JP2018057338A - Heat resistance reducing agent of bacterial spore, germination and growth method of bacterial spore - Google Patents

Heat resistance reducing agent of bacterial spore, germination and growth method of bacterial spore Download PDF

Info

Publication number
JP2018057338A
JP2018057338A JP2016198073A JP2016198073A JP2018057338A JP 2018057338 A JP2018057338 A JP 2018057338A JP 2016198073 A JP2016198073 A JP 2016198073A JP 2016198073 A JP2016198073 A JP 2016198073A JP 2018057338 A JP2018057338 A JP 2018057338A
Authority
JP
Japan
Prior art keywords
heat resistance
reducing agent
germination
heat
spore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016198073A
Other languages
Japanese (ja)
Inventor
瑞夫 矢嶋
Mizuo Yajima
瑞夫 矢嶋
一彦 野▲崎▼
Kazuhiko Nozaki
一彦 野▲崎▼
なつき 山内
Natsuki Yamauchi
なつき 山内
裕治 末常
Yuji Suetsune
裕治 末常
正人 坂井
Masato Sakai
正人 坂井
一義 西川
Kazuyoshi Nishikawa
一義 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITEJIMA KAGAKU KK
Asama Chemical Co Ltd
Original Assignee
MITEJIMA KAGAKU KK
Asama Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITEJIMA KAGAKU KK, Asama Chemical Co Ltd filed Critical MITEJIMA KAGAKU KK
Priority to JP2016198073A priority Critical patent/JP2018057338A/en
Publication of JP2018057338A publication Critical patent/JP2018057338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Storage Of Fruits Or Vegetables (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition for reducing heat resistance of pore at pH originally obtained by foods for heat resistant spore forming bacterial and a method for enhancing maintainability of foods using the same.SOLUTION: A mixture of one or more kind of linear phosphoric acid represented by the general formula (HPO)n, where n represents an integer of 3 to 800, and a heat resistance reducing agent of bacterial spore containing glycine and/or DL-alanine as active ingredients are added to target foods and germination and growth of the bacterial spore in the foods are suppressed by a heating treatment at 60°C for 5 min. or longer.SELECTED DRAWING: None

Description

本発明は、食品に混入した細菌芽胞の耐熱性を低下させ、官能的に良好で保存性の優れた食品の製造に利用される細菌芽胞の耐熱性低下剤及び細菌芽胞の発芽・発育抑制方法に関するものである。   The present invention reduces the heat resistance of bacterial spores mixed in food, and is used for the production of foods that are functionally good and have excellent storage stability, and a method for suppressing germination and growth of bacterial spores. It is about.

農畜水産物、穀類などの食材が、製造、加工されて食品となり、貯蔵、流通、消費されている。これらの過程で微生物による食品の汚染が起こる。とりわけバチルス属細菌やクロストリジウム属細菌などの耐熱性の高い芽胞を形成する細菌の汚染が心配される場合には、一般の細菌、酵母やカビよりも過酷な加熱殺菌処理を施す必要があり、芽胞を完全に不活性化するためには121℃、15分以上のオートクレーブ処理、または180℃で30分以上の乾熱処理が必要である。   Ingredients such as agricultural, livestock and fishery products and cereals are manufactured and processed into food, which is stored, distributed and consumed. During these processes, contamination of food by microorganisms occurs. In particular, when there is concern about contamination of bacteria that form highly heat-resistant spores such as Bacillus bacteria or Clostridium bacteria, it is necessary to perform heat sterilization treatment that is harsher than general bacteria, yeasts and molds. In order to completely inactivate, autoclave treatment at 121 ° C. for 15 minutes or more, or dry heat treatment at 180 ° C. for 30 minutes or more is required.

しかし、このような高温処理を行うと食品本来の食感や風味が損なわれるため、食味の許容範囲内の加熱処理と静菌剤の併用を行うことが多い。   However, when such high-temperature treatment is performed, the original texture and flavor of the food are impaired, and thus heat treatment within the acceptable range of taste and bacteriostatic agent are often used in combination.

静菌剤は、微生物の増殖速度を遅くするものであるが、芽胞形成細菌の増殖を抑制させるために、芽胞の発芽を抑制する成分を配合させることがある。   The bacteriostatic agent slows the growth rate of microorganisms, but in order to suppress the growth of spore-forming bacteria, a component that suppresses germination of spores may be added.

