JP2018056362A - Manufacturing method of electrode for electricity storage device - Google Patents

Manufacturing method of electrode for electricity storage device Download PDF

Info

Publication number
JP2018056362A
JP2018056362A JP2016191534A JP2016191534A JP2018056362A JP 2018056362 A JP2018056362 A JP 2018056362A JP 2016191534 A JP2016191534 A JP 2016191534A JP 2016191534 A JP2016191534 A JP 2016191534A JP 2018056362 A JP2018056362 A JP 2018056362A
Authority
JP
Japan
Prior art keywords
electrode
storage device
limit voltage
manufacturing
electricity storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016191534A
Other languages
Japanese (ja)
Other versions
JP6696388B2 (en
Inventor
信宏 荻原
Nobuhiro Ogiwara
信宏 荻原
由佳 小澤
Yuka Ozawa
由佳 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016191534A priority Critical patent/JP6696388B2/en
Publication of JP2018056362A publication Critical patent/JP2018056362A/en
Application granted granted Critical
Publication of JP6696388B2 publication Critical patent/JP6696388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode for an electricity storage device that increases a capacity of the electricity storage device.SOLUTION: A manufacturing method of an electrode for electricity storage device, includes an application step of performing an application cycle that alternately applies an upper limit voltage higher than a reference potential so as to over a predetermined reference potential and a lower limit voltage lower than the reference potential to a cell comprising the electrode for electricity storage device including a carbonaceous material capable of absorbing and separating and/or inserting and separating a carrier as an active material, a counter electrode, and nonaqueous ion conduction medium, and performing the cycle at a trend that the voltage is gradually increased when applying the upper limit voltage, and the voltage is gradually decreased when applying the lower limit voltage.SELECTED DRAWING: None

Description

本発明は、蓄電デバイス用電極の製造方法に関する。   The present invention relates to a method for manufacturing an electrode for an electricity storage device.

従来、この種の蓄電デバイスとしては、アニオンを吸着脱離しうる層状構造を有する炭素質材料を含む正極と、グラファイト又は難黒鉛性カーボンを含む負極と、リチウム塩を含む有機電解液とを備えたものであって、正極の炭素質材料の層間にインターカレーション可能なアニオンを含む非水電解液中で正極と負極とを対向させ、2.25Vより大きく、3.5V以下の充電電圧で少なくとも1回の充放電サイクルを行わせるものが提案されている(例えば、特許文献1参照)。また、エッジ部分に官能基としてキノン又は酸無水物を有するミクロポーラス炭素質材料を含む電気化学キャパシタ用の電極が提案されている(例えば、特許文献2参照)。また、リン酸又は硫酸の電解液中で電気二重層キャパシタの電極体である炭素基材に対して、参照極としての可逆水素電極に対して、下限電位が0〜+0.3V、上限電圧が+0.5〜+0.7Vの範囲で矩形波を印加するものが提案されている(例えば、特許文献3参照)。   Conventionally, this type of electricity storage device includes a positive electrode including a carbonaceous material having a layered structure capable of adsorbing and desorbing anions, a negative electrode including graphite or non-graphitizable carbon, and an organic electrolyte including a lithium salt. The positive electrode and the negative electrode are opposed to each other in a non-aqueous electrolyte containing an anion capable of intercalating between the layers of the carbonaceous material of the positive electrode, and at least at a charging voltage of greater than 2.25V and less than or equal to 3.5V A device that performs one charge / discharge cycle has been proposed (see, for example, Patent Document 1). In addition, an electrode for an electrochemical capacitor including a microporous carbonaceous material having quinone or acid anhydride as a functional group at an edge portion has been proposed (for example, see Patent Document 2). In addition, the lower limit potential is 0 to +0.3 V and the upper limit voltage is a reversible hydrogen electrode as a reference electrode with respect to a carbon base material that is an electrode body of an electric double layer capacitor in an electrolyte solution of phosphoric acid or sulfuric acid. One that applies a rectangular wave in the range of +0.5 to +0.7 V has been proposed (see, for example, Patent Document 3).

特開2014−207453号公報JP 2014-207453 A 特開2014−107361号公報JP 2014-107361 A 特開2012−38982号公報JP 2012-338982 A

しかしながら、上述の特許文献1〜3の蓄電デバイスでは、例えば、炭素質材料が特定のものであったり、蓄電デバイスの種類が特定のものであるなど、蓄電デバイスの容量を高めるものであっても、十分とはいえず、新たな蓄電デバイス用電極の製造方法が求められていた。   However, in the above-described power storage devices of Patent Documents 1 to 3, even if the carbonaceous material is a specific material or the power storage device type is specific, for example, the capacity of the power storage device is increased. However, it is not sufficient, and a new method for producing an electrode for an electricity storage device has been demanded.

本発明は、このような課題に鑑みなされたものであり、蓄電デバイスの容量をより高めることができる新規な蓄電デバイス用電極の製造方法を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the manufacturing method of the novel electrode for electrical storage devices which can raise the capacity | capacitance of an electrical storage device more.

上述した目的を達成するために鋭意研究したところ、本発明者らは、所定の基準電位を跨いで上限電圧と下限電圧とを交互に印加する処理を、徐々に上限電圧を増加させると共に徐々に下限電圧を低下させるように行うものとすると、例えば、電気二重層容量などをより高めることができ、新規な製造方法を提供することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-described object, the present inventors gradually increased the upper limit voltage and gradually applied the process of alternately applying the upper limit voltage and the lower limit voltage across a predetermined reference potential. Assuming that the lower limit voltage is lowered, for example, it has been found that the electric double layer capacity can be further increased and a novel manufacturing method can be provided, and the present invention has been completed.

即ち、本明細書で開示する蓄電デバイス用電極の製造方法は、
キャリアを吸脱着及び/又は挿入脱離しうる炭素質材料を活物質として含む蓄電デバイス用電極と対極と非水系のイオン伝導媒体とを備えたセルに対して、所定の基準電位を跨ぐように前記基準電位より高い上限電圧及び前記基準電位より低い下限電圧を交互に印加する印加サイクルを繰り返し行い、前記上限電圧を印加する際には徐々に高い電圧となる傾向とし、前記下限電圧を印加する際には徐々に低い電圧となる傾向で前記印加サイクルを行う印加工程、を含むものである。
That is, the method for producing an electrode for an electricity storage device disclosed in the present specification is:
The cell having an electrode for an electricity storage device containing a carbonaceous material capable of adsorbing / desorbing and / or inserting / desorbing carriers as an active material, a counter electrode, and a non-aqueous ion conductive medium so as to straddle a predetermined reference potential. An application cycle in which an upper limit voltage higher than a reference potential and a lower limit voltage lower than the reference potential are alternately applied is repeated, and when the upper limit voltage is applied, the voltage gradually becomes higher and when the lower limit voltage is applied Includes an application step of performing the application cycle with a tendency to gradually become a low voltage.

