JP2018053861A - Operation method of power generating apparatus - Google Patents

Operation method of power generating apparatus Download PDF

Info

Publication number
JP2018053861A
JP2018053861A JP2016193091A JP2016193091A JP2018053861A JP 2018053861 A JP2018053861 A JP 2018053861A JP 2016193091 A JP2016193091 A JP 2016193091A JP 2016193091 A JP2016193091 A JP 2016193091A JP 2018053861 A JP2018053861 A JP 2018053861A
Authority
JP
Japan
Prior art keywords
steam
water
power generation
power
heat utilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016193091A
Other languages
Japanese (ja)
Other versions
JP6889462B2 (en
Inventor
尚之 生田
Naoyuki Ikuta
尚之 生田
内田 慎也
Shinya Uchida
慎也 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO SYST KK
Original Assignee
TECHNO SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO SYST KK filed Critical TECHNO SYST KK
Priority to JP2016193091A priority Critical patent/JP6889462B2/en
Publication of JP2018053861A publication Critical patent/JP2018053861A/en
Application granted granted Critical
Publication of JP6889462B2 publication Critical patent/JP6889462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively utilize regional water source and woody biomass.SOLUTION: An operation method of a power generating apparatus is provided that is comprised of: a first power generation step of generating power by introducing water from a water source through a hydraulic pipe and driving first power generation means; a water supply step of force-feeding the water passed through a hydraulic power generation plant managing the water passed through the first power generation step, to steam generation means by utilizing a water supply pump and a water supply route; a steam generation step of making high-pressure steam from the water obtained in the water supply step by steam generation means; a high-pressure steam introduction step of introducing the high-pressure steam generated in the steam generation step to steam jetting means; a second power generation step of generating power by rotating a rotating shaft at high speed by the steam jetting means and driving a second power generator by high-speed torque; and a heat utilization step of introducing the residual high-pressure steam passed through the second power generation step, to heat utilization means at a downstream side. The steam generation means in the steam generation step is a woody biomass boiler using woody biomass as a heat source, and the heat utilization means in the heat utilization step is at least any one of heat utilization equipment and a woody biomass drying chamber.SELECTED DRAWING: Figure 1

Description

本発明は、市・町・村等の発電装置の運転方法に関する。   The present invention relates to a method for operating a power generation device in a city, town, village, or the like.

特許文献1の発明の課題は、凝縮器18の小型化を図りつつ凝縮器でのエネルギー損失を低減することである。この特許文献1の発電装置10は、作動媒体液(温水)を蒸発させる蒸発手段14と、この蒸発手段14で発生した作動媒体蒸気(高圧水蒸気)が膨張機16に導入して発電機24を駆動して発電を行う発電手段25と、前記膨張機16から排出された作動媒体蒸気を凝縮させる凝縮器18と、凝縮器18で凝縮した作動媒体液の熱を利用する利用側熱交換器22とを備えるものの、前記作動媒体液(温水)は、温水圧送ポンプ38を含む循環回路12を介して前記蒸発手段14に供給する構成である(符号は特許文献1のもの)。付言すると、本願発明のように、川、沼、湖水等の地域の水源を有効活用するものではない。   The subject of the invention of Patent Document 1 is to reduce the energy loss in the condenser while reducing the size of the condenser 18. The power generation apparatus 10 of Patent Document 1 includes an evaporation unit 14 that evaporates a working medium liquid (warm water), and a working medium vapor (high-pressure steam) generated by the evaporation unit 14 is introduced into the expander 16 to cause the generator 24 to operate. Power generation means 25 that drives to generate power, a condenser 18 that condenses the working medium vapor discharged from the expander 16, and a use side heat exchanger 22 that uses the heat of the working medium liquid condensed in the condenser 18. However, the working medium liquid (warm water) is supplied to the evaporating means 14 via the circulation circuit 12 including the warm water pumping pump 38 (reference numeral is that of Patent Document 1). In addition, as in the present invention, it does not effectively utilize regional water sources such as rivers, swamps, and lakes.

ところで、近年、ソーラーバネルを地域の土地に配設した「太陽光発電事業」が頻繁に行われている。しかしながら、この太陽光事業は、地域の森林を伐採して設置面積の増大化を図るものであることから、自然が破壊されるという問題点がある。
特許文献2は、木質系バスオマスの発生熱利用方法が開示されている。この特許文献2は、燃焼ガスでガスタービン発電機を駆動し、かつ、該ガスタービン発電機で発電した電力を温室の光源や木材乾燥室の光源に利用するものである。
しかしながら、この特許文献2も特許文献1と同様に、地域の川、沼、湖水等の水源及び地域の木質バイオマスを有効的に活用するものではないから、地域の森林事業を活性化するものではない。
By the way, in recent years, a “solar power generation business” in which solar panels are arranged on local land is frequently performed. However, since this solar power project aims to increase the installation area by cutting down the local forest, there is a problem that nature is destroyed.
Patent Document 2 discloses a method for using heat generated from wood bass omas. This Patent Document 2 uses a combustion gas to drive a gas turbine generator and uses the electric power generated by the gas turbine generator as a light source for a greenhouse or a light source for a wood drying room.
However, since Patent Document 2 does not effectively use water sources such as local rivers, swamps, and lake water and local woody biomass, as in Patent Document 1, it does not activate the local forest business. Absent.

そこで、現在、環境面のみならず、地域の経済面・社会面にも配慮した発電装置の出現が要望されている。   Thus, there is a demand for the emergence of power generation devices that take into consideration not only the environment but also the economic and social aspects of the region.