芽胞の発芽を抑制する成分としては、例えば、枯草菌の芽胞に対する発芽阻害物質としては、D−アラニン(非特許文献1)、アルコール(非特許文献2)、有機酸(脂肪酸など)(非特許文献3)が知られている。   Examples of components that suppress spore germination include D-alanine (Non-patent Document 1), alcohol (Non-patent Document 2), organic acids (such as fatty acids) (non-patented) as germination inhibitors for Bacillus subtilis spores. Document 3) is known.

さらに、バチルス属、クロストリジウム属の芽胞に対する発芽増殖阻害剤の有効成分として、酢酸、クエン酸、リンゴ酸または乳酸が、pH4.2〜4.6の酸性域で有効であることが知られている(特許文献1)。   Furthermore, it is known that acetic acid, citric acid, malic acid or lactic acid is effective in the acidic range of pH 4.2 to 4.6 as an active ingredient of germination growth inhibitor against Bacillus genus and Clostridium spore (patent) Reference 1).

特開2020−110321号公報JP 2020-110321

Y. Yasuda & K. Tochikuba: Microbiol. Immunol., 29, 229 (1985)Y. Yasuda & K. Tochikuba: Microbiol. Immunol., 29, 229 (1985) Y. Yasuda-Yasaki et al.: J. Bacteriol., 136, 484(1982)Y. Yasuda-Yasaki et al .: J. Bacteriol., 136, 484 (1982) Y. Yasuda et al.: J. Med. Chem., 25, 315(1982)Y. Yasuda et al .: J. Med. Chem., 25, 315 (1982)

しかし、上記の従来技術ではD-アラニンなどの発芽阻害効果は不十分であり、さらに、pH4.2〜4.6のpH域においては、酢酸やクエン酸の酸味が付与されて、食品本来の呈味が損なわれる問題があった。   However, the above-mentioned conventional technology has insufficient germination inhibiting effects such as D-alanine, and furthermore, in the pH range of pH 4.2 to 4.6, the acidity of acetic acid and citric acid is given, and the original taste of food There was a problem that damaged.

そこで本発明は、耐熱性芽胞形成細菌に対して、食品本来のpHで芽胞の耐熱性を下げる組成物およびこれを用いた食品の保存性を向上させる方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a composition that lowers the heat resistance of spores at the original pH of food against heat-resistant spore-forming bacteria, and a method for improving the preservability of food using the same.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、リンの数が40〜300のメタリン酸とグリシン及び/又はDL-アラニンとを含む製剤が耐熱性細菌芽胞の耐熱性を低下させることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a preparation containing metaphosphoric acid having a phosphorus number of 40 to 300 and glycine and / or DL-alanine is resistant to heat-resistant bacterial spores. The inventors have found that the present invention is lowered, and have completed the present invention.

すなわち、本発明は 下記一般式:   That is, the present invention provides the following general formula:

で表される直鎖状リン酸の1種又は2種以上の混合物からなるメタリン酸と、グリシン及び/又はDL-アラニンと、を有効成分とする細菌芽胞の耐熱性低下剤を提供するものである。   The present invention provides a heat-reducing agent for bacterial spores, comprising as an active ingredient metaphosphoric acid composed of one or a mixture of two or more of linear phosphoric acid represented by glycine and / or DL-alanine. is there.

また、本発明は、上記耐熱性低下剤を添加する工程と、60℃、5分以上の加熱処理を行なう工程と、を有する細菌芽胞の発芽・発育抑制方法を提供するものである。   The present invention also provides a method for inhibiting germination / growth of bacterial spores, comprising the step of adding the heat resistance reducing agent and the step of performing a heat treatment at 60 ° C. for 5 minutes or more.

本発明によれば、pHを限定せず、対象となる食品のpHにおいて細菌芽胞の耐熱性低下効果を発揮することができ、あえて食品のpHを酸性やアルカリ性に調整する必要がないため、食品本来の呈味、風味を損なうことがない。   According to the present invention, the pH is not limited, the effect of reducing the heat resistance of bacterial spores can be exhibited at the pH of the target food, and it is not necessary to adjust the pH of the food to acidic or alkaline. The original taste and flavor are not impaired.

また、酸味や酸臭のないグリシン及び/又はDL-アラニンと併用することにより、食品のpHを変化させることなく細菌芽胞の耐熱性低下効果を増大することができる。   Moreover, the combined use with glycine and / or DL-alanine having no acidity or acid odor can increase the effect of reducing the heat resistance of bacterial spores without changing the pH of the food.

