JP2018057359A - Method of predicting effect of anticancer drug administration - Google Patents

Method of predicting effect of anticancer drug administration Download PDF

Info

Publication number
JP2018057359A
JP2018057359A JP2017123971A JP2017123971A JP2018057359A JP 2018057359 A JP2018057359 A JP 2018057359A JP 2017123971 A JP2017123971 A JP 2017123971A JP 2017123971 A JP2017123971 A JP 2017123971A JP 2018057359 A JP2018057359 A JP 2018057359A
Authority
JP
Japan
Prior art keywords
cancer
tumor cells
tissue
cell
mutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017123971A
Other languages
Japanese (ja)
Other versions
JP6860165B2 (en
Inventor
泰之 秋山
Yasuyuki Akiyama
泰之 秋山
篤史 森本
Atsushi Morimoto
篤史 森本
二見 達
Tatsu Futami
達 二見
隆平 奥山
Ryuhei Okuyama
隆平 奥山
幸子 木庭
Sachiko Kiba
幸子 木庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Tosoh Corp
Original Assignee
Shinshu University NUC
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Tosoh Corp filed Critical Shinshu University NUC
Publication of JP2018057359A publication Critical patent/JP2018057359A/en
Application granted granted Critical
Publication of JP6860165B2 publication Critical patent/JP6860165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method that can more accurately detect genetic mutations over time in tumor cells and predict the effect of anticancer drug administration in cancer patients with high accuracy.SOLUTION: The method of predicting the effect of anticancer drug administration comprises: (1) a step of collecting samples other than cancer primary tissue and cancer metastatic tissue from a cancer patient; (2) a step of recovering tumor cells from the sample collected in (1); and (3) a step of identifying mutations that cannot be detected in cancer primary tissue or tumor cells derived from cancer metastatic tissue or circulating free DNA or mutations that are not predominant by analysing genetic mutations in the tumor cells recovered in (2). The mutations identified in (3) are used as markers for the effect of administering the anticancer drug.SELECTED DRAWING: None

Description

本発明は、抗癌剤の投与効果を予測する方法に関する。特に本発明は、癌原発組織および癌転移組織以外の試料(例えば血液試料)由来の腫瘍細胞を用いた、抗癌剤の投与効果を予測する方法に関する。   The present invention relates to a method for predicting the administration effect of an anticancer agent. In particular, the present invention relates to a method for predicting the administration effect of an anticancer agent using tumor cells derived from a sample other than cancer primary tissue and cancer metastatic tissue (eg, blood sample).

近年、癌患者への抗癌剤の投与判断に、患者検体由来の腫瘍細胞が有する遺伝子変異に基づくコンパニオン診断が用いられている。コンパニオン診断に基づき、医師が抗癌剤の投与を判断することにより、癌患者に対し不必要な治療(不必要な抗癌剤の投与)を行なうリスクが低減する。そのため、医療費の低減に寄与し、かつ最適な治療による患者の予後改善にも寄与する。   In recent years, companion diagnostics based on genetic mutations in tumor cells derived from patient specimens have been used to determine the administration of anticancer agents to cancer patients. Based on the companion diagnosis, the doctor determines the administration of the anticancer agent, thereby reducing the risk of performing unnecessary treatment (administration of unnecessary anticancer agent) on the cancer patient. Therefore, it contributes to the reduction of medical costs and also improves the prognosis of patients through optimal treatment.

患者検体由来の腫瘍細胞が有する遺伝子変異に基づくコンパニオン診断においては、通常、生検や組織切除により得られた、癌原発組織または癌転移組織由来の腫瘍細胞を遺伝子解析する。例えば、メラノーマに対する抗癌剤であるベムラフェニブの投与を検討する際、メラノーマ患者の癌原発組織または癌転移組織由来の腫瘍細胞が有する遺伝子変異を解析し、その結果、BRAF遺伝子のV600の位置に遺伝子変異があれば、ベムラフェニブが高い奏効性を示すと判断する。   In companion diagnosis based on gene mutations in tumor cells derived from patient specimens, tumor cells derived from primary cancer tissues or cancer metastasis tissues obtained by biopsy or tissue excision are usually subjected to genetic analysis. For example, when examining the administration of vemurafenib, an anticancer agent for melanoma, the gene mutation of tumor cells derived from primary cancer tissue or metastasis tissue of a melanoma patient was analyzed, and as a result, the gene mutation was found at the position of V600 in the BRAF gene. If there is, it is judged that vemurafenib shows a high response.

その一方で、癌原発組織または癌転移組織では、X腺照射や薬剤投与などによる外部環境の変化や細胞のコピーエラーなどにより、異なる遺伝子変異を持つ腫瘍細胞が経時的に生じることも知られている。しかしながら、このような異なる遺伝子変異を持つ腫瘍細胞は、当該癌組織に占める割合が少ない場合や当該癌組織において偏在している場合が多く、当該癌組織から採取した腫瘍細胞を試料として、当該遺伝子変異を持つ腫瘍細胞を検出することは、一般に、困難であった。また、手術などにより癌原発組織などを完全に切除した場合、当該組織における遺伝子変異の経時的変化を追うこと自体が不可能となってしまう。これらの理由から、癌原発組織または癌転移組織から採取した腫瘍細胞における遺伝子変異の経時的変化を、癌患者への抗癌剤の投薬判断に反映させることは、これまで的確に行うことができなかった。   On the other hand, it is also known that tumor cells with different gene mutations occur over time in cancer primary tissues or cancer metastasis tissues due to changes in the external environment or cell copy errors caused by X-ray irradiation or drug administration. Yes. However, tumor cells having such different gene mutations often have a small proportion in the cancer tissue or are ubiquitous in the cancer tissue, and the tumor cell collected from the cancer tissue is used as a sample. It was generally difficult to detect tumor cells with mutations. In addition, when a primary cancer tissue or the like is completely excised by surgery or the like, it is impossible to follow changes over time in gene mutations in the tissue. For these reasons, it has not been possible to accurately reflect changes over time in gene mutations in tumor cells collected from primary cancer tissue or cancer metastasis tissue in the decision to administer anticancer drugs to cancer patients. .

また近年、体内で細胞が死ぬ際に細胞の内容物とともに放出された微量のDNAが血液中に存在することが知られており(このようなDNAを「循環遊離DNA(血中遊離DNA、セルフリーDNA)」と称する)、当該DNA中の標的遺伝子を遺伝子診断に活用する試みがなされている。例えば、癌原発組織または癌転移組織由来の腫瘍細胞が死ぬ際、当該細胞由来のゲノムDNAが放出される。放出されたゲノムDNAは、マクロファージなどの食細胞により消化されるが、未消化のゲノムDNAは、正常細胞由来の未消化のゲノムDNAと共に循環遊離DNAとして血管を流れる。前記腫瘍細胞由来の循環遊離DNAを用いることで、癌組織の採取と比較して低侵襲的な遺伝子変異解析が可能となる。   In recent years, it has been known that trace amounts of DNA released together with cell contents when cells die in the body exist in the blood (such DNA is referred to as “circulating free DNA (blood free DNA, cell Attempts have been made to use the target gene in the DNA for genetic diagnosis. For example, when a tumor cell derived from a cancer primary tissue or a cancer metastatic tissue dies, genomic DNA derived from the cell is released. The released genomic DNA is digested by phagocytic cells such as macrophages, but undigested genomic DNA flows through blood vessels as circulating free DNA together with undigested genomic DNA derived from normal cells. By using the circulating free DNA derived from the tumor cells, gene mutation analysis can be performed less invasively than the collection of cancer tissue.

しかしながら、上記の通り、異なる遺伝子変異を持つ腫瘍細胞は、当該癌組織に占める割合が少ない場合や当該癌組織において偏在している場合が多く、当該癌組織から放出される循環遊離DNA全体に占める当該異なる遺伝子変異を持つDNAの割合が極めて少ないことから、循環遊離DNAを用いて当該異なる遺伝子変異を検出することは、いまだ困難である。   However, as described above, tumor cells having different gene mutations often occupy a small proportion of the cancer tissue or are ubiquitous in the cancer tissue, and occupy the entire circulating free DNA released from the cancer tissue. Since the percentage of the DNA having the different gene mutation is extremely small, it is still difficult to detect the different gene mutation using circulating free DNA.

他方、前述した異なる遺伝子変異を持つ腫瘍細胞が検出されない場合であっても、血中循環腫瘍細胞(Circulating Tumor Cell、以下、「CTC」と称する)の数をモニタリングすることにより、患者の予後や治療効果などを含め複合的な患者の病態を評価することが行われている。また、近年、癌原発組織または癌転移組織に代わる遺伝子解析のための対象細胞としても、CTCが用いられている。例えば、非特許文献1では、癌患者由来の血液から回収したCTCの遺伝子解析を開示している。この文献では、単一細胞でのCTCの遺伝子解析も行っている。また、特許文献1では、前立腺癌患者より回収したCTCにおけるAR−V7(Androgen Receptor Splice Variant−7)のRNA発現量を解析することで、前立腺癌に対する薬剤であるエンザルタミドおよびアビラテロンの投与判断が行なえることを開示している。   On the other hand, even when tumor cells having different gene mutations as described above are not detected, by monitoring the number of circulating tumor cells (hereinafter referred to as “CTC”), the patient's prognosis or Evaluating multiple patient pathologies including therapeutic effects. In recent years, CTCs have also been used as target cells for gene analysis in place of cancer primary tissues or cancer metastatic tissues. For example, Non-Patent Document 1 discloses genetic analysis of CTCs collected from blood derived from cancer patients. In this document, genetic analysis of CTC in a single cell is also performed. Further, in Patent Document 1, by analyzing the RNA expression level of AR-V7 (Androgen Receptor Splice Variant-7) in CTCs collected from prostate cancer patients, it is possible to determine the administration of enzalutamide and abiraterone, which are drugs for prostate cancer. It is disclosed that.

さらに特許文献2では、無細胞体液試料から疾患もしくは症状の1つまたは複数のマーカーについての第1プロファイルを決定し、DNA量が2nである貪食細胞(2n貪食細胞)集団または非貪食細胞集団から、前記1つまたは複数のマーカーのうちの少なくとも1つについての第2プロファイルを決定し、前記マーカーのうちの少なくとも1つについて、第1プロファイルと第2プロファイルとの差異を同定し、前記差異に基づき、前記試料提供患者における前記疾患もしくは症状の存在、発症するリスクもしくはその評価、予後予測もしくはその補助、または診断もしくはその補助を行なうことを開示している。   Furthermore, in Patent Document 2, a first profile for one or more markers of a disease or symptom is determined from a cell-free body fluid sample, and from a phagocytic cell population (2n phagocytic cell population) or a non-phagocytic cell population having a DNA amount of 2n. Determining a second profile for at least one of the one or more markers, identifying a difference between the first profile and the second profile for at least one of the markers, Based on this, it is disclosed that the presence of the disease or symptom in the sample donating patient, the risk of developing it or its evaluation, prognosis prediction or its assistance, or diagnosis or its assistance.

しかしながら、CTCにおいて、癌原発組織、癌転移組織または循環遊離DNAでは検出されない遺伝子変異の有無やその経時的変化を検出し、それらを指標として複合的な癌患者の病態を評価することは、これまで報告されていない。   However, in CTC, it is possible to detect the presence or absence of genetic mutations that are not detected in cancer primary tissues, cancer metastasis tissues or circulating free DNA, and their changes over time, and to evaluate the pathology of multiple cancer patients using them as indicators. Not reported until.

WO2016/033114号WO2016 / 033114 特開2017−60479号公報Japanese Unexamined Patent Publication No. 2017-60479

K.Sakaizawa et al.,British Journal of Cancer,106,939−946(2012)K. Sakaizawa et al. , British Journal of Cancer, 106, 939-946 (2012).

本発明は、このような状況に鑑みてなされたものであり、その目的は、腫瘍細胞における遺伝子変異の経時的な変化を鋭敏に検出して、癌患者における抗癌剤投与効果を高い精度で予測しうる方法を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to accurately detect temporal changes in gene mutations in tumor cells and predict the effects of anticancer drug administration in cancer patients with high accuracy. It is to provide a method.

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、癌原発組織および癌転移組織以外の試料由来の腫瘍細胞、特にCTCを用いることにより、腫瘍細胞における遺伝子変異の経時的な変化を鋭敏に検出することができ、引いては、抗癌剤投与効果を高い精度で予測しうることを見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, by using tumor cells derived from samples other than cancer primary tissues and cancer metastasis tissues, in particular, CTC, gene mutations in tumor cells over time. As a result, the present inventors have found that it is possible to detect such a change sensitively, and that the anticancer agent administration effect can be predicted with high accuracy.

すなわち本発明の第一の態様は、抗癌剤投与効果の予測方法であって、
(1)癌患者より癌原発組織および癌転移組織以外の試料を採取する工程、
(2)(1)で採取した試料から腫瘍細胞を回収する工程、および
(3)(2)で回収した腫瘍細胞における遺伝子変異を解析して、癌原発組織もしくは癌転移組織由来の腫瘍細胞もしくは循環遊離DNAでは検出されないか、または主要ではない変異を同定する工程、
を含み、(3)で同定された変異を抗癌剤投与効果の指標とする方法である。
That is, the first aspect of the present invention is a method for predicting the effect of anticancer drug administration,
(1) a step of collecting a sample other than a cancer primary tissue and a cancer metastatic tissue from a cancer patient;
(2) a step of recovering tumor cells from the sample collected in (1), and (3) analyzing a genetic mutation in the tumor cells recovered in (2) to obtain tumor cells derived from cancer primary tissue or cancer metastatic tissue or Identifying mutations that are not detected or are not major in circulating free DNA;
And using the mutation identified in (3) as an indicator of the effect of administering an anticancer agent.

さらに、本発明の第二の態様は、抗癌剤投与効果の予測方法であって、
(1)癌患者より癌原発組織および癌転移組織以外の試料を採取する工程、
(2)(1)で採取した試料から腫瘍細胞を回収する工程、および
(3)(2)で回収した腫瘍細胞の細胞数を計測し、かつ、(2)で回収した腫瘍細胞における遺伝子変異を解析して、癌原発組織もしくは癌転移組織由来の腫瘍細胞もしくは循環遊離DNAでは検出されないか、または主要ではない変異を同定する工程、
を含み、(3)で計測した腫瘍細胞の細胞数、および(3)で同定された変異を抗癌剤投与効果の指標とする方法である。
Furthermore, the second aspect of the present invention is a method for predicting the effect of anticancer drug administration,
(1) a step of collecting a sample other than a cancer primary tissue and a cancer metastatic tissue from a cancer patient;
(2) a step of collecting tumor cells from the sample collected in (1), and (3) measuring the number of tumor cells collected in (2), and gene mutation in the tumor cells collected in (2) To identify mutations that are not detected or are not major in tumor cells or circulating free DNA from primary or metastatic tissue of cancer,
The number of tumor cells measured in (3) and the mutation identified in (3) are used as an index of the effect of administering an anticancer drug.