本明細書で開示する蓄電デバイス用電極の製造方法では、蓄電デバイスの容量をより高めることができる。このような効果が得られる理由は以下のように推測される。例えば、アニオンが吸着脱離する炭素質材料の電極表面において、アニオンとカチオンとが吸着および脱着を交互に起こすことで表面が活性化され、活性化された電極の状態が維持されることにより、積分容量や電気二重層容量などが向上した高容量な電極となるものと推察される。また、上限電圧を徐々に高い電圧とすると共に、下限電圧を徐々に低い電圧とすることで、炭素質材料の保護を図りつつ、蓄電デバイスの容量をより高めることができる。   In the method for manufacturing an electrode for an electricity storage device disclosed in this specification, the capacity of the electricity storage device can be further increased. The reason why such an effect is obtained is presumed as follows. For example, on the electrode surface of the carbonaceous material from which the anion is adsorbed and desorbed, the anion and the cation are alternately adsorbed and desorbed to activate the surface and maintain the activated electrode state. It is presumed that the electrode has a high capacity with improved integration capacity and electric double layer capacity. Further, by gradually increasing the upper limit voltage to a lower voltage and gradually lowering the lower limit voltage, it is possible to further increase the capacity of the electricity storage device while protecting the carbonaceous material.

蓄電デバイス20の一例を示す模式図。3 is a schematic diagram illustrating an example of an electricity storage device 20. FIG. 実施例1の印加工程における充放電測定結果。The charging / discharging measurement result in the application process of Example 1. FIG. 実施例2の印加工程における充放電測定結果。The charging / discharging measurement result in the application process of Example 2. 実施例3の印加工程における充放電測定結果。The charging / discharging measurement result in the application process of Example 3. 実施例4の印加工程における充放電測定結果。The charging / discharging measurement result in the application process of Example 4. 比較例1の印加工程における充放電測定結果。The charging / discharging measurement result in the application process of the comparative example 1. 比較例2の印加工程における充放電測定結果。The charging / discharging measurement result in the application process of the comparative example 2.

本明細書で開示する蓄電デバイス用電極の製造方法は、例えば、電極を作製する電極作製工程と、この電極を用いたセルに所定の電圧を印加する印加工程とを含むものとしてもよい。なお、この製造方法において、電極を別に用意し、電極作製工程を省略するものとしてもよい。最終製造物の蓄電デバイスと、印加工程を実施するセルとは対極やイオン伝導媒体などが同じ構成としてもよいし、異なる構成としてもよい。この蓄電デバイスは、正極と、負極と、非水系のイオン伝導媒体とを備えている。正極は、正極活物質を含むものとしてもよい。負極は、負極活物質を含むものとしてもよい。イオン伝導媒体は、正極と負極との間に介在し金属イオンを伝導するものである。この蓄電デバイスは、例えば、電気二重層キャパシタやハイブリッドキャパシタ、疑似電気二重層キャパシタなどとしてもよい。キャリアであるカチオンやアニオンのうち、カチオンは、金属イオンとしてもよく、Li,Na及びKなどのうちいずれか1以上のアルカリ金属イオンであるものとしてもよい。ここでは、説明の便宜のため、蓄電デバイスと印加工程を実施するセルとが同じ構成であるものとして説明する。また、正極が作用極としての蓄電デバイス用電極であり、負極が対極であり、キャリアをリチウムイオンとしたリチウムイオンキャパシタについて、以下主として説明する。   The method for manufacturing an electrode for an electricity storage device disclosed in the present specification may include, for example, an electrode manufacturing process for manufacturing an electrode and an application process for applying a predetermined voltage to a cell using the electrode. In this manufacturing method, an electrode may be prepared separately and the electrode manufacturing step may be omitted. The power storage device of the final product and the cell that performs the application step may have the same configuration or different configurations of the counter electrode, the ion conductive medium, and the like. The electricity storage device includes a positive electrode, a negative electrode, and a non-aqueous ion conductive medium. The positive electrode may include a positive electrode active material. The negative electrode may include a negative electrode active material. The ion conductive medium is interposed between the positive electrode and the negative electrode and conducts metal ions. This electricity storage device may be, for example, an electric double layer capacitor, a hybrid capacitor, or a pseudo electric double layer capacitor. Of the cations and anions that are carriers, the cations may be metal ions, or any one or more alkali metal ions of Li, Na, K, and the like. Here, for convenience of explanation, it is assumed that the power storage device and the cell that performs the application step have the same configuration. A lithium ion capacitor in which the positive electrode is an electrode for an electricity storage device as a working electrode, the negative electrode is a counter electrode, and the carrier is lithium ion will be mainly described below.