特開2011−214430号公報JP 2011-214430 A 特開2005−180746号公報JP 2005-180746 A

本発明の主たる目的は、地域の水源を生かしつつ、異なる発電方式を2つ以上組み合わせ、地域全体としての発電量を増大することである。また地域の水源及び好ましくは地域の木質バイオマスを含む熱源を有効的に活用することができる発電装置を市・町・村等の地域に設け、当該地域の市町村、地域森林組合、地域の方々等との連携によって運営する地域の発電装置の運転方法を提案することである。なお、前記木質バイオマスは、地域如何によって、間伐材の供給制約がある場合には、国内のバイオマス発電の燃料が全体的に不足するので、地域の森林を保護する必要がある場合には、輸入の木質バイオマスを含んでも良い。   The main object of the present invention is to increase the amount of power generation as a whole region by combining two or more different power generation methods while utilizing the water source of the region. In addition, a power generation device that can effectively use a local water source and preferably a heat source including local woody biomass is established in a city, town, village, etc., and the municipality, local forest association, local people, etc. It is to propose a method of operating the local power generation system operated in cooperation with. The woody biomass may be imported if there is a need to protect the local forest because there is a shortage of fuel for biomass power generation in the country when there are restrictions on the supply of thinned wood depending on the region. Woody biomass may be included.

第2の目的は、発電した余剰の高圧蒸気を、少なくとも地域の熱利用設備又は木質バイオマス乾燥室のいずれかに利用し、好ましくは前記余剰の高圧蒸気を地域の熱利用設備及び木質バイオマス乾燥室の両方に利用することにより、熱源としての化石燃料を、木質バイオマスへと変換させ、これにより炭酸ガスの削減を図ることである。第3の目的は、第2の発電に使用した高圧蒸気の余剰分を第3発電機に利用し、全体として地域の発電量を増やし、当該地域の経済面・環境面・社会面での活性化を図ることである。その他、制御部が給水経路の流量を調節すること、蒸気発生タンクの圧力を調節すること、水源の水質を管理すること等である。なお、ここで「地域」とは、広義には都・道・府・県の区分けをいい、狭義には市・町・村の区分けをいう。   The second purpose is to use the generated surplus high-pressure steam at least in either the local heat utilization facility or the woody biomass drying chamber, and preferably use the surplus high-pressure steam in the local heat utilization facility and the woody biomass drying chamber. By using both, fossil fuel as a heat source is converted into woody biomass, thereby reducing carbon dioxide. The third purpose is to use the surplus of high-pressure steam used for the second power generation for the third generator, increase the amount of power generation in the region as a whole, and increase the economic, environmental, and social activities of the region. Is to make it easier. In addition, the control unit adjusts the flow rate of the water supply path, adjusts the pressure of the steam generation tank, and manages the water quality of the water source. Here, “region” means a division of a city, a town, a prefecture, or a prefecture in a broad sense, and a division of a city, a town, or a village in a narrow sense.

本発明の発電装置の運転方法は、川、沼、湖水等の水源から水圧管を介して水を導入し、かつ、第1発手段を駆動して発電を行う第1発電工程と、この第1発電工程を経た水を管理する水力発電所を経るか又は該水力発電所を経ないかのいずれかにより、前記水源からの水を給水ポンプ及び給水経路を利用して蒸気発生手段に圧送する給水工程と、この給水工程で得た水を前記蒸気発生手段で高圧蒸気にする蒸気発生工程と、この蒸気発生工程で発生した前記高圧蒸気を蒸気噴射手段に導入する高圧蒸気導入工程と、前記蒸気噴射手段により回転軸を高速回転させ、該高速回転力により第2発電機を駆動して発電を行う第2発電工程と、この第2発電工程を経た余剰の高圧蒸気を下流側の熱利用手段に導入する熱利用工程とから成る発電装置の運転方法であって、
前記蒸気発生工程の蒸気発生手段は、木質バイオマスを熱源とする木質バイオマスボイラーであり、また前記熱利用工程の熱利用手段は、少なくとも熱利用設備又は木質バイオマス乾燥室のいずれかであることを特徴とする。
The operation method of the power generation device of the present invention includes a first power generation step in which water is introduced from a water source such as a river, a swamp, a lake, etc. via a hydraulic pipe, and the first generating means is driven to generate power. The water from the water source is pumped to the steam generating means by using a water supply pump and a water supply path, either through a hydroelectric power plant that manages water that has undergone one power generation process or not through the hydroelectric power plant. A water supply step, a steam generation step for converting the water obtained in this water supply step into high-pressure steam by the steam generation means, a high-pressure steam introduction step for introducing the high-pressure steam generated in this steam generation step into a steam injection means, A second power generation step in which the rotating shaft is rotated at a high speed by the steam injection means, and the second generator is driven by the high-speed rotational force to generate power, and the excess high-pressure steam that has passed through the second power generation step is used as heat downstream Power generation device comprising a heat utilization process introduced into the means A method of operation,
The steam generation means in the steam generation step is a wood biomass boiler using wood biomass as a heat source, and the heat utilization means in the heat utilization step is at least either a heat utilization facility or a wood biomass drying chamber. And