また、本発明の第三の態様は、(2)の工程を、試料中に含まれる腫瘍細胞を保持可能な保持部を複数設けた細胞保持手段と誘電泳動力を発生させる手段とを備えた細胞回収装置を用いて行なう、前記第一または第二の態様のいずれかに記載の方法である。   In a third aspect of the present invention, the step (2) includes a cell holding means provided with a plurality of holding portions capable of holding tumor cells contained in a sample and a means for generating a dielectrophoretic force. The method according to any one of the first and second aspects, which is performed using a cell recovery apparatus.

また、本発明の第四の態様は、癌原発組織および癌転移組織以外の試料が血液試料であり、腫瘍細胞が血中循環腫瘍細胞(CTC)である、前記第一から第三の態様のいずれかに記載の方法である。   Further, a fourth aspect of the present invention is the method according to any one of the first to third aspects, wherein the sample other than the primary cancer tissue and the cancer metastatic tissue is a blood sample, and the tumor cell is a circulating tumor cell (CTC) in the blood. It is the method in any one.

また本発明の第五の態様は、抗癌剤がB−Raf酵素阻害薬であり、遺伝子変異がBRAF遺伝子の変異である、前記第一から第四の態様のいずれかに記載の方法である。   A fifth aspect of the present invention is the method according to any one of the first to fourth aspects, wherein the anticancer agent is a B-Raf enzyme inhibitor and the gene mutation is a BRAF gene mutation.

また、本発明の第六の態様は、癌が間葉系癌である、前記第一から第五の態様のいずれかに記載の方法である。   The sixth aspect of the present invention is the method according to any one of the first to fifth aspects, wherein the cancer is mesenchymal cancer.

本発明では、経時的な遺伝子変異を生じやすい腫瘍細胞の遺伝子情報解析を、癌原発組織および癌転移組織以外の試料から採取した腫瘍細胞に対して行ない、癌原発組織もしくは癌転移組織由来の腫瘍細胞もしくは循環遊離DNAでは検出されないか、または主要ではない変異を抗癌剤投与効果の指標とすることで、抗癌剤投与効果の予測のための精度の高い情報を提供できる。   In the present invention, gene information analysis of tumor cells that are likely to undergo genetic mutation over time is performed on tumor cells collected from samples other than cancer primary tissues and cancer metastatic tissues, and tumors derived from cancer primary tissues or cancer metastatic tissues By using mutations that are not detected in cells or circulating free DNA or that are not major as an index of the effect of administration of an anticancer agent, it is possible to provide highly accurate information for predicting the effect of administration of the anticancer agent.

本発明の好ましい態様では、癌原発組織および癌転移組織以外の試料中に含まれる腫瘍細胞数を計測する工程も実施しており、当該計測された腫瘍細胞数をも抗癌剤投与効果の指標に追加することで、抗癌剤投与効果の予測において、より精度の高い情報を提供することもできる。   In a preferred embodiment of the present invention, a step of measuring the number of tumor cells contained in a sample other than the cancer primary tissue and cancer metastatic tissue is also carried out, and the measured number of tumor cells is also added to the index of the anticancer drug administration effect. This makes it possible to provide more accurate information in predicting the effect of administering an anticancer drug.

また、本発明により、癌患者が抱える病状に最適な投薬指標や、病状における危険性や生存の確率に関する情報を医師に提供できるため、医師は最適な治療方法を選択できる。その結果、不必要な治療(不必要な抗癌剤の投与)を患者に行なうリスクを低減させることができ、不必要な治療に対する費用の節約だけでなく、最適な治療選択による患者の予後改善に寄与できる。   In addition, according to the present invention, it is possible to provide the doctor with information on the optimal medication index for the medical condition held by the cancer patient, the risk in the medical condition, and the probability of survival, so the doctor can select the optimal treatment method. As a result, it is possible to reduce the risk of unnecessary treatment (unnecessary anticancer drug administration) to the patient, and not only save money on unnecessary treatment, but also contribute to improving the prognosis of the patient through optimal treatment selection. it can.

さらに、本発明は、癌患者に対する抗癌剤の投与効果の予測のみならず、予後の予測や癌転移の予測にも応用することが可能である。癌診断において、癌の早期発見に応用することも可能である。   Furthermore, the present invention can be applied not only to the prediction of the administration effect of an anticancer agent on cancer patients, but also to the prediction of prognosis and the prediction of cancer metastasis. In cancer diagnosis, it can be applied to early detection of cancer.

本発明において腫瘍細胞を回収する工程で使用可能な、腫瘍細胞を保持可能な細胞回収装置の一例を示した図(分解図)である。It is the figure (exploded view) which showed an example of the cell collection | recovery apparatus which can be used at the process of collect | recovering tumor cells in this invention and can hold | maintain a tumor cell. 図1に示す装置の正面図である。It is a front view of the apparatus shown in FIG. 図1に示す装置を用いた、腫瘍細胞を回収する工程の一例を示した図である。It is the figure which showed an example of the process of collect | recovering tumor cells using the apparatus shown in FIG.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、癌の限定は特になく、例えば、白血病、リンパ腫、ホジキンリンパ腫、非ホジキンリンパ腫、多発性骨髄腫などの造血細胞悪性腫瘍、脳腫瘍、乳癌、子宮体癌、子宮頚癌、卵巣癌、食道癌、胃癌、虫垂癌、大腸癌、肝臓癌、胆嚢癌、胆管癌、膵臓癌、副腎癌、消化管間質腫瘍、中皮腫、口腔底癌、歯肉癌、舌癌、頬粘膜癌などの喉頭癌口腔癌、頭頚部癌、唾液腺癌、副鼻腔癌、甲状腺癌、腎臓癌、肺癌、骨肉腫、骨癌、前立腺癌、精巣腫瘍、腎臓癌、膀胱癌、皮膚癌、肛門癌、メラノーマが挙げられる。また原発癌でもよいし転移癌であってもよい。   In the present invention, there is no particular limitation on cancer, for example, hematopoietic cell malignancies such as leukemia, lymphoma, Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, brain tumor, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, Esophageal cancer, stomach cancer, appendix cancer, colon cancer, liver cancer, gallbladder cancer, bile duct cancer, pancreatic cancer, adrenal cancer, gastrointestinal stromal tumor, mesothelioma, oral floor cancer, gingival cancer, tongue cancer, buccal mucosa cancer, etc. Oral cancer, head and neck cancer, salivary gland cancer, sinus cancer, thyroid cancer, kidney cancer, lung cancer, osteosarcoma, bone cancer, prostate cancer, testicular cancer, kidney cancer, bladder cancer, skin cancer, anal cancer, melanoma Is mentioned. It may be a primary cancer or a metastatic cancer.

本発明を適用する癌患者は、効果予測対象の抗癌剤の投与をすでに受けた患者であってもよいし、当該抗癌剤の投与を現在受けている患者であってもよいし、当該抗癌剤の投与を受ける前の患者であってもよいが、投薬方針を判断する観点から、抗癌剤の投与前または投与中の患者が好ましい。   The cancer patient to which the present invention is applied may be a patient who has already received the anticancer agent for which the effect is to be predicted, a patient who is currently receiving the anticancer agent, or the administration of the anticancer agent. Although it may be a patient before receiving it, a patient before or during administration of an anticancer agent is preferable from the viewpoint of determining a dosing policy.

本発明における癌原発組織および癌転移組織以外の試料は、腫瘍細胞を含む試料であれば特に限定はなく、例えば、尿、全血、血漿、血清、唾液、精液、糞便、痰、髄液、羊水、リンパ液、腹水、胸水や、前記癌原発組織および癌転移組織以外の組織や器官(肝臓、肺、脾臓、腎臓、皮膚、リンパ節、動脈など)といった生体試料、ならびに前記生体試料中に含まれる細胞/組織の培養物や培養液(培養試料)が挙げられる。なお、癌原発組織および癌転移組織以外の試料は、その性状に応じて、予め希釈、混合、分散、懸濁などの処理を行なってもよい。   The sample other than the cancer primary tissue and cancer metastatic tissue in the present invention is not particularly limited as long as it is a sample containing tumor cells. For example, urine, whole blood, plasma, serum, saliva, semen, stool, sputum, cerebrospinal fluid, Included in biological samples such as amniotic fluid, lymph, ascites, pleural effusion, and tissues and organs other than the primary cancer tissue and metastatic tissue (liver, lung, spleen, kidney, skin, lymph node, artery, etc.) Cell / tissue culture and culture fluid (culture sample). Note that samples other than the primary cancer tissue and cancer metastatic tissue may be subjected to treatments such as dilution, mixing, dispersion, and suspension in advance according to their properties.

前記生体試料のうち、血液試料(例えば、全血、血漿、血清などの血液検体や、当該血液検体を生理食塩水などで希釈した試料)は、癌患者からの試料採取や試料中に含まれる腫瘍細胞の回収が容易に行なえる点で、本発明における癌原発組織および癌転移組織以外の試料として好ましい。   Among the biological samples, blood samples (for example, blood samples such as whole blood, plasma, and serum, and samples obtained by diluting the blood samples with physiological saline) are included in sample collection from cancer patients and samples. It is preferable as a sample other than the cancer primary tissue and cancer metastatic tissue in the present invention in that the tumor cells can be easily collected.

本発明では、まず前述した癌原発組織および癌転移組織以外の試料を採取した後、当該採取した試料から腫瘍細胞を回収する。癌原発組織および癌転移組織以外の試料が全血、血漿、血清といった血液試料であり、腫瘍細胞が血中循環腫瘍細胞(CTC)である場合、例えば、当該血液試料から密度勾配遠心法(特開2015−006169号公報)やフィルタ−法(特開2014−233267号公報)などによりCTCを含む(CTCが濃縮された)画分を取得し、当該画分からCTCを回収することができる。   In the present invention, first, a sample other than the aforementioned primary cancer tissue and cancer metastatic tissue is collected, and then tumor cells are collected from the collected sample. When the sample other than the cancer primary tissue and the cancer metastasis tissue is a blood sample such as whole blood, plasma, and serum, and the tumor cells are circulating tumor cells (CTC) in the blood, for example, density gradient centrifugation (specialized from the blood sample). A fraction containing CTC (concentrated with CTC) can be obtained by using a filter method (Japanese Unexamined Patent Publication No. 2015-006169) or a filter method (Japanese Patent Laid-Open No. 2014-233267), and CTC can be collected from the fraction.

密度勾配遠心法により腫瘍細胞を含む画分を取得する場合には、密度勾配溶液に試料を重層した後、遠心分離を行う。当該遠心分離により試料中に含まれる夾雑細胞(血液試料の場合、赤血球、白血球など)は下層(密度勾配溶液側)に移動する一方、腫瘍細胞は上層(試料側)に残るため、当該上層を回収することで腫瘍細胞を含む(腫瘍細胞が濃縮された)画分を取得することができる。なお、前述した腫瘍細胞を含む画分の取得を、前記上層と前記下層とが分離可能な容器(特開2015−006169号公報)を用いて行なうと、腫瘍細胞を含む画分の取得が容易となるため好ましい。さらに、試料が血液試料の場合には、当該試料を密度勾配溶液に重層する前に、当該試料を溶血させる工程(溶血操作)を行なうと、夾雑細胞である赤血球の細胞数を減少させることができ、前記上層への赤血球の混入数も減少するため好ましい。なお、前記溶血操作は密度勾配遠心分離後に実施してもよく、その場合は、再度遠心分離などによる夾雑細胞の除去操作を行なってもよい。   When a fraction containing tumor cells is obtained by density gradient centrifugation, the sample is overlaid on the density gradient solution and then centrifuged. Contaminant cells (red blood cells, leukocytes, etc. in the case of blood samples) contained in the sample move to the lower layer (density gradient solution side) while tumor cells remain in the upper layer (sample side). By collecting, a fraction containing tumor cells (enriched with tumor cells) can be obtained. If the above-described fraction containing tumor cells is obtained using a container (Japanese Patent Laid-Open No. 2015-006169) in which the upper layer and the lower layer can be separated, the fraction containing tumor cells can be easily obtained. This is preferable. Furthermore, when the sample is a blood sample, performing the step of hemolyzing the sample (hemolysis operation) before overlaying the sample on the density gradient solution may reduce the number of red blood cells that are contaminating cells. This is preferable because the number of red blood cells mixed into the upper layer is also reduced. In addition, the hemolysis operation may be performed after density gradient centrifugation, and in that case, an operation of removing contaminating cells by centrifugation or the like may be performed again.

前述した方法で得られた腫瘍細胞を含む画分は、凍結保存や化学固定による保存処理を行なってもよい。例えば、凍結保存する場合は、細胞保存溶液に溶液置換をした後、0℃以下の温度、好ましくは−20℃以下、さらに好ましくは−80℃以下の温度で保存すればよく、化学固定する場合は、細胞懸濁液に安定化剤を添加し、タンパク質を不溶化および/または不活性化する細胞固定処理を施すことで、前記細胞の劣化を長時間抑制すればよい。化学固定に用いる安定化剤としては、例えば、アルデヒド類、酸類、脱水剤・有機溶媒類、金属塩類などの細胞固定剤を含む溶液が挙げられる。   The fraction containing tumor cells obtained by the above-described method may be subjected to a preservation process by cryopreservation or chemical fixation. For example, in the case of cryopreservation, after replacing the solution in the cell preservation solution, it may be stored at a temperature of 0 ° C. or lower, preferably −20 ° C. or lower, more preferably −80 ° C. or lower. In this method, a cell stabilizer may be added to the cell suspension to insolubilize and / or inactivate the protein, thereby suppressing the deterioration of the cells for a long time. Examples of the stabilizer used for chemical fixation include solutions containing cell fixing agents such as aldehydes, acids, dehydrating agents / organic solvents, metal salts and the like.

