JP2018056237A - Object mounting member - Google Patents
Object mounting member Download PDFInfo
- Publication number
- JP2018056237A JP2018056237A JP2016188384A JP2016188384A JP2018056237A JP 2018056237 A JP2018056237 A JP 2018056237A JP 2016188384 A JP2016188384 A JP 2016188384A JP 2016188384 A JP2016188384 A JP 2016188384A JP 2018056237 A JP2018056237 A JP 2018056237A
- Authority
- JP
- Japan
- Prior art keywords
- mounting surface
- mounting
- opening
- ventilation path
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009423 ventilation Methods 0.000 claims abstract description 42
- 230000035699 permeability Effects 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims description 12
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 description 36
- 238000010438 heat treatment Methods 0.000 description 14
- 239000011324 bead Substances 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000006091 Macor Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Resistance Heating (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本発明は、半導体製造装置などにおいて対象物の載置・加熱に用いられるセラミックヒータなどの対象物載置用部材に関する。 The present invention relates to an object mounting member such as a ceramic heater used for mounting and heating an object in a semiconductor manufacturing apparatus or the like.
CVDなどの半導体製造装置において、ウエハ(対象物)を載置固定して加熱処理するため、基体内部に抵抗発熱体が埋設されたセラミックヒータ(対象物載置用部材)が用いられる。セラミックヒータは、ウエハを載置する載置面を有する基体と、この基体内部に配された、例えば500℃以上に加熱するための発熱体と、必要に応じてウエハを載置面に固定保持するための真空吸着機構、静電吸着機構などを備える。このうち真空吸着機構は、例えば、基体内に形成され、載置面に設けられた複数の開口に通じる通気経路を真空に引き、載置面とウエハとの間に負圧を生じさせ、大気圧との差圧によりウエハを吸着する機構である(例えば、特許文献1参照)。 2. Description of the Related Art In a semiconductor manufacturing apparatus such as CVD, a ceramic heater (object mounting member) in which a resistance heating element is embedded in a substrate is used for mounting and fixing a wafer (object) and heat-treating it. The ceramic heater has a base having a mounting surface for mounting a wafer, a heating element disposed inside the base for heating to, for example, 500 ° C., and a wafer fixed to the mounting surface as necessary. A vacuum suction mechanism, an electrostatic suction mechanism, and the like. Among these, the vacuum suction mechanism is, for example, formed in the substrate and draws a vacuum on a ventilation path leading to a plurality of openings provided on the mounting surface, thereby generating a negative pressure between the mounting surface and the wafer. This is a mechanism for adsorbing a wafer by a differential pressure from the atmospheric pressure (see, for example, Patent Document 1).
上記のような真空吸着機構を有するセラミックヒータにおいて、載置面にウエハが載置されて高温に保持されたとき、載置面の開口近傍のウエハ温度は局所的に低下する傾向にある。その原因は、通気経路の存在によりヒータからの輻射伝熱が周辺領域と比較して小さくなっているからであると推定される。このような開口近傍の局所的な温度低下により載置面全体での均熱化を図ることが困難であり、ひいてはウエハ全体を均一に加熱することができないという問題があった。 In the ceramic heater having the vacuum suction mechanism as described above, when the wafer is placed on the placement surface and held at a high temperature, the wafer temperature in the vicinity of the opening on the placement surface tends to locally decrease. This is presumed to be because the radiant heat transfer from the heater is smaller than the surrounding area due to the presence of the ventilation path. Due to such a local temperature drop in the vicinity of the opening, it is difficult to achieve uniform temperature over the entire mounting surface, and as a result, there is a problem that the entire wafer cannot be heated uniformly.
上記の問題は、真空吸着機構を有するセラミックヒータのみならず、載置面からウエハの裏面に向けてガスを供給する、通気経路及び開口を有するセラミックヒータ(例えば、特許文献2)においても起こりうる。すなわち、特許文献2では、通気経路として、セラミック基体の載置面の反対側に設けた凹部に多孔質体を充填し、載置面と凹部の底面との間を貫通する細孔を設けた構成が開示されているが、このような構成においても上記の問題は起こりうる。 The above problem may occur not only in a ceramic heater having a vacuum suction mechanism, but also in a ceramic heater having a ventilation path and an opening for supplying gas from the mounting surface toward the back surface of the wafer (for example, Patent Document 2). . That is, in Patent Document 2, as a ventilation path, a porous body is filled in a concave portion provided on the opposite side of the mounting surface of the ceramic substrate, and pores penetrating between the mounting surface and the bottom surface of the concave portion are provided. Although a configuration is disclosed, the above problem can occur even in such a configuration.
本発明は、以上の従来の問題点に鑑みなされたものであり、その目的は、開口を通じて外部に連通する通気経路を有する対象物載置用部材において、加熱時における載置面の局所的な温度低下を抑制し均熱化を図ることができる対象物載置用部材を提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a local object on a mounting surface during heating in an object mounting member having a ventilation path communicating with the outside through an opening. The object is to provide an object mounting member capable of suppressing temperature drop and achieving uniform temperature.