(電極作製工程)
この工程では、正極と負極とを作製する。この工程で作製する負極は、キャリアとしてのリチウムイオンを吸蔵放出する負極活物質を含むものとしてもよい。負極活物質としては、例えば、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、複数の元素を含む複合酸化物、導電性ポリマーなどが挙げられる。炭素質材料は、例えば、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が好ましい。複合酸化物としては、例えば、リチウムチタン複合酸化物やリチウムバナジウム複合酸化物などが挙げられる。この工程では、例えば、負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して負極を形成してもよい。導電材は、負極活物質の導電性が低い場合に添加されるものとしてもよく、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。導電材は、負極合材の固形分全体に対して1質量%以上20質量%以下の範囲で含むことが好ましく、5質量%以上15質量%以下の範囲で含むことがより好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、水系バインダーであるセルロース系のカルボキシメチルセルロース(CMC)やスチレンブタジエン共重合体(SBR)、ポリビニルアルコールなどの水分散体等を単独で、あるいは2種以上の混合物として用いることが好ましい。また、結着材は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。この負極合材は、カルボキシメチルセルロース及びポリビニルアルコールのうち少なくとも一方である水溶性ポリマーを、負極合材の固形分全体に対して1質量%以上10質量%以下の範囲で含むことが好ましく、2質量%以上8質量%以下の範囲で含むことがより好ましい。また、負極合材は、スチレンブタジエン共重合体を、負極合材の固形分全体に対して8質量%以下の範囲で含むことが好ましい。負極合材の塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。集電体としては、アルミニウム、銅、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどを用いることができる。集電体の形状については、箔状、フィルム状、シート状などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。
(Electrode production process)
In this step, a positive electrode and a negative electrode are produced. The negative electrode produced in this step may include a negative electrode active material that occludes and releases lithium ions as carriers. Examples of the negative electrode active material include inorganic compounds such as lithium, lithium alloys and tin compounds, carbonaceous materials capable of inserting and extracting lithium ions, composite oxides containing a plurality of elements, and conductive polymers. Examples of the carbonaceous material include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Of these, graphites such as artificial graphite and natural graphite are preferable. Examples of the composite oxide include lithium titanium composite oxide and lithium vanadium composite oxide. In this step, for example, a negative electrode active material, a conductive material, and a binder are mixed, and an appropriate solvent is added to form a paste-like negative electrode mixture, which is applied to the surface of the current collector and dried. Accordingly, the negative electrode may be formed by compressing to increase the electrode density. The conductive material may be added when the conductivity of the negative electrode active material is low. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black, carbon black, ketjen black Carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) and the like can be used. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability. The conductive material is preferably included in the range of 1% by mass or more and 20% by mass or less, and more preferably in the range of 5% by mass or more and 15% by mass or less with respect to the entire solid content of the negative electrode mixture. The binder plays a role of connecting the active material particles and the conductive material particles, and examples thereof include cellulose-based carboxymethyl cellulose (CMC), styrene-butadiene copolymer (SBR), and polyvinyl alcohol, which are water-based binders. It is preferable to use the aqueous dispersion alone or as a mixture of two or more. The binder may be, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), a fluorine-containing resin such as fluorine rubber, or a thermoplastic resin such as polypropylene or polyethylene, or ethylene propylene diene monomer (EPDM) rubber. Sulfonated EPDM rubber, natural butyl rubber (NBR), etc. can be used alone or as a mixture of two or more. This negative electrode mixture preferably contains a water-soluble polymer that is at least one of carboxymethyl cellulose and polyvinyl alcohol in a range of 1% by mass or more and 10% by mass or less based on the entire solid content of the negative electrode mixture. More preferably, it is contained in the range of from 8% to 8% by mass. Moreover, it is preferable that a negative electrode compound material contains a styrene butadiene copolymer in the range of 8 mass% or less with respect to the whole solid content of a negative electrode compound material. Examples of the method of applying the negative electrode mixture include roller coating such as an applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any one of these is used to obtain an arbitrary thickness and shape. be able to. As the current collector, aluminum, copper, titanium, stainless steel, nickel, iron, baked carbon, a conductive polymer, conductive glass, or the like can be used. Examples of the shape of the current collector include a foil shape, a film shape, and a sheet shape. The thickness of the current collector is, for example, 1 to 500 μm.

この工程で作製する正極は、キャパシタやリチウムイオンキャパシタなどに用いられている公知の正極としてもよい。正極は、例えば、正極活物質として炭素質材料を含むものとしてもよい。炭素質材料としては、特に限定されるものではないが、例えば、活性炭類、コークス類、ガラス状炭素類、黒鉛類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維類、カーボンナノチューブ類、ポリアセン類などが挙げられる。このうち、高比表面積を示す活性炭類が好ましい。炭素質材料としての活性炭は、比表面積が1000m2/g以上であることが好ましく、1500m2/g以上であることがより好ましい。比表面積が1000m2/g以上では、放電容量をより高めることができる。この活性炭の比表面積は、作製の容易性から3000m2/g以下であることが好ましく、2000m2/g以下であることがより好ましい。なお、正極では、イオン伝導媒体に含まれるアニオン及びカチオンの少なくとも一方を吸着・脱離して蓄電するものと考えられるが、さらに、イオン伝導媒体に含まれるアニオン及びカチオンの少なくとも一方を挿入、脱離して蓄電するものとしてもよい。 The positive electrode produced in this step may be a known positive electrode used for capacitors and lithium ion capacitors. The positive electrode may include, for example, a carbonaceous material as a positive electrode active material. The carbonaceous material is not particularly limited. For example, activated carbons, cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, carbon fibers, carbon nanotubes And polyacenes. Of these, activated carbons exhibiting a high specific surface area are preferred. The activated carbon as the carbonaceous material preferably has a specific surface area of 1000 m 2 / g or more, and more preferably 1500 m 2 / g or more. When the specific surface area is 1000 m 2 / g or more, the discharge capacity can be further increased. The specific surface area of the activated carbon is preferably 3000 m 2 / g or less, and more preferably 2000 m 2 / g or less, from the viewpoint of ease of production. In the positive electrode, it is considered that at least one of the anion and cation contained in the ionic conduction medium is adsorbed and desorbed to store electricity. May be stored.

この工程では、例えば上述した正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して正極を形成してもよい。なお、正極活物質が炭素質材料である場合、正極は、導電材を含まないものとしてもよい。正極に用いられる導電材、結着材などは、それぞれ負極で例示したものを用いることができる。   In this step, for example, the above-described positive electrode active material, conductive material, and binder are mixed, and an appropriate solvent is added to form a paste-like positive electrode mixture, which is then applied to the surface of the current collector and dried. Accordingly, the positive electrode may be formed by compression so as to increase the electrode density. When the positive electrode active material is a carbonaceous material, the positive electrode may not include a conductive material. As the conductive material and the binder used for the positive electrode, those exemplified for the negative electrode can be used.

(印加工程)
この工程では、正極と負極と非水系のイオン伝導媒体とを備えたセルを作製し、このセルに対して、所定の基準電位を跨ぐように基準電位より高い上限電圧及び基準電位より低い下限電圧を交互に印加する印加サイクルを繰り返す処理を行う。セルに用いられるイオン伝導媒体としては、正極及び負極のキャリアを支持塩として含む非水電解液などが挙げられる。この非水電解液の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。
(Applying process)
In this step, a cell including a positive electrode, a negative electrode, and a non-aqueous ion conductive medium is manufactured, and an upper limit voltage higher than the reference potential and a lower limit voltage lower than the reference potential are set across the cell with respect to the predetermined reference potential. The process which repeats the application cycle which alternately applies is performed. Examples of the ion conductive medium used in the cell include a nonaqueous electrolytic solution containing positive and negative electrode carriers as supporting salts. Examples of the solvent for the non-aqueous electrolyte include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t -Chain carbonates such as butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyllactone and γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane, and diethoxyethane; nitriles such as acetonitrile and benzonitrile; Examples include furans such as lan, methyltetrahydrofuran, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, the combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charge and discharge are excellent, but also the viscosity of the electrolyte, the electric capacity of the obtained battery, the battery output, etc. should be balanced. it can.

支持塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩から選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩を溶解する濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。 Examples of the supporting salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, Examples include LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Among these, it is preferable from the viewpoint of electrical characteristics to use one or two or more salts selected from inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , and LiClO 4 in combination. The supporting salt preferably has a concentration in the non-aqueous electrolyte of 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. When the concentration for dissolving the supporting salt is 0.1 mol / L or more, a sufficient current density can be obtained, and when it is 5 mol / L or less, the electrolytic solution can be made more stable.