前述した方法で得られた腫瘍細胞を含む画分には、腫瘍細胞以外の夾雑細胞(血液試料の場合、特に白血球)がまだ多く含まれる。従って、前記画分中に存在する腫瘍細胞を特異的に検出してから、腫瘍細胞を回収すると好ましい。腫瘍細胞を検出するには、例えば、まず、腫瘍細胞を含む画分をスライドに塗布するか、または腫瘍細胞を保持可能な装置に腫瘍細胞を含む画分を導入して腫瘍細胞を前記装置に保持させる。その後、顕微鏡や光学検出器などを利用して、前記腫瘍細胞が有する特徴に基づいて、腫瘍細胞を検出すればよい。また、腫瘍細胞を含む画分をフローサイトメーターに導入することで腫瘍細胞を検出してもよい。   The fraction containing tumor cells obtained by the above-described method still contains a large amount of contaminating cells other than tumor cells (particularly leukocytes in the case of blood samples). Therefore, it is preferable to collect tumor cells after specifically detecting the tumor cells present in the fraction. In order to detect tumor cells, for example, first, a fraction containing tumor cells is applied to a slide, or a fraction containing tumor cells is introduced into a device capable of holding tumor cells, and the tumor cells are introduced into the device. Hold. Thereafter, the tumor cells may be detected based on the characteristics of the tumor cells using a microscope or an optical detector. Alternatively, tumor cells may be detected by introducing a fraction containing tumor cells into a flow cytometer.

腫瘍細胞を回収可能な細胞回収装置の一例を図1に示し、その正面図を図2に示す。   An example of a cell recovery apparatus capable of recovering tumor cells is shown in FIG. 1, and a front view thereof is shown in FIG.

図1および図2に示す細胞回収装置100は、
貫通孔11aを有する平板状の遮光部材11と、
貫通孔12aを有する平板状の絶縁体12と、
導入口21、排出口22および貫通部23を有する平板状のスペーサ20と、
遮光部材11の下部およびスペーサー20の上部と密着するよう設けた電極基板31、32と、
電極基板31、32同士を接続する導線40と、
電極基板31、32に信号を印加する信号発生器50と、
を備えている。
The cell collection device 100 shown in FIG. 1 and FIG.
A flat light shielding member 11 having a through-hole 11a;
A flat insulator 12 having a through-hole 12a;
A flat spacer 20 having an introduction port 21, a discharge port 22 and a through-hole 23;
Electrode substrates 31 and 32 provided in close contact with the lower part of the light shielding member 11 and the upper part of the spacer 20,
A conductive wire 40 connecting the electrode substrates 31 and 32;
A signal generator 50 for applying signals to the electrode substrates 31 and 32;
It has.

遮光部材11が有する貫通孔11aと絶縁体12が有する貫通孔12aとは互いに同一の寸法および形状であり、かつそれぞれの貫通孔の位置が一致するよう遮光部材11および絶縁体12を設けている。貫通孔11a、貫通孔12aおよび遮光部材11の下部に密着して設けた電極基板31により、細胞回収手段10内に保持部60が構成され、導入口21から細胞を含む液体を導入すると、貫通部23を通じて保持部60へ細胞が導入される。電極基板32はスペーサ20上部に密着して設けており、導入口21から導入した、細胞を含む液体の飛散や蒸発を防止している。なお、保持部60に保持した細胞の回収を容易にするため、電極基板32はスペーサ20から取り外し可能な構造となっている。また電極基板31・32をITO(酸化インジウムスズ)などの透明電極にすると、保持部60に保持された細胞を、顕微鏡や光学検出器を用いて検出可能となるため好ましい。   The through hole 11a included in the light shielding member 11 and the through hole 12a included in the insulator 12 have the same size and shape, and the light shielding member 11 and the insulator 12 are provided so that the positions of the respective through holes coincide with each other. . When the electrode substrate 31 provided in close contact with the lower part of the through hole 11a, the through hole 12a, and the light shielding member 11 constitutes the holding unit 60 in the cell recovery means 10, and when a liquid containing cells is introduced from the inlet 21, Cells are introduced into the holding unit 60 through the unit 23. The electrode substrate 32 is provided in close contact with the upper portion of the spacer 20 to prevent scattering and evaporation of the liquid containing cells introduced from the introduction port 21. The electrode substrate 32 has a structure that can be detached from the spacer 20 in order to facilitate the collection of the cells held in the holding unit 60. In addition, it is preferable to make the electrode substrates 31 and 32 transparent electrodes such as ITO (indium tin oxide) because the cells held in the holding unit 60 can be detected using a microscope or an optical detector.

図1および図2に示す細胞回収装置100に腫瘍細胞を保持させる際は、腫瘍細胞を含む画分をスペーサ20に設けた導入口21から導入後、信号発生器50から導線40を介して電極基板31・32へ交流電圧を印加することで誘電泳動力を発生させ、腫瘍細胞を保持させるとよい。腫瘍細胞を含む画分を細胞回収装置100に導入する際は、予め当該画分を遠心分離することで腫瘍細胞を含むペレットを得た後、マンニトール、グルコ−ス、スクロ−スなどの糖を含む溶液に当該ペレットを懸濁させてから細胞回収装置100に導入すると、腫瘍細胞へのダメ−ジが少なくなるため好ましい。なお、前記ペレットの懸濁液として前述した糖の他に、BSAやカゼイン等のタンパク質、親水性高分子を結合したタンパク質をさらに含んでもよい。前記ペレットの懸濁液中に含まれる糖の濃度は腫瘍細胞と等張になる濃度とすればよく、糖としてマンニトールを用いる場合は終濃度で250mMから350mMの間とすればよい。電極基板31・32へ印加する交流電圧としては、ピ−ク電圧が1Vから20V程度で、周波数10kHzから10MHz程度である、正弦波、矩形波、三角波、台形波が例示できる。具体例として、生きた腫瘍細胞を保持部に1つずつ保持させたい場合は、周波数100kHzから3MHzの矩形波を使用すると好ましい。   When the tumor cell is held in the cell collection device 100 shown in FIGS. 1 and 2, the fraction containing the tumor cell is introduced from the introduction port 21 provided in the spacer 20, and then the electrode from the signal generator 50 through the lead 40. A dielectrophoretic force may be generated by applying an alternating voltage to the substrates 31 and 32 to hold tumor cells. When introducing a fraction containing tumor cells into the cell collection device 100, a pellet containing tumor cells is obtained by centrifuging the fraction in advance, and then sugars such as mannitol, glucose and sucrose are added. It is preferable to suspend the pellet in the solution to be introduced and then introduce it into the cell collection apparatus 100 because damage to tumor cells is reduced. In addition to the sugars described above, the pellet suspension may further include proteins such as BSA and casein, and proteins bound with hydrophilic polymers. The concentration of the sugar contained in the suspension of the pellet may be a concentration that is isotonic with tumor cells. When mannitol is used as the sugar, the final concentration may be between 250 mM and 350 mM. Examples of the AC voltage applied to the electrode substrates 31 and 32 include a sine wave, a rectangular wave, a triangular wave, and a trapezoidal wave having a peak voltage of about 1 V to 20 V and a frequency of about 10 kHz to 10 MHz. As a specific example, when it is desired to hold live tumor cells one by one in the holding unit, it is preferable to use a rectangular wave with a frequency of 100 kHz to 3 MHz.

前述した通り腫瘍細胞の検出は、当該腫瘍細胞が有する特徴に基づき検出すればよい。例えば、血液試料中に含まれる腫瘍細胞(CTC)を検出する場合は、細胞核を有し、かつ白血球マーカー(CD45など)を実質的に発現していない、および/または癌細胞由来マーカーもしくは上皮系マーカー(サイトケラチン(CK)やEpCAM(Epithelial cell adhesion molecule)など)を発現している細胞をCTCとして検出する態様が挙げられる(S.L.Werner.et al.,J.Circ.Biomark.,4:3,doi:10.5772/60725(2015)参照)。ここで「白血球マーカーを実質的に発現していない」とは、白血球マーカーの発現がほとんど確認できないことをいい、具体的には、対象細胞におけるマーカーの発現量が、白血球マーカーを発現する細胞(白血球など)の発現量の半分未満、好ましくは1/3未満、より好ましくは1/5未満、さらにより好ましくは1/10未満である場合に「白血球マーカーを実質的に発現しない」と評価しうる。また、対象細胞におけるマーカーの発現量が、白血球マーカーを発現しないことが知られている陰性対照細胞(例えば、血管内皮細胞、間葉系幹細胞)と同等の発現量である場合も「白血球マーカーを実質的に発現しない」と評価しうる。癌細胞由来マーカーとしては、癌種によって様々なタンパク質が挙げられるが、間葉系癌の一つであるメラノーマの場合は、gp100やMART−1が例示できる。なお、CKにはCK1からCK20まで20種類のタンパク質が知られているが、そのいずれもが前記上皮系マーカーとして使用可能である。   As described above, tumor cells may be detected based on the characteristics of the tumor cells. For example, when detecting tumor cells (CTC) contained in a blood sample, it has a cell nucleus and does not substantially express a leukocyte marker (such as CD45) and / or a cancer cell-derived marker or epithelial system A mode in which a cell expressing a marker (such as cytokeratin (CK) or EpCAM (Epithelial cell adhesion molecule)) is detected as CTC is exemplified (SL Werner. Et al., J. Circ. Biomark., 4: 3, doi: 10.77772 / 60725 (2015)). Here, “substantially does not express the leukocyte marker” means that the expression of the leukocyte marker is hardly confirmed. Specifically, the expression level of the marker in the target cell is a cell that expresses the leukocyte marker ( A leukocyte marker is evaluated as “substantially does not express a leukocyte marker” when the expression level is less than half of the expression level of leukocytes, etc., preferably less than 1/3, more preferably less than 1/5, and even more preferably less than 1/10. sell. In addition, when the expression level of the marker in the target cell is equivalent to that of a negative control cell (eg, vascular endothelial cell, mesenchymal stem cell) that is known not to express the leukocyte marker, It can be evaluated as “substantially not expressed”. As cancer cell-derived markers, various proteins can be mentioned depending on the cancer type, and in the case of melanoma which is one of mesenchymal cancers, gp100 and MART-1 can be exemplified. In addition, although 20 types of proteins from CK1 to CK20 are known for CK, any of them can be used as the epithelial marker.

腫瘍細胞の検出を当該腫瘍細胞が有する光学的特徴に基づき検出する場合、細胞核の検出は、4’,6−diamidino−2−phenylindole(DAPI)やHoechst 33342(商品名)などの細胞核染色試薬で染色して検出すればよい。また、マーカーの検出は、当該マーカーを直接呈色試薬や蛍光試薬で染色して検出してもよく、当該マーカーに対する標識化抗体又は当該タンパク質に対する一次抗体と当該一次抗体に対する標識二次抗体を用いて検出してもよく、当該マーカーの遺伝子を特異的に増幅して検出してもよい。中でもマーカーの検出を当該マーカーに対する標識化抗体を用いて検出する方法は、当該マーカーを簡便、高感度、かつ特異的に検出できる方法であり好ましく、さらに標識二次抗体を用いた検出がより高感度、かつ特異的に検出できるため特に好ましい。なお、抗体を標識する物質も特に限定はなく、例えば、フルオレセインイソチオシアネート(FITC)、Alexa Fluor(商品名)などの蛍光物質が挙げられる。   When detecting tumor cells based on optical characteristics of the tumor cells, cell nuclei are detected with a cell nucleus staining reagent such as 4 ′, 6-diamidino-2-phenylindole (DAPI) or Hoechst 33342 (trade name). What is necessary is just to detect by dyeing | staining. The marker may be detected by directly staining the marker with a color reagent or fluorescent reagent, and using a labeled antibody against the marker or a primary antibody against the protein and a labeled secondary antibody against the primary antibody. Or may be detected by specifically amplifying the gene of the marker. Among them, the method of detecting a marker using a labeled antibody against the marker is preferably a method that can detect the marker simply, with high sensitivity, and specifically, and moreover, detection using a labeled secondary antibody is higher. It is particularly preferred because it can be detected with sensitivity and specificity. The substance that labels the antibody is not particularly limited, and examples thereof include fluorescent substances such as fluorescein isothiocyanate (FITC) and Alexa Fluor (trade name).

腫瘍細胞検出の別の態様として、細胞の大きさに基づき検出する態様が挙げられる。腫瘍細胞の多くは赤血球(直径7μmから8μm、厚さが2μm程度の円盤形)や白血球(マクロファージを除けばおよそ直径6μmから15μmの球状)と比較して径が大きい(CTCの場合、直径10μmから30μm)ことが知られており(Rostagno P.et al.,Anticancer Res.,17(4A),2481−2485(1997))、赤血球や白血球と比較して径が大きな細胞を指標とすることにより、腫瘍細胞(例えば、メラノーマなど上皮間葉転移を起こした腫瘍組織由来の間葉系細胞)を精度よく検出できる。   As another aspect of tumor cell detection, there is an aspect in which detection is based on the size of cells. Many of the tumor cells are larger in diameter than red blood cells (disc shape having a diameter of 7 μm to 8 μm and a thickness of about 2 μm) and white blood cells (spherical diameters of about 6 μm to 15 μm except for macrophages) (in the case of CTC, the diameter is 10 μm). (Rostagno P. et al., Anticancer Res., 17 (4A), 2481-2485 (1997)), and using cells having a larger diameter as compared with erythrocytes and leukocytes as an index Thus, tumor cells (for example, mesenchymal cells derived from tumor tissue that has undergone epithelial-mesenchymal metastasis such as melanoma) can be detected with high accuracy.

腫瘍細胞検出のさらに別の態様として、細胞核の大きさに基づき検出する態様が挙げられる。腫瘍細胞の多くは正常細胞と比較して細胞核が大きいことが知られており、正常細胞と比較して細胞核が大きな細胞を抽出することにより、正常細胞とほぼ同じ径の腫瘍細胞であっても精度よく検出することが可能となる(特願第2012−535345号、特許第5138801号参照)。細胞核の大きさの測定は、具体的には、細胞核領域を染色可能な試薬で染色して測定すればよい。   Still another embodiment of tumor cell detection is an embodiment in which detection is based on the size of cell nuclei. Many tumor cells are known to have larger cell nuclei compared to normal cells, and by extracting cells with larger cell nuclei compared to normal cells, even tumor cells of almost the same diameter as normal cells can be obtained. It becomes possible to detect with high precision (see Japanese Patent Application No. 2012-535345 and Japanese Patent No. 5138801). Specifically, the size of the cell nucleus may be measured by staining the cell nucleus region with a reagent capable of staining.