本発明の対象物載置用部材は、対象物が載置される載置面を有する基体と、
前記基体の内部に設けられ、前記載置面に形成された開口を通じて外部に連通する通気経路と、
前記基体の内部または前記載置面と反対側の前記基体の裏面の下方に設けられたヒータと、を有する対象物載置用部材であって、
前記通気経路には、前記載置面に対象物が載置されたときの対象物と対向する位置であって、前記ヒータよりも前記載置面側の位置に、通気性を有する通気性部材の少なくとも一部が配置されていることを特徴とする。
The object mounting member of the present invention includes a base having a mounting surface on which the object is mounted;
A ventilation path that is provided inside the base body and communicates with the outside through an opening formed in the mounting surface;
An object mounting member having a heater provided inside the base or below the back surface of the base opposite to the mounting surface,
In the ventilation path, a breathable member having air permeability at a position opposite to the object when the object is placed on the placement surface, and at a position closer to the placement surface than the heater. Is at least partially disposed.
本発明の対象物載置用部材は、通気経路の上記位置に通気性を有する通気性部材の少なくとも一部を配置することで、当該通気性部材がないときと比較して、載置面に形成された開口の直上の対象物の温度の局所的な低下が抑制される。通気性部材により、開口周辺の空気の流速が低下し、対流熱伝達による吸熱が小さくなり対象物の局所温度低下が抑制されるためである。従って、載置面全体における均熱化を図ることができ、対象物に対して均等に加熱することができる。また、通気性部材であるため、通気経路の通気性が保たれ、対象物の吸着のための真空排気、又は対象物の裏面(載置面側)にガスを供給することも可能である。 The object mounting member of the present invention is arranged on the mounting surface by disposing at least a part of the breathable member having air permeability at the above position of the ventilation path as compared with the case where there is no such breathable member. A local decrease in the temperature of the object immediately above the formed opening is suppressed. This is because the air-permeable member reduces the flow velocity of air around the opening, reduces the heat absorption due to convective heat transfer, and suppresses the local temperature drop of the object. Therefore, it is possible to achieve a uniform temperature over the entire mounting surface and to heat the object evenly. Further, since it is a breathable member, the breathability of the ventilation path is maintained, and it is possible to evacuate the object to be adsorbed or to supply gas to the back surface (mounting surface side) of the object.
また、本発明の対象物載置用部材においては、前記通気性部材の上側周縁位置は、前記載置面において前記開口の周縁部分と同じ高さ位置に配置されていることが好ましい。このように、載置面において開口の周縁部分と通気性部材とが同じ高さ位置、つまり面一であると、パーティクル溜まりが生じることがないためパーティクルによる対象物への悪影響を防止することができる。 Moreover, in the object mounting member of the present invention, it is preferable that the upper peripheral edge position of the breathable member is disposed at the same height position as the peripheral edge portion of the opening on the mounting surface. In this way, when the peripheral portion of the opening and the breathable member are at the same height position on the placement surface, that is, flush with each other, particle accumulation does not occur, so that it is possible to prevent adverse effects on the target object due to particles. it can.
さらに、本発明の対象物載置用部材において、前記基体に前記通気経路を複数設けることができ、この場合、前記通気性部材は前記複数の通気経路の少なくとも一部に配置することが好ましく、均熱性をより向上させるにはすべての通気経路に通気性部材を配置することが好ましい。 Furthermore, in the object mounting member of the present invention, it is possible to provide a plurality of the ventilation paths in the base, and in this case, it is preferable that the breathable member is disposed in at least a part of the plurality of ventilation paths. In order to further improve the heat uniformity, it is preferable to dispose a breathable member in all the ventilation paths.
さらに、本発明の対象物載置用部材において、少なくとも1つの前記通気性部材には、前記通気経路と外部とを連通させる貫通孔が設けられていてもよい。通気性部材は、貫通孔を通じて外部と連通することで通気性をより一層確実に確保することができる。 Furthermore, in the object mounting member of the present invention, at least one of the air-permeable members may be provided with a through-hole that communicates the ventilation path with the outside. The breathable member can ensure air permeability more reliably by communicating with the outside through the through hole.