さらに、本発明の細菌芽胞の耐熱性低下剤は加熱と併用するとその効果が増大するため、様々な加工食品、調理食品に幅広く利用が可能である。また、過度の加熱をする必要はなく、加工・調理食品の本来の加熱条件で細菌芽胞の耐熱性低下効果が発揮されるため、食品の風味を損なうことがない。   Furthermore, since the effect of the heat-reducing agent for bacterial spores of the present invention increases when used together with heating, it can be widely used for various processed foods and cooked foods. Moreover, it is not necessary to heat excessively, and since the heat-resistant reduction effect of a bacterial spore is exhibited on the original heating conditions of processed and cooked food, the flavor of food is not impaired.

本発明において使用されるメタリン酸は、代表的にはオルトリン酸の脱水縮合によって2個以上のPO4四面体が頂点の酸素原子を共有して直鎖状に連なった構造を有する直鎖状メタリン酸であるが、側鎖に有機基が導入された側鎖状ポリリン酸、環状メタリン酸、枝分かれ状のリン酸重合体構造のポリリン酸あるいはこれらの混合物であってもよい。 The metaphosphoric acid used in the present invention is typically a linear metalin having a structure in which two or more PO 4 tetrahedrons share an apex oxygen atom and are linearly linked by dehydration condensation of orthophosphoric acid. The acid may be a side chain polyphosphoric acid having an organic group introduced in the side chain, a cyclic metaphosphoric acid, a polyphosphoric acid having a branched phosphoric acid polymer structure, or a mixture thereof.

本発明において特に好適に使用されるメタリン酸は、一般式:   The metaphosphoric acid particularly preferably used in the present invention has the general formula:

で表される直鎖状リン酸の1種又は2種以上混合物が挙げられる。 Or a mixture of two or more types of linear phosphoric acid represented by the formula:

上記一般式中のnは3〜800、好ましくは15〜500、より好ましくは40〜300、最も好ましくは40〜100の整数である。なお、鎖長が1000以上のポリリン酸は水に難溶性であるので好ましくなく、また、生体内でポリリン酸の鎖長は約800であるから、鎖長が800以下のポリリン酸が、生体内で種々の生理機能に関する有効性を持つと考えられ(K.D. Kumble and A. Koruberg, Inorganic polyphosphate in mammalian cells and tissues. The Journal of Biological Chemistry, vol. 270, pp. 5818-5822, 1995)、メタリン酸は水溶液中で徐々に加水分解されてポリリン酸になることから、メタリン酸のn数は、機能的に3〜800が実用範囲になる。   N in the above general formula is an integer of 3 to 800, preferably 15 to 500, more preferably 40 to 300, and most preferably 40 to 100. Polyphosphoric acid having a chain length of 1000 or more is not preferable because it is hardly soluble in water, and the polyphosphoric acid has a chain length of about 800 in vivo, so that polyphosphoric acid having a chain length of 800 or less is in vivo. (KD Kumble and A. Koruberg, Inorganic polyphosphate in mammalian cells and tissues. The Journal of Biological Chemistry, vol. 270, pp. 5818-5822, 1995) and metaphosphoric acid. Is gradually hydrolyzed in an aqueous solution to polyphosphoric acid, so that the number of n of metaphosphoric acid is functionally within a practical range of 3 to 800.

また、本発明においては、上記メタリン酸の水酸基の水素が金属と置換した分子構造を有するメタリン酸塩を使用してもよく、金属としては、ナトリウム、カリウム、カルシウム、マグネシウム等が挙げられる。   In the present invention, a metaphosphate having a molecular structure in which hydrogen of the hydroxyl group of the metaphosphoric acid is substituted with a metal may be used. Examples of the metal include sodium, potassium, calcium, and magnesium.

本発明に使用するメタリン酸又はその塩は、1種類であってもよいが、複数種混合物であってもよい。複数種のメタリン酸又はその塩には、重合度の異なるメタリン酸又はその塩、分子構造の異なるメタリン酸又はその塩、及び金属イオンの異なるメタリン酸塩を包含する。またポリリン酸とその塩とを両方包含してもよい。   One kind of metaphosphoric acid or a salt thereof used in the present invention may be used, but a mixture of plural kinds may be used. The plural types of metaphosphoric acids or salts thereof include metaphosphoric acids or salts thereof having different degrees of polymerization, metaphosphoric acids or salts thereof having different molecular structures, and metaphosphates having different metal ions. Moreover, you may include both polyphosphoric acid and its salt.