上記構成に於いて、熱利用工程の熱利用手段は、前記第2発電工程の下流側に蒸気分配手段を介して蒸気発生手段に接続する前記地域の熱利用設備及び木質バイオマス乾燥室の両方であることを特徴とする。また熱利用工程の下流側に第3発電工程が加味され、この第3発電工程は蒸気分配手段に接続する蒸気導入ポートを介して余剰の高圧蒸気で駆動する第3発電機を用いることを特徴とする。また発電装置には制御部が含まれていると共に、木質バイオマスボイラーに水位センサーが配設され、該制御部は水位センサーの検出信号に基づき給水ポンプの回転数を制御することにより、給水経路の流量を調節することを特徴とする。また発電装置には制御部が含まれていると共に、木質バイオマスボイラーに圧力センサーが配設され、該制御部は圧力センサーの検出信号に基づき前記木質バイオマスボイラーに設けられた蒸気排出バルブの開閉を制御することにより、木質バイオマスボイラーの蒸気発生タンクの圧力を調節することを特徴とする。また給水工程には、貯水槽を含むと共に、水質を管理する水質管理工程が含まれていることを特徴とする。さらに、木質バイオマスボイラーの燃焼炉に木質バイオマス乾燥室で乾燥した木質バイオマスを供給する燃料供給工程を含むことを特徴とする発電装置の運転方法。   In the above configuration, the heat utilization means of the heat utilization process is provided in both the local heat utilization facility and the woody biomass drying chamber connected to the steam generation means via the steam distribution means on the downstream side of the second power generation process. It is characterized by being. Further, a third power generation process is added to the downstream side of the heat utilization process, and this third power generation process uses a third generator driven by surplus high-pressure steam through a steam introduction port connected to the steam distribution means. And The power generator includes a control unit, and a water level sensor is disposed in the woody biomass boiler. The control unit controls the number of rotations of the feed water pump based on the detection signal of the water level sensor. It is characterized by adjusting the flow rate. The power generator includes a control unit, and a pressure sensor is provided in the wood biomass boiler. The control unit opens and closes a steam discharge valve provided in the wood biomass boiler based on a detection signal of the pressure sensor. By controlling, the pressure of the steam generation tank of the woody biomass boiler is adjusted. The water supply process includes a water storage tank and a water quality management process for managing the water quality. Furthermore, the operating method of the power generation device characterized by including the fuel supply process which supplies the wood biomass dried in the wood biomass drying chamber to the combustion furnace of a wood biomass boiler.

なお、本明細書に於いて、「第1発電手段」は、いわゆる水力発電所であり、例えば上流の沼と発電所の地下室との間に配設された水車と、この水車の回転を利用して発電する水力発電機を含む。また「第2発電手段」は、蒸気発生手段、蒸気噴射手段及び第2発電機を含むものである。さらに第3発電手段は、前記第2発電手段の蒸気発生手段で発生した蒸気を利用する第3発電機を含むものである。   In the present specification, the “first power generation means” is a so-called hydroelectric power plant, and uses, for example, a water turbine disposed between an upstream swamp and a basement of the power plant, and rotation of the water turbine. Including a hydroelectric generator. The “second power generation means” includes steam generation means, steam injection means, and a second generator. Further, the third power generation means includes a third power generator that uses steam generated by the steam generation means of the second power generation means.