以下、図面を参照して本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
図1は、本発明の実施形態に係るセラミックヒータ(対象物載置用部材)10の上面図であり、図2は図1のA−A線に沿った断面図である。図1、図2に示すセラミックヒータ10は、ウエハ(対象物)Wを上面側(載置面側)で吸着保持するための円板状の基体12を有してなる。基体12の上面には、複数のピン状の凸部14と、複数の凸部14を取り囲むように基体12の外周縁部に沿って延在する略円環状の環状凸部16と、を備えている。図1では構成の明確化のため、凸部14および環状凸部16などの構成要素はデフォルメされており、各構成要素の断面図におけるアスペクト比のほか、幅または高さと相互の間隔との比率などは実際とは異なっている。 FIG. 1 is a top view of a ceramic heater (object placing member) 10 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG. A ceramic heater 10 shown in FIGS. 1 and 2 includes a disk-shaped substrate 12 for attracting and holding a wafer (object) W on the upper surface side (mounting surface side). The upper surface of the base 12 includes a plurality of pin-shaped convex portions 14 and a substantially annular annular convex portion 16 extending along the outer peripheral edge of the base 12 so as to surround the plurality of convex portions 14. ing. In FIG. 1, components such as the convex portion 14 and the annular convex portion 16 are deformed for clarification of the configuration, and in addition to the aspect ratio in the cross-sectional view of each component, the ratio of the width or height to the interval between them. Etc. are different from the actual.
複数の凸部14は、基体12の中心を中心とする同心円状に周方向および径方向に一定の間隔をおいて配置されている。複数の凸部14は、三角格子状、正方格子状などのそのほかの態様で規則的に配置されるほか、周方向または径方向に局所的に疎密の差が生じるように局所的に不規則的に配置されてもよい。凸部14の間隔またはピッチは、例えば20[mm]以下、好ましくは12[mm]以下、さらに好ましくは8[mm]以下になるように設計されている。凸部14の基体12の上面からの突出量はたとえば5〜500[μm]の範囲に含まれるように設計されている。 The plurality of convex portions 14 are arranged concentrically with the center of the base body 12 as a center at a predetermined interval in the circumferential direction and the radial direction. The plurality of convex portions 14 are regularly arranged in other forms such as a triangular lattice shape and a square lattice shape, and are locally irregular so that a difference in density is locally produced in the circumferential direction or the radial direction. May be arranged. The interval or pitch of the convex portions 14 is designed to be, for example, 20 [mm] or less, preferably 12 [mm] or less, and more preferably 8 [mm] or less. The protruding amount of the convex portion 14 from the upper surface of the base body 12 is designed to be included in the range of, for example, 5 to 500 [μm].
凸部14は円柱状、角柱状等の柱状のほか、円錐台状、角錐台状等の錘台状、下部よりも上部の断面積が小さくなるような段差付きの柱状または錘台状などの形状に形成される。凸部14の上端部(ウエハWとの当接部分)の径は3.0[mm]以下となるように設計される。凸部14の上端部(ウエハWとの当接部分)の表面粗さRaは0.01〜2.0[μm]の範囲に含まれるように設計されている。 The convex portion 14 has a columnar shape such as a columnar shape or a prismatic shape, a frustum shape such as a truncated cone shape or a truncated pyramid shape, a columnar shape with a step such that the upper cross-sectional area is smaller than the lower portion, or a frustum shape. It is formed into a shape. The diameter of the upper end portion (contact portion with the wafer W) of the convex portion 14 is designed to be 3.0 [mm] or less. The surface roughness Ra of the upper end portion (contact portion with the wafer W) of the convex portion 14 is designed to be included in the range of 0.01 to 2.0 [μm].
環状凸部16は、その上端が凸部14の上端と同じ高さ位置になるように形成されるほか、凸部14の上端よりも低い位置になるように形成されてもよい。基体12の径方向に沿った環状凸部16の断面形状は、矩形状、台形状、半円形状または半楕円形状などのさまざまな形状であってもよい。 The annular convex portion 16 may be formed so that the upper end thereof is at the same height as the upper end of the convex portion 14 or may be formed at a position lower than the upper end of the convex portion 14. The cross-sectional shape of the annular convex portion 16 along the radial direction of the base 12 may be various shapes such as a rectangular shape, a trapezoidal shape, a semicircular shape, or a semielliptical shape.
基体12には、6つの貫通孔18が形成されおり、この貫通孔18には基板12の載置面に吸着されたウエハWを載置面から分離するため、分離時に載置面の垂直方向上方に突出し得るリフトピン(不図示)が挿通される。6つの貫通孔18は、基体12の中心を基準とする6回回転対称性を有するように配置されている。 Six through holes 18 are formed in the base 12, and the wafer W adsorbed on the mounting surface of the substrate 12 is separated from the mounting surface in the through holes 18. A lift pin (not shown) that can protrude upward is inserted. The six through holes 18 are arranged so as to have six-fold rotational symmetry with respect to the center of the base 12.
基体12の内部にはヒータとして発熱抵抗体13が設けられており、このヒータによりウエハWが加熱される。ヒータとしては、基体の裏面の下方に設けられ、基体の裏面から離れた位置に加熱手段(例えばランプ等)を配置する形態であってもよい。 A heating resistor 13 is provided as a heater inside the substrate 12, and the wafer W is heated by this heater. As a heater, the form which is provided under the back surface of a base | substrate and arrange | positions a heating means (for example, lamp | ramp etc.) in the position away from the back surface of the base | substrate may be sufficient.