上記のメタリン酸は、リン酸を加熱する方法、リン酸に五酸化リンを添加溶解する方法など、通常用いられる製法により製造することができる。   Said metaphosphoric acid can be manufactured by the manufacturing method used normally, such as the method of heating phosphoric acid, the method of adding and dissolving phosphorus pentoxide in phosphoric acid.

本発明においてメタリン酸と併用するグリシン及び/又はDL-アラニンは、食品に添加できるグレードのものであればよい。   In the present invention, glycine and / or DL-alanine used in combination with metaphosphoric acid may be of a grade that can be added to food.

メタリン酸とグリシン及び/又はDL-アラニンの配合含量については、細菌芽胞の耐熱性低下効果を増強する限り特に限定はされないが、例えば、食品に添加するときのメタリン酸ナトリウム:グリシン及び/又はDL-アラニン(濃度比率)の配合比を1:1〜1:100程度に調整すればよい。   The compounding content of metaphosphate and glycine and / or DL-alanine is not particularly limited as long as it enhances the heat resistance lowering effect of bacterial spores. For example, sodium metaphosphate when added to food: glycine and / or DL -What is necessary is just to adjust the compounding ratio of alanine (concentration ratio) to about 1: 1 to 1: 100.

本発明の細菌芽胞の耐熱性低下剤には、必要に応じ、天然抗菌性物質、有機酸またはその塩、および食品保存剤に通常配合し得るその他の成分を含有させることができる。本発明の細菌芽胞の耐熱性低下剤にこれらの成分を含有させる場合、細菌芽胞の耐熱性低下剤全重量に対して5〜40重量%程度含有させるのが好ましい。   The heat-reducing agent for bacterial spores of the present invention can contain a natural antibacterial substance, an organic acid or a salt thereof, and other components that can be usually blended in a food preservative, if necessary. When these components are contained in the heat-resistant agent for bacterial spore of the present invention, it is preferable to contain about 5 to 40% by weight based on the total weight of the heat-resistant agent for bacterial spore.

天然抗菌性物質としては、例えばプロタミン、ポリリジン、リゾチーム、キトサン、トウガラシ水性抽出物、ホップ抽出物、植物レシチン等を挙げることができる。有機酸又はその塩としては、例えばフマル酸、酢酸、酢酸Na、アジピン酸、クエン酸、クエン酸Na、ソルビン酸、ソルビン酸K、DL−リンゴ酸、DL−リンゴ酸Na、コハク酸、コハク酸2Na、グルコン酸、グルコノデルタラクトン、プロピオン酸Na、プロピオン酸Ca、デヒドロ酢酸Na等を挙げることができる。   Examples of natural antibacterial substances include protamine, polylysine, lysozyme, chitosan, capsicum aqueous extract, hop extract, and plant lecithin. Examples of organic acids or salts thereof include fumaric acid, acetic acid, sodium acetate, adipic acid, citric acid, sodium citrate, sorbic acid, sorbic acid K, DL-malic acid, DL-malic acid Na, succinic acid, and succinic acid. 2Na, gluconic acid, glucono delta lactone, Na propionate, Ca propionate, Na dehydroacetate and the like.

本発明を適用する対象食品としては、特に限定されるものではなく、加工食品として保存を必要とするものが適用対象に含まれる。常温、冷蔵または冷凍された状態で流通または保存される食品であってもよく、加工食品としては調理加工品ばかりではなく、半調理加工された食品も含めて対象とされる。   The target food to which the present invention is applied is not particularly limited, and includes foods that require storage as processed foods. The food may be distributed or stored at room temperature, refrigerated or frozen, and the processed food includes not only cooked processed products but also semi-cooked processed foods.

加工食品の代表例としては、例えば、ハム、ソーセージ、ハンバーグなどの畜肉加工品、かまぼこ、ちくわなどの水産練り製品、沢庵などの加熱殺菌を行う包装された漬物、中華麺、うどん、そばなどの麺類、卵焼き、野菜、白飯、赤飯などのロングライフ包装食品、クリームや餡などの和洋菓子類、麺つゆやタレ・ソース、野菜やくだものジュースなど種々の飲料等が挙げられるが、これらに限定されるものではない。   Typical examples of processed foods include processed meat products such as ham, sausage and hamburger, marine products such as kamaboko and chikuwa, packaged pickles that are heat sterilized such as potatoes, noodles such as Chinese noodles, udon and soba Long-life packaged foods such as fried eggs, vegetables, white rice and red rice, Japanese and Western confectionery such as cream and rice cakes, various drinks such as noodle soup and sauce, vegetables and fruit juice, etc. It is not a thing.