検出器による腫瘍細胞の検出は、例えば、カメラなどの撮像手段で撮像することで得られた画像(明視野像、蛍光画像、発光画像など)をパソコン等に取り込んだ後、ソフトウェアを用いて腫瘍細胞か否かを判別すればよい。ソフトウェアを用いずに、目視により腫瘍細胞か否かを判別することもできる。   The detection of tumor cells by a detector is performed, for example, by capturing an image (bright field image, fluorescent image, luminescent image, etc.) obtained by imaging with an imaging means such as a camera into a personal computer, etc., and then using a software What is necessary is just to discriminate | determine whether it is a cell. Whether or not it is a tumor cell can also be determined by visual observation without using software.

前述した方法で検出した腫瘍細胞は、細胞を採取可能な採取手段を用いて回収すればよい。採取手段としては、例えば、ポンプや電気浸透流などを用いた吸引による採取手段が挙げられる。腫瘍細胞がポリ−L−リジンなどの接着物質により比較的強く基板に接着されており、かつ採取手段としてシリンジポンプを用いる場合は、高流速で吸引する必要があるため、流量を0.01から5.0μL/sの間とすると好ましい。細胞の吸引で用いる細管の材質としては、ガラス、金属、樹脂等が挙げられるが、耐衝撃性および光透過性が高いガラスが好ましい。また、細管の内径は、吸引後の細管内での詰まりを防ぐため、吸引する細胞の直径よりも大きくすることが好ましい。例えば、直径30μmの保持部(保持部間の距離は50μm)に導入された細胞を吸引する場合は、細管の内径を25μmから35μmの間とすることができる。   Tumor cells detected by the above-described method may be collected using a collecting means capable of collecting cells. Examples of the collecting means include a collecting means by suction using a pump or an electroosmotic flow. When the tumor cells are relatively strongly adhered to the substrate by an adhesive substance such as poly-L-lysine and a syringe pump is used as a sampling means, it is necessary to suck at a high flow rate. It is preferably between 5.0 μL / s. Examples of the material of the thin tube used for cell suction include glass, metal, resin, and the like, and glass having high impact resistance and high light transmittance is preferable. The inner diameter of the thin tube is preferably larger than the diameter of the cells to be sucked in order to prevent clogging in the thin tube after the suction. For example, when a cell introduced into a holding part having a diameter of 30 μm (the distance between the holding parts is 50 μm) is sucked, the inner diameter of the capillary can be set between 25 μm and 35 μm.

癌原発組織および癌転移組織以外の試料から回収した腫瘍細胞は、遺伝子変異解析に供される。前記腫瘍細胞は、前述した検出および採取手段により回収した腫瘍細胞を用いてもよいが、癌原発組織および癌転移組織以外の生体試料の懸濁液や培養試料といった試料中に含まれる腫瘍細胞が多い場合および/または夾雑細胞が少ない場合は、前述した密度勾配遠心法やフィルター法などにより得られた腫瘍細胞を含む画分(腫瘍細胞が濃縮された画分)をそのまま遺伝子変異解析に供してもよい。遺伝子変異解析手法に関しては特に限定はなく、例えば、回収した腫瘍細胞から、遺伝子を抽出した後、遺伝子解析をすればよい。その際に抽出した遺伝子の増幅反応を行なってもよく、遺伝子の増幅法としては、例えば、PCR(Polymerase Chain Reaction)法や、TRC(Transcription Reverse−transcription Concerted reaction)法、LAMP(Loop−Mediated Isothermal Amplification)法などを用いることができる。遺伝子変異解析においては、例えば、サンガー法、サイクルシークエンス法、次世代シークエンシングなどの手法により、抽出した遺伝子(またはその増幅産物)の塩基配列を決定してもよく、また、例えば、抽出した遺伝子を特定の変異を検出可能なプライマーセットを用いた核酸増幅反応(前述したPCR法、TRC法、LAMP法など)を行うことで定性的に解析してもよく、抽出した遺伝子の絶対数を定量するためにデジタルPCR法を行なってもよい。   Tumor cells collected from samples other than cancer primary tissue and cancer metastatic tissue are subjected to gene mutation analysis. The tumor cells may be those collected by the detection and collection means described above, but tumor cells contained in a sample such as a suspension or culture sample of a biological sample other than the primary cancer tissue and cancer metastasis tissue may be used. When there are many cells and / or when there are few contaminating cells, the fraction containing tumor cells obtained by the above-mentioned density gradient centrifugation method or filter method (the fraction enriched with tumor cells) is directly used for gene mutation analysis. Also good. The gene mutation analysis technique is not particularly limited. For example, the gene analysis may be performed after extracting the gene from the collected tumor cells. The amplification reaction of the gene extracted at that time may be carried out. Examples of the gene amplification method include PCR (Polymerase Chain Reaction) method, TRC (Transcribion Reversion-translation reaction) method, LAMP (Loop-Mediated Reaction). (Amplification) method or the like can be used. In gene mutation analysis, for example, the base sequence of the extracted gene (or its amplification product) may be determined by techniques such as the Sanger method, cycle sequencing method, and next generation sequencing, and for example, the extracted gene May be analyzed qualitatively by performing a nucleic acid amplification reaction (such as the PCR method, TRC method, or LAMP method described above) using a primer set capable of detecting a specific mutation, and the absolute number of extracted genes is quantified. In order to achieve this, a digital PCR method may be performed.

前述した方法で解析された、癌原発組織および癌転移組織以外の試料由来の腫瘍細胞の遺伝子変異情報に基づき、対象患者(前記試料を採取した患者)に対する抗癌剤の投与効果を予測することができる。   Based on the gene mutation information of tumor cells derived from samples other than cancer primary tissue and cancer metastatic tissue analyzed by the method described above, it is possible to predict the administration effect of the anticancer agent on the target patient (the patient from whom the sample was collected). .

遺伝子の中には、その変異が抗癌剤の奏効性に影響を与える遺伝子が存在する。このような遺伝子においては、例えば、その変異が、コードするタンパク質の構造や活性に影響を及ぼし、それにより患者に対する抗癌剤の奏効性や副作用が変化する。従って、当該遺伝子の変異は、抗癌剤投与を行なう際の指標となる。例えば、ゲフィチニブやエルロチニブといった上皮成長因子受容体チロシンキナーゼ阻害薬(EGFR−TKI)については、EGFR遺伝子の変異がそれらの奏効性に関与することが知られており、また、ベムラフェニブ、ダブラフェニブやエンコラフェニブといったB−Raf酵素阻害薬については、BRAF遺伝子の変異がそれらの奏効性に関与することが知られている。   Among genes, there are genes whose mutations affect the response of anticancer drugs. In such a gene, for example, the mutation affects the structure and activity of the encoded protein, thereby changing the response and side effects of the anticancer drug to the patient. Therefore, the mutation of the gene is an index when administering an anticancer agent. For example, for epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) such as gefitinib and erlotinib, it is known that mutations in the EGFR gene are involved in their response. Regarding B-Raf enzyme inhibitors, it is known that BRAF gene mutations are involved in their response.

本発明においては、具体的には、癌原発組織および癌転移組織以外の試料由来の腫瘍細胞で検出される遺伝子変異のうち、癌原発組織もしくは癌転移組織由来の腫瘍細胞もしくは循環遊離DNAでは検出されないか、または主要ではない変異(以下、「本発明の対象変異」と称する。)を指標として、抗癌剤投与効果の予測を行う。なお、本発明において、「循環遊離DNA」とは、体内で細胞が死ぬ際に細胞の内容物とともに放出され血中に流れ込むDNAを意味する。また、「主要ではない変異」とは、癌原発組織もしくは癌転移組織由来の腫瘍細胞または循環遊離DNAで検出される遺伝子変異のうち、頻度が10%以下、例えば、5%以下、3%以下、1%以下の変異を意味する。変異の検出および頻度の決定は、本願実施例に記載の方法で行うことができる。   In the present invention, specifically, among gene mutations detected in tumor cells derived from samples other than cancer primary tissue and cancer metastatic tissue, detection is performed in tumor cells derived from cancer primary tissue or cancer metastatic tissue or circulating free DNA. The anti-cancer agent administration effect is predicted using as an index a mutation that is not or is not major (hereinafter referred to as “target mutation of the present invention”). In the present invention, “circulating free DNA” means DNA that is released together with the contents of cells and flows into the blood when the cells die in the body. In addition, the “non-major mutation” means a frequency of 10% or less, for example, 5% or less, 3% or less, among genetic mutations detected in tumor cells derived from cancer primary tissue or cancer metastatic tissue or circulating free DNA. Mean 1% or less mutation. Mutation detection and frequency determination can be performed by the method described in the Examples of the present application.

本発明の対象変異は、癌原発組織および癌転移組織以外の試料由来の腫瘍細胞で検出される遺伝子変異と、前記癌原発組織もしくは癌転移組織由来の腫瘍細胞または循環遊離DNAで検出される遺伝子変異とを比較することにより同定することができる。遺伝子変異の比較のために用いられる、癌原発組織および癌転移組織以外の試料由来の腫瘍細胞、並びに癌原発組織もしくは癌転移組織由来の腫瘍細胞または循環遊離DNAは、同一人に由来することが好ましい。   The target mutation of the present invention includes gene mutations detected in tumor cells derived from samples other than cancer primary tissues and cancer metastatic tissues, and genes detected in tumor cells derived from the cancer primary tissues or cancer metastatic tissues or circulating free DNA It can be identified by comparing with the mutation. Tumor cells derived from samples other than cancer primary tissue and cancer metastatic tissue and tumor cells derived from cancer primary tissue or cancer metastatic tissue or circulating free DNA used for comparison of gene mutations may be derived from the same person. preferable.

遺伝子変異の比較においては、癌原発組織および癌転移組織以外の試料由来の腫瘍細胞(以下、腫瘍細胞Aとも表記)で検出される遺伝子変異と、前記癌原発組織もしくは癌転移組織由来の腫瘍細胞(以下、腫瘍細胞Bとも表記)または循環遊離DNAで検出される遺伝子変異とを、(i)遺伝子変異位置、(ii)遺伝子変異数、(iii)遺伝子変異の種類などの相違に基づき比較すればよい。抗癌剤の投与効果の予測においては、腫瘍細胞Aにおける本発明の対象変異の有無のみならず、その頻度を考慮に入れることができる。また、特定の時点での本発明の対象変異の状況のみならず、その経時的な変化を考慮に入れることができる。   In the comparison of gene mutations, gene mutations detected in tumor cells derived from samples other than cancer primary tissues and cancer metastatic tissues (hereinafter also referred to as tumor cells A) and tumor cells derived from the cancer primary tissues or cancer metastatic tissues (Hereinafter also referred to as tumor cell B) or gene mutation detected in circulating free DNA is compared based on differences in (i) gene mutation position, (ii) number of gene mutations, (iii) gene mutation type, etc. That's fine. In predicting the administration effect of the anticancer agent, not only the presence or absence of the target mutation of the present invention in tumor cells A but also the frequency thereof can be taken into consideration. Moreover, not only the situation of the target mutation of the present invention at a specific time point but also its change with time can be taken into consideration.

例えば、前記比較の結果、本発明の対象変異が腫瘍細胞Aに存在する場合、一定のしきい値(数または割合)以上存在する場合、または本発明の対象変異が検出される腫瘍細胞Aの数または割合が増加する場合に、当該遺伝子に対応する抗癌剤の投与が有効または無効と予測できる。抗癌剤の投与が有効であると予測できる場合においては、有効性の程度(極めて有効、中程度に有効、わずかに有効など)を評価に含めてもよい。   For example, as a result of the comparison, when the target mutation of the present invention is present in the tumor cell A, when the target mutation is present above a certain threshold (number or ratio), or the tumor cell A in which the target mutation of the present invention is detected When the number or ratio increases, it can be predicted that administration of an anticancer agent corresponding to the gene is effective or ineffective. In cases where anticancer drug administration can be predicted to be effective, the degree of effectiveness (very effective, moderately effective, slightly effective, etc.) may be included in the evaluation.

前記予測の第一の態様として、腫瘍細胞Bもしくは循環遊離DNAで検出される遺伝子変異とは異なる位置にある変異を有する腫瘍細胞Aの存在/不存在に基づく予測が挙げられる。また前記予測の第二の態様として、腫瘍細胞Bもしくは循環遊離DNAで検出される遺伝子変異とは異なる位置にある変異を有する腫瘍細胞Aが一定のしきい値(数または割合)以上存在するか否かに基づく予測が挙げられる。また前記予測の第三の態様として、腫瘍細胞Bもしくは循環遊離DNAで検出される遺伝子変異とは異なる位置にある変異を有する腫瘍細胞Aの数または割合の増加/減少に基づく予測が挙げられる。中でも前記第三の態様に基づく予測は、抗癌剤の投与効果予測を病態の変化よりも早期に予測できる点で、より好ましい。   As a first aspect of the prediction, there is prediction based on the presence / absence of tumor cell A having a mutation at a position different from the gene mutation detected in tumor cell B or circulating free DNA. In addition, as a second aspect of the prediction, whether tumor cells A having a mutation at a position different from the gene mutation detected in tumor cell B or circulating free DNA are present above a certain threshold value (number or ratio) There is a prediction based on whether or not. Further, as a third aspect of the prediction, prediction based on an increase / decrease in the number or ratio of tumor cells A having a mutation at a position different from the mutation detected in tumor cells B or circulating free DNA can be mentioned. Among them, the prediction based on the third aspect is more preferable in that the administration effect prediction of the anticancer agent can be predicted earlier than the change in the disease state.

本発明の方法による抗癌剤投与効果の予測は、医師が行なわずに、医療補助者などが行なうことができるし、装置及びソフトウェア上で自動で関連付けすることができる。したがって、本発明の方法は、医師による抗癌剤投与判断のための予備的方法、または医師による抗癌剤投与効果の予測のための情報を得る方法ということもできる。   The prediction of the anticancer drug administration effect by the method of the present invention can be performed by a medical assistant or the like without being performed by a doctor, or can be automatically associated on the apparatus and software. Therefore, it can be said that the method of the present invention is a preliminary method for determining the administration of an anticancer agent by a doctor or a method for obtaining information for predicting the effect of administering an anticancer agent by a doctor.