さらに、基体12には、6つの開口20が形成されており、それぞれの開口20は、基体12内に形成された通気経路22に連通している。換言すると、通気経路22は、開口20を通じて外部に連通している。6つの開口20は、基体12の中心を基準とする6回回転対称性を有するように配置されている。また、通気経路22の開口20の反対側の端部は、真空吸引装置(不図示)に接続されており、この真空吸引装置を稼働させることで、載置面とウエハWとの間に負圧が生じ、大気圧との差圧によりウエハWが吸着され保持される。また、真空吸引装置に代えてガス供給装置に接続されてもよく、ガス供給装置を稼働させることで、載置面とウエハWとの間に供給されるガスを介した伝熱によりウエハWが加熱される。 Furthermore, six openings 20 are formed in the base 12, and each opening 20 communicates with a ventilation path 22 formed in the base 12. In other words, the ventilation path 22 communicates with the outside through the opening 20. The six openings 20 are arranged so as to have six-fold rotational symmetry with respect to the center of the base 12. The end of the ventilation path 22 on the opposite side of the opening 20 is connected to a vacuum suction device (not shown). By operating this vacuum suction device, a negative gap is placed between the mounting surface and the wafer W. A pressure is generated, and the wafer W is attracted and held by the differential pressure from the atmospheric pressure. Further, instead of the vacuum suction device, it may be connected to a gas supply device. By operating the gas supply device, the wafer W is transferred by heat transfer via the gas supplied between the mounting surface and the wafer W. Heated.
ヒータ13より載置面側の通気経路22の開口20の近傍には、通気性を有する通気性部材24が配置されている。既述の通り、通気経路22に通気性部材24が配置されることで、通気性部材24がないときと比較して、開口20の直上のウエハWの温度の局所的な低下が抑制される。また、通気性部材24は通気性を有することから、通気経路22に配置されていてもウエハWの真空吸着に影響しない。 An air permeable member 24 having air permeability is disposed in the vicinity of the opening 20 of the air passage 22 on the mounting surface side from the heater 13. As described above, by arranging the air permeable member 24 in the air passage 22, a local decrease in the temperature of the wafer W immediately above the opening 20 is suppressed as compared with the case where there is no air permeable member 24. . Further, since the air permeable member 24 has air permeability, even if it is disposed in the air passage 22, it does not affect the vacuum suction of the wafer W.
通気性部材24の上側周縁位置は、基体12の載置面において開口20の周縁部分と同じ高さ位置に配置されていることが好ましい。載置面において開口の周縁部分と通気性部材とが同じ高さ位置、つまり面一であると、パーティクル溜まりが生じることがないため、パーティクルによる対象物への悪影響を防止することができる。 The upper peripheral position of the air-permeable member 24 is preferably disposed at the same height position as the peripheral part of the opening 20 on the mounting surface of the base 12. When the peripheral portion of the opening and the air permeable member are at the same height position on the mounting surface, that is, flush with each other, particle accumulation does not occur, so that it is possible to prevent adverse effects of the particles on the target object.
また、通気性部材24の周辺に存在する基体12を介して通気性部材24が間接的に加熱され、その加熱された通気性部材24の端部より赤外線が放射されることにより通気性部材24の直上に載置されるウエハWが加熱される結果、ウエハWの局所的な温度低下を抑制することができる。 In addition, the breathable member 24 is indirectly heated through the base 12 existing around the breathable member 24, and infrared rays are emitted from the end of the heated breathable member 24, whereby the breathable member 24. As a result of heating the wafer W placed immediately above the substrate, a local temperature drop of the wafer W can be suppressed.
真空吸引により通気性部材24が移動しないように、通気経路22の内壁に突起などを形成して通気性部材24を係止することが好ましい。このほか、通気性部材24を通気経路22に固定する方法として、通気性部材24を圧入する方法や、耐熱性を有する接着剤を用いて通気性部材24を通気経路22に接着する方法も採用することができる。 In order to prevent the breathable member 24 from moving due to vacuum suction, it is preferable to form a protrusion or the like on the inner wall of the vent path 22 to lock the breathable member 24. In addition, as a method for fixing the air permeable member 24 to the air passage 22, a method for press-fitting the air permeable member 24 or a method for bonding the air permeable member 24 to the air passage 22 using a heat-resistant adhesive is also employed. can do.
通気性部材24は通気性を有するものであれば特に制限はないが、例えば、多孔質体からなる部材、通気経路22と外部とを連通させる1又は複数の貫通孔が設けられている部材、粒状物の集合体などが挙げられる。 The air-permeable member 24 is not particularly limited as long as it has air-permeability, for example, a member made of a porous body, a member provided with one or a plurality of through-holes for communicating the air passage 22 and the outside, Examples include aggregates of granular materials.