本発明は、メタリン酸が耐熱性細菌芽胞の耐熱性低下効果を示し、この作用は、グリシン及び/又はDL-アラニンおよび加熱と併用するとさらに効果が格段に高まることを示したものである。   The present invention shows that metaphosphoric acid has an effect of lowering the heat resistance of heat-resistant bacterial spores, and this effect is further enhanced when used in combination with glycine and / or DL-alanine and heating.

本発明の細菌芽胞の発芽・発育抑制方法において、加熱処理の条件は、無加熱の常温においても効果があることから、わずかな加熱であっても併用効果が期待できるが、実際には、密封包装食品の耐熱性芽胞対策に用いる加熱条件であったり、調理加工工程における加熱殺菌条件であり、それぞれの場合で加熱と併用することにより加熱温度の低下や時間を短縮して食品の風味の損失を抑えることができる。   In the bacterial spore germination / development suppression method of the present invention, the heat treatment conditions are effective even at room temperature without heating, so even a slight heating can be expected to have a combined effect. Heating conditions used for measures against heat-resistant spores of packaged foods, or heat sterilization conditions in the cooking process, and in each case, combined use with heating reduces the heating temperature and shortens the time, resulting in loss of food flavor Can be suppressed.

かかる観点から、細菌芽胞の発芽・発育抑制方法の加熱処理の条件は、25〜98℃、5〜30分であることが好ましく、60〜98℃、5〜30分であることがより好ましく、70〜98℃、10〜30分であることがさらに好ましい。   From this point of view, the heat treatment conditions of the germination and growth suppression method of bacterial spores are preferably 25 to 98 ° C. and 5 to 30 minutes, more preferably 60 to 98 ° C. and 5 to 30 minutes, More preferably, it is 70-98 degreeC and 10-30 minutes.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

1.芽胞発芽抑制効果の検証
(1)芽胞液の調製
耐熱性芽胞形成細菌として、バチルス・リケニフォルミス(Bacillus licheniformis)IFO 12195とバチルス・セレウス(Bacillus cereus)NBRC 13494を用いた。芽胞は、各菌を70%に希釈した標準寒天培地の表面に30℃、4日間培養し、表面の菌を50vol%エタノールに懸濁し5時間4℃の冷蔵庫中に保持して栄養細胞を殺菌後、滅菌水で100倍希釈した液を用いた。これらの芽胞液を用いて、メタリン酸ナトリウムの芽胞発芽抑制効果およびグリシンとの併用効果、さらに加熱との併用効果を実験した。
1. Verification of Spore Germination Suppression Effect (1) Preparation of Spore Fluid As heat-resistant spore-forming bacteria, Bacillus licheniformis IFO 12195 and Bacillus cereus NBRC 13494 were used. The spores are cultured on a standard agar medium diluted to 70% for 30 days at 30 ° C for 4 days. The surface bacteria are suspended in 50 vol% ethanol and kept in a refrigerator at 4 ° C for 5 hours to sterilize vegetative cells. Thereafter, a solution diluted 100 times with sterilized water was used. Using these spore fluids, the effect of sodium metaphosphate on spore germination, the combined use with glycine, and the combined use with heating were tested.

(2)芽胞発芽抑制効果
一般式(HPO3)nのnが40から60のメタリン酸ナトリウム混合物0.01〜0.1%、グリシン0.1〜1.0%を含むトリプトソイ液体培地(pH6.0)に芽胞液を接種し(3.1×103cfu/mlの芽胞を含む)、90℃の湯浴に達温で0分、5分、10分間保持して加熱した。急冷後、30℃の恒温器に入れ、発芽・発育したことによる試験液の濁りを肉眼で判定し、濁りの観察された日数を調べた。その結果を表1〜表6に示した。−印は、7日間発育が認められなかったことを示す。なお、濃度(%)は、重量%を意味する(以下同じ)。
(2) Spore germination inhibiting effect General formula (HPO 3 ) Inoculated with spore solution in tryptosoy liquid medium (pH 6.0) containing sodium metaphosphate mixture 0.01-0.1% and n-glycol 0.1-1.0% where n is 40-60 (Containing 3.1 × 10 3 cfu / ml spore), heated in a 90 ° C. hot water bath at 0, 5, and 10 minutes at a reaching temperature. After quenching, it was placed in a thermostatic chamber at 30 ° C., and the turbidity of the test solution due to germination and growth was judged with the naked eye, and the number of days in which turbidity was observed was examined. The results are shown in Tables 1-6. -Indicates that no growth was observed for 7 days. The concentration (%) means weight% (the same applies hereinafter).