(a)請求項1に記載の発明は、地域の水源を生かしつつ、異なる発電方式を2つ以上組み合わせ、地域全体としての発電量を増大することができる。また地域の木質バイオマス燃料を継続的に生産する必要があるから、当該地域では農業・林業など新事業が創設され、この新事業により当該地域の雇用が確保される。したがって、地域の人口の拡充・若手人材の都会への流出を抑制することができる(社会的な活性化)。また当該地域での間伐材の計画伐採が可能となることで、肥えた森林化につながり、森林の単位面積あたりの炭酸ガス吸収量を増加させることが可能となると共に、ソーラパネルの設置の場合と同様に広い範囲の森林を伐採する必要がないので、水害、住民とのトラブル等の問題が発生しない。さらに、発電に利用した余剰の高圧蒸気を地域の熱利用設備(例えば熱利用設備を利用する温浴設備、病院、道路、ビニールハウス等)に利用する場合には、いわゆるヒートシェアリングが可能となると共に、該熱利用設備が現在使用している熱源としての化石燃料を、木質バイオマスに替えることができるから、炭酸ガスを削減することができる(環境面への貢献)。一方、発電に利用した余剰の高圧蒸気を木質バイオマス乾燥室に利用する場合には、地域の木質バイオマスを循環的・効率的に使用することができる。加えて、燃料費及び冷暖房費用の大幅削減が可能となると共に、木質バイオマス燃料の生産の拡大から派生する木質燃料の外販も可能となるので、農業・林業による地元の収益アップも期待することができる(経済効果)。
(b)本願発明は、川、沼、湖水等の地域の水源を利用すると共に、該地域の木質バイオマスを熱源とする上流側の木質バイオマスボイラー及び蒸気タービンを利用して発電することにより、発電装置に対する投資額を減らすことができる。付言すると、本願発明の第2発電手段は、電気事業法が適用されず、労働安全衛生法が適用されるので、発電装置の設置費用を安価にすることができる。
(c)請求項2に記載の発明は、第2発電手段を駆動した余剰の高圧蒸気(排出蒸気)を、地域の熱利用設備又は木質バイオマス乾燥室の両方に利用することにより、経済面・環境面・社会面での地域活性化をより一層図ることができる。
(d)請求項3に記載の発明は、第2発電手段の下流側で、余剰の高圧蒸気を再利用して第3発電装置を発電させ、全体としての発電量の増加を図ることができる。
(e)請求項4に記載の発明は、全体としての発電装置Yには単数又は複数の制御部が含まれていると共に、木質バイオマスボイラーに水位センサーが配設され、該制御部は水位センサーの検出信号に基づき給水ポンプの回転数を制御することにより、給水経路の流量を調節することができる。
(f)請求項5に記載の発明は、木質バイオマスボイラーに圧力センサーが配設され、制御部は圧力センサーの検出信号に基づき前記木質バイオマスボイラーに設けられた蒸気排出バルブの開閉を制御することにより、木質バイオマスボイラーの蒸気発生タンクの圧力を調節することができる。
(g)請求項6に記載の発明は、給水工程には、水質を管理する水質管理工程が含まれているので、常に綺麗な水を供給することかぎできる。
(h)請求項7に記載の発明は、木質バイオマスボイラーの燃焼炉に木質バイオマス乾燥室で乾燥した木質バイオマスを供給する燃料供給工程を含むので、循環的・効率的に木質バイオマスを燃焼させることができる。
(A) The invention according to claim 1 can increase the power generation amount as a whole area by combining two or more different power generation methods while making use of the water source in the area. In addition, because it is necessary to continuously produce woody biomass fuel in the region, new businesses such as agriculture and forestry are created in the region, and employment in the region is secured by this new project. Therefore, expansion of the local population and the outflow of young human resources to the city can be suppressed (social activation). In addition, planned thinning of thinned wood in the area will lead to a fertile forest, which will increase the amount of carbon dioxide absorbed per unit area of the forest, and when installing solar panels As with, there is no need to cut down a wide range of forests, so there will be no problems such as floods and problems with residents. Furthermore, when the excess high-pressure steam used for power generation is used for local heat utilization facilities (for example, warm bath facilities, hospitals, roads, plastic houses, etc. that utilize heat utilization facilities), so-called heat sharing becomes possible. At the same time, the fossil fuel as the heat source currently used by the heat utilization facility can be replaced with woody biomass, so that carbon dioxide gas can be reduced (contribution to the environment). On the other hand, when surplus high-pressure steam used for power generation is used in the wood biomass drying room, local wood biomass can be used cyclically and efficiently. In addition, fuel costs and heating / cooling costs can be greatly reduced, and wood fuel derived from the expansion of wood biomass fuel production can also be sold externally. Yes (economic effect)
(B) The present invention uses local water sources such as rivers, swamps, and lake waters, and generates power by using an upstream wood biomass boiler and steam turbine that use the wood biomass in the region as a heat source. The investment amount for the apparatus can be reduced. In addition, since the Electric Power Business Law is not applied to the second power generation means of the present invention, and the Occupational Safety and Health Law is applied, the installation cost of the power generator can be reduced.
(C) The invention according to claim 2 is economically efficient by using the surplus high-pressure steam (exhaust steam) that has driven the second power generation means for both the local heat utilization facility and the woody biomass drying room. Regional revitalization in terms of environment and society can be further promoted.
(D) The invention described in claim 3 can increase the amount of power generation as a whole by causing the third power generation device to generate power by reusing excess high-pressure steam downstream of the second power generation means. .
(E) In the invention according to claim 4, the power generator Y as a whole includes one or a plurality of control units, and a water level sensor is disposed in the woody biomass boiler, and the control unit is a water level sensor. The flow rate of the water supply path can be adjusted by controlling the rotation speed of the water supply pump based on the detection signal.
(F) In the invention according to claim 5, a pressure sensor is disposed in the wood biomass boiler, and the control unit controls opening and closing of a steam discharge valve provided in the wood biomass boiler based on a detection signal of the pressure sensor. Thus, the pressure of the steam generation tank of the woody biomass boiler can be adjusted.
(G) In the invention described in claim 6, since the water supply process includes a water quality management process for managing the water quality, it is always possible to supply clean water.
(H) The invention according to claim 7 includes a fuel supply step for supplying the wood biomass dried in the wood biomass drying chamber to the combustion furnace of the wood biomass boiler, so that the wood biomass is combusted cyclically and efficiently. Can do.

図1乃至図8は本発明の第1実施形態を示す各説明図である。図9乃至図10は本発明の第2実施形態を示す各説明図である
発電装置の運転方法Xを示す工程図。 運転方法に用いる発電装置Yの概略説明図。 第1発電工程の第1発電手段の一例を示す説明図。 第2発電工程の第2発電手段の一例を示す説明図(供給手段も示す)。 制御部7の制御対象を示すブロック図。 地域の熱利用設備(温水風呂に利用した一例)の概略断面図。 平面視からの説明図。 木質バイオマス乾燥室の斜視からの概略説明図。 木質バイオマス乾燥室の概略断面説明図。 本発明の第2実施形態の発電装置の運転方法X1を示す工程図。 第1発電工程の第1発電手段に加味される他の発電手段(風力発電所と地熱発電所)を示す概略説明図。
1 to 8 are explanatory views showing a first embodiment of the present invention. 9 to 10 are explanatory diagrams showing a second embodiment of the present invention.
The process figure which shows the operating method X of an electric power generating apparatus. The schematic explanatory drawing of the electric power generating apparatus Y used for an operating method. Explanatory drawing which shows an example of the 1st electric power generation means of a 1st electric power generation process. Explanatory drawing which shows an example of the 2nd electric power generation means of a 2nd electric power generation process (a supply means is also shown). The block diagram which shows the control object of the control part. Schematic cross-sectional view of local heat utilization equipment (an example used for a hot water bath). Explanatory drawing from planar view. The schematic explanatory drawing from the perspective of a woody biomass drying room. Schematic cross-sectional explanatory drawing of a woody biomass drying room. Process drawing which shows the operating method X1 of the electric power generating apparatus of 2nd Embodiment of this invention. Schematic explanatory drawing which shows the other power generation means (wind power station and geothermal power station) added to the 1st power generation means of a 1st power generation process.