また、液状のイオン伝導媒体の代わりに、固体のイオン伝導性ポリマーをイオン伝導媒体として用いることもできる。イオン伝導性ポリマーとしては、例えば、アクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタクリレート、ビニルアセテート、ビニルピロリドン、フッ化ビニリデンなどのポリマーと支持塩とで構成されるポリマーゲルを用いることができる。更に、イオン伝導性ポリマーと非水系電解液とを組み合わせて用いることもできる。また、イオン伝導媒体としては、イオン伝導性ポリマーのほか、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質の混合材料、若しくは有機バインダーによって結着された無機固体粉末などを利用することができる。   Further, instead of the liquid ion conducting medium, a solid ion conducting polymer may be used as the ion conducting medium. As the ion conductive polymer, for example, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, vinylidene fluoride and a supporting salt can be used. Further, an ion conductive polymer and a non-aqueous electrolyte can be used in combination. In addition to the ion conductive polymer, an inorganic solid electrolyte, a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, an inorganic solid powder bound by an organic binder, or the like can be used as the ion conductive medium.

このセルは、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし複数を混合して用いてもよい。   This cell may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited, and examples thereof include polymer nonwoven fabrics such as polypropylene nonwoven fabric and polyphenylene sulfide nonwoven fabric, and thin microporous membranes of olefin resins such as polyethylene and polypropylene. These may be used alone or in combination.

このセル(蓄電デバイス)の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。図1は、実施形態の蓄電デバイス20の一例を示す模式図である。この蓄電デバイス20は、カップ形状の電池ケース21と、正極活物質を有しこの電池ケース21の下部に設けられた正極22と、負極活物質を有し正極22に対してセパレータ24を介して対向する位置に設けられた負極23と、絶縁材により形成されたガスケット25と、電池ケース21の開口部に配設されガスケット25を介して電池ケース21を密封する封口板26と、を備えている。この蓄電デバイス20は、正極22と負極23との間の空間に非水系のイオン伝導媒体27が満たされている。この蓄電デバイス20は、正極22及び負極23のうち少なくとも一方に対して、基準電位より高い上限電圧及び基準電位より低い下限電圧を交互に印加する印加サイクルを、上限電圧を印加する際には徐々に高い電圧となる傾向とし、下限電圧を印加する際には徐々に低い電圧となる傾向で行うことにより作製されている。この蓄電デバイス20は、正極活物質として活性炭を備え、負極活物質として黒鉛を備えるものとしてもよい。   The shape of the cell (power storage device) is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. FIG. 1 is a schematic diagram illustrating an example of an electricity storage device 20 according to the embodiment. The electricity storage device 20 includes a cup-shaped battery case 21, a positive electrode 22 that has a positive electrode active material, and a negative electrode active material that has a negative electrode active material via a separator 24. A negative electrode 23 provided at an opposing position; a gasket 25 formed of an insulating material; and a sealing plate 26 disposed in an opening of the battery case 21 and sealing the battery case 21 via the gasket 25. Yes. In the electricity storage device 20, a non-aqueous ion conductive medium 27 is filled in a space between the positive electrode 22 and the negative electrode 23. The power storage device 20 gradually applies an application cycle in which an upper limit voltage higher than the reference potential and a lower limit voltage lower than the reference potential are alternately applied to at least one of the positive electrode 22 and the negative electrode 23 when the upper limit voltage is applied. Therefore, the lower limit voltage is applied when the lower limit voltage is applied. The electricity storage device 20 may include activated carbon as a positive electrode active material and graphite as a negative electrode active material.

この印加工程では、上記作製したセルに対して、所定の基準電位を跨ぐように上限電圧及び下限電圧を交互に印加する印加処理を実行する。この基準電位は、セルの開回路電位であるものとしてもよい。この開回路電位は、例えば、リチウム金属基準で3Vとしてもよい。この印加工程では、上限電圧と下限電圧とを交互に印加する印加サイクルを繰り返し行い、上限電圧を印加する際には徐々に高い電圧となる傾向で印加サイクルを行うものとしてもよい。このとき、リチウム金属基準で3Vから5Vに向かって徐々に高い上限電圧とする印加サイクルを行うことが好ましい。また、印加処理では最終的な上限電圧を4.0V以上とすることが好ましく、より好ましくは4.5V以上であり、更に好ましくは4.8V以上である。この上限電圧をより高くすると、セルの容量をより効果的に向上することができる。なお、この上限電圧は、電極の保護を考慮すると、5.0V未満であることが好ましい。この上限電圧で保持する時間は、例えば、10分以上であることが好ましく、20分以上であることがより好ましい。この保持時間は、製造時間の長期化を抑制する観点からは、60分以下であることが好ましい。なお、「徐々に高い電圧となる傾向」とは、全体としてみたときに開始時に比して終了時ではより高い上限電圧になることを意味し、例えば、印加処理中に同じ電圧が繰り返されたり、低い電圧になる部分が一部存在することを許容する趣旨である。   In this application step, an application process is performed in which an upper limit voltage and a lower limit voltage are alternately applied to the manufactured cell so as to cross a predetermined reference potential. This reference potential may be an open circuit potential of the cell. This open circuit potential may be 3 V, for example, based on lithium metal. In this application step, the application cycle in which the upper limit voltage and the lower limit voltage are alternately applied may be repeated, and the application cycle may be performed in a tendency that the voltage gradually becomes higher when the upper limit voltage is applied. At this time, it is preferable to perform an application cycle in which the upper limit voltage is gradually increased from 3 V to 5 V on a lithium metal basis. In the application process, the final upper limit voltage is preferably set to 4.0 V or more, more preferably 4.5 V or more, and further preferably 4.8 V or more. When this upper limit voltage is made higher, the capacity of the cell can be improved more effectively. This upper limit voltage is preferably less than 5.0 V in consideration of electrode protection. The time for holding at this upper limit voltage is, for example, preferably 10 minutes or more, and more preferably 20 minutes or more. This holding time is preferably 60 minutes or less from the viewpoint of suppressing an increase in manufacturing time. Note that the term “gradually higher voltage” means that the upper limit voltage is higher at the end than the start when viewed as a whole. For example, the same voltage may be repeated during the application process. In other words, it is intended to allow a part where a low voltage is present.