以上の結果から、本発明の細菌芽胞の耐熱性低下剤は、耐熱性芽胞が発芽・発育できる環境において、その発芽・発育を遅延させる効果をもつ組成物であることが判明した。   From the above results, it was found that the heat resistance reducing agent for bacterial spores of the present invention is a composition having an effect of delaying germination and growth in an environment where heat resistant spores can germinate and grow.

表1はバチルス・リケニフォルミス(Bacillus licheniformis)IFO 12195に対して、また表4はバチルス・セレウス(Bacillus cereus)NBRC 13494に対して加熱をしていない常温におけるメタリン酸ナトリウムとグリシンとの併用効果を示すものであるが、グリシンが0、すなわちメタリン酸ナトリウムが単独においても添加濃度が高くなるにしたがって発芽・発育する日数が多くなり、0.05%以上では7日間の発芽・発育抑制が認められた。グリシンと併用すると、発芽・発育を抑制する日数が飛躍的に長くなった。さらに、表2、表3はバチルス・リケニフォルミス(Bacillus licheniformis)IFO 12195に対して、また表5、表6はバチルス・セレウス(Bacillus cereus)NBRC 13494に対して90℃で5分、10分の加熱を併用した場合の発芽を抑制した日数を示したものであり、加熱によりさらに飛躍的に発芽・発育が抑制され、耐熱性の低下が認められた。   Table 1 shows the combined effect of sodium metaphosphate and glycine at room temperature when not heated against Bacillus licheniformis IFO 12195, and Table 4 against Bacillus cereus NBRC 13494. Although glycine is 0, that is, sodium metaphosphate alone, the number of days to germinate and grow increases as the concentration of addition increases, and at 0.05% or more, germination / growth inhibition for 7 days was observed. . When used in combination with glycine, the number of days to suppress germination and growth was dramatically increased. Furthermore, Tables 2 and 3 are heated against Bacillus licheniformis IFO 12195, and Tables 5 and 6 are heated against Bacillus cereus NBRC 13494 at 90 ° C. for 5 minutes and 10 minutes. This shows the number of days in which germination was suppressed when used together, and germination and growth were further dramatically suppressed by heating, and a decrease in heat resistance was observed.

2.密封包装サツマイモの芽胞菌対策
皮が付いたままのサツマイモを水で洗浄し、2cmくらいの厚さに輪切りにしてブランチング後、包装容器中で少量の水にメタリン酸ナトリウム(P:40〜60)とグリシンを溶解した液と混和させ、次いで耐熱性芽胞形成細菌であるバチルス・セレウス(Bacillus cereus)NBRC 13494の芽胞を5.0×103cfu/g及びクロストリジウム・スポロゲネス(Clostridium sporogenes)NBRC 14293の芽胞を3.0×102cfu/g接種して脱気包装した。90℃、20分間加熱調理し、これを1試験区当たり10個ずつ25℃に保存し、保存性を肉眼で観察して防腐効果を判定した。判定基準としては、表7に示した5段階評価法を用い、平均点として1点に達するまでの日数を有効保存日数とした。試験区及び保存日数を表8に示す。
2. Measures for spore bacteria in hermetically sealed sweet potatoes After washing the unsweetened sweet potatoes with water, cutting them into pieces of 2cm thickness, blanching them, and adding them to a small amount of sodium metaphosphate in a packaging container (P: 40-60) ) And glycine solution, and then the spore of Bacillus cereus NBRC 13494, a thermostable spore-forming bacterium, is 5.0 × 10 3 cfu / g and spore of Clostridium sporogenes NBRC 14293 Was inoculated with 3.0 × 10 2 cfu / g and deaerated. Cooked at 90 ° C. for 20 minutes, 10 pieces per test area were stored at 25 ° C., and the preservative effect was judged by visually observing the storage stability. As a criterion, the five-step evaluation method shown in Table 7 was used, and the number of days until reaching an average score of 1 was defined as the effective storage days. Table 8 shows the test plots and storage days.