図1乃至図9は本発明の一実施形態である。図1は発電装置の運転方法(以下、「運転方法」という)を示す工程図である。図2は運転方法Xに使用される発電装置Yであるから、発電装置Yの構成部材の用語をそのまま運転方法Xに用いる。   1 to 9 show an embodiment of the present invention. FIG. 1 is a process diagram showing a method for operating a power generator (hereinafter referred to as “operation method”). Since FIG. 2 shows the power generation device Y used in the operation method X, the terms of the components of the power generation device Y are used in the operation method X as they are.

まず、図1の工程図を参照にして、この運転方法Xの各工程を簡単に説明する。Wは水源、Aは第1発電工程、Bは貯水槽を含む水質管理工程、Cは給水工程、Dは蒸気発生工程、Eは高圧蒸気導入工程、Fは第2発電工程、Gは熱利用工程、Hは第3発電工程、Iは燃料供給工程である。そして、前記熱利用工程Gには単数又は複数の熱利用方法G1、G2が含まれている。本実施形態では、例えば市・町・村(狭義の地域)の水源を生かしつつ、異なる発電方式を2つ以上組み合わせている。異なる発電方式は、例えば水力発電と木質バイオマスを熱源とする木質バイオマスボイラーである。   First, each step of the operation method X will be briefly described with reference to the process diagram of FIG. W is a water source, A is a first power generation process, B is a water quality management process including a water tank, C is a water supply process, D is a steam generation process, E is a high-pressure steam introduction process, F is a second power generation process, and G is heat utilization Process, H is the third power generation process, and I is the fuel supply process. The heat utilization process G includes one or more heat utilization methods G1 and G2. In the present embodiment, for example, two or more different power generation methods are combined while utilizing a water source of a city, town, or village (narrowly defined area). Different power generation systems are, for example, wood biomass boilers that use hydropower and wood biomass as heat sources.

まず第1発電工程Aは、図3で示すように、いわゆる水力発電所1であり、この水力発電所1は、例えば水源Wの一例である上流の沼と水力発電所1の地下室1bとの間に配設された水車の回転を利用して発電する水力発電機(第1発電機)2を有している。   First, as shown in FIG. 3, the first power generation process A is a so-called hydroelectric power plant 1, and this hydroelectric power plant 1 includes, for example, an upstream swamp that is an example of a water source W and a basement 1 b of the hydroelectric power plant 1. It has a hydroelectric generator (first generator) 2 that generates electric power by utilizing the rotation of a water turbine disposed therebetween.

したがって、第1発電手段は、図示しない水車と、この水車の回転を利用して発電する第1発電機2とから成る。この第1発電工程Aの電力は地域で消費することができると共に、風力、地熱等の発電手段を加味して売電も可能である。なお、図3に於いて、1aは水源Wから第1発電機2に水を導入する水圧管、1cは第1発電機2で利用した水を貯水槽3に案内する配管である。   Accordingly, the first power generation means includes a water wheel (not shown) and a first power generator 2 that generates electric power by utilizing the rotation of the water wheel. The electric power of the first power generation process A can be consumed in the area, and can also be sold by taking into account power generation means such as wind power and geothermal power. In FIG. 3, 1 a is a water pressure pipe for introducing water from the water source W to the first generator 2, and 1 c is a pipe for guiding the water used in the first generator 2 to the water storage tank 3.

次に給水工程Cは、前記第1発電工程Aを経た水を管理する水力発電所1を経るか、又は該水力発電所1を経ないかのいずれかにより、水源Wからの水を蒸気発生手段11に圧送する。   Next, in the water supply process C, steam from the water source W is generated by either the hydroelectric power station 1 that manages the water that has passed through the first power generation process A or not through the hydroelectric power station 1. Pump to means 11.

好ましくは水力発電所1が貯水槽等の施設を一括管理することができるように、水力発電所1が管理する水質管理施設により水質管理工程Bを経た綺麗な水が、第2発電手段を構成する蒸気発生手段11に送られる。   Preferably, clean water that has undergone the water quality management process B by the water quality management facility managed by the hydroelectric power plant 1 constitutes the second power generation means so that the hydroelectric power plant 1 can collectively manage the facilities such as the water tank. Is sent to the steam generating means 11.

すなわち、この給水工程Cは、水源Wが土砂等で汚れることを考慮し、水質を管理する水質管理工程Bを含み、この水質管理工程Bでは、貯水槽3に公知の単数又は複数の浄水手段4を配設している。このように水質管理工程Bで管理された綺麗な水が、給水ポンプ5、給水経路6等を介して蒸気発生手段11に圧送される(図1乃至図3を参照)。   That is, this water supply process C includes a water quality management process B for managing the water quality in consideration of the fact that the water source W is soiled with earth and sand. In this water quality management process B, one or more known water purifying means are used in the water tank 3. 4 is disposed. Thus, the clean water managed in the water quality management process B is pumped to the steam generating means 11 through the water supply pump 5, the water supply path 6 and the like (see FIGS. 1 to 3).