通気経路22と外部とを連通させる1又は複数の貫通孔が設けられている部材の一例として、4つの貫通孔が設けられた形態を図3に示す。図3に示す通気性部材24は円柱形状をなし、その長手方向を貫通する貫通孔25が4つ形成されている。この通気性部材24を通気経路22の開口近傍に挿入したとき、4つの貫通孔25により通気経路22と外部とが連通し、通気性を確保することができる。 As an example of a member provided with one or a plurality of through holes that allow the ventilation path 22 to communicate with the outside, a form in which four through holes are provided is shown in FIG. The air-permeable member 24 shown in FIG. 3 has a cylindrical shape, and four through holes 25 penetrating in the longitudinal direction are formed. When the air-permeable member 24 is inserted in the vicinity of the opening of the air passage 22, the air passage 22 and the outside communicate with each other through the four through holes 25, and air permeability can be ensured.
粒状物の集合体としては、例えばセミラックスビーズの集合体などが挙げられ、その一例を図4に示す。図4に示す例では、開口20近傍の通気経路22内に複数のセラミックスビーズ26を充填している。また、真空吸引時にセラミックスビーズ26が吸引されないように、通気経路22内にはセラミックスビーズ26の径よりも小さい貫通孔を有する隔壁28を形成している。このように、複数のセラミックスビーズ26が充填された場合であっても、隣接するセラミックスビーズ26同士の間には空隙が存在するため、通気経路22の通気性を確保することができる。 Examples of aggregates of granular materials include, for example, aggregates of semi-lux beads, and an example is shown in FIG. In the example shown in FIG. 4, a plurality of ceramic beads 26 are filled in the ventilation path 22 near the opening 20. Further, a partition wall 28 having a through hole smaller than the diameter of the ceramic bead 26 is formed in the ventilation path 22 so that the ceramic bead 26 is not sucked during vacuum suction. Thus, even when a plurality of ceramic beads 26 are filled, there is a gap between adjacent ceramic beads 26, so that the air permeability of the ventilation path 22 can be ensured.
通気性部材24の材料としては、使用される温度域において変形せずに輻射率が大きい材料とすることが好ましい。通気性部材24をそのような材料とすることにより、輻射伝熱によりウエハWの温度の局所的な低下がさらに抑制されるからである。輻射率が大きい材料としては、セラミックス、グラファイトなどが挙げられ、中でも、アルミナ、シリカ、及びこれらを含む酸化物、マシナブルセラミックス、炭化珪素を用いることが好ましい。 The material of the air permeable member 24 is preferably a material having a high emissivity without being deformed in the temperature range to be used. This is because by using the breathable member 24 as such a material, a local decrease in the temperature of the wafer W is further suppressed by radiant heat transfer. Examples of the material having a high emissivity include ceramics and graphite. Among these, alumina, silica, oxides containing these, machinable ceramics, and silicon carbide are preferably used.
特に、前述の酸化物や炭化珪素を通気性部材24に用いる場合は、通気性部材24が多孔質体であることがより好ましく、多孔質体の気孔率は20%以上60%以下であることが好ましい。酸化物の多孔質体には、市販されているアルミナ質多孔質体や粒子径が大きいアルミナのみからなる多孔質体を好適に用いることができる。また、マシナブルセラミックスには、市販のマコール(石原ケミカル(株)製)やホトベール((株)フェローテックセラミックス製)を好適に用いることができる。そのほか、通気性部材24には、直径が500μm以上のアルミナ質のガラスビーズやセラミックスビーズも好適に用いることができる。 In particular, when the above-described oxide or silicon carbide is used for the breathable member 24, the breathable member 24 is more preferably a porous body, and the porosity of the porous body is 20% or more and 60% or less. Is preferred. As the porous oxide body, a commercially available alumina porous body or a porous body made only of alumina having a large particle diameter can be suitably used. For machinable ceramics, commercially available macor (Ishihara Chemical Co., Ltd.) and Photovale (Ferrotec Ceramics Co., Ltd.) can be suitably used. In addition, for the air-permeable member 24, alumina glass beads or ceramic beads having a diameter of 500 μm or more can be suitably used.
なお、通気性部材24の輻射率は使用する温度域で0.4以上であることが好ましく、0.7以上であることがより好ましい。通気性部材24の輻射率が大きいほど通気性部材24からの輻射熱量が増加し、開口20の上方に載置されたウエハWの局所的な温度低下を抑制することができる。 In addition, it is preferable that the radiation rate of the air permeable member 24 is 0.4 or more in the temperature range to be used, and it is more preferable that it is 0.7 or more. As the emissivity of the air permeable member 24 increases, the amount of radiant heat from the air permeable member 24 increases, and the local temperature drop of the wafer W placed above the opening 20 can be suppressed.