3.乾燥大豆の水浸漬工程における耐熱性芽胞菌の抑制
乾燥大豆は、豆腐、納豆、みそ、しょうゆなど多くの大豆加工品に使用される。これら加工品の製造において、乾燥大豆の水浸漬中に大豆に付着した芽胞菌の発芽・増殖により腐敗することがある。これを抑制する試験例を以下に示した。
3. Inhibition of heat-resistant spore bacteria in the water soaking process of dried soybeans Dry soybeans are used in many processed soybean products such as tofu, natto, miso and soy sauce. In the production of these processed products, there are cases where spoilage germs and growth of spore bacteria adhering to soybean during water soaking of dried soybean may cause spoilage. The test example which suppresses this was shown below.

乾燥大豆(北海道産)25g(1試験区分)をザルに入れ、水道水をシャワー状にかけながら30秒間洗浄し、水切り後、表9に示す組成からなる薬剤を添加した水道水90gに浸漬した(薬剤は大豆と水道水の全量に対する量を使用した)。大豆を浸漬した状態で、30℃、に保管し、0時間(浸漬直後)、18時間後、24時間後の浸漬液の一般生菌数(cfu/mL)を標準寒天培地を使用した希釈平板培養法で測定した。その結果を表9に示した。   Dried soybean (Hokkaido) 25g (1 test category) was put into a colander, washed with tap water for 30 seconds while showering, drained, and then immersed in 90g of tap water to which chemicals having the composition shown in Table 9 were added ( The drug was used based on the total amount of soybean and tap water). Dilute plate using standard agar medium for storage of general viable count (cfu / mL) of soaking solution after 30 hours at 30 ° C with soy soaked, 0 hours (immediately after soaking), 18 hours, 24 hours later Measured by culture method. The results are shown in Table 9.

4.中華麺の小麦粉に由来する芽胞菌対策
小麦粉1kgに対して、表10に示した組成からなる薬剤(P=40〜100が90%、残りの約10%にP=3〜40とP=100〜300が混在)、食塩10g、粉末かんすい12g及び食用黄色色素0.4gをそれぞれ水360mLに溶解したものを打ち水として使用し、10分間混錬したのち圧延し、切歯(#20)にて麺線を切り出して生中華麺を製造した。半分は生中華麺のまま40gづつ包装し、もう半分は蒸し中華麺として98℃で蒸し上げ、水洗、水切り後、40gづつナイロンポリ袋に包装した。こうして作製した生中華麺と蒸し中華麺を各試験区10個ずつ30℃に保存して、経時的に外観を観察し、表11に示した変敗基準により防腐効果を判定した。その結果を表12の有効保存日数に示す。有効保存日数は変敗評点の平均点が1点となるまでの日数とした。
4). Measures against spore bacteria derived from wheat flour of Chinese noodles 1 kg of flour has the composition shown in Table 10 (P = 40-100 is 90%, the remaining 10% is P = 3-40 and P = 100 ~ 300), 10g of salt, 12g of powdered rice cake and 0.4g of edible yellow pigment dissolved in 360ml of water, kneaded for 10 minutes, rolled and noodles with incisors (# 20) Raw Chinese noodles were produced by cutting out the lines. Half was wrapped in raw Chinese noodles in 40g increments, and the other half was steamed as Chinese noodles at 98 ° C, rinsed, drained, and packaged in 40g nylon plastic bags. The raw Chinese steamed noodles and steamed Chinese noodles thus prepared were stored at 30 ° C. for 10 test groups, the appearance was observed over time, and the antiseptic effect was judged according to the deterioration criteria shown in Table 11. The result is shown in the effective storage days of Table 12. The effective preservation days were defined as the number of days until the average score of deterioration was 1 point.

表12にみられるように、生中華麺ではメタリン酸ナトリウム(P=3〜300)単独やグリシン及び/又はDL-アラニンとの併用により保存日数の延長が認められたものの、加熱した蒸し中華麺ではメタリン酸ナトリウム(P=3〜300)やグリシン又はDL-アラニンと併用することにより飛躍的に保存性が向上した。   As can be seen in Table 12, in the raw Chinese noodles, although the storage days were extended by sodium metaphosphate (P = 3-300) alone or in combination with glycine and / or DL-alanine, the heated steamed Chinese noodles Thus, the storage stability was dramatically improved by using sodium metaphosphate (P = 3 to 300), glycine or DL-alanine together.