ところで、実施形態では、前記給水ポンプ5は制御部7によって制御される。すなわち、発電装置Yには単数又は複数の制御部7が含まれていると共に、後述の木質バイオマスボイラー11に水位センサー22が配設され、該制御部7は水位センサー22の検出信号に基づき給水ポンプ5の回転数を制御することにより、給水経路6の流量を調節する。なお、水源Wには海水も含まれるが、本発明の課題を考慮すると、川、沼、湖水等の淡水が望ましい。   By the way, in the embodiment, the water supply pump 5 is controlled by the control unit 7. That is, the power generation device Y includes one or a plurality of control units 7, and a water level sensor 22 is disposed in the woody biomass boiler 11 described later. The control unit 7 supplies water based on the detection signal of the water level sensor 22. The flow rate of the water supply path 6 is adjusted by controlling the rotation speed of the pump 5. In addition, although the seawater is also contained in the water source W, when the subject of this invention is considered, fresh water, such as a river, a swamp, a lake water, is desirable.

次に蒸気発生工程Dは、前記給水工程Cで得た水を蒸気発生手段11で高圧蒸気にする。この蒸気発生手段11の熱源は「木質バイオマスa」である。この木質バイオマスaは、森林が存在する地域に設けられた木質バイオマス乾燥室50で乾燥される。
図4で示すように、乾燥した木質バイオマスaは、適宜に運搬されて貯蔵サイロ30に投入され、該貯蔵サイロ30のすり鉢形状の下端中央部に接続する案内管31を介してホッパー32に送られる。ホッパー32に送られた木質バイオマスaは、コンベアー、スクリュー等の搬送手段33を介して燃焼炉12に運ばれる。したがって、実施形態では、前記貯蔵サイロ30、案内管31、ホッパー32、搬送手段33から成る燃料供給工程Iが加味されている。
Next, in the steam generation step D, the water obtained in the water supply step C is converted into high pressure steam by the steam generation means 11. The heat source of the steam generating means 11 is “woody biomass a”. This woody biomass a is dried in a woody biomass drying chamber 50 provided in an area where forests exist.
As shown in FIG. 4, the dried woody biomass a is appropriately transported and put into the storage silo 30, and sent to the hopper 32 through the guide tube 31 connected to the central portion of the lower end of the mortar shape of the storage silo 30. It is done. The woody biomass a sent to the hopper 32 is carried to the combustion furnace 12 via a conveying means 33 such as a conveyor or a screw. Therefore, in the embodiment, the fuel supply process I including the storage silo 30, the guide pipe 31, the hopper 32, and the conveying means 33 is taken into consideration.

ところで、蒸気発生手段11は、例えば図4で示す構造の「木質バイオボイラー」である。この木質バイオボイラー11は、日本国では、電気事業法が適用されず、労働安全衛生法が適用されるので、設置コストを削減することができる。ここで、図4及び図5を参照にして木質バイオボイラーの構成を簡単に説明する。12は燃焼炉、13は燃焼炉の上部に一体的に設けられた蒸気発生タンク、14は燃焼炉の外壁面に設けられた煙突、15は煙突に接して配設された高圧蒸気誘導管、16は前記蒸気発生タンクの上面に一体的に設けられた縦型の噴射室、17は前記高圧蒸気誘導管の挿入先端部に設けられた複数の噴射ノズル、18は噴射室16に回転自在に内装されたタービンブレード(回転羽根)、19はタービンブレードの回転軸、20は動力伝達手段、21は第2発電機、22は水位センサー、23は圧力センサー、24は蒸気排出バルブである。   By the way, the steam generation means 11 is, for example, a “woody bioboiler” having a structure shown in FIG. This wood bioboiler 11 can reduce the installation cost because the Electricity Business Law is not applied and the Industrial Safety and Health Law is applied in Japan. Here, with reference to FIG.4 and FIG.5, the structure of a wooden bioboiler is demonstrated easily. 12 is a combustion furnace, 13 is a steam generation tank provided integrally with the upper part of the combustion furnace, 14 is a chimney provided on the outer wall surface of the combustion furnace, 15 is a high-pressure steam induction pipe disposed in contact with the chimney, 16 is a vertical injection chamber provided integrally on the upper surface of the steam generation tank, 17 is a plurality of injection nozzles provided at the insertion tip of the high-pressure steam guide tube, and 18 is rotatable in the injection chamber 16. Turbine blades (rotary blades), 19 is a rotating shaft of the turbine blade, 20 is a power transmission means, 21 is a second generator, 22 is a water level sensor, 23 is a pressure sensor, and 24 is a steam discharge valve.

次に高圧蒸気導入工程Eは、蒸気発生工程Dで発生した高圧蒸気を噴射室16に配設された噴射ノズル17に導入する。実施形態では、前述した高圧蒸気誘導管15は、上端部と略中央部或いは下端部寄りの部位に上下一対の水平管15aを有し、これらの水平管は噴射室16の一側壁を適宜に貫入している。そして、水平管15aの挿入先端部の噴射ノズル17は、タービンブレード18の受け板に対して指向している。   Next, in the high pressure steam introduction process E, the high pressure steam generated in the steam generation process D is introduced into the injection nozzle 17 disposed in the injection chamber 16. In the embodiment, the high-pressure steam guide pipe 15 described above has a pair of upper and lower horizontal pipes 15a at a position near the upper end portion and the substantially central portion or the lower end portion, and these horizontal pipes appropriately form one side wall of the injection chamber 16. It is intrusive. The injection nozzle 17 at the insertion tip of the horizontal pipe 15 a is directed toward the receiving plate of the turbine blade 18.