また、この印加工程では、印加サイクルを繰り返し行うに際して、下限電圧を印加する際には徐々に低い電圧となる傾向で印加サイクルを行うものとしてもよい。このとき、リチウム金属基準で3Vから1Vに向かって徐々に低い下限電圧とする印加サイクルを行うことが好ましい。また、印加処理では最終的な下限電圧を2.0V以下とすることが好ましく、より好ましくは1.5V以下であり、更に好ましくは1.2V以下である。この下限電圧をより低くすると、セルの容量をより効果的に向上することができる。この下限電圧は、電極の保護を考慮すると、1.0Vを超えることが好ましい。この下限電圧で保持する時間は、例えば、10分以上であることが好ましく、20分以上であることがより好ましい。なお、この保持時間は、製造時間の長期化を抑制する観点からは、60分以下であることが好ましい。なお、「徐々に低い電圧となる傾向」とは、全体としてみたときに開始時に比して終了時ではより低い下限電圧になることを意味し、例えば、印加処理中に同じ電圧が繰り返されたり、高い電圧になる部分が一部存在することを許容する趣旨である。   Further, in this application step, when the application cycle is repeated, the application cycle may be performed with a tendency that the voltage gradually becomes lower when the lower limit voltage is applied. At this time, it is preferable to perform an application cycle in which the lower limit voltage is gradually lowered from 3 V to 1 V on the basis of lithium metal. In the application process, the final lower limit voltage is preferably set to 2.0 V or less, more preferably 1.5 V or less, and further preferably 1.2 V or less. If this lower limit voltage is made lower, the capacity of the cell can be improved more effectively. This lower limit voltage preferably exceeds 1.0 V in consideration of electrode protection. The time for holding at this lower limit voltage is, for example, preferably 10 minutes or more, and more preferably 20 minutes or more. In addition, it is preferable that this holding time is 60 minutes or less from a viewpoint of suppressing the prolongation of manufacturing time. Note that “gradually lower voltage” means that when viewed as a whole, the lower limit voltage is lower at the end than at the start, for example, the same voltage is repeated during the application process. In other words, it is intended to allow a part of a high voltage to exist.

この印加工程では、上限電圧と下限電圧とを交互に印加するが、処理の全体で、上限電圧と下限電圧との差が徐々に大きくなる傾向で上限電圧及び下限電圧を印加することが好ましい。上限電圧と下限電圧との差を徐々に大きくすることにより、いきなり大きな電位差を印加するのに比して電極へかかる負担をより低減することができる。また、より効果的に積分容量や電気二重層容量などをより向上することができる。   In this application step, the upper limit voltage and the lower limit voltage are alternately applied, but it is preferable to apply the upper limit voltage and the lower limit voltage so that the difference between the upper limit voltage and the lower limit voltage gradually increases throughout the process. By gradually increasing the difference between the upper limit voltage and the lower limit voltage, the burden on the electrode can be further reduced as compared with applying a large potential difference suddenly. In addition, the integration capacity, the electric double layer capacity, and the like can be improved more effectively.

以上詳述した蓄電デバイス用電極の製造方法では、蓄電デバイスの電池容量をより高めることができる。このような効果が得られる理由は、以下のように推測される。例えば、アニオンが吸着脱離する炭素質材料の電極表面において、アニオンとカチオンとが吸着および脱着を交互に起こすことで表面が活性化され、活性化された電極の状態が維持されることにより、積分容量や電気二重層容量などが向上した高容量な電極となるものと推察される。   In the method for manufacturing an electrode for an electricity storage device described in detail above, the battery capacity of the electricity storage device can be further increased. The reason why such an effect is obtained is presumed as follows. For example, on the electrode surface of the carbonaceous material from which the anion is adsorbed and desorbed, the anion and the cation are alternately adsorbed and desorbed to activate the surface and maintain the activated electrode state. It is presumed that the electrode has a high capacity with improved integration capacity and electric double layer capacity.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、製造物である蓄電デバイスと、印加工程を実施するセルとが同じ構成であるものとしたが、異なる構成であるものとしてもよい。例えば、作用極を活性炭電極とし、対極をリチウム金属として印加工程を行い、活性炭電極を取り出して、蓄電デバイスの負極(例えば、黒鉛負極など)と組み合わせて蓄電デバイスとしてもよい。このとき、セルの非水電解液に含まれる支持塩と、蓄電デバイスの非水電解液に含まれる支持塩とを変更してもよい。   For example, in the above-described embodiment, the power storage device that is a product and the cell that performs the application step have the same configuration, but may have different configurations. For example, the application process may be performed with the working electrode as the activated carbon electrode and the counter electrode as the lithium metal, and the activated carbon electrode may be taken out and combined with the negative electrode of the power storage device (for example, a graphite negative electrode) to form the power storage device. At this time, you may change the support salt contained in the nonaqueous electrolyte of a cell, and the support salt contained in the nonaqueous electrolyte of an electrical storage device.

上述した実施形態では、印加工程を経た正極には活性炭を備え、印加工程を経た負極には黒鉛を備えるものとしたが、特にこれに限定されない。例えば、印加工程を経た活性炭を備える電極を負極に用いてもよいし、印加工程を経た黒鉛を備える電極を正極に用いてもよい。   In the above-described embodiment, the positive electrode that has undergone the application process is provided with activated carbon, and the negative electrode that has undergone the application process is provided with graphite. However, the present invention is not particularly limited thereto. For example, an electrode including activated carbon that has undergone an application process may be used for the negative electrode, and an electrode that includes graphite that has undergone the application process may be used for the positive electrode.

上述した実施形態では、キャリアをリチウムイオンとそのアニオンとして説明したが、特にこれに限定されず、例えば、ナトリウムイオン、カリウムイオン、アンモニウムイオンなどとしてもよい。また、イオン液体のカチオン、アニオンとしてもよい。   In the above-described embodiment, the carrier is described as a lithium ion and its anion, but is not particularly limited thereto, and may be a sodium ion, a potassium ion, an ammonium ion, or the like. Moreover, it is good also as a cation of a ionic liquid, and an anion.

以下には、蓄電デバイス用電極の製造方法を具体的に実施した例を実施例として説明する。なお、本発明は以下の実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   Below, the example which concretely implemented the manufacturing method of the electrode for electrical storage devices is described as an example. In addition, this invention is not limited to the following Examples at all, and it cannot be overemphasized that it can implement with a various aspect, as long as it belongs to the technical scope of this invention.

(活性炭電極の作製)
活性炭(クラレケミカル製RP−20,6μm)と、導電助剤(東海カーボン製TB5500)と、分散剤(カルボキシメチルセルロース)と、結着剤(スチレンブタジエンゴム)とを質量比で、83.0:10.7:4.0:2.3となるように配合し、溶媒の水を加えてスラリー状の電極合材とした。このスラリーを用いて、Al金属箔の直径1.6cmの集電体に、活物質目付量が3.0mg/cm2、電極活物質密度が0.4g/cm3となるように塗布、乾燥し、活性炭電極とした。
(Production of activated carbon electrode)
Activated carbon (RP-20, 6 μm manufactured by Kuraray Chemical Co., Ltd.), conductive additive (TB5500 manufactured by Tokai Carbon Co., Ltd.), dispersant (carboxymethylcellulose), and binder (styrene butadiene rubber) in a mass ratio of 83.0: It mix | blended so that it might become 10.7: 4.0: 2.3, and the water of a solvent was added and it was set as the slurry-like electrode compound material. Using this slurry, a current collector with a diameter of 1.6 cm of Al metal foil was applied and dried so that the active material basis weight was 3.0 mg / cm 2 and the electrode active material density was 0.4 g / cm 3. And it was set as the activated carbon electrode.