通気性部材の直径(D)に対する通気性部材の高さ(L)の比(L/D)は、ガスの透過性及び通気性部材の配置の容易性の観点から0.1〜10とすることが好ましい。L/Dが0.1よりも小さいと通気性部材が過度に薄くなり、通気経路に安定して配置することが困難になる。また、L/Dが10より大きいと通気性部材のガスの透過性が過度に小さくなり、真空排気やガス供給に支障が生じる。 The ratio (L / D) of the height (L) of the breathable member to the diameter (D) of the breathable member is 0.1 to 10 from the viewpoint of gas permeability and ease of arrangement of the breathable member. It is preferable. If L / D is smaller than 0.1, the air-permeable member becomes excessively thin, and it is difficult to stably arrange the air-permeable path. On the other hand, if L / D is greater than 10, the gas permeability of the air-permeable member becomes excessively small, which hinders evacuation and gas supply.
基体には通気経路が複数設けられている場合、通気性部材は当該複数の通気経路の少なくとも一部に配置されていることが好ましく、十分な均熱化を図るには複数の通気経路のすべてに通気性部材を配置することが好ましい。 In the case where a plurality of ventilation paths are provided in the base, it is preferable that the breathable member is disposed in at least a part of the plurality of ventilation paths. It is preferable to dispose a gas permeable member.
以上の図1、2に示す実施形態では、通気経路が真空吸引装置に接続され、通気経路は真空引きされる形態であるが、本発明はどの実施形態に限定されることはなく、通気経路をウエハの裏面にガスを供給するガス供給路とする形態としてもよい。その形態の場合、通気性部材におけるガスの通過方向は図1、2に示す形態とは反対であるが、通気性部材により局所的な温度低下が抑制され、ウエハの均熱化を図ることができる。 In the embodiment shown in FIGS. 1 and 2 above, the ventilation path is connected to the vacuum suction device and the ventilation path is evacuated, but the present invention is not limited to any embodiment, and the ventilation path It is good also as a form which makes it a gas supply path which supplies gas to the back surface of a wafer. In the case of this form, the gas passage direction in the air permeable member is opposite to that shown in FIGS. 1 and 2, but the air permeable member suppresses a local temperature decrease and can achieve uniform heating of the wafer. it can.
本実施形態のセラミックヒータは、例えば、以下のようにして作製することができる。定法に従い真空吸引機構又はガス供給路を有するセラミックヒータを作製する。そのようなセラミックヒータの作製方法は特に限定はない。併せて、当該セラミックヒータの通気経路(真空吸引経路又はガス供給路)の開口近傍に配置する通気性部材を作製する。そして、セラミックヒータの載置面の通気経路の開口から通気性部材を挿入することにより作製することができる。 The ceramic heater of this embodiment can be manufactured as follows, for example. A ceramic heater having a vacuum suction mechanism or a gas supply path is produced according to a conventional method. There is no particular limitation on the method for producing such a ceramic heater. In addition, a breathable member is prepared that is disposed in the vicinity of the opening of the ventilation path (vacuum suction path or gas supply path) of the ceramic heater. And it can produce by inserting a ventilation member from opening of the ventilation path | route of the mounting surface of a ceramic heater.
以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[実施例1]
窒化アルミニウム粉末97質量%、酸化イットリウム粉末3質量%からなる粉末混合物を得て、これを型に充填して一軸加圧処理を施した。これによって、直径350mm、厚さ12mmの第一層を形成した。
[Example 1]
A powder mixture composed of 97% by mass of aluminum nitride powder and 3% by mass of yttrium oxide powder was obtained, filled in a mold, and subjected to uniaxial pressure treatment. As a result, a first layer having a diameter of 350 mm and a thickness of 12 mm was formed.
次に、この第一層の上に、発熱抵抗体(ヒータ)として、平面形状が回転対称形状であり最外周の直径300mmのモリブデン製のメッシュ(線径0.1mm、目開き50メッシュ)を載置した。続いて、先に形成した粉末混合物を発熱抵抗体の上に所定の厚さに充填し、第二層を形成した。そして、10MPaの圧力で、焼成温度1800℃、焼成時間2時間でホットプレス焼成を行い、直径350mm、厚さ25mmのセラミックス焼結体(基体)を得た。その後、セラミックス焼結体の上面から下面に向けて、直径3mmの貫通孔を、中心を基準とする6回回転対称性を有するように形成し、真空吸引のための通気経路とした。さらに、サンドブラスト加工により、散点状に配置された多数の凸部(高さ:0.1mm、直径:1.0mm)、環状凸部(直径:298mm:高さ:0.1mm、幅:1.5mm)を形成した。 Next, as a heating resistor (heater), a molybdenum mesh (wire diameter: 0.1 mm, mesh size: 50 mesh) having a rotationally symmetrical shape and a diameter of 300 mm on the outermost periphery is formed on the first layer. Placed. Subsequently, the previously formed powder mixture was filled on the heating resistor to a predetermined thickness to form a second layer. Then, hot press firing was performed at a pressure of 10 MPa at a firing temperature of 1800 ° C. and a firing time of 2 hours to obtain a ceramic sintered body (substrate) having a diameter of 350 mm and a thickness of 25 mm. Thereafter, a through-hole having a diameter of 3 mm was formed from the upper surface to the lower surface of the ceramic sintered body so as to have 6-fold rotational symmetry with respect to the center as a ventilation path for vacuum suction. Furthermore, a large number of convex portions (height: 0.1 mm, diameter: 1.0 mm) and annular convex portions (diameter: 298 mm: height: 0.1 mm, width: 1) arranged in the form of dots by sandblasting 0.5 mm).