ところで、実施形態では、木質バイオマスボイラーの燃焼炉12の上部に圧力センサー23が配設され、前述した制御部7は圧力センサー23の検出信号に基づき前記木質バイオマスボイラーに設けられた蒸気排出バルブ24の開閉を制御する。これにより木質バイオマスボイラー11の蒸気発生タンク13の圧力を調節する。   By the way, in embodiment, the pressure sensor 23 is arrange | positioned at the upper part of the combustion furnace 12 of a wood biomass boiler, and the control part 7 mentioned above is the steam discharge valve 24 provided in the said wood biomass boiler based on the detection signal of the pressure sensor 23. Controls the opening and closing of. Thereby, the pressure of the steam generation tank 13 of the woody biomass boiler 11 is adjusted.

次に第2発電工程Fは、高圧蒸気導入工程Eの噴射ノズル17で高圧蒸気を噴射室に内装されたタービンブレード18の受け板に噴射し、かつ、該タービンブレード18の高速回転力により第2発電機21を駆動して発電を行う。この第2発電工程Fで発電された電力は、地域の熱利用手段に提供することができると共に、売電も可能である。   Next, in the second power generation process F, high-pressure steam is injected to the receiving plate of the turbine blade 18 housed in the injection chamber by the injection nozzle 17 of the high-pressure steam introduction process E, and the high-speed rotational force of the turbine blade 18 is used for the first generation. 2 The generator 21 is driven to generate power. The electric power generated in the second power generation process F can be provided to local heat utilization means and can also be sold.

次に熱利用工程Gは、第2発電工程Hを経た余剰の高圧蒸気を下流側の熱利用手段(設備G1、乾燥室G2………光源In)に導入する。図6及び図7は地域の熱利用設備G1の一例としての「温水風呂」を概略的に示したものである。一方、図8及び図9は地域の熱利用設備G2の一例としての「木質バイオマス乾燥室」を概略的に示したものである。もちろん、熱利用設備G1、G2は、これらに限定するものではない。   Next, in the heat utilization process G, surplus high-pressure steam that has passed through the second power generation process H is introduced into downstream heat utilization means (equipment G1, drying chamber G2,..., Light source In). 6 and 7 schematically show a “hot water bath” as an example of a local heat utilization facility G1. On the other hand, FIGS. 8 and 9 schematically show a “woody biomass drying room” as an example of a local heat utilization facility G2. Of course, the heat utilization facilities G1 and G2 are not limited to these.

図6及び図7で示すように、温水風呂G1は、例えば風呂本体40の床下41の空間部42に余剰の高圧蒸気を一方向に案内するヒータ43が蛇行状に配設されている。したがって、前記ヒータ43は熱交換器である。   As shown in FIGS. 6 and 7, in the hot water bath G <b> 1, for example, a heater 43 that guides excess high-pressure steam in one direction is arranged in a meandering manner in a space portion 42 under the floor 41 of the bath body 40. Therefore, the heater 43 is a heat exchanger.

また図8及び図9で示すように、木質バイオマス乾燥室G2は、上述の温水風呂G1と同様に、所定空間を有する乾燥室本体50の床下51の空間部52に余剰の高圧蒸気を一方向に案内するヒータ53が蛇行状に配設されている。したがって、前記ヒータ53は熱交換器である。   Further, as shown in FIGS. 8 and 9, the woody biomass drying chamber G2 unidirectionally sends excess high-pressure steam to the space portion 52 of the underfloor 51 of the drying chamber main body 50 having a predetermined space in the same manner as the hot water bath G1 described above. A heater 53 is provided in a meandering manner. Therefore, the heater 53 is a heat exchanger.

なお、乾燥室本体50には、空気を乾燥室本体内に導入する第1ダクト54、湿気を乾燥室本体50外へ排出するための排出ダクト55、送風機56、乾燥用の木質バイオマスaを載せる乾燥台57が適宜に設けられている。また、前記乾燥台57は望ましくは網目状のものが採用されている。また乾燥台57は固定式であるが、可動式のものが望ましい。   The drying chamber main body 50 is loaded with a first duct 54 for introducing air into the drying chamber main body, a discharge duct 55 for discharging moisture out of the drying chamber main body 50, a blower 56, and woody biomass a for drying. A drying table 57 is provided as appropriate. The drying table 57 is preferably a net-like one. The drying table 57 is a fixed type, but a movable type is desirable.

熱利用工程Gは第2発電手段の下流側に接続する地域の熱利用設備G1又は木質バイオマス乾燥室G2のいずれか一方で良いが、好ましくは第2発電手段に蒸気分配手段25を介して接続する地域の熱利用設備G1及び木質バイオマス乾燥室G2の両方である。
また地域の熱利用設備G1は、例えば熱利用設備を利用する温浴設備、病院、道路、ビニールハウス、学校、役場、住宅等である。なお、実施形態では、木質バイオマスボイラーの燃焼炉に木質バイオマス乾燥室で乾燥した木質バイオマスを供給する燃料供給工程Iを含む(図1、図2)。
The heat utilization process G may be either the regional heat utilization facility G1 or the woody biomass drying chamber G2 connected to the downstream side of the second power generation means, but is preferably connected to the second power generation means via the steam distribution means 25. It is both the heat utilization equipment G1 and the woody biomass drying room G2 of the area to do.
The regional heat utilization equipment G1 is, for example, a hot bath facility, a hospital, a road, a plastic house, a school, a government office, a house, or the like that uses the heat utilization equipment. In addition, in embodiment, the fuel supply process I which supplies the wood biomass dried in the wood biomass drying chamber to the combustion furnace of a wood biomass boiler is included (FIG. 1, FIG. 2).