腫瘍細胞の遺伝子変異と、それに対応する抗癌剤の投与効果予測との関係については、追跡試験を行なうことで決定することもできる。そのような関係は、患者が患っている癌疾患の種類及びステージに応じて決定することもできる。治療前の患者血液に含まれる腫瘍細胞の遺伝子情報に応じて、奏効性の高いまたは副作用の少ない抗癌剤との関連を予め決定することで、患者への抗癌剤投与方針を決定することができる。また、治療中の患者由来の試料に含まれる腫瘍細胞の遺伝子情報に応じて、奏効性の高いまたは副作用の少ない抗癌剤との関連を予め決定することで、遺伝子変異が生じやすい癌を患った患者に対しての抗癌剤投与方針を決定することもできる。さらに、治療後の患者由来の試料に含まれる腫瘍細胞の遺伝子変異情報に応じて、奏効性の高い薬剤または副作用の少ない抗癌剤との関連を予め決定することで、抗癌剤投与方針を決定することもできる。   The relationship between the gene mutation of the tumor cell and the prediction of the administration effect of the corresponding anticancer drug can also be determined by conducting a follow-up test. Such a relationship can also be determined according to the type and stage of the cancer disease the patient is suffering from. By determining in advance the association with an anticancer agent with high response or few side effects according to the genetic information of tumor cells contained in the patient blood before treatment, the administration policy of the anticancer agent to the patient can be determined. In addition, patients suffering from cancers that are prone to genetic mutations by pre-determining the association with anticancer agents with high response or few side effects according to the genetic information of tumor cells contained in samples from patients undergoing treatment It is also possible to determine an anticancer drug administration policy for the above. Furthermore, depending on the gene mutation information of the tumor cells contained in the patient-derived sample after treatment, it is possible to determine the administration policy of the anticancer agent by predetermining the association with a highly effective drug or an anticancer agent with few side effects. it can.

本発明の好ましい態様の一つとして、本発明の対象変異を指標とすることに加えて、癌原発組織および癌転移組織以外の試料由来の腫瘍細胞数を指標とすることで、抗癌剤投与効果を予測する方法が挙げられる。癌原発組織および癌転移組織以外の試料由来の腫瘍細胞数と予後とは関連性があり、当該腫瘍細胞数が多いほど予後が悪い(血液試料中に含まれる腫瘍細胞の場合は特許第5479355号参照)。このことから、癌原発組織および癌転移組織以外の試料由来の腫瘍細胞数を計測することで、患者の予後を予測することができ、当該患者が抗癌剤を投与されている場合、当該抗癌剤投与による効果を予測することができる。従って、癌原発組織および癌転移組織以外の試料由来の腫瘍細胞における遺伝子変異を解析して、本発明の対象変異を同定する工程に加えて、癌原発組織および癌転移組織以外の試料由来の腫瘍細胞数を計測することで、抗癌剤投与による効果予測をより精度高く行なうことができる。なお、腫瘍細胞数を指標とする場合においては、単に採取した試料中に一定のしきい値以上の腫瘍細胞が存在するかを評価してもよく、試料を複数回採取し、当該採取した各試料中に含まれる腫瘍細胞数の経時変化を評価してもよい。   As one of the preferred embodiments of the present invention, in addition to using the target mutation of the present invention as an index, by using the number of tumor cells derived from a sample other than the primary cancer tissue and cancer metastasis tissue as an index, the effect of administering an anticancer agent can be obtained. A prediction method is mentioned. The number of tumor cells derived from samples other than cancer primary tissue and cancer metastasis tissue and the prognosis are related, and the larger the number of tumor cells, the worse the prognosis (in the case of tumor cells contained in blood samples, Patent No. 5479355) reference). From this, it is possible to predict the prognosis of a patient by measuring the number of tumor cells derived from a sample other than the primary cancer tissue and cancer metastasis tissue, and when the patient is administered an anticancer drug, The effect can be predicted. Therefore, in addition to the step of analyzing gene mutations in tumor cells derived from samples other than cancer primary tissues and cancer metastatic tissues and identifying the target mutation of the present invention, tumors derived from samples other than cancer primary tissues and cancer metastatic tissues By measuring the number of cells, the effect of anticancer drug administration can be predicted with higher accuracy. In the case where the number of tumor cells is used as an index, it may be simply evaluated whether tumor cells having a certain threshold value or more are present in the collected sample. You may evaluate the time-dependent change of the number of tumor cells contained in a sample.

以下、本発明の予測方法の一例として、図1および図2に示す細胞回収装置100を用いた、血液試料中に含まれる腫瘍細胞(CTC)で検出される本発明の対象変異に基づく予測方法を説明するが、本発明は本説明の内容に限定されるものではない。   Hereinafter, as an example of the prediction method of the present invention, the prediction method based on the target mutation of the present invention detected by tumor cells (CTC) contained in a blood sample using the cell recovery apparatus 100 shown in FIGS. 1 and 2 However, the present invention is not limited to the contents of this description.

(1)癌の疑いのある患者または癌患者から血液を採取する。なお、血液を採取する際、クエン酸、ヘパリン、エチレンジアミン四酢酸(EDTA)などの抗凝固剤を添加してもよい。また必要に応じ、採取した血液を生理食塩水などで希釈してもよい。   (1) Collect blood from patients suspected of having cancer or cancer patients. When blood is collected, an anticoagulant such as citric acid, heparin, ethylenediaminetetraacetic acid (EDTA) may be added. If necessary, the collected blood may be diluted with physiological saline or the like.

(2)採取した血液(または希釈した血液)を密度勾配遠心法に供し、当該血液中に含まれる夾雑細胞(赤血球、白血球など)を除去する。密度勾配遠心法は、物質をその比重に基づき分離する方法であり、密度勾配を形成した媒体(密度勾配溶液)上に採取した血液(または希釈した血液)を重層した後、遠心分離を行なうことにより、夾雑細胞やごみを除去し、CTCを含む画分(上層)を回収することができる。なお、前記遠心分離を行なう前に、採取した血液(または希釈した血液)に、夾雑細胞(赤血球、白血球など)と結合可能な結合剤(例えば、RosetteSep(StemCell Technologies社製))を添加することもできる。前記結合剤は、赤血球、白血球および/またはこれら細胞の表面抗原と結合することで細胞凝集体を形成し、これら細胞の密度を大きくすることができるため、密度勾配遠心法によるCTCの分離を容易にする。密度勾配遠心法により夾雑細胞やごみが除去されたCTCを含む画分は、速やかに後続の操作を行なうことが好ましいが、後続の操作を速やかに行なえない場合は、凍結保存による保存処理を行なってもよい。凍結保存する際は、CELLBANKER2(日本全薬工業社製)などの細胞保存溶液にCTCを含む画分を懸濁させた後、−80℃で凍結保存すればよい。   (2) The collected blood (or diluted blood) is subjected to density gradient centrifugation to remove contaminating cells (red blood cells, white blood cells, etc.) contained in the blood. Density gradient centrifugation is a method of separating substances based on their specific gravity. After collecting blood (or diluted blood) on a medium that forms a density gradient (density gradient solution), centrifugation is performed. Thus, it is possible to remove contaminating cells and dust and collect a fraction (upper layer) containing CTC. Before performing the centrifugation, a binding agent (for example, RosetteSep (manufactured by StemCell Technologies)) that can bind to contaminating cells (red blood cells, white blood cells, etc.) is added to the collected blood (or diluted blood). You can also. The binding agent forms cell aggregates by binding to erythrocytes, leukocytes and / or surface antigens of these cells, and the density of these cells can be increased, so that separation of CTC by density gradient centrifugation is easy. To. The fraction containing CTC from which contaminating cells and dust have been removed by the density gradient centrifugation method is preferably subjected to the subsequent operation promptly. However, if the subsequent operation cannot be performed promptly, a preservation process by cryopreservation is performed. May be. When cryopreserving, a fraction containing CTC may be suspended in a cell preservation solution such as CELLBANKER2 (manufactured by Nippon Zenyaku Kogyo Co., Ltd.) and then cryopreserved at −80 ° C.

(3)(2)で得られたCTCを含む画分に塩化アンモニウムを含む溶液を添加して撹拌することで、当該画分に混入した赤血球を溶血させる。本操作により、分離回収したCTCの観察が良好になる。   (3) A solution containing ammonium chloride is added to the fraction containing CTC obtained in (2) and stirred to hemolyze red blood cells mixed in the fraction. This operation improves the observation of the separated and recovered CTC.

(4)(3)で得られた溶血処理後のCTCを含む溶液を遠心分離することで血液成分を除去することでCTCをペレット状にした後、適切な溶液を用いてCTCを懸濁させる。   (4) CTC is pelletized by removing blood components by centrifuging the solution containing CTC after hemolysis obtained in (3), and then suspending CTC using an appropriate solution .

(5)(4)で調製したCTCを含む懸濁液を再度遠心分離し、CTCを含むペレットを回収する。なお、必要に応じ、前記回収したペレットを溶液に再度懸濁させ、遠心分離する工程を追加してもよい。   (5) The CTC-containing suspension prepared in (4) is centrifuged again, and the CTC-containing pellet is recovered. If necessary, a step of suspending the recovered pellet again in the solution and centrifuging it may be added.

(6)(5)で得られたCTCを、図1に示す細胞回収装置100に設けた細胞保持手段10上に展開後、誘電泳動力80により細胞70を保持部60へ保持させる(図3(1))。   (6) After the CTC obtained in (5) is developed on the cell holding means 10 provided in the cell recovery apparatus 100 shown in FIG. 1, the cell 70 is held on the holding unit 60 by the dielectrophoretic force 80 (FIG. 3). (1)).

(7)接着物質90を細胞回収装置100に導入し、CTCを保持部60に接着する(図3(2))。接着物質90としては、例えばポリ−L−リジンを用いることができ、その濃度は0.01(w/v)%以下とするとよい。   (7) The adhesive substance 90 is introduced into the cell collection device 100, and the CTC is adhered to the holding unit 60 (FIG. 3 (2)). As the adhesive substance 90, for example, poly-L-lysine can be used, and its concentration is preferably 0.01 (w / v)% or less.

(8)保存処理剤および細胞膜透過処理剤を細胞回収装置100に導入し、CTCの保存および膜透過処理を施す。保存処理剤としては、ホルムアルデヒド、ホルムアルデヒドドナー化合物(加水分解を受けることでホルムアルデヒドを放出可能な化合物)、グルタルアルデヒドなどのアルデヒド類、メタノール、エタノールなどのアルコール類、および重金属を含む溶液が例示できる。細胞膜透過処理剤としては、メタノール、エタノールなどのアルコール類や、サポニンなどの界面活性剤が例示できる。   (8) Preservation treatment agent and cell membrane permeation treatment agent are introduced into the cell recovery apparatus 100, and CTC preservation and membrane permeation treatment are performed. Examples of the preservative include formaldehyde, formaldehyde donor compounds (compounds capable of releasing formaldehyde upon hydrolysis), aldehydes such as glutaraldehyde, alcohols such as methanol and ethanol, and solutions containing heavy metals. Examples of the cell membrane permeabilizing agent include alcohols such as methanol and ethanol, and surfactants such as saponin.

(9)抗体による非特異的な反応を防ぐため、保存および膜透過処理後の標的細胞を保持した保持部に対してタンパク質によるブロッキング処理を施す。   (9) In order to prevent a non-specific reaction caused by the antibody, a blocking treatment with a protein is applied to the holding portion holding the target cells after storage and membrane permeabilization treatment.

(10)ブロッキング処理した後、白血球が発現するタンパク質(白血球マーカー)、上皮系細胞が発現するタンパク質(上皮系マーカー)、もしくは腫瘍細胞が発現するタンパク質(癌細胞由来マーカー)に対する蛍光標識抗体や、細胞核を蛍光染色させる試薬を用いて細胞を標識し(図3(3))、洗浄後、蛍光顕微鏡200などで細胞の蛍光像および明視野像を観察する(図3(4))。白血球が発現するタンパク質に対する抗体としては、抗CD45抗体を用いることができる。また、上皮系細胞が発現するタンパク質に対する抗体としては、抗CK抗体や抗EpCAM抗体などを用いることができる。腫瘍細胞が発現するタンパク質に対する抗体としては。腫瘍細胞がメラノーマの場合、抗gp100抗体や抗MART−1抗体などを用いることができる。細胞核を蛍光染色させる試薬としては、4’,6−diamidino−2−phenylindole(DAPI)やHoechst 33342(商品名)などを用いることができる。   (10) After the blocking treatment, a fluorescently labeled antibody against a protein expressed by leukocytes (leukocyte marker), a protein expressed by epithelial cells (epithelial marker), or a protein expressed by tumor cells (cancer cell-derived marker), Cells are labeled with a reagent that fluorescently stains cell nuclei (FIG. 3 (3)), and after washing, a fluorescence image and a bright field image of the cells are observed with a fluorescence microscope 200 or the like (FIG. 3 (4)). As an antibody against a protein expressed by leukocytes, an anti-CD45 antibody can be used. In addition, as an antibody against a protein expressed by epithelial cells, an anti-CK antibody, an anti-EpCAM antibody, or the like can be used. As an antibody against the protein expressed by tumor cells. When the tumor cell is a melanoma, an anti-gp100 antibody, an anti-MART-1 antibody, or the like can be used. As a reagent for fluorescently staining the cell nucleus, 4 ', 6-diamidino-2-phenyllinole (DAPI), Hoechst 33342 (trade name), or the like can be used.

(11)観察した蛍光像および明視野像を基にCTC71を検出する(図3(4))。CTCの検出においては、例えば、細胞核が染色されており、抗CD45抗体では標識されず、かつ上皮系細胞が発現するタンパク質に対する抗体(抗CK抗体や抗EpCAM抗体など)または癌細胞が発現するタンパク質に対する抗体(メラノーマの場合、抗gp100抗体や抗MART−1抗体)で標識された細胞をCTCとして検出すればよい。また細胞核が染色されており、抗CD45抗体では標識されず、かつ赤血球や白血球と比較して明視野像での細胞の形状が大きい細胞をCTCとして検出してもよい。   (11) CTC71 is detected based on the observed fluorescence image and bright field image (FIG. 3 (4)). In detection of CTC, for example, a cell nucleus is stained, not labeled with an anti-CD45 antibody, and an antibody against a protein expressed by epithelial cells (such as an anti-CK antibody or an anti-EpCAM antibody) or a protein expressed by a cancer cell What is necessary is just to detect the cell labeled with the antibody (in the case of melanoma, anti-gp100 antibody or anti-MART-1 antibody) as CTC. Alternatively, cells that are stained with cell nuclei, are not labeled with anti-CD45 antibodies, and have a larger cell shape in the bright field image than erythrocytes or leukocytes may be detected as CTCs.