(黒鉛電極の作製)
人造黒鉛(大阪ガスケミカル製)と、結着剤(スチレンブタジエンゴム)とを質量比で95:5となるように配合し、溶媒の水を加えてスラリー状の電極合材とした。このスラリーを用いて、Al金属箔の直径1.6cmの集電体に、活物質目付量が5.6mg/cm2、電極活物質密度が1.2g/cm3となるように塗布、乾燥し、黒鉛電極とした。
(Production of graphite electrode)
Artificial graphite (manufactured by Osaka Gas Chemical) and a binder (styrene butadiene rubber) were blended so as to have a mass ratio of 95: 5, and solvent water was added to form a slurry electrode mixture. Using this slurry, an Al metal foil having a diameter of 1.6 cm was applied and dried so that the active material basis weight was 5.6 mg / cm 2 and the electrode active material density was 1.2 g / cm 3. Thus, a graphite electrode was obtained.

(セルの作製)
上記活性炭電極を作用極とし、リチウム金属箔(厚さ300μm)を対極として両電極の間に非水電解液を含浸させたセパレータ(東レ東燃製)を挟んで二極式セルを作製した。電解液は、1MのLiPF6を支持塩とし、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの体積比で30:40:30の比率で混合した溶媒に溶解したものを用いた。また、1MのLiBF4、及び1MのLiN(SO2F)2を支持塩とする電解液も作製した。
(Production of cell)
Using the activated carbon electrode as a working electrode and a lithium metal foil (thickness: 300 μm) as a counter electrode, a bipolar cell impregnated with a non-aqueous electrolyte was sandwiched between both electrodes, and a bipolar cell was produced. The electrolytic solution used was 1M LiPF 6 as a supporting salt and dissolved in a solvent mixed with ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate in a volume ratio of 30:40:30. It was also prepared electrolyte solution LiBF of 1M 4, and a 1M LiN (SO 2 F) 2 with the support salt.

[実施例1]
活性炭電極と金属リチウム電極と,LiPF6を含む電解液からなるセルを実施例1とした。このセルに対して、表1のステップ1〜4を行うパターン1〜10を順次行う条件で、充放電させる印加工程を行った。実施例1では、リチウム金属基準における開回路電位である3Vを跨ぎながら上限電圧および下限電圧を交互に徐々に拡大させ(図2(a)参照)充放電を行った。なお、各設定電位で保持する時間は、10分とした。図2は、実施例1の充放電測定結果であり、図2(a)が印加工程の上下限電位のプロファイルであり、図2(b)が充放電時のリチウム基準の電位と電気二重層容量との関係図、図2(c)が積分容量とリチウム基準電位との関係図、図2(d)が印加工程の実施前後の電位に対する電気二重層容量の関係図である。図2(a)のように、上限電圧が4Vを上回るまで徐々に増加させ、下限電圧が2Vを下回るまで徐々に減少させるような印加工程を施した実施例1では、図2(b)に示すように、電気二重層容量が100F/gから200F/gへと増加することが分かった。また、印加処理後の電極と未処理の電極とを同条件化において比較すると、図2(c)のように積分容量が増加し、図2(d)のように電気二重層容量も増加することがわかった。なお、上記の処理を行った電極では,図2(d)に示すように充電方向で3Vから4V、放電方向で3Vから2Vの領域において、特徴的な電気二重層容量の増加が確認できた。
[Example 1]
A cell made of an electrolytic solution containing an activated carbon electrode, a metal lithium electrode, and LiPF 6 was defined as Example 1. The application process which charges / discharges was performed on this cell on the conditions which perform the patterns 1-10 which perform step 1-4 of Table 1 sequentially. In Example 1, charging and discharging were performed by gradually increasing the upper limit voltage and the lower limit voltage alternately while crossing 3 V, which is an open circuit potential based on a lithium metal standard (see FIG. 2A). The time for holding at each set potential was 10 minutes. FIG. 2 is a charge / discharge measurement result of Example 1, FIG. 2 (a) is a profile of the upper and lower limit potentials of the application process, and FIG. 2 (b) is a lithium reference potential and electric double layer during charge / discharge. FIG. 2C is a relationship diagram between the integrated capacitance and the lithium reference potential, and FIG. 2D is a relationship diagram of the electric double layer capacitance with respect to the potential before and after the application process. As shown in FIG. 2 (a), in Example 1 in which an application process is performed in which the upper limit voltage is gradually increased until it exceeds 4V and the lower limit voltage is gradually decreased until it falls below 2V, FIG. As shown, the electric double layer capacity was found to increase from 100 F / g to 200 F / g. In addition, when the applied electrode and the untreated electrode are compared under the same conditions, the integral capacitance increases as shown in FIG. 2C, and the electric double layer capacitance also increases as shown in FIG. I understood it. As shown in FIG. 2D, in the electrodes subjected to the above treatment, a characteristic increase in electric double layer capacity was confirmed in the region of 3V to 4V in the charging direction and 3V to 2V in the discharging direction. .

[実施例2]
実施例1と同様のセルを用い、電流値を約3倍の1.0mAとした以外は実施例1と同様の印加処理を行ったものを実施例2とした。リチウム金属基準における開回路電位である3Vを跨ぎながら上限電圧および下限電圧を交互に徐々に拡大させ充放電を行った。図3は、実施例2の充放電測定結果であり、図3(a)が印加工程の上下限電位のプロファイルであり、図3(b)が充放電時のリチウム基準の電位と電気二重層容量との関係図、図3(c)が積分容量とリチウム基準電位との関係図、図3(d)が印加処理の実施前後の電位に対する電気二重層容量の関係図である。図3に示すように、電流値を高め、保持時間を短縮した場合においても、積分容量および電気二重層が増加することがわかった。
[Example 2]
Example 2 was the same as Example 1 except that the same cell as in Example 1 was used and the current value was about 3 times 1.0 mA. Charging / discharging was performed by gradually increasing the upper limit voltage and the lower limit voltage alternately while crossing the open circuit potential of 3 V on the lithium metal basis. FIG. 3 shows the charge / discharge measurement results of Example 2, FIG. 3 (a) is the profile of the upper and lower limit potentials of the application process, and FIG. 3 (b) is the lithium reference potential and electric double layer during charge / discharge. FIG. 3C is a relationship diagram between the integration capacitance and the lithium reference potential, and FIG. 3D is a relationship diagram of the electric double layer capacitance with respect to the potential before and after the application process. As shown in FIG. 3, it was found that the integration capacity and the electric double layer increase even when the current value is increased and the holding time is shortened.