Claims (6)

下記一般式:
で表される直鎖状リン酸の1種又は2種以上の混合物からなるメタリン酸と、
グリシン及び/又はDL-アラニンと、
を有効成分とする細菌芽胞の耐熱性低下剤。
The following general formula:
Metaphosphoric acid composed of one or a mixture of two or more linear phosphoric acids represented by:
Glycine and / or DL-alanine,
Bacterial spore heat resistance-reducing agent containing as an active ingredient.
前記メタリン酸がメタリン酸塩である、請求項1に記載の細菌芽胞の耐熱性低下剤。   The heat resistance reducing agent for bacterial spores according to claim 1, wherein the metaphosphoric acid is a metaphosphate. 前記メタリン酸塩が、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩からなる群から選択された少なくとも1種である、請求項2に記載の細菌芽胞の耐熱性低下剤。   The heat-reducing agent for bacterial spores according to claim 2, wherein the metaphosphate is at least one selected from the group consisting of sodium salts, potassium salts, calcium salts, and magnesium salts. 前記メタリン酸と前記グリシン及び/又はDL-アラニンの配合比が濃度比で1:1〜1:100である、請求項1〜3のいずれか1項に記載の細菌芽胞の耐熱性低下剤。   The heat resistance reducing agent for bacterial spores according to any one of claims 1 to 3, wherein a mixing ratio of the metaphosphoric acid and the glycine and / or DL-alanine is 1: 1 to 1: 100 in a concentration ratio. 請求項1〜4のいずれか1項に記載の耐熱性低下剤を食品に添加する工程と、
食品の加熱処理を行なう工程と、
を有する細菌芽胞の発芽・発育抑制方法。
Adding the heat resistance reducing agent according to any one of claims 1 to 4 to the food;
A step of heat-treating the food;
A method for inhibiting germination and growth of bacterial spores.
前記加熱処理の条件が、25〜98℃、5〜30分である、請求項5に記載の細菌芽胞の発芽・発育抑制方法。   The germination / development method of bacterial spores according to claim 5, wherein the heat treatment conditions are 25 to 98 ° C and 5 to 30 minutes.
JP2016198073A 2016-10-06 2016-10-06 Heat resistance reducing agent of bacterial spore, germination and growth method of bacterial spore Pending JP2018057338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016198073A JP2018057338A (en) 2016-10-06 2016-10-06 Heat resistance reducing agent of bacterial spore, germination and growth method of bacterial spore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016198073A JP2018057338A (en) 2016-10-06 2016-10-06 Heat resistance reducing agent of bacterial spore, germination and growth method of bacterial spore

Publications (1)

Publication Number Publication Date
JP2018057338A true JP2018057338A (en) 2018-04-12

Family

ID=61907426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016198073A Pending JP2018057338A (en) 2016-10-06 2016-10-06 Heat resistance reducing agent of bacterial spore, germination and growth method of bacterial spore

Country Status (1)

Country Link
JP (1) JP2018057338A (en)

Similar Documents

Publication Publication Date Title
JP4679023B2 (en) Production method and food preservative with excellent preservability
RU2491009C2 (en) Composition
JP6532463B2 (en) Method of producing vegetable food using ultra high pressure
DK2654440T3 (en) MICROBICID COMPOSITION
CN108347928B (en) Antimicrobial agents comprising xanthohumol and their use in food products
KR20060038823A (en) A method for producing packaged kimchi with preservative capacity and quality to be enhanced
JP6748230B2 (en) Sterilization method of high quality meat and kimchi-based processed food using pH adjustment and mild heating
da Silva et al. 2 Principles of Thermal
JP2006149384A (en) Method for producing processed food
TWI650081B (en) Method for preparing vegetable topping with extended shelf life
AU1841799A (en) Process for preserving food products
JP4587710B2 (en) Antibacterial composition
JP2012010657A (en) Food preservative and method for preserving food
JP2018057338A (en) Heat resistance reducing agent of bacterial spore, germination and growth method of bacterial spore
WO2018181643A1 (en) Starch food having improved preservability
JPH0928361A (en) Control over lactic acid bacteria
JP6343117B2 (en) Method for producing sealed food
JP2017055776A (en) Method for producing sealed food product
JPH0541969A (en) Preservative for food
JPH0928362A (en) Control over lactic acid bacteria
JP2013165645A (en) Heat sterilization agent and heat sterilization method of food
WO2021199455A1 (en) Lactic-acid-containing sodium acetate composition, food shelf life improving agent containing lactic-acid-containing sodium acetate composition, and method for improving shelf life of food
JP6211352B2 (en) Lysozyme preparation
JP2021151972A (en) Bacteriostatic composition, bacteriostatic method and processed food
JP2021194002A (en) Bacteriostatic composition, bacteriostatic method and processed food