   The composite heat insulating material according to claim 1, further comprising a portion where the bonding material and the heat insulating material are in contact with each other in the vertical cross section of the bonding portion. 少なくとも1個の前記断熱材の熱伝導率が0.001W/mK以上0.035W/mK以下である請求項1又は2記載の複合断熱材。   The composite heat insulating material according to claim 1 or 2, wherein the thermal conductivity of at least one of the heat insulating materials is 0.001 W / mK or more and 0.035 W / mK or less.
JP2016197356A 2016-10-05 2016-10-05 Composite insulation Active JP6993080B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016197356A JP6993080B2 (en) 2016-10-05 2016-10-05 Composite insulation
JP2021150642A JP2022001793A (en) 2016-10-05 2021-09-15 Composite heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197356A JP6993080B2 (en) 2016-10-05 2016-10-05 Composite insulation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021150642A Division JP2022001793A (en) 2016-10-05 2021-09-15 Composite heat insulating material

Publications (2)

Publication Number Publication Date
JP2018059574A true JP2018059574A (en) 2018-04-12
JP6993080B2 JP6993080B2 (en) 2022-01-13

Family

ID=61909969

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016197356A Active JP6993080B2 (en) 2016-10-05 2016-10-05 Composite insulation
JP2021150642A Pending JP2022001793A (en) 2016-10-05 2021-09-15 Composite heat insulating material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021150642A Pending JP2022001793A (en) 2016-10-05 2021-09-15 Composite heat insulating material

Country Status (1)

Country Link
JP (2) JP6993080B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993080B2 (en) * 2016-10-05 2022-01-13 旭化成建材株式会社 Composite insulation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105657A (en) * 1974-09-20 1976-09-18 Nippon Sofuran Kako Kk
JPH03121398A (en) * 1989-03-23 1991-05-23 Osaka Gas Co Ltd Heat insulating material
JPH0761493A (en) * 1993-08-20 1995-03-07 Dow Kakoh Kk Panel for heat insulation of extremely low temperature tank
JP2004339018A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Porous structure and composite material provided with the same
JP2008542651A (en) * 2005-05-30 2008-11-27 ティーアイ マリン コントラクティング エイエス Method and system for thermal insulation of cryogenic containers and tanks
JP2014092328A (en) * 2012-11-05 2014-05-19 Kobe Steel Ltd Heat insulation member
WO2014141418A1 (en) * 2013-03-14 2014-09-18 名古屋油化株式会社 Heat-insulating sound-absorbing material and heat-insulating sound-absorbing material molded article
JP2015190484A (en) * 2014-03-27 2015-11-02 株式会社フォームテック Heat insulation panel for covering spherical curved surface of liquefied gas tank

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993080B2 (en) * 2016-10-05 2022-01-13 旭化成建材株式会社 Composite insulation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105657A (en) * 1974-09-20 1976-09-18 Nippon Sofuran Kako Kk
JPH03121398A (en) * 1989-03-23 1991-05-23 Osaka Gas Co Ltd Heat insulating material
JPH0761493A (en) * 1993-08-20 1995-03-07 Dow Kakoh Kk Panel for heat insulation of extremely low temperature tank
JP2004339018A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Porous structure and composite material provided with the same
JP2008542651A (en) * 2005-05-30 2008-11-27 ティーアイ マリン コントラクティング エイエス Method and system for thermal insulation of cryogenic containers and tanks
JP2014092328A (en) * 2012-11-05 2014-05-19 Kobe Steel Ltd Heat insulation member
WO2014141418A1 (en) * 2013-03-14 2014-09-18 名古屋油化株式会社 Heat-insulating sound-absorbing material and heat-insulating sound-absorbing material molded article
JP2015190484A (en) * 2014-03-27 2015-11-02 株式会社フォームテック Heat insulation panel for covering spherical curved surface of liquefied gas tank

Also Published As

Publication number Publication date
JP6993080B2 (en) 2022-01-13
JP2022001793A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
CA2793827C (en) Phenolic resin foam laminated sheet and method for manufacturing the same
CN102964772B (en) Chopped fiber reinforced phenolic resin foam material and preparation method thereof
JP6550415B2 (en) Phenolic resin foam laminate and method for producing the same
US9701803B2 (en) Closed-cell tannin-based foams
TW201334972A (en) Phenol board having honeycomb structure
Zhou et al. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat
JP6627756B2 (en) Resin supply material, preform, and method for producing fiber reinforced resin
Yu et al. Cryogenic characteristics of chopped glass fiber reinforced polyurethane foam
WO2004009681A2 (en) Composite foam made from polymer microspheres reinforced with long fibers
WO2016136791A1 (en) Resin supply material, preform, and method for producing fiber-reinforced resin
JP2022001793A (en) Composite heat insulating material
JP6126761B1 (en) Fiber reinforced sheet and structure
JP6081188B2 (en) Phenol resin foam laminate and method for producing the same
TW201714722A (en) Resin supply material, preform, and method for producing fiber-reinforced resin
KR101801560B1 (en) Composite panel and method for manufacturing thereof
US20190329512A1 (en) Core member made of a composite plastic material, and method for the production thereof
JP2019018512A (en) Resin foam composite body
JP2002339472A (en) Heat insulating incombustible panel
JP2014092194A (en) Heat insulating panel for membrane-type tank of liquefied natural gas carrier
JP6568445B2 (en) Manufacturing method of fiber reinforced sheet and manufacturing method of structure
JP2007131803A (en) Method for producing phenolic resin foam
Li et al. Preparation and characterization of phenolic foam modified by nitrile butadiene rubber powder
CN202299221U (en) Phenolic foam composite plate
CN204570954U (en) A kind of composite cement foam plate exterior wall heat-preserving system
CN208948066U (en) A kind of enhancing container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210927

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211209

R150 Certificate of patent or registration of utility model

Ref document number: 6993080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150