[実施例3]
活性炭電極と、金属リチウム電極と、LiBF4を含む電解液からなるセルを実施例3とした。このセルに対して、表1のステップ1〜4を行うパターン1〜10を順次行う条件で、充放電させる印加工程を行った。図4は、実施例3の充放電測定結果であり、図4(a)が印加工程の上下限電位のプロファイルであり、図4(b)が充放電時のリチウム基準の電位と電気二重層容量との関係図、図4(c)が積分容量とリチウム基準電位との関係図、図4(d)が印加処理の実施前後の電位に対する電気二重層容量の関係図である。図4に示すように、実施例3では、リチウム金属基準における開回路電位である3Vを跨ぎながら上限電圧および下限電圧を交互に徐々に拡大させ充放電を行ったところ,上限電圧が4Vを上回り,下限電圧が2Vを下回るような処理を行うことで、容量増加が確認でき、積分容量および電気二重層が増加することがわかった。
[Example 3]
A cell composed of an activated carbon electrode, a metal lithium electrode, and an electrolytic solution containing LiBF 4 was defined as Example 3. The application process which charges / discharges was performed on this cell on the conditions which perform the patterns 1-10 which perform step 1-4 of Table 1 sequentially. FIG. 4 is a charge / discharge measurement result of Example 3, FIG. 4 (a) is a profile of the upper and lower limit potentials of the application process, and FIG. 4 (b) is a lithium reference potential and electric double layer during charge / discharge. FIG. 4C is a relationship diagram between the integration capacitance and the lithium reference potential, and FIG. 4D is a relationship diagram of the electric double layer capacitance with respect to the potential before and after the application process. As shown in FIG. 4, in Example 3, charging and discharging were performed by gradually expanding the upper limit voltage and the lower limit voltage alternately across 3 V, which is an open circuit potential based on a lithium metal standard, and the upper limit voltage exceeded 4 V. , It was found that by performing the treatment such that the lower limit voltage is less than 2V, the capacity increase can be confirmed, and the integral capacity and the electric double layer increase.

[実施例4]
黒鉛電極と金属リチウム電極と、LiPF6を含む電解液からなるセルにて,このセルに対して、表1のステップ1〜4を行うパターン1〜10を順次行う条件で、充放電させる印加工程を行った。即ち、実施例4では、リチウム金属基準における開回路電位である3Vを跨ぎながら上限電圧および下限電圧を交互に徐々に拡大させ充放電を行った。図5は、実施例4の充放電測定結果であり、図5(a)が印加工程の上下限電位のプロファイルであり、図5(b)が充放電時のリチウム基準の電位と電気二重層容量との関係図である。図5に示すように、実施例4では、上限電圧が4Vを上回り,下限電圧が2Vを下回るような処理を行うことで、電気二重層が増加した.
[Example 4]
Graphite electrode and metal lithium electrode, by cell comprising an electrolyte containing LiPF 6, with respect to this cell, sequentially performs condition pattern 10 which performs steps 1-4 of Table 1, applying step of charging and discharging Went. That is, in Example 4, charging and discharging were performed by gradually increasing the upper limit voltage and the lower limit voltage alternately while crossing 3 V, which is an open circuit potential based on a lithium metal standard. FIG. 5 is a charge / discharge measurement result of Example 4, FIG. 5 (a) is a profile of upper and lower limit potentials of the application process, and FIG. 5 (b) is a lithium reference potential and electric double layer during charge / discharge. It is a relationship figure with a capacity | capacitance. As shown in FIG. 5, in Example 4, the electric double layer was increased by performing the treatment such that the upper limit voltage was higher than 4V and the lower limit voltage was lower than 2V.

[比較例1]
実施例1と同様のセルを用い、表2のステップ1〜4を行うパターン1〜10を順次行う条件で、充放電させる印加工程を行った。比較例1では、リチウム金属基準における開回路電位である3Vを跨がないで,上限電圧のみを増加させる印加処理を実行した。比較例1では、設定電位での保持時間を10分とした。図6は、比較例1の充放電測定結果であり、図6(a)が印加工程の上下限電位のプロファイルであり、図6(b)が充放電時のリチウム基準の電位と電気二重層容量との関係図である。図6に示すように、開回路電位を跨がずに上限電圧を増加させるだけでは、電気二重層容量の顕著な増加は得られないことがわかった。
[Comparative Example 1]
Using the same cell as in Example 1, an application process for charging and discharging was performed under the conditions of sequentially performing patterns 1 to 10 for performing steps 1 to 4 in Table 2. In the comparative example 1, the application process which increases only an upper limit voltage was performed, without straddling 3V which is an open circuit electric potential in a lithium metal reference | standard. In Comparative Example 1, the holding time at the set potential was 10 minutes. FIG. 6 shows the charge / discharge measurement results of Comparative Example 1, FIG. 6 (a) is the profile of the upper and lower limit potentials of the application process, and FIG. 6 (b) is the lithium reference potential and electric double layer during charge / discharge. It is a relationship figure with a capacity | capacitance. As shown in FIG. 6, it was found that a significant increase in electric double layer capacity could not be obtained simply by increasing the upper limit voltage without straddling the open circuit potential.

[比較例2]
実施例1と同様のセルを用い、表3のステップ1〜4を行うパターン1〜10を順次行う条件で、充放電させる印加工程を行った。比較例2では、リチウム金属基準における開回路電位である3Vを跨がないで,下限電圧のみを減少させる印加処理を実行した。比較例2では、設定電位での保持時間を10分とした。図7は、比較例2の充放電測定結果であり、図7(a)が印加工程の上下限電位のプロファイルであり、図7(b)が充放電時のリチウム基準の電位と電気二重層容量との関係図である。図7に示すように、開回路電位を跨がずに下限電圧を減少させるだけでは、電気二重層容量の顕著な増加は得られないことがわかった。
[Comparative Example 2]
Using the same cell as in Example 1, an application process for charging and discharging was performed under the conditions of sequentially performing patterns 1 to 10 for performing steps 1 to 4 in Table 3. In Comparative Example 2, the application process for reducing only the lower limit voltage was performed without crossing the open circuit potential of 3 V based on the lithium metal standard. In Comparative Example 2, the holding time at the set potential was 10 minutes. FIG. 7 shows the charge / discharge measurement results of Comparative Example 2, FIG. 7 (a) is the profile of the upper and lower limit potentials of the application process, and FIG. 7 (b) is the lithium reference potential and electric double layer during charge / discharge. It is a relationship figure with a capacity | capacitance. As shown in FIG. 7, it was found that a significant increase in the electric double layer capacity could not be obtained only by reducing the lower limit voltage without straddling the open circuit potential.