次に、セラミック多孔質体(気孔率60%)からなる通気性部材(直径:3mm、高さ:5mmの円柱形状)を、上記のように形成した通気経路に埋入した。 Next, a breathable member (a cylindrical shape with a diameter of 3 mm and a height of 5 mm) made of a ceramic porous body (porosity 60%) was embedded in the vent path formed as described above.
基体の裏面から発熱抵抗体まで達するように直径8mmの穴加工を行い、露出した発熱抵抗体に直径8mmの円筒状ニッケル製金属端子を銀ロウ付けして端子を形成した。 A hole having a diameter of 8 mm was formed so as to reach the heating resistor from the back surface of the substrate, and a cylindrical nickel metal terminal having a diameter of 8 mm was silver brazed to the exposed heating resistor to form a terminal.
(評価結果)
作製したセラミックヒータの載置面に黒色化したダミーウエハを載せ、端子に電力を供給してセラミックヒータを昇温し、ダミーウエハ表面の温度をIRカメラで測定した。ダミーウエハの表面温度が500℃に到達した時点から15分間、端子に供給する電力を同じにした。その後のダミーウエハの温度分布を測定した。
(Evaluation results)
A blackened dummy wafer was placed on the mounting surface of the produced ceramic heater, electric power was supplied to the terminals to raise the temperature of the ceramic heater, and the temperature of the dummy wafer surface was measured with an IR camera. The power supplied to the terminals was the same for 15 minutes from the time when the surface temperature of the dummy wafer reached 500 ° C. Thereafter, the temperature distribution of the dummy wafer was measured.
通気経路の開口近傍の領域における最大温度と最少温度との温度差は0.2℃と小さく、セラミックヒータの均熱性は良好であることが分った。 It was found that the temperature difference between the maximum temperature and the minimum temperature in the region near the opening of the ventilation path was as small as 0.2 ° C., and the thermal uniformity of the ceramic heater was good.
[実施例2]
通気性部材を、直径0.13mmの細孔貫通孔を4カ所設けたアルミナの保護管(直径:3mm、高さ:5mm)を用いたこと以外は、実施例1と同様にしてセラミックヒータを作製し、実施例1と同様に評価した。
[Example 2]
A ceramic heater was used in the same manner as in Example 1 except that an alumina protective tube (diameter: 3 mm, height: 5 mm) provided with four through-holes having a diameter of 0.13 mm was used as the breathable member. It produced and evaluated similarly to Example 1.
(評価結果)
通気経路の開口近傍の領域における最大温度と最少温度との温度差は0.4℃と小さく、セラミックヒータの均熱性は良好であることが分った。
(Evaluation results)
It was found that the temperature difference between the maximum temperature and the minimum temperature in the region near the opening of the ventilation path was as small as 0.4 ° C., and the thermal uniformity of the ceramic heater was good.
[比較例1]
通気性部材を用いなかったこと以外は、実施例1と同様にしてセラミックヒータを作製し、実施例1と同様に評価した。
[Comparative Example 1]
A ceramic heater was produced in the same manner as in Example 1 except that no breathable member was used, and evaluated in the same manner as in Example 1.
(評価結果)
通気経路の開口近傍の領域における最大温度と最少温度との温度差は1.4℃と大きく、セラミックヒータの均熱性は不十分であった。
(Evaluation results)
The temperature difference between the maximum temperature and the minimum temperature in the region near the opening of the ventilation path was as large as 1.4 ° C., and the thermal uniformity of the ceramic heater was insufficient.