(12)蛍光顕微鏡200で検出したCTC71を回収するために、電極基板32をスペーサ20から取り外した後、回収装置300で吸引することでCTC71を回収する(図3(5))。電極基板32を取り外す際は、スペーサ20を剥がさないよう取り外す必要がある。もしスペーサ20が絶縁体12から剥がれると、装置内に保持されている溶液が系外に流れてしまい、CTC71が破壊されるからである。回収装置300によるCTC71の吸引は、前記(11)で検出したCTC71が保持されている保持部60に回収装置300を移動させ、回収装置300により液を吸引することでCTC71を回収する。なお、回収装置300によるCTC71の吸引位置を、CTC71を標本化した保持部60の中心から水平方向に一定距離ずらした位置とすると、CTC71の吸引を容易に行なえるため好ましい。具体的にはCTC71の吸引位置を、保持部60の中心から水平方向に保持部60の直径の0.1倍から2倍の長さ分(ただし隣接する保持部60間の距離の2分の1以下)ずらし、かつ保持部60の高さから垂直方向に保持部60の高さの0.01倍から2倍の高さ分高い位置とすると好ましい。また、回収装置300によるCTC71の吸引操作の前に、CTC71と保持部60との接着性を弱める酵素を含む溶液を添加する操作を行なってもよい。   (12) In order to collect the CTC 71 detected by the fluorescence microscope 200, after removing the electrode substrate 32 from the spacer 20, the CTC 71 is collected by suction with the collecting device 300 (FIG. 3 (5)). When removing the electrode substrate 32, it is necessary to remove the spacer 20 so as not to peel off. This is because if the spacer 20 is peeled off from the insulator 12, the solution held in the apparatus flows out of the system and the CTC 71 is destroyed. The suction of the CTC 71 by the recovery device 300 is performed by moving the recovery device 300 to the holding unit 60 where the CTC 71 detected in (11) is held, and sucking the liquid by the recovery device 300 to recover the CTC 71. In addition, it is preferable that the suction position of the CTC 71 by the collection device 300 is a position shifted by a certain distance in the horizontal direction from the center of the holding unit 60 where the CTC 71 is sampled because the suction of the CTC 71 can be easily performed. Specifically, the suction position of the CTC 71 is set to a length that is 0.1 to 2 times the diameter of the holding unit 60 in the horizontal direction from the center of the holding unit 60 (however, two minutes of the distance between adjacent holding units 60). 1 or less) and a position that is 0.01 to 2 times as high as the height of the holding portion 60 in the vertical direction from the height of the holding portion 60 is preferable. Further, an operation of adding a solution containing an enzyme that weakens the adhesion between the CTC 71 and the holding unit 60 may be performed before the suction operation of the CTC 71 by the recovery device 300.

(13)回収装置300による吸引で回収したCTC71を回収チュ−ブ400へ吐出する(図3(6))。回収チュ−ブ400へCTC71が吐出されたかどうかを光学検出器200で検出してもよい。   (13) The CTC 71 recovered by the suction by the recovery device 300 is discharged to the recovery tube 400 (FIG. 3 (6)). The optical detector 200 may detect whether or not the CTC 71 is discharged to the collection tube 400.

(14)回収チュ−ブ400に回収されたCTC71中の遺伝子を抽出し、PCR法により当該遺伝子を増幅した後、サンガー法により当該遺伝子の配列決定することで、遺伝子変異を解析する。   (14) A gene in CTC71 recovered in the recovery tube 400 is extracted, the gene is amplified by the PCR method, and then the gene mutation is analyzed by sequencing the gene by the Sanger method.

(15)(14)の解析結果と、癌原発組織もしくは癌転移組織由来の腫瘍細胞または循環遊離DNAにおける遺伝子変異の解析結果とを比較し、これら遺伝子変異位置の違いの有無に基づき、抗癌剤投与効果を予測する。なお、より精度の高い効果予測を行なう場合は、例えば、前記(11)で検出されたCTCを計数し、その経時変化を観察する工程を追加するとよい。   (15) The analysis result of (14) is compared with the analysis result of gene mutation in tumor cells derived from cancer primary tissue or cancer metastasis tissue or circulating free DNA, and based on the presence or absence of the difference in these gene mutation positions, administration of an anticancer drug Predict the effect. In the case of performing effect prediction with higher accuracy, for example, a step of counting the CTC detected in the above (11) and observing the change with time may be added.

以下、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明は当該例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example and a comparative example, this invention is not limited to the said example.

[実施例1]血中循環腫瘍細胞(CTC)における遺伝子変異と抗癌剤投与による病態との相関
(1)インフォームドコンセントを得たステージIVのメラノーマ患者から、治療経過に合わせて血液を計4回採取した。採血時期を以下に示す。
(1回目)B−Raf酵素阻害薬投与前
(2回目)B−Raf酵素阻害薬を投与し、病態の変化が認められない(病態が安定した)段階(1回目の採血から7ヶ月後)
(3回目)B−Raf酵素阻害薬を投与したものの、リンパ節転移や皮膚転移新生が認められた(病態が悪化した)段階であって、かつニボルマブの投与前(2回目の採血から8ヶ月後)
(4回目)ニボルマブ投与(5サイクル)により、CT画像診断による皮膚転移の縮小変化が認められた(病態が好転した)段階(3回目の採血から4ヶ月後)
(2)(1)で採取した血液10mLを20×gで10分間、室温にて遠心し、上清を除去後、PBS(Phosphate buffered saline)20mLで懸濁することで、希釈血液試料を調製した。
(3)希釈血液試料を、密度1.077g/mLの密度勾配溶液に重層し、800×gで20分間、室温にて遠心後、上清部にあるCTCを含む画分を回収した。
(4)(3)で回収したCTCを含む画分にPBS30mLを加え、600×gで10分間、室温にて遠心分離することで上清を除去し、CTCを含むペレットを得た。
(5)CTCを含むペレットを、PBS20mLで再懸濁し、300×gで8分間、室温にて遠心分離することで上清を除去し、CTCを含むペレットを得た。
(6)再度CTCを含むペレットをPBS20mLで再懸濁した後、300×gで8分間、室温にて遠心分離し、上清を除去した。(4)、(5)および本操作は、血液成分を除去し、所望とする細胞を濃縮するための操作である。
(7)CTCの長期保存を目的に、CTCを含むペレットを、細胞凍結保存液(CELLBANKER2、日本全薬工業社製)2mLで再懸濁し、−80℃にて凍結保存した。
(8)(7)で凍結保存したCTCを含む懸濁液を解凍し、その一部を、300mMマンニトールを含む溶液10mLに懸濁後、300×gで5分間、室温にて遠心分離することで上清を除去した。
(9)再度300mMマントールを含む溶液10mLで懸濁後、300×gで5分間、室温にて遠心分離し、上清を除去した。(8)および本操作は、細胞凍結保存液を除去し、CTCを濃縮するための操作である。
(10)(9)で上清を除去したCTCを含む懸濁液を図1に示す細胞回収装置100に設けた細胞保持手段10に導入し、信号発生器50から電極基板31・32へ交流電圧(周波数1MHz)を3分間印加することで前記手段が有する保持部60にCTCを含めた細胞を保持させた。本実施例で用いた細胞回収装置100は、直径30μm、深さ40μmの微細孔を複数有する絶縁体12と、絶縁体12と電極基板31の間に設置した遮光性のクロム膜(遮光部材11)と、電極基板31とからなる細胞保持手段10に設けた保持部60の上面に、厚さ1mmのスペーサ20および電極基板32を密着させた構造である。
(11)(10)の条件で交流電圧を印加しながら、0.01(w/v)%のポリ−L−リジンを含む300mMマンニトール水溶液を導入し、3分間静置後、前記交流電圧の印加を停止し、前記水溶液を吸引除去した。
(12)50%(v/v)エタノールと2%(w/v)ホルムアルデヒドを含む水溶液(以下、「細胞膜透過試薬」と称する)を導入し、10分間静置することで、細胞膜を透過させ、保持部にCTCを含めた細胞を標本化した。
(13)細胞膜透過試薬を吸引除去し、PBSを導入することで、残留した細胞膜透過試薬を洗浄した。
(14)細胞膜内外のタンパク質と特異的に結合可能な蛍光標識抗体と、細胞核を標識する蛍光試薬(DAPI:4’,6−diamidino−2−phenylindole)を含む水溶液(以下、標識試薬A)を導入し、30分間静置した。なお、前記標識された抗体として、白血球表面に発現しているCD45に対する抗体、ならびにメラノーマ細胞の細胞質内で発現しているgp100およびMART−1に対する抗体を用いている。
(15)標識試薬Aを吸引除去し、PBSを導入することで、残留した標識試薬Aを除去した。
(16)(15)で標識したCTCを含む細胞保持手段を蛍光顕微鏡のステージ上に載置した後、複数の保持孔に捕捉した全ての細胞を観察するために保持部全体の撮像を行った。これにはコンピューター制御式電動ステージ、CMOSカメラ(ORCA−Flash4.0;浜松ホトニクス社製)を装備した蛍光顕微鏡(IX83;オリンパス社製)を用いた。画像取得及び解析ソフトウェアにはLabVIEW(National Instruments社製)を用いた。
(17)(16)で撮像した細胞の中から、細胞核を有していることを示すDAPIで染色されており(DAPI陽性)、白血球で発現しているCD45に対する抗体では染色されず(CD45陰性)、メラノーマの性質を有していることを示すgp100およびMART−1に対する抗体で染色されている(gp100/MART−1陽性)細胞を、目的とする腫瘍細胞(メラノーマ由来CTC)として検出した。
(18)スペーサ20から電極基板32を取り外した後、蛍光顕微鏡下で、円筒状の細管を用いて任意の保持部から(17)で検出したメラノーマ由来CTCを一つずつ吸引した。吸引した前記細胞を、容器に吐出することで前記細胞を回収した。
(19)(18)で回収した細胞から遺伝子を抽出し、BRAF遺伝子領域をPCR法で増幅した。
(20)(19)で増幅させたBRAF遺伝子からサンガー法による配列解析で当該遺伝子情報を取得し、変異の有無を解析した。
[Example 1] Correlation between gene mutation in circulating tumor cells (CTC) and pathology caused by administration of anticancer agent (1) From stage IV melanoma patients who obtained informed consent, blood was collected a total of 4 times according to the course of treatment Collected. The time of blood collection is shown below.
(First time) Before administration of B-Raf enzyme inhibitor (Second time) Administration of B-Raf enzyme inhibitor and no change in pathological condition (stable pathological condition) (7 months after the first blood collection)
(3rd time) B-Raf enzyme inhibitor was administered, but lymph node metastasis and skin metastasis neoplasia were observed (pathological condition worsened), and before nivolumab administration (8 months after the second blood collection) rear)
(Fourth) Nivolumab administration (5 cycles) showed reduction of skin metastasis due to CT imaging (pathological improvement) (4 months after the third blood collection)
(2) 10 mL of blood collected in (1) is centrifuged at 20 × g for 10 minutes at room temperature, the supernatant is removed, and then suspended in 20 mL of PBS (Phosphate buffered saline) to prepare a diluted blood sample did.
(3) The diluted blood sample was layered on a density gradient solution having a density of 1.077 g / mL, and centrifuged at 800 × g for 20 minutes at room temperature, and then the fraction containing CTC in the supernatant was collected.
(4) 30 mL of PBS was added to the fraction containing CTC collected in (3), and the supernatant was removed by centrifugation at 600 × g for 10 minutes at room temperature to obtain a pellet containing CTC.
(5) The pellet containing CTC was resuspended in 20 mL of PBS, and the supernatant was removed by centrifugation at 300 × g for 8 minutes at room temperature to obtain a pellet containing CTC.
(6) The pellet containing CTC was resuspended in 20 mL of PBS again, and then centrifuged at 300 × g for 8 minutes at room temperature to remove the supernatant. (4), (5) and this operation are operations for removing blood components and concentrating desired cells.
(7) For the purpose of long-term storage of CTC, the pellet containing CTC was resuspended in 2 mL of a cell cryopreservation solution (CELLBANKER2, manufactured by Nippon Zenyaku Kogyo Co., Ltd.) and stored frozen at -80 ° C.
(8) Thaw the suspension containing CTC cryopreserved in (7), suspend a part of it in 10 mL of a solution containing 300 mM mannitol, and then centrifuge at 300 × g for 5 minutes at room temperature. The supernatant was removed.
(9) The suspension was again suspended in 10 mL of a solution containing 300 mM mannitol, and then centrifuged at 300 × g for 5 minutes at room temperature to remove the supernatant. (8) and this operation are operations for removing the cell cryopreservation solution and concentrating the CTC.
(10) The suspension containing CTC from which the supernatant has been removed in (9) is introduced into the cell holding means 10 provided in the cell recovery apparatus 100 shown in FIG. The voltage (frequency 1 MHz) was applied for 3 minutes, and the cells including CTC were held in the holding unit 60 included in the means. The cell collection device 100 used in this example includes an insulator 12 having a plurality of fine holes with a diameter of 30 μm and a depth of 40 μm, and a light-shielding chromium film (light-shielding member 11) installed between the insulator 12 and the electrode substrate 31. ) And the electrode substrate 31, the spacer 20 having a thickness of 1 mm and the electrode substrate 32 are in close contact with the upper surface of the holder 60 provided in the cell holder 10.
(11) While applying an AC voltage under the conditions of (10), a 300 mM mannitol aqueous solution containing 0.01 (w / v)% poly-L-lysine was introduced, and the mixture was allowed to stand for 3 minutes. The application was stopped and the aqueous solution was removed by suction.
(12) An aqueous solution containing 50% (v / v) ethanol and 2% (w / v) formaldehyde (hereinafter referred to as “cell membrane permeation reagent”) is introduced and allowed to stand for 10 minutes to permeate the cell membrane. The cells containing CTC in the holding part were sampled.
(13) The cell membrane permeation reagent was removed by suction, and the remaining cell membrane permeation reagent was washed by introducing PBS.
(14) An aqueous solution (hereinafter referred to as labeling reagent A) containing a fluorescently labeled antibody capable of specifically binding to proteins inside and outside the cell membrane and a fluorescent reagent (DAPI: 4 ′, 6-diamidino-2-phenyllinole) for labeling the cell nucleus It was introduced and allowed to stand for 30 minutes. As the labeled antibody, an antibody against CD45 expressed on the surface of leukocytes, and an antibody against gp100 and MART-1 expressed in the cytoplasm of melanoma cells are used.
(15) The labeling reagent A was removed by suction, and the remaining labeling reagent A was removed by introducing PBS.
(16) After placing the cell holding means containing the CTC labeled in (15) on the stage of the fluorescence microscope, the entire holding unit was imaged in order to observe all the cells captured in the plurality of holding holes. . For this, a fluorescent microscope (IX83; manufactured by Olympus) equipped with a computer-controlled electric stage and a CMOS camera (ORCA-Flash 4.0; manufactured by Hamamatsu Photonics) was used. LabVIEW (manufactured by National Instruments) was used as image acquisition and analysis software.
(17) The cells imaged in (16) are stained with DAPI indicating that they have a cell nucleus (DAPI positive), and are not stained with an antibody against CD45 expressed in leukocytes (CD45 negative) ), Cells that were stained with antibodies against gp100 and MART-1 (gp100 / MART-1 positive) indicating that they have melanoma properties were detected as target tumor cells (melanoma-derived CTC).
(18) After removing the electrode substrate 32 from the spacer 20, the melanoma-derived CTCs detected in (17) were sucked one by one from an arbitrary holding part using a cylindrical thin tube under a fluorescence microscope. The cells were collected by discharging the sucked cells into a container.
(19) A gene was extracted from the cells collected in (18), and the BRAF gene region was amplified by PCR.
(20) The gene information was obtained from the BRAF gene amplified in (19) by sequence analysis by the Sanger method, and the presence or absence of mutation was analyzed.