(結果と考察)
上述したように、基準電位としての開回路電位を跨いで上限電圧を5V近傍まで徐々に増加させると共に下限電圧を1V近傍まで徐々に減少させて印加するサイクルを繰り返し行うものとすると、容量増加が確認でき、積分容量および電気二重層が増加することがわかった。
(Results and discussion)
As described above, if the cycle in which the upper limit voltage is gradually increased to near 5 V and the lower limit voltage is gradually decreased to near 1 V is applied across the open circuit potential as the reference potential, the capacity increase is repeated. It was confirmed that the integration capacity and the electric double layer increased.

本発明は、電池産業に利用可能である。   The present invention is applicable to the battery industry.

20 蓄電デバイス、21 電池ケース、22 正極、23 負極、24 セパレータ、25 ガスケット、26 封口板、27 イオン伝導媒体。   20 power storage device, 21 battery case, 22 positive electrode, 23 negative electrode, 24 separator, 25 gasket, 26 sealing plate, 27 ion conduction medium.

Claims (6)

キャリアを吸脱着及び/又は挿入脱離しうる炭素質材料を活物質として含む蓄電デバイス用電極と対極と非水系のイオン伝導媒体とを備えたセルに対して、所定の基準電位を跨ぐように前記基準電位より高い上限電圧及び前記基準電位より低い下限電圧を交互に印加する印加サイクルを繰り返し行い、前記上限電圧を印加する際には徐々に高い電圧となる傾向とし、前記下限電圧を印加する際には徐々に低い電圧となる傾向で前記印加サイクルを行う印加工程、
を含む蓄電デバイス用電極の製造方法。
The cell having an electrode for an electricity storage device containing a carbonaceous material capable of adsorbing / desorbing and / or inserting / desorbing carriers as an active material, a counter electrode, and a non-aqueous ion conductive medium so as to straddle a predetermined reference potential. An application cycle in which an upper limit voltage higher than a reference potential and a lower limit voltage lower than the reference potential are alternately applied is repeated, and when the upper limit voltage is applied, the voltage gradually becomes higher and when the lower limit voltage is applied The application step of performing the application cycle in a tendency to gradually become a low voltage,
The manufacturing method of the electrode for electrical storage devices containing this.
前記印加工程では、前記基準電位を前記セルの開回路電位とする、請求項1に記載の蓄電デバイス用電極の製造方法。   The method for manufacturing an electrode for an electricity storage device according to claim 1, wherein, in the applying step, the reference potential is an open circuit potential of the cell. 前記印加工程では、リチウム金属基準で3Vから5Vに向かって徐々に高い上限電圧とする前記印加サイクルを行う、請求項1又は2に記載の蓄電デバイス用電極の製造方法。   3. The method for manufacturing an electrode for an electricity storage device according to claim 1, wherein in the application step, the application cycle in which the upper limit voltage is gradually increased from 3 V to 5 V on a lithium metal basis is performed. 前記印加工程では、リチウム金属基準で3Vから1Vに向かって徐々に低い下限電圧とする前記印加サイクルを行う、請求項1〜3のいずれか1項に記載の蓄電デバイス用電極の製造方法。   The manufacturing method of the electrode for electrical storage devices of any one of Claims 1-3 which performs the said application cycle which makes a low voltage lower gradually from 3V to 1V on the basis of lithium metal in the said application process. 前記蓄電デバイス用電極は、正極であり、
前記対極は、前記蓄電デバイスの負極であり、
前記イオン伝導媒体は、前記キャリアを伝導し、
前記セルは、前記蓄電デバイスである、請求項1〜4のいずれか1項に記載の蓄電デバイス用電極の製造方法。
The electrode for the electricity storage device is a positive electrode,
The counter electrode is a negative electrode of the electricity storage device;
The ion conducting medium conducts the carrier;
The said cell is the manufacturing method of the electrode for electrical storage devices of any one of Claims 1-4 which is the said electrical storage device.
前記炭素質材料は、活性炭及び黒鉛のうち1以上であり、
前記イオン伝導媒体は、LiPF6及びLiBF4のうち以上を含む、請求項1〜5のいずれか1項に記載の蓄電デバイス用電極の製造方法。
The carbonaceous material is one or more of activated carbon and graphite,
The ion-conducting medium comprises more of LiPF 6 and LiBF 4, a manufacturing method of an electric storage device electrode according to any one of claims 1 to 5.
JP2016191534A 2016-09-29 2016-09-29 Method for manufacturing electrode for power storage device Active JP6696388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016191534A JP6696388B2 (en) 2016-09-29 2016-09-29 Method for manufacturing electrode for power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016191534A JP6696388B2 (en) 2016-09-29 2016-09-29 Method for manufacturing electrode for power storage device

Publications (2)

Publication Number Publication Date
JP2018056362A true JP2018056362A (en) 2018-04-05
JP6696388B2 JP6696388B2 (en) 2020-05-20

Family

ID=61837010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191534A Active JP6696388B2 (en) 2016-09-29 2016-09-29 Method for manufacturing electrode for power storage device

Country Status (1)

Country Link
JP (1) JP6696388B2 (en)

Also Published As

Publication number Publication date
JP6696388B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
US9048025B2 (en) Electrode for electric storage device, electric storage device and manufacturing method of electrode for electric storage device
US11551878B2 (en) Electricity storage device
KR20140004773A (en) Polyimide capacitance battery and manufacturing method thereof
JP2013157603A (en) Activated carbon for lithium ion capacitor, electrode including the same as active material, and lithium ion capacitor using electrode
KR20230093402A (en) Positvie electrode for rechargeable lithium battery, negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
US9761854B2 (en) Spirally-wound electrode assembly for rechargeable lithium battery and rechargeable lithium battery including same
JP2016119180A (en) Non-aqueous lithium secondary battery
JP6205889B2 (en) Lithium secondary battery
KR20150016072A (en) Positive electrode for lithium ion capacitor and lithium ion capacitor comprising the same
JP5271751B2 (en) Lithium ion secondary battery
JP2008283161A (en) Electrochemical capacitor and electrolyte therefor
JP2012216500A (en) Lithium secondary battery
JP2012064820A (en) Manufacturing method for lithium ion capacitor
JP5272810B2 (en) Capacitors
JP6870515B2 (en) Lithium ion capacitor and its manufacturing method
JP6696388B2 (en) Method for manufacturing electrode for power storage device
JP6607211B2 (en) Electrode for power storage device and power storage device
KR101416807B1 (en) Hybrid capacitor contained Ionic Liquid And Manufacturing Method thereof
JP2014195018A (en) Electric power storage device
KR101102654B1 (en) The Composite Electrode Materials Showing Higher Power and Higher Energy
JP6011077B2 (en) Non-aqueous battery
JP2012190929A (en) Power storage device
JP5640391B2 (en) Power storage device
JP2017191864A (en) Power storage device and method for manufacturing the same
JP2018098439A (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6696388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150