10 セラミックヒータ
12 基体
13 発熱抵抗体(ヒータ)
14 凸部
16 環状凸部
18 貫通孔
20 開口
22 通気経路
24 通気性部材
10 Ceramic heater 12 Base 13 Heating resistor (heater)
14 convex portion 16 annular convex portion 18 through hole 20 opening 22 vent path 24 breathable member
Claims (4)
前記基体の内部に設けられ、前記載置面に形成された開口を通じて外部に連通する通気経路と、
前記基体の内部または前記載置面と反対側の前記基体の裏面の下方に設けられたヒータと、を有する対象物載置用部材であって、
前記通気経路には、前記載置面に対象物が載置されたときの対象物と対向する位置であって、前記ヒータよりも前記載置面側の位置に、通気性を有する通気性部材の少なくとも一部が配置されていることを特徴とする対象物載置用部材。 A substrate having a mounting surface on which an object is mounted;
A ventilation path that is provided inside the base body and communicates with the outside through an opening formed in the mounting surface;
An object mounting member having a heater provided inside the base or below the back surface of the base opposite to the mounting surface,
In the ventilation path, a breathable member having air permeability at a position opposite to the object when the object is placed on the placement surface, and at a position closer to the placement surface than the heater. At least a part of the object placement member is arranged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016188384A JP6767829B2 (en) | 2016-09-27 | 2016-09-27 | Object mounting member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016188384A JP6767829B2 (en) | 2016-09-27 | 2016-09-27 | Object mounting member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018056237A true JP2018056237A (en) | 2018-04-05 |
JP6767829B2 JP6767829B2 (en) | 2020-10-14 |
Family
ID=61837078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016188384A Active JP6767829B2 (en) | 2016-09-27 | 2016-09-27 | Object mounting member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6767829B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020072262A (en) * | 2018-10-30 | 2020-05-07 | Toto株式会社 | Electrostatic chuck |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH065652A (en) * | 1992-06-18 | 1994-01-14 | Nec Corp | Wire bonding device |
JPH1197161A (en) * | 1997-09-16 | 1999-04-09 | Ricoh Co Ltd | Hot plate |
JP2005086126A (en) * | 2003-09-11 | 2005-03-31 | Advanced Display Inc | Method for manufacturing stage, hot plate, processing machine, and electronic device |
JP2013214676A (en) * | 2012-04-04 | 2013-10-17 | Tokyo Electron Ltd | Peeling system, peeling method, program, and computer storage medium |
JP2013232640A (en) * | 2012-04-27 | 2013-11-14 | Ngk Insulators Ltd | Member for semiconductor manufacturing device |
-
2016
- 2016-09-27 JP JP2016188384A patent/JP6767829B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH065652A (en) * | 1992-06-18 | 1994-01-14 | Nec Corp | Wire bonding device |
JPH1197161A (en) * | 1997-09-16 | 1999-04-09 | Ricoh Co Ltd | Hot plate |
JP2005086126A (en) * | 2003-09-11 | 2005-03-31 | Advanced Display Inc | Method for manufacturing stage, hot plate, processing machine, and electronic device |
JP2013214676A (en) * | 2012-04-04 | 2013-10-17 | Tokyo Electron Ltd | Peeling system, peeling method, program, and computer storage medium |
JP2013232640A (en) * | 2012-04-27 | 2013-11-14 | Ngk Insulators Ltd | Member for semiconductor manufacturing device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020072262A (en) * | 2018-10-30 | 2020-05-07 | Toto株式会社 | Electrostatic chuck |
JP7402411B2 (en) | 2018-10-30 | 2023-12-21 | Toto株式会社 | electrostatic chuck |
Also Published As
Publication number | Publication date |
---|---|
JP6767829B2 (en) | 2020-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4453984B2 (en) | Substrate support / transport tray | |
US6606234B1 (en) | Electrostatic chuck and method for forming an electrostatic chuck having porous regions for fluid flow | |
JP5807032B2 (en) | Heating apparatus and semiconductor manufacturing apparatus | |
TWI706491B (en) | Edge ring for a substrate processing chamber | |
JP2006005095A (en) | Substrate heater and its manufacturing process | |
TW202113979A (en) | Edge ring and heat treatment apparatus having the same | |
TW201303055A (en) | Crucible, vacuum evaporation system and method using the same | |
JP6602145B2 (en) | Substrate mounting table and vapor phase growth apparatus | |
JP2018056237A (en) | Object mounting member | |
JP2020506290A (en) | Transfer ring | |
TWI770737B (en) | Ceramic heater | |
TWI656592B (en) | Masking device for semiconductor processing chamber and method of use thereof | |
TW201727384A (en) | Substrate holding device, substrate holding member, and substrate holding method | |
JP6588367B2 (en) | Substrate support member | |
JP2006128205A (en) | Wafer supporting member | |
KR102581101B1 (en) | Ceramic heater and its manufacturing method | |
US11004704B2 (en) | Finned rotor cover | |
JP2005243243A (en) | Heating method | |
KR102713025B1 (en) | Wafer loading platform | |
US20230115033A1 (en) | Member for semiconductor manufacturing apparatus | |
JP7573117B1 (en) | Wafer placement table | |
JP7109273B2 (en) | Substrate mounting member | |
WO2024166292A1 (en) | Wafer mounting table | |
JP2023040597A (en) | ceramic heater | |
JP6829091B2 (en) | Ceramic heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190408 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200918 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6767829 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |