JP2018054522A - Evaluation method of metallic design - Google Patents

Evaluation method of metallic design Download PDF

Info

Publication number
JP2018054522A
JP2018054522A JP2016192555A JP2016192555A JP2018054522A JP 2018054522 A JP2018054522 A JP 2018054522A JP 2016192555 A JP2016192555 A JP 2016192555A JP 2016192555 A JP2016192555 A JP 2016192555A JP 2018054522 A JP2018054522 A JP 2018054522A
Authority
JP
Japan
Prior art keywords
metallic
angle
design
brightness
pigments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016192555A
Other languages
Japanese (ja)
Other versions
JP6796982B2 (en
Inventor
政之 伊藤
Masayuki Ito
政之 伊藤
成田 信彦
Nobuhiko Narita
信彦 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2016192555A priority Critical patent/JP6796982B2/en
Publication of JP2018054522A publication Critical patent/JP2018054522A/en
Application granted granted Critical
Publication of JP6796982B2 publication Critical patent/JP6796982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method of metallic design capable of quantifying a metallic touch using a simple parameter.SOLUTION: The evaluation method of metallic design evaluates a metallic design by calculating the ratio between specular glossiness on a design surface 10 which has a metallic design and the brightness at an angle separated away from a regular reflection direction 12 of the design surface 10 and using the ratio.EFFECT: A scale close to an evaluation result of visual observation is obtained by quantifying a metallic touch with a simple parameter by means of combination of a specular glossiness as a colorimetric parameter adjacent to a regular reflection and the brightness at the angle separated away from the regular reflection.SELECTED DRAWING: Figure 1

Description

本発明は、メタリック意匠の評価方法に関する。   The present invention relates to a method for evaluating a metallic design.

様々な光輝性顔料(アルミフレーク、マイカフレーク、グラファイト等)を含むメタリック塗料が広く用いられている。メタリック塗料を塗装して得られた塗膜の色(以下「メタリック色」という)は、観察角度により色の見え方が変化する。これに対して、観察角度により色の見え方が変化しない塗色は「ソリッド色」と呼ばれている。   Metallic paints containing various glitter pigments (aluminum flakes, mica flakes, graphite, etc.) are widely used. The color of a coating film obtained by applying a metallic paint (hereinafter referred to as “metallic color”) changes in appearance depending on the observation angle. On the other hand, a paint color whose color appearance does not change depending on the observation angle is called a “solid color”.

特許文献1には、メタリック塗膜の有するメタリック感の測定方法として、複数のメタリック塗膜において、複数の受光角で反射光の測色を行い、得られたL明度の組を変数とみなして主成分分析を行い、輝度感のパラメータと白味感のパラメータをL明度の線形結合式によって表現する方法が記載されている。 In Patent Document 1, as a method for measuring the metallic feeling of a metallic coating film, the reflected light is colorimetrically measured at a plurality of light receiving angles in a plurality of metallic coating films, and the obtained L * brightness set is regarded as a variable. In this method, a principal component analysis is performed, and a luminance parameter and a whiteness parameter are expressed by a linear combination formula of L * brightness.

特開2004−286672号公報JP 2004-286672 A

シルバーメタリック、スーパーメタリック等のメタリック塗膜においては、ハイライト(正反射光からの角度が小さい観察角度、例えば15°の受光角)で高明度、シェード(正反射光からの角度が大きい観察角度、例えば75°の受光角)で低明度となるように、変色性(フリップフロップ)が大きいことから、目視の評価と整合するようなパラメータを得ることが困難であった。   In metallic coatings such as silver metallic and super metallic, highlights (observation angle with a small angle from specular reflection light, for example, a light receiving angle of 15 °), high brightness, shade (observation angle with a large angle from specular reflection light, For example, since the discoloration (flip-flop) is large so that the lightness is low at a light receiving angle of 75 °, it is difficult to obtain parameters that are consistent with visual evaluation.

特許文献1に記載の方法では、目視の評価結果と受光角の異なるL明度とを対応付けて分析することにより、線形結合式の各係数が導出されている。特許文献1によって得られる主成分パラメータは、目視の評価結果に依存して求まることから、目視の評価結果から独立した、簡潔なパラメータによりメタリック感を表現することはできていない。
また、本発明者らの検討によれば、ハイライトの明度が高く、観察角度が少し変わるだけで明度が大きく下がる超金属調塗色を評価するには、従来のパラメータでは的確な評価が困難であることが分かった。
In the method described in Patent Document 1, each coefficient of the linear combination formula is derived by analyzing the visual evaluation result and L * brightness with different light receiving angles in association with each other. Since the principal component parameters obtained by Patent Document 1 are determined depending on the visual evaluation results, the metallic feeling cannot be expressed by simple parameters independent of the visual evaluation results.
In addition, according to the study by the present inventors, it is difficult to accurately evaluate the super-metallic coating color in which the brightness of the highlight is high and the brightness is greatly lowered by changing the observation angle slightly with the conventional parameters. It turns out that.

本発明は、上記事情に鑑みてなされたものであり、メタリック感を簡潔なパラメータにより定量化することが可能なメタリック意匠の評価方法を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the evaluation method of the metallic design which can quantify a metallic feeling with a simple parameter.

前記課題を解決するため、本発明は、メタリック意匠を有する意匠面の鏡面光沢度と、前記意匠面の正反射方向から離れた角度における明度との比を計算して、前記比によりメタリック意匠を評価することを特徴とするメタリック意匠の評価方法を提供する。   In order to solve the above problems, the present invention calculates a ratio between the specular gloss of a design surface having a metallic design and the brightness at an angle away from the specular reflection direction of the design surface, and the metallic design is calculated based on the ratio. Provided is a method for evaluating a metallic design characterized by evaluation.

また、前記鏡面光沢度は、入射角を60°±5°として測定してもよい。
また、前記明度は、入射角を45°±5°とし、正反射方向から入射方向に向かって45°±5°となる角度を受光角として測定してもよい。
The specular gloss may be measured with an incident angle of 60 ° ± 5 °.
Further, the lightness may be measured by setting an incident angle to 45 ° ± 5 ° and an angle of 45 ° ± 5 ° from the regular reflection direction toward the incident direction as a light receiving angle.

また、前記明度は、XYZ表色系における明度Y、X101010表色系における明度Y10、L表色系またはL表色系における明度Lのいずれかであってもよい。
また、前記明度は、XYZ表色系における明度Yであることが好ましい。
また、前記意匠面が、メタリック塗膜又は金属層を有してもよい。
Also, the brightness, the brightness Y in the XYZ color system, X 10 Y 10 Z lightness Y 10 in 10 color system, L * a * b * color system or L * u * v * lightness L in the color system * Either of them may be used.
The lightness is preferably lightness Y in the XYZ color system.
Moreover, the said design surface may have a metallic coating film or a metal layer.

本発明によれば、正反射光近傍の測色パラメータである鏡面光沢度と、正反射光から離れた角度における明度との組み合わせにより、メタリック感を簡潔なパラメータにより定量化して、目視の評価結果に近い序列を得ることができる。   According to the present invention, the combination of the specular gloss near the specular reflection light and the brightness at an angle away from the specular reflection light, the metallic feeling is quantified with simple parameters, and the visual evaluation result An order close to can be obtained.

(a)鏡面光沢度、及び(b)明度の測定角度の説明図である。It is explanatory drawing of the measurement angle of (a) specular glossiness and (b) brightness.

以下、好適な実施形態に基づいて、本発明を説明する。図1(a)に、鏡面光沢度の測定角度の説明図を示し、図1(b)に、明度の測定角度の説明図を示す。   Hereinafter, the present invention will be described based on preferred embodiments. FIG. 1 (a) shows an explanatory diagram of the specular gloss measurement angle, and FIG. 1 (b) shows an explanatory diagram of the brightness measurement angle.

本実施形態のメタリック意匠の評価方法は、メタリック意匠を有する意匠面10の鏡面光沢度を測定する工程と、意匠面10の正反射方向12から離れた角度の受光方向14における明度を測定する工程と、鏡面光沢度:明度の比を計算する工程を有し、この比の値によりメタリック意匠を評価することができる。   The metallic design evaluation method of the present embodiment includes a step of measuring the specular gloss of the design surface 10 having a metallic design, and a step of measuring the lightness in the light receiving direction 14 at an angle away from the regular reflection direction 12 of the design surface 10. And a step of calculating a ratio of specular gloss: brightness, and the metallic design can be evaluated by the value of this ratio.

(鏡面光沢度の測定)
鏡面光沢度の測定方法としては、例えばJIS Z 8741(鏡面光沢度−測定方法)が挙げられる。この方法では、意匠面10を試料面として、意匠面10に対して所定の入射方向11から光を入射し、鏡面反射による正反射方向12の光束が測定される。
入射角θは、入射方向11と法線方向13との成す角度である。正反射方向12と法線方向13との成す角度である正反射角θは、入射角θに等しい。
(Measurement of specular gloss)
Examples of the method for measuring the specular gloss include JIS Z 8741 (specular gloss-measurement method). In this method, the design surface 10 is used as a sample surface, light is incident on the design surface 10 from a predetermined incident direction 11, and the light flux in the regular reflection direction 12 due to specular reflection is measured.
The incident angle θ 1 is an angle formed by the incident direction 11 and the normal direction 13. The regular reflection angle θ 2, which is an angle formed between the regular reflection direction 12 and the normal direction 13, is equal to the incident angle θ 1 .

屈折率が可視波長範囲全域にわたって一定値1.567であるガラス表面を標準面とし、入射角θに対する標準面からの鏡面反射光束をφ0Sとする。入射角θに対する試料面(意匠面)からの鏡面反射光束をφとしたとき、鏡面光沢度G(θ)は、次の式で求められる。 A glass surface having a refractive index of a constant value of 1.567 over the entire visible wavelength range is defined as a standard surface, and a specular reflected light beam from the standard surface with respect to an incident angle θ 1 is defined as φ 0S . When the specular reflection light flux from the sample surface with respect to the incident angle theta 1 (design surface) was phi S, specular gloss G S (theta 1) is obtained by the following expression.

(θ)=(φ/φ0S)×GOS(θG S1 ) = (φ S / φ 0S ) × G OS1 )

ここで、GOS(θ)は、標準面の鏡面光沢度であり、標準面の屈折率が1.567であれば、入射角θによらず、GOS(θ)=100%である。このため、次の式によっても鏡面光沢度G(θ)を求めることができる。なお、鏡面光沢度の単位(%)は省略可能である。 Here, G OS1 ) is the specular gloss of the standard surface. If the refractive index of the standard surface is 1.567, G OS1 ) = 100% regardless of the incident angle θ 1. It is. Therefore, the specular gloss G S1 ) can also be obtained by the following equation. The unit (%) of the specular gloss can be omitted.

(θ)=(φ/φ0S)×100(%) G S1 ) = (φ S / φ 0S ) × 100 (%)

入射角θは、意匠面の反射の程度に応じて、例えば、20°、45°、60°、75°、85°等から選択することが可能である。入射角60°における鏡面光沢度(60度鏡面光沢度)が標準的に使用可能であるが、60°±5°(55〜65°)の範囲内から入射角を定めてもよい。設定された角度の許容誤差としては、例えば0.1°や0.2°が挙げられる。 The incident angle θ 1 can be selected from, for example, 20 °, 45 °, 60 °, 75 °, 85 °, etc., depending on the degree of reflection on the design surface. The specular gloss at an incident angle of 60 ° (60 ° specular gloss) can be used as a standard, but the incident angle may be determined from the range of 60 ° ± 5 ° (55 to 65 °). Examples of the set angle tolerance include 0.1 ° and 0.2 °.

鏡面光沢度の測定装置は、入射方向11に光源(図示せず)を有し、正反射方向12に受光器(図示せず)を有する。光源から意匠面に平行光束を入射することにより、意匠面から反射した平行光束を受光器で測定することができる。光源及び受光器と意匠面との間には、レンズ、開口等を含む光学系を設けてもよい。開口の寸法により、光束の開き角を規制することができる。   The specular gloss measurement device has a light source (not shown) in the incident direction 11 and a light receiver (not shown) in the regular reflection direction 12. The parallel light beam reflected from the design surface can be measured by the light receiver by entering the parallel light beam from the light source to the design surface. An optical system including a lens, an aperture, and the like may be provided between the light source and light receiver and the design surface. The opening angle of the light beam can be regulated by the size of the opening.

(明度の測定)
明度としては、シルバー系の色に対して反射量(明るさ)を定量できるパラメータであればよく、例えば、XYZ表色系における明度Y、X101010表色系における明度Y10、L表色系またはL表色系における明度L等が挙げられる(例えば旧JIS Z 8701、旧JIS Z 8729、JIS Z 8781等を参照)。
明度Yと明度Lとの間には、一般にL=116(Y/100)1/3−16の関係があるが、L表色系またはL表色系は均等色空間を意図して定められた表色系であり、心理量の影響が大きいため、明度Lよりも明度Yを採用することが好ましい。
(Measurement of brightness)
As the brightness, it may be a parameter that can quantify the amount of reflection (brightness) relative to the color of the silver-based, for example, brightness Y, X 10 Y 10 Z 10 Table brightness Y 10 in the color system in the XYZ color system, The brightness L * in the L * a * b * color system or the L * u * v * color system can be mentioned (for example, refer to old JIS Z 8701, old JIS Z 8729, JIS Z 8781, etc.).
There is generally a relationship of L * = 116 (Y / 100) 1 / 3-16 between the lightness Y and the lightness L * , but the L * a * b * color system or the L * u * v * table Since the color system is a color system defined with the intention of a uniform color space and is greatly affected by the psychological quantity, it is preferable to employ the lightness Y rather than the lightness L * .

光源としては、法線方向13に対して同一の入射角θを与える円周状に光源を設ける円環照明でもよく、入射角θの円周上の一点のみに光源を設ける一方向照明でもよく、入射角θの円周上の多数の点に光源を設ける環状照明でもよい。
一方向照明の場合、正反射方向12と受光方向14が、入射方向11と法線方向13を含む面(入射面)内にあり、受光角θは、正反射方向12と受光方向14との成す角度として求められる。このとき、正反射方向12から入射方向11に向かう方向(図1(a)の時計回り)の回転角において受光角θの符号を正とし、入射方向11から遠ざかる方向(図1(a)の反時計回り)の回転角において受光角θの符号を負とする。受光角θが正の値である場合は、正の符号(+)を省略してもよい。受光方向14が法線方向13に一致する(受光角θが正反射角θに等しい)場合、入射方向11が法線方向13の周りでずれても受光方向14のずれを抑制できるので好ましい。
The light source may be annular illumination in which light sources are provided in a circular shape that gives the same incident angle θ 1 with respect to the normal direction 13, or one-way illumination in which light sources are provided only at one point on the circumference of the incident angle θ 1. Alternatively, annular illumination in which light sources are provided at a number of points on the circumference of the incident angle θ 1 may be used.
In the case of unidirectional illumination, the regular reflection direction 12 and the light receiving direction 14 are in a plane (incident surface) including the incident direction 11 and the normal direction 13, and the light reception angle θ 3 is the regular reflection direction 12 and the light receiving direction 14. It is calculated as the angle formed by At this time, positive in the sign of the acceptance angle theta 3 in the rotation angle of the direction from the specular reflection direction 12 in the incident direction 11 (clockwise in FIG. 1 (a)), a direction away from the incident direction 11 (FIGS. 1 (a) The sign of the light receiving angle θ 3 is negative at a rotation angle of (counterclockwise). If the acceptance angle theta 3 is a positive value, it may be omitted positive sign (+). When the light receiving direction 14 coincides with the normal direction 13 (the light receiving angle θ 3 is equal to the regular reflection angle θ 2 ), even if the incident direction 11 is shifted around the normal direction 13, the shift in the light receiving direction 14 can be suppressed. preferable.

受光方向14は、正反射方向12に対する角度を受光角θとして、例えば15°、25°、45°、60°、75°、110°等から選択することが可能である。10°、15°、25°等の小さい受光角θはハイライト、75°、110°等の大きい受光角θはシェード、45°等の受光方向14が法線方向13に近くなる受光角θはフェースと称される。例えば、入射角θを45°±5°(40〜50°)の範囲内とし、受光角θを45°±5°(40〜50°)の範囲内としてもよい。設定された角度の許容誤差としては、例えば0.1°や0.2°が挙げられる。
明度は、多角度分光光度計等の色彩計を用いて測定が可能である。
The light receiving direction 14 can be selected from, for example, 15 °, 25 °, 45 °, 60 °, 75 °, 110 °, etc., with the angle with respect to the regular reflection direction 12 as the light receiving angle θ 3 . Small light reception angles θ 3 such as 10 °, 15 °, and 25 ° are highlights, and large light reception angles θ 3 such as 75 ° and 110 ° are shades, and light reception directions 14 such as 45 ° are such that the light reception direction 14 is close to the normal direction 13. Angle θ 3 is referred to as the face. For example, the incident angle θ 1 may be within a range of 45 ° ± 5 ° (40 to 50 °), and the light receiving angle θ 3 may be within a range of 45 ° ± 5 ° (40 to 50 °). Examples of the set angle tolerance include 0.1 ° and 0.2 °.
The brightness can be measured using a color meter such as a multi-angle spectrophotometer.

(メタリック感の評価)
鏡面光沢度と、明度との比を計算する場合、さらに比の値に対して、定数の加算、減算、乗算、べき乗等、一定の演算を施した結果を評価に用いてもよい。鏡面光沢度は、正反射方向の測光により求まることから、正反射の寄与が大きいほど、大きな値となる。また、正反射方向から離れた角度における明度は、拡散反射の寄与が大きいほど、大きな値となる。平坦な鏡面状の金属素材であれば、正反射が強く、拡散反射が弱くなることから、(鏡面光沢度/明度)の比をとる場合には、値が大きいほど、目視でのメタリック感が高いと直感的に評価しやすいので、好ましい。
(Evaluation of metallic feeling)
When calculating the ratio between the specular gloss and the lightness, a result obtained by performing a certain operation such as addition, subtraction, multiplication, and exponentiation of a constant on the value of the ratio may be used for evaluation. Since the specular gloss is obtained by photometry in the regular reflection direction, the greater the contribution of regular reflection, the greater the value. Further, the brightness at an angle away from the regular reflection direction has a larger value as the contribution of diffuse reflection increases. A flat specular metallic material has strong specular reflection and weak diffuse reflection. Therefore, when the ratio of (specular gloss / brightness) is taken, the larger the value, the more visually a metallic feeling is felt. Since it is easy to evaluate intuitively if it is high, it is preferable.

意匠面10は、メタリック塗膜を有してもよく、金属箔などの金属層を有してもよい。メタリック塗膜としては、アルミニウム、銅、ニッケル合金、ステンレス等の鱗片状金属顔料、表面を金属酸化物で被覆した鱗片状金属顔料、表面に着色顔料を化学吸着させた鱗片状金属顔料、表面に酸化還元反応を起こさせることにより酸化アルミニウム層を形成した鱗片状アルミニウム顔料等の金属粒子顔料を含む塗膜が挙げられる。金属層としては、金属箔、金属蒸着層、金属めっき層などが挙げられる。   The design surface 10 may have a metallic coating film or a metal layer such as a metal foil. As metallic coatings, scaly metal pigments such as aluminum, copper, nickel alloy, stainless steel, scaly metal pigments coated with metal oxide on the surface, scaly metal pigments with colored pigments chemically adsorbed on the surface, Examples thereof include a coating film containing a metal particle pigment such as a scale-like aluminum pigment in which an aluminum oxide layer is formed by causing an oxidation-reduction reaction. Examples of the metal layer include a metal foil, a metal vapor deposition layer, and a metal plating layer.

メタリック塗膜を形成するための塗料(メタリック塗料)は、ビヒクル、顔料、溶媒(有機溶剤や水など)、必要に応じて適宜の添加物を配合し、均一に分散させることで調製することができる。また、メタリック塗料は、金属粒子顔料以外の顔料として、一般の光輝性塗料や着色顔料を含んでもよい。メタリック塗膜の色は、シルバーに限らず、赤、青、黄、緑などの色彩を帯びてもよい。   A paint (metallic paint) for forming a metallic coating film can be prepared by blending a vehicle, a pigment, a solvent (such as an organic solvent or water), and appropriate additives as necessary, and uniformly dispersing the mixture. it can. Further, the metallic paint may contain a general glitter paint or a colored pigment as a pigment other than the metal particle pigment. The color of the metallic coating film is not limited to silver, and may have a color such as red, blue, yellow, and green.

光輝性顔料としては、アルミニウムを固溶した板状酸化鉄顔料、ガラスフレーク顔料、表面を金属又は金属酸化物で被覆したガラスフレーク顔料、表面に着色顔料を化学吸着させたガラスフレーク顔料、表面を二酸化チタンで被覆した干渉マイカ顔料、干渉マイカ顔料を還元した還元マイカ顔料、表面に着色顔料を化学吸着させた着色マイカ顔料、表面を酸化鉄で被覆した着色マイカ顔料、表面を二酸化チタンで被覆したグラファイト顔料、表面を二酸化チタンで被覆したシリカフレークやアルミナフレーク顔料、板状酸化鉄顔料、ホログラム顔料、合成マイカ顔料、らせん構造を持つコレステリック液晶ポリマー顔料、オキシ塩化ビスマス顔料などが挙げられる。   As bright pigments, plate-like iron oxide pigments in which aluminum is dissolved, glass flake pigments, glass flake pigments whose surfaces are coated with metal or metal oxides, glass flake pigments in which colored pigments are chemically adsorbed on the surface, and surface Interference mica pigments coated with titanium dioxide, reduced mica pigments obtained by reducing interference mica pigments, colored mica pigments with chemically adsorbed colored pigments on the surface, colored mica pigments coated with iron oxide on the surface, and surfaces coated with titanium dioxide Examples thereof include graphite pigments, silica flakes and alumina flake pigments coated with titanium dioxide on the surface, plate-like iron oxide pigments, hologram pigments, synthetic mica pigments, cholesteric liquid crystal polymer pigments having a helical structure, and bismuth oxychloride pigments.

着色顔料としては、例えば、透明性酸化鉄顔料、チタンイエロー等の複合酸化物顔料等の無機顔料;アゾ系顔料、キナクリドン系顔料、ジケトピロロピロール系顔料、ペリレン系顔料、ペリノン系顔料、ベンズイミダゾロン系顔料、イソインドリン系顔料、イソインドリノン系顔料、金属キレートアゾ系顔料、フタロシアニン系顔料、アンスラキノン系顔料、ジオキサジン系顔料、スレン系顔料、インジゴ系顔料等の有機顔料、カーボンブラック顔料、酸化チタン顔料等が挙げられる。   Examples of the color pigment include inorganic pigments such as transparent iron oxide pigments and composite oxide pigments such as titanium yellow; azo pigments, quinacridone pigments, diketopyrrolopyrrole pigments, perylene pigments, perinone pigments, benzs Organic pigments such as imidazolone pigments, isoindoline pigments, isoindolinone pigments, metal chelate azo pigments, phthalocyanine pigments, anthraquinone pigments, dioxazine pigments, selenium pigments, indigo pigments, carbon black pigments, A titanium oxide pigment etc. are mentioned.

ビヒクルとしては、樹脂成分が挙げられる。樹脂成分としては、具体的には、水酸基などの架橋性官能基を有する、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂などの基体樹脂と、メラミン樹脂、尿素樹脂、ポリイソシアネート化合物(ブロック体も含む)などの架橋剤とを併用したものが挙げられる。   Examples of the vehicle include a resin component. Specifically, the resin component includes a base resin such as an acrylic resin, a polyester resin, an alkyd resin, and a urethane resin having a crosslinkable functional group such as a hydroxyl group, a melamine resin, a urea resin, a polyisocyanate compound (also a block body). In combination with a cross-linking agent such as

塗膜の作製方法は、基板上に均一な膜厚の光輝性塗料を塗装できるものであれば、特に限定されるものではないが、エアスプレー、エアレススプレー、静電スプレーなどのスプレー方式が好ましい。意匠面10を基板上に形成する場合の基板には、塗料を塗装する前に、あらかじめ下塗り塗料や中塗り塗料による塗膜を形成しておくことができる。また、光輝性塗料の塗膜の上には、該塗膜を保護する等の目的で、クリヤー塗料の塗膜を1層または2層以上形成することができる。   The method for producing the coating film is not particularly limited as long as it can apply a glittering paint having a uniform film thickness on the substrate, but a spray method such as air spray, airless spray, electrostatic spray or the like is preferable. . When the design surface 10 is formed on the substrate, a coating film made of an undercoat paint or an intermediate paint can be formed in advance before the paint is applied. Moreover, on the coating film of the glitter paint, one or more clear coating films can be formed for the purpose of protecting the coating film.

金属粒子顔料として、粒径(長径)が10μm以上で、厚さ(短径)が0.1μm以下(例えば0.05μm程度)等の蒸着アルミニウム顔料のように、高アスペクト比のフレークを用いると、メタリック感を向上することができる。しかし、金属粒子の配向が塗膜の面方向に揃っていないと、塗膜から出射する反射光量は高くても、各フレークの正反射方向が意匠面の正反射方向と一致しにくくなる。目視で明るく見える方向にバラつきが生じると、反射光の指向性は下がり、平坦な金属素材のようなメタリック感は低下する。   When a flake with a high aspect ratio is used as a metal particle pigment, such as a vapor-deposited aluminum pigment having a particle size (major axis) of 10 μm or more and a thickness (minor axis) of 0.1 μm or less (for example, about 0.05 μm). , Can improve the metallic feeling. However, if the orientation of the metal particles is not aligned with the surface direction of the coating film, even if the amount of reflected light emitted from the coating film is high, the regular reflection direction of each flake is less likely to coincide with the regular reflection direction of the design surface. When variation occurs in a direction that looks bright visually, the directivity of reflected light decreases, and the metallic feeling like a flat metal material decreases.

近年、従来の金属調意匠よりも金属素材に近い超金属調意匠、及びこれを塗膜で実現可能な超金属調塗色が注目されている。メタリック感が最も高いと評価できる意匠としては、鏡面状に研磨された金属素材、金属箔、金属蒸着膜、金属めっきが挙げられる。しかし、金属素材は重量があり、自動車等の輸送機器や、携帯機器等においては、エネルギー効率向上や軽量性の観点から敬遠される傾向がある。金属箔は、貼付・箔押し等の加工をするのが高コストである。成形部品の表面に金属蒸着膜や金属めっきを形成する場合も、高コストである上、成形部品の形状や寸法等によっては、蒸着やめっきの加工が困難な場合がある。   In recent years, super metal design that is closer to a metal material than a conventional metal design, and a super metal color that can be realized with a coating film have attracted attention. Examples of the design that can be evaluated as having the highest metallic feeling include a mirror-polished metal material, a metal foil, a metal vapor-deposited film, and metal plating. However, metal materials are heavy and tend to be avoided from the viewpoints of improving energy efficiency and light weight in transport devices such as automobiles and portable devices. Metal foil is expensive to process such as sticking and foil stamping. Even when a metal vapor deposition film or metal plating is formed on the surface of the molded part, the cost is high, and depending on the shape, size, etc. of the molded part, it may be difficult to perform vapor deposition or plating.

このため、塗装(塗膜)によりメタリック感の高い意匠を実現することが要望されており、メタリック感の客観的な指標が求められている。熟練した複数人の観察者が目視により評価する場合には、人の視感に即した高度な評価が可能であるが、観察者の育成に時間がかかり、観察者の疲労や体調等の影響も考慮する必要がある。   For this reason, it is desired to realize a design with a high metallic feeling by painting (coating film), and an objective index of metallic feeling is required. When multiple experienced observers evaluate visually, it is possible to perform advanced evaluation according to human visual perception, but it takes time to train observers and influences such as fatigue and physical condition of observers It is also necessary to consider.

本発明者らが金属素材、金属箔、金属蒸着膜等の均一な金属面の反射特性を検討した結果、反射率の角度依存性は、正反射光の反射率が最高であり、受光角が正反射方向から離れるほど、反射率が低下すること、そして、受光角が15°程度と小さい(受光方向が正反射方向に近い)場合でも、明度の低下が著しいことが分かった。5〜10°等の低い角度で明度を測定することも考えられるが、特殊な測定器が必要となり、測定に時間がかかる。そこで、正反射光の測定による鏡面光沢度を利用することにより、メタリック感の高い意匠の特性を簡便に測定することができる。   As a result of studying the reflection characteristics of uniform metal surfaces such as metal materials, metal foils, and metal deposited films, the present inventors have found that the angle dependency of the reflectance is the highest in the reflectance of specularly reflected light and the light receiving angle is It has been found that as the distance from the specular reflection direction increases, the reflectance decreases, and even when the light reception angle is as small as about 15 ° (the light reception direction is close to the regular reflection direction), the brightness is significantly decreased. Although it is conceivable to measure the lightness at a low angle such as 5 to 10 °, a special measuring instrument is required, and the measurement takes time. Therefore, by utilizing the specular glossiness by measuring regular reflection light, it is possible to easily measure the characteristics of a design having a high metallic feeling.

上述した鏡面光沢度と明度との比によれば、金属粒子の配向不良等によるメタリック感の低下(粒子感の増大)を従来のパラメータよりも高度に反映させることができ、メタリック感の高い意匠の開発、評価等に有用である。従来の金属調意匠から、超金属調意匠、金属素材に至るまで、視覚的なメタリック感を統一的な指標により評価することができる。目視の評価と整合する結果が、目視の評価から独立した簡潔なパラメータから得られるので、塗装ライン等のオンライン上の検査にも容易に適用することができる。   According to the ratio between the specular gloss and lightness described above, it is possible to reflect a decrease in metallic feeling (increased particle feeling) due to poor orientation of metal particles to a higher degree than conventional parameters, and a design with a high metallic feeling. It is useful for development and evaluation of From a conventional metal design to a super metal design and a metal material, a visual metallic feeling can be evaluated by a unified index. Since a result consistent with the visual evaluation is obtained from simple parameters independent of the visual evaluation, it can be easily applied to on-line inspection of a coating line or the like.

以下、実施例をもって本発明を具体的に説明する。また、「部」は「質量部」を意味する。なお、本発明は、これらの実施例のみに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. “Part” means “part by mass”. In addition, this invention is not limited only to these Examples.

(1)水酸基含有アクリル樹脂の製造
温度計、サーモスタット、撹拌器、還流冷却器及び滴下装置を備えた反応容器にエチレングリコールモノエチルエーテルアセテート50部を仕込み、撹拌混合し、135℃に昇温した。次いで、メチルメタクリレート38部、エチルアクリレート17部、n−ブチルアクリレート17部、ヒドロキシエチルメタクリレート7部、ラウリルメタクリレート20部、アクリル酸1部及び2,2′−アゾビス(2−メチルプロピオニトリル)2部からなるモノマー/重合開始剤の混合物を3時間かけて、同温度に保持した反応容器内に滴下し、滴下終了後1時間熟成した。
その後、エチレングリコールモノエチルエーテルアセテート10部、2,2′−アゾビス(2−メチルプロピオニトリル)0.6部からなる混合物を同温度に保持した反応容器内に1時間30分かけて滴下し、さらに2時間熟成した。
次に、未反応のエチレングリコールモノエチルエーテルアセテートを減圧下で留去し、水酸基価54mgKOH/g、数平均分子量20,000、樹脂固形分65質量%の水酸基含有アクリル樹脂を得た。ここで数平均分子量とは、ゲル浸透クロマトグラフィー(GPC)によって標準ポリスチレンの検量線を用いて測定したものを意味する。
(1) Production of hydroxyl group-containing acrylic resin In a reaction vessel equipped with a thermometer, thermostat, stirrer, reflux condenser and dropping device, 50 parts of ethylene glycol monoethyl ether acetate was stirred, mixed, and heated to 135 ° C. . Then 38 parts methyl methacrylate, 17 parts ethyl acrylate, 17 parts n-butyl acrylate, 7 parts hydroxyethyl methacrylate, 20 parts lauryl methacrylate, 1 part acrylic acid and 2,2'-azobis (2-methylpropionitrile) 2 A monomer / polymerization initiator mixture consisting of parts was dropped into a reaction vessel maintained at the same temperature over 3 hours, and aged for 1 hour after completion of the dropping.
Thereafter, a mixture consisting of 10 parts of ethylene glycol monoethyl ether acetate and 0.6 part of 2,2′-azobis (2-methylpropionitrile) was dropped into the reaction vessel maintained at the same temperature over 1 hour 30 minutes. Aged for another 2 hours.
Next, unreacted ethylene glycol monoethyl ether acetate was distilled off under reduced pressure to obtain a hydroxyl group-containing acrylic resin having a hydroxyl value of 54 mgKOH / g, a number average molecular weight of 20,000, and a resin solid content of 65% by mass. Here, the number average molecular weight means that measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.

(2)有機溶剤型塗料1の製造
(1)で得られた水酸基含有アクリル樹脂75部、ユーバン(登録商標)28−60(商品名、ブチルエーテル化メラミン樹脂、三井化学社製)25部からなる樹脂成分100部(固形分)あたり、アルミニウムペーストGX−180A(商品名、旭化成アルミ社製、固形分74質量%、一次平均粒子径16.9μmの鱗片状アルミニウム顔料ペースト)を固形分として10部配合して攪拌混合し、塗装に適正な粘度に希釈して、固形分約25%の有機溶剤型塗料1を調製した。
(2) Manufacture of organic solvent-type paint 1 Consists of 75 parts of a hydroxyl group-containing acrylic resin obtained in (1) and 25 parts of Uban (registered trademark) 28-60 (trade name, butyl etherified melamine resin, manufactured by Mitsui Chemicals). 10 parts by weight of aluminum paste GX-180A (trade name, manufactured by Asahi Kasei Aluminum Co., Ltd., 74 mass% solid content, scaly aluminum pigment paste having a primary average particle diameter of 16.9 μm) per 100 parts (solid content) of the resin component The organic solvent-type paint 1 having a solid content of about 25% was prepared by blending, stirring and mixing, and diluting to a viscosity appropriate for coating.

(3)有機溶剤型塗料2の製造
(1)で得られた水酸基含有アクリル樹脂75部、ユーバン(登録商標)28−60(商品名、ブチルエーテル化メラミン樹脂、三井化学社製)25部からなる樹脂成分100部(固形分)あたり、アルミニウムペーストGX−180A(商品名、旭化成アルミ社製、固形分74質量%、一次平均粒子径16.9μmの鱗片状アルミニウム顔料ペースト)を固形分として30部配合して攪拌混合し、塗装に適正な粘度に希釈して、固形分約25%の有機溶剤型塗料2を調製した。
(3) Manufacture of organic solvent-type paint 2 Consists of 75 parts of a hydroxyl group-containing acrylic resin obtained in (1) and 25 parts of Uban (registered trademark) 28-60 (trade name, butyl etherified melamine resin, manufactured by Mitsui Chemicals). 30 parts by weight of aluminum paste GX-180A (trade name, manufactured by Asahi Kasei Aluminum Co., Ltd., 74 mass% solid content, scaly aluminum pigment paste having a primary average particle diameter of 16.9 μm) per 100 parts (solid content) of the resin component The organic solvent type paint 2 having a solid content of about 25% was prepared by blending, stirring and mixing, and diluting to a viscosity suitable for coating.

(4)有機溶剤型塗料3の製造
(1)で得られた水酸基含有アクリル樹脂75部、ユーバン(登録商標)28−60(商品名、ブチルエーテル化メラミン樹脂、三井化学社製)25部からなる樹脂成分100部(固形分)あたり、METASHEEN(登録商標)71−0010(商品名、BASF社製、固形分10質量%、蒸着アルミニウムスラリー)を固形分として10部配合して攪拌混合し、塗装に適正な粘度に希釈して、固形分約12%の有機溶剤型塗料3を調製した。
(4) Manufacture of organic solvent-type paint 3 Consists of 75 parts of the hydroxyl group-containing acrylic resin obtained in (1) and 25 parts of Uban (registered trademark) 28-60 (trade name, butyl etherified melamine resin, manufactured by Mitsui Chemicals). For 100 parts of resin component (solid content), METASHEEN (registered trademark) 71-0010 (trade name, manufactured by BASF, solid content of 10% by mass, vapor-deposited aluminum slurry) is mixed with 10 parts of solid content, and mixed by stirring. The organic solvent-type paint 3 having a solid content of about 12% was prepared by diluting to an appropriate viscosity.

(5)蒸着アルミニウム顔料液の製造
METASHEEN(登録商標)71−0010(商品名、BASF社製、固形分10質量%、蒸着アルミニウムスラリー)に、酢酸ブチルを加えて攪拌混合し、固形分0.5質量%の蒸着アルミニウム顔料液を調製した。
(5) Production of vapor-deposited aluminum pigment solution To METASHEEEN (registered trademark) 71-0010 (trade name, manufactured by BASF, solid content of 10% by mass, vapor-deposited aluminum slurry), butyl acetate was added and mixed by stirring. A 5 mass% evaporated aluminum pigment solution was prepared.

(6)塗板用基材の作製
脱脂及びりん酸亜鉛処理した鋼板(JIS G 3141、大きさ400mm×300mm×0.8mm)にカチオン電着塗料「エレクロン(登録商標)9400HB」(商品名:関西ペイント社製、エポキシ樹脂ポリアミン系カチオン樹脂に硬化剤としてブロックポリイソシアネート化合物を使用したもの)を硬化塗膜に基づいて膜厚20μmになるように電着塗装し、170℃で20分加熱して架橋硬化させて電着塗膜を得た。
得られた電着塗面に、中塗り塗料「ルーガベーク(登録商標)中塗りN−2グレー」(商品名:関西ペイント社製、ポリエステル樹脂・メラミン樹脂系、有機溶剤型)をエアスプレーにて硬化塗膜に基づいて膜厚30μmになるように塗装し、140℃で30分加熱して架橋硬化させて、中塗り塗膜を形成した塗板を基材とした。
(6) Preparation of base material for coated plate Cationic electrodeposition paint “ELECRON (registered trademark) 9400HB” (trade name: Kansai) on a degreased and zinc phosphate-treated steel plate (JIS G 3141, size 400 mm × 300 mm × 0.8 mm) Painted, epoxy resin polyamine-based cationic resin using a block polyisocyanate compound as a curing agent) is electrodeposited to a film thickness of 20 μm based on the cured coating film, and heated at 170 ° C. for 20 minutes. The electrodeposition coating film was obtained by crosslinking and curing.
On the obtained electrodeposition coating surface, an intermediate coating “Lugabake (registered trademark) intermediate coating N-2 gray” (trade name: manufactured by Kansai Paint Co., Ltd., polyester resin / melamine resin, organic solvent type) is applied by air spray. Based on the cured coating film, it was coated to a film thickness of 30 μm, heated at 140 ° C. for 30 minutes to be crosslinked and cured, and a coated plate on which an intermediate coating film was formed was used as a substrate.

(7)評価用塗板の作製
(Sample1)
(5)で得られた基材に、(2)で得られた有機溶剤型塗料1を、エアスプレーを使用して、乾燥膜厚15μmとなるように塗装し、塗装後、室温にて15分間放置した後に、「ルーガベーク(登録商標)クリヤー」(商品名、関西ペイント社製、アクリル樹脂・アミノ樹脂系、有機溶剤型)を、ミニベル型回転式静電塗装機を用いて、ブース温度25℃、湿度75%の条件で硬化塗膜として、膜厚30μmとなるように塗装した。塗装後、室温にて15分間放置した後に、熱風循環式乾燥炉を使用して、140℃で30分間加熱し、複層塗膜を同時に乾燥硬化せしめて、測定に供する塗板を作製した。
(7) Preparation of coating plate for evaluation (Sample 1)
The base material obtained in (5) is coated with the organic solvent-type paint 1 obtained in (2) using an air spray so as to have a dry film thickness of 15 μm. After being left for a minute, “Lugabake (registered trademark) clear” (trade name, manufactured by Kansai Paint Co., Ltd., acrylic resin / amino resin type, organic solvent type) is used at a booth temperature of 25 using a mini-bell type rotary electrostatic coating machine. The cured coating film was coated at a temperature of 75 ° C. and a humidity of 75% so as to have a film thickness of 30 μm. After coating, it was allowed to stand at room temperature for 15 minutes, and then heated at 140 ° C. for 30 minutes using a hot-air circulating drying furnace to simultaneously dry and cure the multilayer coating film to prepare a coated plate for measurement.

(Sample2)
(5)で得られた基材に、(3)で得られた有機溶剤型塗料2を、エアスプレーを使用して、乾燥膜厚5μmとなるように塗装し、塗装後、室温にて15分間放置した後に、「ルーガベーク(登録商標)クリヤー」(商品名、関西ペイント社製、アクリル樹脂・アミノ樹脂系、有機溶剤型)を、ミニベル型回転式静電塗装機を用いて、ブース温度25℃、湿度75%の条件で硬化塗膜として、膜厚30μmとなるように塗装した。塗装後、室温にて15分間放置した後に、熱風循環式乾燥炉を使用して、140℃で30分間加熱し、複層塗膜を同時に乾燥硬化せしめて、測定に供する塗板を作製した。
(Sample2)
The base material obtained in (5) is coated with the organic solvent-type paint 2 obtained in (3) using an air spray so that the dry film thickness is 5 μm. After being left for a minute, “Lugabake (registered trademark) clear” (trade name, manufactured by Kansai Paint Co., Ltd., acrylic resin / amino resin type, organic solvent type) is used at a booth temperature of 25 using a mini-bell type rotary electrostatic coating machine. The cured coating film was coated so as to have a film thickness of 30 μm under the conditions of ° C. and humidity of 75%. After coating, it was allowed to stand at room temperature for 15 minutes, and then heated at 140 ° C. for 30 minutes using a hot-air circulating drying furnace to simultaneously dry and cure the multilayer coating film to prepare a coated plate for measurement.

(Sample3)
(6)で得られた基材に、(4)で得られた有機溶剤型塗料3を、エアスプレーを使用して、乾燥膜厚2μmとなるように塗装し、塗装後、室温にて15分間放置した後に、「ルーガベーク(登録商標)クリヤー」(商品名、関西ペイント社製、アクリル樹脂・アミノ樹脂系、有機溶剤型)を、ミニベル型回転式静電塗装機を用いて、ブース温度25℃、湿度75%の条件で硬化塗膜として、膜厚30μmとなるように塗装した。塗装後、室温にて15分間放置した後に、熱風循環式乾燥炉を使用して、140℃で30分間加熱し、複層塗膜を同時に乾燥硬化せしめて、測定に供する塗板を作製した。
(Sample3)
The base material obtained in (6) is coated with the organic solvent-type paint 3 obtained in (4) so as to have a dry film thickness of 2 μm using an air spray. After being left for a minute, “Lugabake (registered trademark) clear” (trade name, manufactured by Kansai Paint Co., Ltd., acrylic resin / amino resin type, organic solvent type) is used at a booth temperature of 25 using a mini-bell type rotary electrostatic coating machine. The cured coating film was coated so as to have a film thickness of 30 μm under the conditions of ° C. and humidity of 75%. After coating, it was allowed to stand at room temperature for 15 minutes, and then heated at 140 ° C. for 30 minutes using a hot-air circulating drying furnace to simultaneously dry and cure the multilayer coating film to prepare a coated plate for measurement.

(Sample4)
(6)で得られた基材に、(5)で得られた蒸着アルミニウム顔料液を、W−101−102P(エアスプレーガン、アネスト岩田社製)を使用して、塗料調節つまみを0.5回転分開放、吹き付け空気圧0.2MPa、ガン距離30cm、ガン速度10cm/sの条件で、1ステージ塗装し、塗装後、室温にて15分間放置した後に、「ルーガベーク(登録商標)クリヤー」(商品名、関西ペイント社製、アクリル樹脂・アミノ樹脂系、有機溶剤型)を、ミニベル型回転式静電塗装機を用いて、ブース温度25℃、湿度75%の条件で硬化塗膜として、膜厚30μmとなるように塗装した。塗装後、室温にて15分間放置した後に、熱風循環式乾燥炉を使用して、140℃で30分間加熱し、複層塗膜を同時に乾燥硬化せしめて、測定に供する塗板を作製した。
(Sample4)
To the base material obtained in (6), the deposited aluminum pigment liquid obtained in (5) is used with W-101-102P (air spray gun, manufactured by Anest Iwata Co., Ltd.), and the paint adjustment knob is set to 0.00. One stage coating was performed for 5 revolutions, spraying air pressure 0.2 MPa, gun distance 30 cm, gun speed 10 cm / s, and after coating, left at room temperature for 15 minutes, “Lugabake (registered trademark) clear” ( A product name, manufactured by Kansai Paint Co., Ltd., acrylic resin / amino resin type, organic solvent type) is used as a cured coating film at a booth temperature of 25 ° C. and a humidity of 75% using a mini-bell type rotary electrostatic coating machine. The coating was applied to a thickness of 30 μm. After coating, it was allowed to stand at room temperature for 15 minutes, and then heated at 140 ° C. for 30 minutes using a hot-air circulating drying furnace to simultaneously dry and cure the multilayer coating film to prepare a coated plate for measurement.

(Sample5)
(6)で得られた基材に、(5)で得られた蒸着アルミニウム顔料液を、W−101−102P(エアスプレーガン、アネスト岩田社製)を使用して、塗料調節つまみを0.5回転分開放、吹き付け空気圧0.2MPa、ガン距離30cm、ガン速度10cm/sの条件で、2ステージ塗装し、塗装後、室温にて15分間放置した後に、「ルーガベーク(登録商標)クリヤー」(商品名、関西ペイント社製、アクリル樹脂・アミノ樹脂系、有機溶剤型)を、ミニベル型回転式静電塗装機を用いて、ブース温度25℃、湿度75%の条件で硬化塗膜として、膜厚30μmとなるように塗装した。塗装後、室温にて15分間放置した後に、熱風循環式乾燥炉を使用して、140℃で30分間加熱し、複層塗膜を同時に乾燥硬化せしめて、測定に供する塗板を作製した。
(Sample5)
To the base material obtained in (6), the deposited aluminum pigment liquid obtained in (5) is used with W-101-102P (air spray gun, manufactured by Anest Iwata Co., Ltd.), and the paint adjustment knob is set to 0.00. Two stages of coating were performed under the conditions of release for 5 revolutions, spraying air pressure of 0.2 MPa, gun distance of 30 cm, and gun speed of 10 cm / s. After painting and leaving at room temperature for 15 minutes, “Lugabake (registered trademark) clear” ( A product name, manufactured by Kansai Paint Co., Ltd., acrylic resin / amino resin type, organic solvent type) is used as a cured coating film at a booth temperature of 25 ° C. and a humidity of 75% using a mini-bell type rotary electrostatic coating machine. The coating was applied to a thickness of 30 μm. After coating, it was allowed to stand at room temperature for 15 minutes, and then heated at 140 ° C. for 30 minutes using a hot-air circulating drying furnace to simultaneously dry and cure the multilayer coating film to prepare a coated plate for measurement.

(Sample6)
(6)で得られた基材に、(5)で得られた蒸着アルミニウム顔料液を、W−101−102P(エアスプレーガン、アネスト岩田社製)を使用して、塗料調節つまみを0.5回転分開放、吹き付け空気圧0.2MPa、ガン距離30cm、ガン速度10cm/sの条件で、5ステージ塗装し、塗装後、室温にて15分間放置した後に、「ルーガベーク(登録商標)クリヤー」(商品名、関西ペイント社製、アクリル樹脂・アミノ樹脂系、有機溶剤型)を、ミニベル型回転式静電塗装機を用いて、ブース温度25℃、湿度75%の条件で硬化塗膜として、膜厚30μmとなるように塗装した。塗装後、室温にて15分間放置した後に、熱風循環式乾燥炉を使用して、140℃で30分間加熱し、複層塗膜を同時に乾燥硬化せしめて、測定に供する塗板を作製した。
(Sample6)
To the base material obtained in (6), the deposited aluminum pigment liquid obtained in (5) is used with W-101-102P (air spray gun, manufactured by Anest Iwata Co., Ltd.), and the paint adjustment knob is set to 0.00. 5 stages are applied under the conditions of release for 5 revolutions, spraying air pressure 0.2 MPa, gun distance 30 cm, gun speed 10 cm / s, and after coating and leaving at room temperature for 15 minutes, “Lugabake (registered trademark) clear” ( A product name, manufactured by Kansai Paint Co., Ltd., acrylic resin / amino resin type, organic solvent type) is used as a cured coating film at a booth temperature of 25 ° C. and a humidity of 75% using a mini-bell type rotary electrostatic coating machine. The coating was applied to a thickness of 30 μm. After coating, it was allowed to stand at room temperature for 15 minutes, and then heated at 140 ° C. for 30 minutes using a hot-air circulating drying furnace to simultaneously dry and cure the multilayer coating film to prepare a coated plate for measurement.

(Sample7)
(6)で得られた基材に、(5)で得られた蒸着アルミニウム顔料液を、W−101−102P(エアスプレーガン、アネスト岩田社製)を使用して、塗料調節つまみを0.5回転分開放、吹き付け空気圧0.2MPa、ガン距離30cm、ガン速度10cm/sの条件で、10ステージ塗装し、塗装後、室温にて15分間放置した後に、「ルーガベーク(登録商標)クリヤー」(商品名、関西ペイント社製、アクリル樹脂・アミノ樹脂系、有機溶剤型)を、ミニベル型回転式静電塗装機を用いて、ブース温度25℃、湿度75%の条件で硬化塗膜として、膜厚30μmとなるように塗装した。塗装後、室温にて15分間放置した後に、熱風循環式乾燥炉を使用して、140℃で30分間加熱し、複層塗膜を同時に乾燥硬化せしめて、測定に供する塗板を作製した。
(Sample7)
To the base material obtained in (6), the deposited aluminum pigment liquid obtained in (5) is used with W-101-102P (air spray gun, manufactured by Anest Iwata Co., Ltd.), and the paint adjustment knob is set to 0.00. 10 stages were applied under the conditions of release for 5 revolutions, spraying air pressure 0.2 MPa, gun distance 30 cm, gun speed 10 cm / s, and after coating and leaving at room temperature for 15 minutes, “Lugabake (registered trademark) clear” ( A product name, manufactured by Kansai Paint Co., Ltd., acrylic resin / amino resin type, organic solvent type) is used as a cured coating film at a booth temperature of 25 ° C. and a humidity of 75% using a mini-bell type rotary electrostatic coating machine. The coating was applied to a thickness of 30 μm. After coating, it was allowed to stand at room temperature for 15 minutes, and then heated at 140 ° C. for 30 minutes using a hot-air circulating drying furnace to simultaneously dry and cure the multilayer coating film to prepare a coated plate for measurement.

(Sample8)
平滑なブリキ板に家庭用アルミホイルを貼り付け、溶剤を用いてホイル表面を脱脂した後に、「ルーガベーク(登録商標)クリヤー」(商品名、関西ペイント社製、アクリル樹脂・アミノ樹脂系、有機溶剤型)を、ミニベル型回転式静電塗装機を用いて、ブース温度25℃、湿度75%の条件で硬化塗膜として、膜厚30μmとなるように塗装した。塗装後、室温にて15分間放置した後に、熱風循環式乾燥炉を使用して、140℃で30分間加熱し、クリヤー塗膜を乾燥硬化せしめて、測定に供する塗板を作製した。
(Sample8)
After pasting aluminum foil for household use on a smooth tin plate and degreasing the foil surface with a solvent, "Lugabake (registered trademark) clear" (trade name, manufactured by Kansai Paint Co., Ltd., acrylic resin / amino resin, organic solvent The mold was coated as a cured coating film under a condition of a booth temperature of 25 ° C. and a humidity of 75% using a mini-bell type rotary electrostatic coating machine so as to have a film thickness of 30 μm. After coating, it was allowed to stand at room temperature for 15 minutes, and then heated at 140 ° C. for 30 minutes using a hot air circulating drying oven to dry and cure the clear coating film, thereby preparing a coated plate for measurement.

(8)塗板の評価
(明度の測定)
MA68II(商品名、多角度分光光度計、エックスライト社製)を使用して、(7)で得られた塗板の意匠面の測色を行い、XYZ表色系におけるY値、及びL表色系におけるL値を測定した。入射角は45°、受光角は15°及び45°である。
以下、受光角15°におけるY値を「Y15」で表し、受光角45°におけるY値を「Y45」で表し、受光角15°におけるL値を「L 15」で表し、受光角45°におけるL値を「L 45」で表す。
(8) Evaluation of coated plate (measurement of brightness)
Using MA68II (trade name, multi-angle spectrophotometer, manufactured by X-Rite Co., Ltd.), the design surface of the coated plate obtained in (7) is measured, the Y value in the XYZ color system, and L * a * B * L * values in the color system were measured. The incident angle is 45 °, and the light receiving angles are 15 ° and 45 °.
Hereinafter, the Y value at a light receiving angle of 15 ° is represented by “Y 15 ”, the Y value at a light receiving angle of 45 ° is represented by “Y 45 ”, and the L * value at the light receiving angle of 15 ° is represented by “L * 15 ”. The L * value at an angle of 45 ° is represented by “L * 45 ”.

また、フリップフロップ値「FF」については、次の式により算出した。
FF=2×(Y15−Y45)/(Y15+Y45
The flip-flop value “FF” was calculated by the following equation.
FF = 2 × (Y 15 −Y 45 ) / (Y 15 + Y 45 )

(鏡面光沢度の測定)
マイクロ−トリ−グロス(商品名、光沢計、BYKガードナー社製)を使用して、(7)で得られた塗板の意匠面に対して、入射角60°から光を照射して、正反射光を受光し、鏡面光沢度を測定した。入射角60°における鏡面光沢度を「Gs60」で表す。
また、鏡面光沢度Gs60の値を、明度Y45又はL 45の値で除することにより、「Gs60/Y45」及び「Gs60/L 45」の値を算出した。
(Measurement of specular gloss)
Using micro-tri-gloss (trade name, gloss meter, manufactured by BYK Gardner), the design surface of the coated plate obtained in (7) is irradiated with light from an incident angle of 60 °, and is regularly reflected. Light was received and the specular gloss was measured. The specular gloss at an incident angle of 60 ° is represented by “Gs 60 ”.
Further, the value of “Gs 60 / Y 45 ” and “Gs 60 / L * 45 ” was calculated by dividing the value of the specular gloss Gs 60 by the value of brightness Y 45 or L * 45 .

(ミクロ光輝感データの測定)
撮像装置を用いて、塗板の意匠面の画像データを取得し、取得した画像データから、ミクロ光輝感を表すデータである「HG」及び「SB」を次の式により計算した。
(Measurement of micro glitter data)
Using the imaging device, image data of the design surface of the coated plate was acquired, and “HG” and “SB”, which are data representing micro glitter, were calculated from the acquired image data by the following formula.

IPSL≧0.32の場合、HG=500・IPSL−142.5
0.32>IPSL≧0.15の場合、HG=102.9・IPSL−15.4
0.15>IPSLの場合、HG=0
When IPSL ≧ 0.32, HG = 500 · IPSL-142.5
When 0.32> IPSL ≧ 0.15, HG = 102.9 · IPSL-15.4
When 0.15> IPSL, HG = 0

HB=(BV−50)/2 HB = (BV-50) / 2

ここで、IPSL及びBVは次の式によって求められる。   Here, IPSL and BV are obtained by the following equations.

IPSL=∫ 2πP(ν,θ)dνdθ/P(0,0)
BV=PHav+350PSav
IPSL = ∫ 0 N 0 0 P (ν, θ) dνdθ / P (0,0)
BV = PH av +350 PS av

ここで、P(ν,θ)は、取得した画像データから生成した2次元の輝度分布データを2次元フーリエ変換処理して得られるパワースペクトル、νは空間周波数、θは角度である。0〜Nは粒子感に対応する空間周波数領域である。∫ dνは空間周波数領域0〜Nの範囲の積分であり、∫ 2π dθは角度領域0〜2πの範囲の積分である。 Here, P (ν, θ) is a power spectrum obtained by two-dimensional Fourier transform processing of two-dimensional luminance distribution data generated from the acquired image data, ν is a spatial frequency, and θ is an angle. 0 to N are spatial frequency regions corresponding to particle feeling. 0 0 N dv is the integral in the spatial frequency range 0 to N , and 0 0 dθ is the integral in the angular range 0 to .

また、PHav、PSavはそれぞれ輝度画像の平均ピーク高さ、及び平均ピーク裾広がり率であり、PHav=3V/A、PSav=L/PHavである。ここで、V及びAは、それぞれ「GL+32」の閾値で2値化した時の閾値以上の総輝度体積および総輝度面積であり、Lは「GL+24」の閾値で2値化した時の平均粒径である。ここで、GLは、画像データの平均グレーレベルである。 Further, PH av and PS av are respectively the average peak height and average peak skirt spread rate of the luminance image, and PH av = 3 V / A and PS av = L / PH av . Here, V and A are the total luminance volume and total luminance area that are equal to or greater than the threshold when binarized with the threshold of “GL + 32”, respectively, and L is the average grain when binarized with the threshold of “GL + 24” Is the diameter. Here, GL is the average gray level of the image data.

Figure 2018054522
Figure 2018054522

Figure 2018054522
Figure 2018054522

結果を表1及び表2に示す。目視のメタリック感は、一般的なシルバー塗色の評点を1、アルミホイルの評点を5として、熟練した作業者の目視によりランク付けをした。
蒸着アルミニウム顔料液の塗膜であるsample4〜7は、ステージが多いほど隠蔽性が向上し、sample7では、目視で透けている印象を与えなかった。sample4〜7の目視の評点は、いずれも4とした。表1では、評点4をsample7で代表させ、表2でsample4〜7を対比できるようにした。
The results are shown in Tables 1 and 2. The visual metallic feeling was ranked by visual inspection of a skilled worker, with a general silver coating score of 1 and an aluminum foil score of 5.
Samples 4 to 7, which are the coatings of the vapor-deposited aluminum pigment solution, improved the concealment property as the number of stages increased, and sample 7 did not give the impression of being transparent. The visual scores of samples 4 to 7 were all 4. In Table 1, score 4 is represented by sample 7, and in Table 2, samples 4-7 can be compared.

15値を目視の評点と比較すると、相関はなく、アルミホイルのL 15値は、一般的なシルバー塗色よりも低くなっている。同様にFF値についても、目視の評点とは異なる結果となっている。
正反射光の測定結果であるGs60値については、8種のサンプル中ではアルミホイルの値が最大となった。そこで、Gs60/L 45の比をとることで、目視のメタリック感と整合する結果が得られた。また、Gs60/Y45の比によれば、アルミホイルの数値が100に近い値となり、メタリック感の序列をより分かりやすく定量化することができた。そこで、Gs60/L 45やGs60/Y45のように、鏡面光沢度と明度との比をとることで、メタリック感を簡便な測定方法で定量化可能なパラメータが得られた。
When the L * 15 value is compared with the visual rating, there is no correlation, and the L * 15 value of the aluminum foil is lower than the general silver coating color. Similarly, the FF value is different from the visual score.
Regarding the Gs 60 value, which is the measurement result of specular reflection light, the value of the aluminum foil was the maximum among the eight types of samples. Therefore, by taking a ratio of Gs 60 / L * 45 , a result consistent with the visual metallic feeling was obtained. Further, according to the ratio of Gs 60 / Y 45 , the numerical value of the aluminum foil was close to 100, and the order of metallic feeling could be quantified more easily. Therefore, parameters such as Gs 60 / L * 45 and Gs 60 / Y 45 were obtained by taking a ratio between the specular gloss and the lightness so that the metallic feeling can be quantified by a simple measuring method.

sample4〜7(塗装ステージ数は各々1,2,5,10)については、表2に示すように、従来のパラメータであるFF値では明確な差が生じなかったが、Gs60/L 45及びGs60/Y45の比によれば、塗装ステージ数が少ないほど、比の値が大きく、金属感が高いという結果が得られた。ハイライト(例えば受光角が15°)の明るさについては、塗装ステージ数が多いほどL 15の値が大きく、見かけ上はより白くなる。しかし、塗装ステージ数が多いほど塗膜中に蒸着アルミニウム顔料として用いたアルミフレークの配向が乱れるため、鏡面光沢度Gs60の値は小さくなった。 For samples 4 to 7 (the number of coating stages is 1, 2, 5, and 10 respectively), as shown in Table 2, there was no clear difference between the FF values as the conventional parameters, but Gs 60 / L * 45. According to the ratio of Gs 60 / Y 45, the smaller the number of coating stages, the larger the ratio value and the higher the metal feeling. As for the brightness of highlights (for example, the light receiving angle is 15 °), the larger the number of painting stages, the larger the value of L * 15 and the whiter the appearance. However, the larger the number of coating stages, the more the orientation of the aluminum flakes used as the deposited aluminum pigment in the coating film is disturbed, so the value of the specular gloss Gs 60 becomes smaller.

フェース(例えば受光角が45°±5°)の明るさについても、塗装ステージ数の増加により塗膜による隠蔽性が増すにつれて、L 45の値が大きく、明度が高くなった。シェード(例えば受光角が75°〜110°)の明るさも、特に測定結果を示さないが、同様の傾向を示すと考えられる。 As for the brightness of the face (for example, the light receiving angle is 45 ° ± 5 °), the L * 45 value increased and the brightness increased as the concealability by the coating film increased with the increase in the number of coating stages. The brightness of the shade (for example, the light receiving angle is 75 ° to 110 °) is not particularly measured, but is considered to show the same tendency.

見かけの金属感は、ハイライトの明度とフェース又はシェードの黒さを同時に観察することで、より高く評価される。ハイライトが明るい(白い)だけでなく、フェース又はシェードが暗い(黒い)場合にも金属感が高くなると考えられることから、sample4〜7の中では、sample4が最も金属感が高く、sample7が最も金属感が低いと評価することもできる。つまり、表2の結果によれば、Gs60/L 45やGs60/Y45のように、鏡面光沢度と明度との比をとることで、目視の金属感の差異が小さいsample4〜7の間でも、金属感の感覚に近い数値を得て評価することができた。 The apparent metallic feeling is more highly evaluated by simultaneously observing the brightness of the highlight and the blackness of the face or shade. Since not only the highlight is bright (white) but also the face or shade is dark (black), the metal feeling is considered to be high. Therefore, among samples 4 to 7, sample 4 has the highest metal feeling and sample 7 has the highest. It can also be evaluated that the metal feeling is low. That is, according to the results in Table 2, samples 4 to 7 have a small difference in visual metal feeling by taking the ratio between the specular gloss and the brightness, such as Gs 60 / L * 45 and Gs 60 / Y 45. In the meantime, we were able to obtain and evaluate a numerical value close to the sense of metal feeling.

10…意匠面、11…入射方向、12…正反射方向、13…法線方向、14…受光方向。 DESCRIPTION OF SYMBOLS 10 ... Design surface, 11 ... Incident direction, 12 ... Regular reflection direction, 13 ... Normal direction, 14 ... Light receiving direction.

Claims (6)

メタリック意匠を有する意匠面の鏡面光沢度と、前記意匠面の正反射方向から離れた角度における明度との比を計算して、前記比によりメタリック意匠を評価することを特徴とするメタリック意匠の評価方法。   Evaluation of a metallic design characterized by calculating a ratio between the specular gloss of a design surface having a metallic design and the brightness at an angle away from the specular reflection direction of the design surface, and evaluating the metallic design based on the ratio Method. 前記鏡面光沢度は、入射角を60°±5°として測定することを特徴とする請求項1に記載のメタリック意匠の評価方法。   The method for evaluating a metallic design according to claim 1, wherein the specular gloss is measured at an incident angle of 60 ° ± 5 °. 前記明度は、入射角を45°±5°とし、正反射方向から入射方向に向かって45°±5°となる角度を受光角として測定することを特徴とする請求項1又は2に記載のメタリック意匠の評価方法。   The lightness is measured by using an incident angle of 45 ° ± 5 ° and an angle of 45 ° ± 5 ° from the regular reflection direction toward the incident direction as a light receiving angle. Evaluation method of metallic design. 前記明度は、XYZ表色系における明度Y、X101010表色系における明度Y10、L表色系またはL表色系における明度Lのいずれかであることを特徴とする請求項1〜3のいずれか1項に記載のメタリック意匠の評価方法。 The brightness, the brightness Y in the XYZ color system, X 10 Y 10 brightness Y 10 in Z 10 color system, L * a * b * color system or L * u * v * in the lightness L * color system It is either, The evaluation method of the metallic design of any one of Claims 1-3 characterized by the above-mentioned. 前記明度は、XYZ表色系における明度Yであることを特徴とする請求項4に記載のメタリック意匠の評価方法。   The method for evaluating a metallic design according to claim 4, wherein the lightness is lightness Y in an XYZ color system. 前記意匠面が、メタリック塗膜又は金属層を有することを特徴とする請求項1〜5のいずれか1項に記載のメタリック意匠の評価方法。   The said design surface has a metallic coating film or a metal layer, The evaluation method of the metallic design of any one of Claims 1-5 characterized by the above-mentioned.
JP2016192555A 2016-09-30 2016-09-30 Evaluation method of metallic design Active JP6796982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016192555A JP6796982B2 (en) 2016-09-30 2016-09-30 Evaluation method of metallic design

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016192555A JP6796982B2 (en) 2016-09-30 2016-09-30 Evaluation method of metallic design

Publications (2)

Publication Number Publication Date
JP2018054522A true JP2018054522A (en) 2018-04-05
JP6796982B2 JP6796982B2 (en) 2020-12-09

Family

ID=61834162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016192555A Active JP6796982B2 (en) 2016-09-30 2016-09-30 Evaluation method of metallic design

Country Status (1)

Country Link
JP (1) JP6796982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352397B2 (en) 2019-07-12 2023-09-28 ブリヂストンサイクル株式会社 Method for forming multilayer coating film with retroreflectivity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220574A (en) * 1985-07-19 1987-01-29 Toyo Alum Kk Metallic pigment to be incorporated into synthetic resin
JP2004317131A (en) * 2003-04-11 2004-11-11 Fuji Xerox Co Ltd Method and apparatus for evaluating glossiness
JP2007126643A (en) * 2005-10-03 2007-05-24 Dainichiseika Color & Chem Mfg Co Ltd Pearlescent pigment, method for producing the same, coating composition, and coating film composition
WO2008026651A1 (en) * 2006-08-29 2008-03-06 Nippon Sheet Glass Company, Limited Pearlescent pigment
JP2010106201A (en) * 2008-10-31 2010-05-13 Suzuki Motor Corp Resin composition, resin molded article, and method for producing resin composition
JP2010130405A (en) * 2008-11-28 2010-06-10 Seiko Epson Corp Printing control device and printing control system having the printing control device
JP2012170909A (en) * 2011-02-22 2012-09-10 Kansai Paint Co Ltd Multi-layered coating film forming method
US20120301521A1 (en) * 2011-03-25 2012-11-29 Eckart Gmbh Cosmetic Formulations Comprising High Gloss Non-Metallic Silver-Colored Pigments

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220574A (en) * 1985-07-19 1987-01-29 Toyo Alum Kk Metallic pigment to be incorporated into synthetic resin
JP2004317131A (en) * 2003-04-11 2004-11-11 Fuji Xerox Co Ltd Method and apparatus for evaluating glossiness
JP2007126643A (en) * 2005-10-03 2007-05-24 Dainichiseika Color & Chem Mfg Co Ltd Pearlescent pigment, method for producing the same, coating composition, and coating film composition
WO2008026651A1 (en) * 2006-08-29 2008-03-06 Nippon Sheet Glass Company, Limited Pearlescent pigment
JP2010106201A (en) * 2008-10-31 2010-05-13 Suzuki Motor Corp Resin composition, resin molded article, and method for producing resin composition
JP2010130405A (en) * 2008-11-28 2010-06-10 Seiko Epson Corp Printing control device and printing control system having the printing control device
JP2012170909A (en) * 2011-02-22 2012-09-10 Kansai Paint Co Ltd Multi-layered coating film forming method
US20120301521A1 (en) * 2011-03-25 2012-11-29 Eckart Gmbh Cosmetic Formulations Comprising High Gloss Non-Metallic Silver-Colored Pigments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352397B2 (en) 2019-07-12 2023-09-28 ブリヂストンサイクル株式会社 Method for forming multilayer coating film with retroreflectivity

Also Published As

Publication number Publication date
JP6796982B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP5567297B2 (en) Coating method
CN106000832B (en) The method for forming multilayer film
JP6195559B2 (en) Coating method
JP2011026543A (en) Paint composition and method of forming paint film
JP6323932B2 (en) Coating composition and coating film forming method
JPWO2016063614A1 (en) Multi-layer coating formation method
JP5991815B2 (en) Coating composition and coating film forming method
JP5547526B2 (en) Coating composition, coating film forming method and coating film structure
JP2013169507A (en) Coating film forming method
JP2011045805A (en) Method of forming coating film
JP2012036331A (en) Coating composition and method for forming coating film
JP2012170910A (en) Multi-layered coating film forming method
JP6796982B2 (en) Evaluation method of metallic design
JP5368967B2 (en) Multi-layer coating formation method
JP5939604B2 (en) Coating composition and coating film forming method
JP2011225652A (en) Coating composition and coating film forming method
JP6647694B2 (en) Glitter coating composition, glitter coating, and method for forming glitter coating
JP2012050938A (en) Coating composition and coating film-forming method
JP5611629B2 (en) Coating method
JP2012017364A (en) Metallic coating composition and method for forming coating film
JP6026930B2 (en) Coating method
JP2012170909A (en) Multi-layered coating film forming method
JP2016059900A (en) Film formation method
JP2012021089A (en) Coating composition and method for forming coated film
JP6369869B2 (en) Bright paint composition

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6796982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250