[実施例2]癌原発組織および癌転移組織における遺伝子変異
(1)実施例1(1)において採血した癌患者から、1回目の採血前に癌原発組織および癌転移組織であるリンパ節を、3回目の採血時に癌転移組織である新生皮膚転移組織を、それぞれ採取した。
(2)採取した各組織に対して、コバス BRAF V600変異検出キット(ロシュ・ダイアグノスティックス社製)を用いて、遺伝子変異の有無を解析した。
[Example 2] Gene mutation in primary cancer tissue and metastatic tissue (1) From the cancer patient blood sampled in Example 1 (1), lymph nodes that are primary cancer tissue and cancer metastasis tissue before the first blood sampling, At the time of the third blood collection, neoplastic skin metastases that were cancer metastatic tissues were collected.
(2) The presence or absence of a gene mutation was analyzed for each collected tissue using a Covas BRAF V600 mutation detection kit (Roche Diagnostics).

実施例1で遺伝子情報が得られたメラノーマ由来CTC数と、その遺伝子変異解析結果を表1に示す。また実施例2で遺伝子解析を行なった組織における遺伝子変異解析結果を表2に示す。   Table 1 shows the number of melanoma-derived CTCs for which genetic information was obtained in Example 1 and the results of gene mutation analysis. Table 2 shows the results of gene mutation analysis in the tissues subjected to gene analysis in Example 2.

1回目の採血(B−Raf酵素阻害薬投与前)では、遺伝子情報が得られたメラノーマ由来CTC13個のうち、B−Raf酵素阻害薬による奏功性が高い、BRAF V600部位の変異を有するCTCが2個検出(当該変異を有するCTCの割合15.4%)され、かつその変異は、癌原発組織およびリンパ節(癌転移組織)で検出されるBRAF V600部位の変異(V600E)とは異なる変異(V600K)であった。BRAF V600Kの変異を有するCTCが検出されたことから、この時点ではB−Raf酵素阻害薬の投与が有効であることが予測される。   In the first blood collection (before administration of the B-Raf enzyme inhibitor), among the 13 melanoma-derived CTCs for which genetic information was obtained, CTCs with mutations in the BRAF V600 site that are highly effective with B-Raf enzyme inhibitors 2 detected (15.4% of CTCs with the mutation) and the mutation is different from the BRAF V600 site mutation (V600E) detected in the primary cancer tissue and lymph nodes (cancer metastasis tissue) (V600K). Since CTC having a BRAF V600K mutation was detected, it is predicted that administration of a B-Raf enzyme inhibitor is effective at this point.

2回目の採血(B−Raf酵素阻害薬投与により病態安定)でも、遺伝子情報が得られたメラノーマ由来CTC10個のうち、BRAF V600Kの変異を有するCTCが1個検出(当該変異を有するCTCの割合10.0%)されており、遺伝子変異解析の結果からもB−Raf酵素阻害薬投与が有効であることが示されている。事実、B−Raf酵素阻害薬の投与により病態は安定している。但し、2回目の採血では病態の変化が認められないにも関わらず、BRAF V600Kの変異を有するCTCの検出数および割合が1回目の採血時(BRAF V600Kの変異を有するCTCが2個検出され、当該変異を有するCTCの割合は18.2%)と比較して減少していることから、2回目採血以降B−Raf酵素阻害薬が効きづらくなることが予測される。   Even in the second blood collection (pathologically stable by administration of B-Raf enzyme inhibitor), one CTC having a BRAF V600K mutation was detected from 10 CTCs derived from melanoma from which genetic information was obtained (the ratio of CTCs having the mutation) 10.0%), and the results of gene mutation analysis show that administration of a B-Raf enzyme inhibitor is effective. In fact, the pathological condition is stabilized by administration of the B-Raf enzyme inhibitor. However, although no change in the pathological condition was observed in the second blood sampling, the number and ratio of CTCs having a BRAF V600K mutation were detected at the first blood sampling (two CTCs having a BRAF V600K mutation were detected. Since the ratio of CTC having the mutation is decreased compared to 18.2%), it is predicted that the B-Raf enzyme inhibitor will not be effective after the second blood collection.

3回目の採血時には、B−Raf酵素阻害薬投与を継続しているにも関わらず病態が悪化しており、B−Raf酵素阻害薬の奏効性が低下したことを示す。このことは上記2回目の採血結果からの予測(即ち2回目の採血以降にB−Raf酵素阻害薬の奏効性が低下するとの予測)と合致している。3回目の採血では、遺伝子情報が得られたメラノーマ由来CTC9個のうち、BRAF V600Kの変異を有するCTCは検出されない一方、皮膚転移組織が有するBRAF V600部位の変異と同じ変異(V600E)を有するCTCが1個検出(当該変異を有するCTCの割合11.1%)された。このことから皮膚転移組織由来の腫瘍細胞で検出されるBRAF V600部位の変異(V600E)とは異なる変異(V600K)を有するCTCが検出されなくなると、B−Raf酵素阻害薬による奏功性が低下する(すなわち病状が悪化する)ことがわかる。一方、皮膚転移組織由来の腫瘍細胞にはBRAF V600部位の変異(V600E)が残存していることから、癌原発組織または癌転移組織由来の腫瘍細胞で検出される変異を解析するのみでは、抗癌剤投与効果の予測が困難であることがわかる。   At the time of the third blood collection, although the B-Raf enzyme inhibitor administration was continued, the pathological condition was deteriorated, indicating that the efficacy of the B-Raf enzyme inhibitor was reduced. This is consistent with the prediction from the second blood collection result (that is, the prediction that the efficacy of the B-Raf enzyme inhibitor will decrease after the second blood collection). In the third blood collection, among the 9 melanoma-derived CTCs for which genetic information was obtained, no CTC having a BRAF V600K mutation was detected, while CTC having the same mutation (V600E) as the BRAF V600 site mutation in the skin metastatic tissue. 1 was detected (the ratio of CTC having the mutation was 11.1%). Therefore, when CTC having a mutation (V600K) different from the BRAF V600 mutation (V600E) detected in tumor cells derived from skin metastasis tissue is not detected, the effectiveness of the B-Raf enzyme inhibitor is reduced. (That is, the condition gets worse). On the other hand, since the BRAF V600 site mutation (V600E) remains in the tumor metastasis derived from the skin metastasis tissue, simply analyzing the mutation detected in the tumor cell derived from the primary cancer tissue or cancer metastasis tissue is an anticancer agent. It can be seen that it is difficult to predict the administration effect.

以上の結果から癌原発組織および癌転移組織由来の腫瘍細胞で検出される遺伝子変異とは異なる変異(BRAF V600K)を有するCTCの数および割合の経時変化を観察することで、病態の変化を観察するよりも早期に、抗癌剤投与効果が予測できることがわかる。   Based on the above results, we observed changes in the pathological condition by observing changes in the number and proportion of CTCs with mutations (BRAF V600K) different from the gene mutations detected in tumor cells derived from cancer primary tissues and cancer metastatic tissues. It can be seen that the effect of administering the anticancer agent can be predicted at an earlier stage.

なお、4回目の採血(ニボルマブ投与で病状好転)では、遺伝子情報が得られたメラノーマ由来CTC14個のうち、BRAF V600変異を有するCTCは検出されなかった。   In the fourth blood collection (improvement of the condition by administration of nivolumab), CTC having BRAF V600 mutation was not detected among 14 melanoma-derived CTCs for which genetic information was obtained.

また、実施例1(17)で検出した、各採血時のメラノーマ由来CTC数を計数した結果を表3に示す。   In addition, Table 3 shows the results of counting the number of melanoma-derived CTCs at the time of each blood collection detected in Example 1 (17).

病態が悪化した3回目の採血時にメラノーマ由来CTC数が大幅に上昇した一方(2回目の採血時104.2個/mL→3回目の採血時1044個/mL)、病状が好転した4回目の採血時ではメラノーマ由来CTC数が減少している(3回目の採血時1044個/mL→4回目の採血時765.8個/mL)ことから、メラノーマ患者由来血液試料中に含まれるメラノーマ由来CTC数と当該患者の病態とは相関していることがわかる。従って、メラノーマ患者由来血液試料中に含まれるメラノーマ由来CTC数を観察することで、当該患者の予後予測、すなわち抗癌剤投与効果の予測が可能といえる。   While the number of CTCs derived from melanoma increased significantly during the third blood collection when the condition worsened (104.2 / mL at the second blood collection → 1044 / mL at the third blood collection), the fourth time the condition improved The number of melanoma-derived CTCs decreased at the time of blood collection (1044 / mL at the time of the third blood collection → 765.8 / mL at the time of the fourth blood collection), and thus the melanoma-derived CTC contained in the blood sample derived from the melanoma patient. It can be seen that the number correlates with the patient's condition. Therefore, by observing the number of melanoma-derived CTCs contained in a melanoma patient-derived blood sample, it can be said that the prognosis of the patient, that is, the anticancer drug administration effect can be predicted.

[比較例1] メラノーマ患者由来血液試料中の5−S−SD(5−S−cysteinyldopa)量測定
実施例1(1)で採取した血液を用いて、メラノーマ診断時のマーカーとして従来から用いられている5−S−CDの値を測定した。結果を表4に示す。
[Comparative Example 1] Measurement of 5-S-SD (5-S-cysteinyldopa) in blood sample derived from melanoma patient Using blood collected in Example 1 (1), it has been conventionally used as a marker for melanoma diagnosis. The value of 5-S-CD was measured. The results are shown in Table 4.

5−S−CDに関しては、各採血時において正常であることを示す基準値(2.5から6.1nmol/L)を超える値となった。しかしながら、病状が悪化した3回目の採血時において、2回目の採血時よりも5−S−SD量は低下していた(2回目の採血時33.5nmol/L→3回目の採血時27.4nmol/L)。このことから、メラノーマ患者由来血液試料中に含まれる5−S−SD量の経時変化を観察しても、当該患者の予後予測は困難といえる。   Regarding 5-S-CD, the value exceeded the reference value (2.5 to 6.1 nmol / L) indicating normality at the time of each blood collection. However, the amount of 5-S-SD was lower at the time of the third blood collection when the disease state worsened than at the time of the second blood collection (33.5 nmol / L at the time of the second blood collection → 27. 4 nmol / L). From this, it can be said that it is difficult to predict the prognosis of the patient even if the temporal change in the amount of 5-S-SD contained in the blood sample derived from the melanoma patient is observed.

[実施例3]標識二次抗体を用いたCTC数の経時的推移と病態との相関
(1)インフォームドコンセントを得た、実施例1とは異なるステージIVのメラノーマ患者から、治療経過に合わせて血液を計3回採取した。採血時期を以下に示す。
(1回目)リンパ節転移箇所郭清後
(2回目)肺転移出現後(1回目の採血から5ヶ月後)
(3回目)肺転移増大、肝転移出現、皮膚転移増大が認められた(病態が悪化した)段階(2回目の採血から3ヶ月後)
(2)(1)で採取した血液を用いた他は、実施例1(2)から(13)と同様な方法でCTCを含む細胞を細胞膜透過試薬に曝した後、残存した細胞膜透過試薬を洗浄した。
(3)細胞膜内外のタンパク質と特異的に結合可能な一次抗体を含む水溶液を導入し、30分間静置した。なお、前記一次抗体として、メラノーマ細胞の細胞質内で発現しているgp100およびMART−1に対する抗体を用いている。
(4)一次抗体を含む水溶液を吸引除去し、PBSを導入することで、残存した一次抗体を含む水溶液を除去した。
(5)細胞膜内外のタンパク質と特異的に結合可能な蛍光標識抗体と、前記一次抗体に対して特異的に結合可能な蛍光標識二次抗体と、細胞核を標識する蛍光試薬(DAPI:4’,6−diamidino−2−phenylindole)を含む水溶液(以下、標識試薬B)を導入し、20分間静置した。なお、前記蛍光標識抗体として、白血球表面に発現しているCD45に対する抗体を、前記蛍光標識二次抗体として、前記一次抗体の産生動物種およびサブクラスに対して特異的に結合可能な抗体を、それぞれ用いている。
(6)標識試薬Bを吸引除去し、PBSを導入することで、残留した標識試薬Bを除去した。
(7)(6)で標識したCTCを含む細胞保持手段を用いて、実施例1(16)および(17)と同様な方法でCTCを検出した。
[Example 3] Correlation between time course of CTC number using labeled secondary antibody and pathological condition (1) Informed consent was obtained from a stage IV melanoma patient different from Example 1 in accordance with the course of treatment. In total, blood was collected three times. The time of blood collection is shown below.
(1st) After dissection of lymph node metastasis (2nd) After appearance of lung metastasis (5 months after the first blood collection)
(3rd) Increased lung metastasis, appearance of liver metastasis, increased skin metastasis (pathological condition worsened) (3 months after the second blood collection)
(2) Except for using the blood collected in (1), the cells containing CTC were exposed to the cell membrane permeation reagent in the same manner as in Examples 1 (2) to (13), and then the remaining cell membrane permeation reagent was used. Washed.
(3) An aqueous solution containing a primary antibody capable of specifically binding to proteins inside and outside the cell membrane was introduced and allowed to stand for 30 minutes. As the primary antibody, antibodies against gp100 and MART-1 expressed in the cytoplasm of melanoma cells are used.
(4) The aqueous solution containing the primary antibody was removed by suction, and PBS was introduced to remove the remaining aqueous solution containing the primary antibody.
(5) a fluorescently labeled antibody that can specifically bind to proteins inside and outside the cell membrane, a fluorescently labeled secondary antibody that can specifically bind to the primary antibody, and a fluorescent reagent that labels the cell nucleus (DAPI: 4 ′, An aqueous solution containing 6-diamidino-2-phenylindole) (hereinafter referred to as labeling reagent B) was introduced and allowed to stand for 20 minutes. The fluorescently labeled antibody is an antibody against CD45 expressed on the surface of leukocytes, and the fluorescently labeled secondary antibody is an antibody capable of specifically binding to the primary antibody producing animal species and subclass, respectively. Used.
(6) The labeling reagent B was removed by suction, and PBS was introduced to remove the remaining labeling reagent B.
(7) CTC was detected by the same method as in Example 1 (16) and (17) using a cell holding means containing CTC labeled in (6).

各採血時のメラノーマ由来CTC数を計数した結果を表5に示す。   The results of counting the number of melanoma-derived CTCs at the time of each blood collection are shown in Table 5.

病態が悪化した3回目の採血時にメラノーマ由来CTC数が大幅に上昇(2回目の採血時110.6個/mL→3回目の採血時565.8個/mL)し、病態との相関が見られた。実施例1では、標識一次抗体を用いてCTC数と病態との相関を検出したが、本実施例では、標識二次抗体を用いた場合でも、CTC数と病態との相関を得ることができることが判明した。   The number of CTCs derived from melanoma increased significantly at the time of the third blood collection when the pathological condition worsened (110.6 / mL at the second blood collection → 565.8 / mL at the third blood collection), and a correlation with the pathological condition was observed. It was. In Example 1, the correlation between the CTC number and the disease state was detected using the labeled primary antibody. However, in this example, the correlation between the CTC number and the disease state can be obtained even when the labeled secondary antibody is used. There was found.

[実施例4]CTCにおける遺伝子変異
(1)インフォームドコンセントを得た、実施例1から3とは異なるステージIVのメラノーマ患者から、血液を1回採取した。
(2)(1)で採血した血液を用いた他は、実施例3(1)から(6)と同様な方法でCTCを検出した。
(3)(2)で検出したメラノーマ由来CTCの中から無作為に抽出した33個を、実施例(18)から(20)と同様な方法で一つずつ回収し、BRAF遺伝子領域の変異の有無を解析した。
[Example 4] Genetic mutation in CTC (1) Blood was collected once from a patient with stage IV melanoma different from Examples 1 to 3 that obtained informed consent.
(2) CTC was detected by the same method as in Examples 3 (1) to (6) except that the blood collected in (1) was used.
(3) 33 randomly extracted from the melanoma-derived CTCs detected in (2) were collected one by one in the same manner as in Examples (18) to (20), and the BRAF gene region mutation was recovered. The presence or absence was analyzed.

[実施例5]癌原発組織、癌転移組織および循環遊離DNAにおける遺伝子変異
(1)実施例4(1)において採血した癌患者から、癌原発組織および癌転移組織を採取した。また、末梢血を採取し、細胞を除去して末梢血中に含まれるDNA(循環遊離DNA)を抽出した。
(2)BRAF遺伝子領域の変異の有無の解析を、(1)で採取した組織に対しては、コバス BRAF V600変異検出キット(ロシュ・ダイアグノスティックス社製)およびサンガー法を用いて行なった。BRAF遺伝子領域のV600EおよびV600K、K601Eの変異の有無の解析を、抽出した循環遊離DNAに対しては、デジタルドロップレットPCR法を用いて行なった。
[Example 5] Cancer primary tissue, cancer metastasis tissue and gene mutation in circulating free DNA (1) From cancer patients blood sampled in Example 4 (1), cancer primary tissue and cancer metastasis tissue were collected. Further, peripheral blood was collected, cells were removed, and DNA (circulating free DNA) contained in the peripheral blood was extracted.
(2) The presence or absence of mutations in the BRAF gene region was analyzed using the Cobas BRAF V600 mutation detection kit (Roche Diagnostics) and the Sanger method for the tissues collected in (1). . Analysis of the presence or absence of mutations in the BRAF gene region V600E, V600K, and K601E was performed on the extracted circulating free DNA using the digital droplet PCR method.

実施例4で遺伝子情報が得られたメラノーマ由来CTCの遺伝子変異解析結果を表6に示す。また実施例5で遺伝子解析を行なった癌原発組織、癌転移組織および循環遊離DNAにおける遺伝子変異解析結果を表7に示す。   Table 6 shows the results of gene mutation analysis of melanoma-derived CTCs for which genetic information was obtained in Example 4. Table 7 shows the results of gene mutation analysis in the primary cancer tissues, cancer metastasis tissues and circulating free DNA subjected to genetic analysis in Example 5.

実施例4で遺伝子情報が得られたメラノーマ由来CTC33個のうち、BRAF V600近傍の変異を有するCTCが6個検出され、かつそれら変異の中に、癌転移組織および循環遊離DNAで検出されたBRAF V600近傍の変異(K601E ヘテロ変異体)とは異なる変異(V600E ヘテロ変異体、V600A ヘテロ変異体、K601E ホモ変異体)も検出された。癌原発組織では変異は検出されず、癌転移組織および循環遊離DNAは同一の変異が検出されたことから、癌転移組織で検出できる変異のみが循環遊離DNAからも検出されることがわかる。一方、CTCからは癌原発組織、癌転移組織および循環遊離DNAで検出されない遺伝子変異が検出されたことから、癌原発組織、癌転移組織および循環遊離DNAでは検出できない遺伝子変異の多様性の情報をCTCから取得できることがわかる。   Of the 33 melanoma-derived CTCs for which genetic information was obtained in Example 4, 6 CTCs having mutations in the vicinity of BRAF V600 were detected, and among these mutations, BRAF was detected in cancer metastasis tissue and circulating free DNA. Mutations (V600E heterozygous mutant, V600A heterozygous mutant, K601E homozygous mutant) different from the mutation in the vicinity of V600 (K601E heterozygous mutant) were also detected. No mutation was detected in the primary cancer tissue, and the same mutation was detected in the cancer metastasis tissue and circulating free DNA, indicating that only the mutation that can be detected in the cancer metastatic tissue is also detected from circulating free DNA. On the other hand, since gene mutations that are not detected in primary cancer tissues, cancer metastatic tissues, and circulating free DNA were detected from CTC, information on the diversity of genetic mutations that cannot be detected in primary cancer tissues, cancer metastatic tissues, and circulating free DNA It can be seen that it can be obtained from CTC.

100:細胞回収装置
10:細胞保持手段
11:遮光部材
12:絶縁体
11a、12a:貫通孔
20:スペーサ
21:導入口
22:排出口
23:貫通部
31・32:電極基板
40:導線
50:信号発生器
60:保持部
70:細胞
71:目的細胞(CTC)
80:誘電泳動力
90:接着物質
200:蛍光顕微鏡
300:回収装置
400:回収チューブ
DESCRIPTION OF SYMBOLS 100: Cell collection | recovery apparatus 10: Cell holding means 11: Light-shielding member 12: Insulator 11a, 12a: Through-hole 20: Spacer 21: Inlet 22: Outlet 23: Through-portion 31/32: Electrode substrate 40: Conductor 50: Signal generator 60: holding unit 70: cell 71: target cell (CTC)
80: Dielectrophoretic force 90: Adhesive substance 200: Fluorescence microscope 300: Collection device 400: Collection tube

Claims (6)

抗癌剤投与効果の予測方法であって、
(1)癌患者より癌原発組織および癌転移組織以外の試料を採取する工程、
(2)(1)で採取した試料から腫瘍細胞を回収する工程、および
(3)(2)で回収した腫瘍細胞における遺伝子変異を解析して、癌原発組織もしくは癌転移組織由来の腫瘍細胞もしくは循環遊離DNAでは検出されないか、または主要ではない変異を同定する工程、
を含み、(3)で同定された変異を抗癌剤投与効果の指標とする方法。
A method for predicting the effect of anticancer drug administration,
(1) a step of collecting a sample other than a cancer primary tissue and a cancer metastatic tissue from a cancer patient;
(2) a step of recovering tumor cells from the sample collected in (1), and (3) analyzing a genetic mutation in the tumor cells recovered in (2) to obtain tumor cells derived from cancer primary tissue or cancer metastatic tissue or Identifying mutations that are not detected or are not major in circulating free DNA;
And using the mutation identified in (3) as an index of the effect of administering an anticancer agent.
抗癌剤投与効果の予測方法であって、
(1)癌患者より癌原発組織および癌転移組織以外の試料を採取する工程、
(2)(1)で採取した試料から腫瘍細胞を回収する工程、および
(3)(2)で回収した腫瘍細胞の細胞数を計測し、かつ、(2)で回収した腫瘍細胞における遺伝子変異を解析して、癌原発組織もしくは癌転移組織由来の腫瘍細胞もしくは循環遊離DNAでは検出されないか、または主要ではない変異を同定する工程、
を含み、(3)で計測した腫瘍細胞の細胞数、および(3)で同定された変異を抗癌剤投与効果の指標とする方法。
A method for predicting the effect of anticancer drug administration,
(1) a step of collecting a sample other than a cancer primary tissue and a cancer metastatic tissue from a cancer patient;
(2) a step of collecting tumor cells from the sample collected in (1), and (3) measuring the number of tumor cells collected in (2), and gene mutation in the tumor cells collected in (2) To identify mutations that are not detected or are not major in tumor cells or circulating free DNA from primary or metastatic tissue of cancer,
And the number of tumor cells measured in (3) and the mutation identified in (3) are used as an index of the anticancer drug administration effect.
(2)の工程を、試料中に含まれる腫瘍細胞を保持可能な保持部を複数設けた細胞保持手段と誘電泳動力を発生させる手段とを備えた細胞回収装置を用いて行なう、請求項1または2に記載の方法。 The step (2) is carried out using a cell recovery device comprising a cell holding means provided with a plurality of holding parts capable of holding tumor cells contained in a sample and a means for generating a dielectrophoretic force. Or the method of 2. 癌原発組織および癌転移組織以外の試料が血液試料であり、腫瘍細胞が血中循環腫瘍細胞(CTC)である、請求項1から3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the sample other than the cancer primary tissue and the cancer metastatic tissue is a blood sample, and the tumor cells are circulating tumor cells (CTC) in the blood. 抗癌剤がB−Raf酵素阻害薬であり、遺伝子変異がBRAF遺伝子の変異である、請求項1から4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the anticancer agent is a B-Raf enzyme inhibitor and the gene mutation is a BRAF gene mutation. 癌が間葉系癌である、請求項1から5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the cancer is mesenchymal cancer.
JP2017123971A 2016-09-29 2017-06-26 Anti-cancer drug administration effect prediction method Active JP6860165B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016190686 2016-09-29
JP2016190686 2016-09-29

Publications (2)

Publication Number Publication Date
JP2018057359A true JP2018057359A (en) 2018-04-12
JP6860165B2 JP6860165B2 (en) 2021-04-14

Family

ID=61907487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123971A Active JP6860165B2 (en) 2016-09-29 2017-06-26 Anti-cancer drug administration effect prediction method

Country Status (1)

Country Link
JP (1) JP6860165B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188462A1 (en) 2018-03-26 2019-10-03 日本電気株式会社 Seabed branching device, optical seabed cable system, and optical communication method
JP7370046B2 (en) 2019-10-16 2023-10-27 医療法人社団キャンサーフリートピア How to select anticancer drugs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188462A1 (en) 2018-03-26 2019-10-03 日本電気株式会社 Seabed branching device, optical seabed cable system, and optical communication method
JP7370046B2 (en) 2019-10-16 2023-10-27 医療法人社団キャンサーフリートピア How to select anticancer drugs

Also Published As

Publication number Publication date
JP6860165B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP4593557B2 (en) Circulating tumor cells (CTC): early assessment of time to progression, survival and response to therapy in patients with metastatic cancer
Maheswaran et al. Circulating tumor cells: a window into cancer biology and metastasis
US9671405B2 (en) Identifying taxane sensitivity in prostate cancer patients
Alunni-Fabbroni et al. Circulating tumour cells in clinical practice: Methods of detection and possible characterization
US8445411B2 (en) Detection of circulating tumor cells in peripheral blood with an automated scanning fluorescence microscope
Potdar et al. Role of circulating tumor cells in future diagnosis and therapy of cancer
EP1861509B1 (en) A method for predicting progression free and overall survival at each follow-up time point during therapy of metastatic breast cancer patients using circulating tumor cells
JP5548890B2 (en) Method for grading cell images
US20190078153A1 (en) Method of analyzing genetically abnormal cells
US11371982B2 (en) Method of predicting patient prognosis using rare cells
Tartarone et al. Possible applications of circulating tumor cells in patients with non small cell lung cancer
Liu et al. Gold nanopyramid arrays for non-invasive surface-enhanced Raman spectroscopy-based gastric cancer detection via sEVs
JP6860165B2 (en) Anti-cancer drug administration effect prediction method
Wang et al. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation
Afridi et al. Potential avenues for exosomal isolation and detection methods to enhance small-cell lung cancer analysis
JP2024023284A (en) How to use giant cell nucleic acid characterization in cancer screening, diagnosis, treatment, and recurrence
JP2012506048A (en) A preclinical method for monitoring continuous changes in circulating breast cancer cells in mice
JP7306618B2 (en) Factors Involved in Metastasis Formation of Cancer and Method for Predicting Prognosis of Cancer Patients Using Said Factors
JP2012022002A (en) Method of predicting progression-free and overall survival of metastatic breast cancer patient at each point of follow-up period using circulating tumor cell
Lopez-Munoz et al. Markers of circulating breast cancer cells
Capoluongo et al. Which technology performs better? From sample volume to extraction and molecular profiling
Téllez-Gabriel et al. Liquid biopsy in bone sarcomas and identification of new biomarkers
Stiefel Automated isolation of circulating tumor cells and their molecular biological analysis
O’Connell et al. The Role of Liquid Biopsies in Cancer Diagnosis and Prognostics
Janjua et al. Circulating Tumor Cells: A New Avenue for Clinical Management of Cervical Cancer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210318

R150 Certificate of patent or registration of utility model

Ref document number: 6860165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250