最後に運転方法Xの実施形態では、前記熱利用工程Gの下流側に第3発電工程Hが加味されている。この第2発電工程Fは蒸気分配手段(例えば蒸気ベーグ)25に接続する蒸気導入ポート26を介して余剰の高圧蒸気で回転する第3タービンブレード18Aと、この第2タービンブレードの回転力により第3発電機21Aを駆動して発電を行う。この第3発電機21Aは、第2発電機21よりも小型である。この第3発電機を用いた第3発電工程Hでは、熱効率を高めるために、蒸気を凝縮する公知の凝縮器を適宜に用いても良い。この第3発電工程Hを経た余剰の蒸気は、熱交換器、熱交換管等の熱交換手段により熱が抜かれると、液化して温水となるので、該温水をさらに図示しない熱利用設備で利用することもできる。実施形態では、液化して温水を循環しないで、適宜に利用するか、又は水源Wに戻される。   Finally, in the embodiment of the operation method X, the third power generation process H is added to the downstream side of the heat utilization process G. The second power generation step F includes a third turbine blade 18A that rotates with surplus high-pressure steam via a steam introduction port 26 connected to a steam distribution means (for example, a steam bag) 25, and the second turbine blade rotational force. 3 The generator 21A is driven to generate power. The third generator 21A is smaller than the second generator 21. In the third power generation step H using the third generator, a known condenser that condenses the vapor may be appropriately used in order to increase thermal efficiency. The surplus steam that has passed through the third power generation step H is liquefied and becomes hot water when the heat is removed by heat exchange means such as a heat exchanger, a heat exchange pipe, and the like. It can also be used. In the embodiment, the liquid is liquefied and used as appropriate without circulating hot water, or returned to the water source W.

特に図示しないが、本実施形態に於いて、蒸気噴射手段の一例として噴射ノズル17、タービンブレード18及び動力伝達手段20の構成を図示したが、これらの構成を、特許文献1と同様に「膨脹機」に代えても良い。膨脹機は蒸気発生タンク13で発生した高圧蒸気(作動蒸気)により、第2発電工程Hにおける第2発電機21の回転軸19を高速回転させる蒸気噴射手段である。したがって、第3発電工程Hにおける第3発電機21Aも同様である。   Although not shown in the drawings, in the present embodiment, the configuration of the injection nozzle 17, the turbine blade 18 and the power transmission unit 20 is shown as an example of the steam injection unit. It may be replaced with “machine”. The expander is steam injection means for rotating the rotating shaft 19 of the second generator 21 in the second power generation process H at high speed by high-pressure steam (working steam) generated in the steam generation tank 13. Therefore, the 3rd generator 21A in the 3rd power generation process H is also the same.

また貯蔵サイロ30のすり鉢状の下端部又は案内管31の適宜箇所に制御部7の制御信号により開閉する磁気式開閉弁35を設け、該磁気式開閉弁35、が開いた時に、貯蔵サイロ30内の木質バイオマスaが自然落下するように構成しても良い。このように構成すると、自動的に木質バイオマスaを搬送手段33に載せることができる。   In addition, a magnetic opening / closing valve 35 that opens and closes by a control signal from the control unit 7 is provided at an appropriate position of the mortar-shaped lower end of the storage silo 30 or the guide tube 31, and when the magnetic opening / closing valve 35 is opened, the storage silo 30 is opened. You may comprise so that the woody biomass a inside may fall naturally. If comprised in this way, the woody biomass a can be automatically mounted on the conveyance means 33. FIG.

なお、本実施形態では、第1発電工程Aは、水力発電所1であるが、この水力発電所1に、他の発電手段(風力発電所1Aと地熱発電所1B)を加味しても良い。図10は本発明の第2実施形態の発電装置の運転方法X1を示す工程図、図11は第1発電工程の第1発電手段に風力発電所1Aと地熱発電所1Bをそれぞれ加味した概略説明図である。風力発電所1Aと地熱発電所1Bの具体的構成は周知技術なので、割愛する。なお、60は変電所である。   In the present embodiment, the first power generation step A is the hydroelectric power plant 1, but other power generation means (wind power plant 1A and geothermal power plant 1B) may be added to the hydroelectric power plant 1. . FIG. 10 is a process diagram showing an operation method X1 of the power generator according to the second embodiment of the present invention, and FIG. 11 is a schematic explanation in which a wind power station 1A and a geothermal power station 1B are added to the first power generation means of the first power generation process. FIG. Since the specific configurations of the wind power plant 1A and the geothermal power plant 1B are well-known technologies, they are omitted. Reference numeral 60 denotes a substation.

本発明は、市・町・村等の地域の発電装置の運転方法である。   The present invention is a method of operating a power generation device in a region such as a city, town, or village.

X、X1…運転方法、
Y…発電装置、
W…水源、
a…木質バイオマス、
A…第1発電工程
B…水質管理工程、
C…給水工程、
D…蒸気発生工程、
E…高圧蒸気導入工程、
F…第2発電工程、
G…熱利用工程、
G1…地域の熱利用設備、
G2…地域の木質バイオマス乾燥室、
H…第3発電工程、
I…燃料供給工程、
1…水力発電所、
2…第1発電手段、
3…貯水槽、
4…浄水手段、
5…給水ポンプ、
6…給水経路、
7…制御部、
11…蒸気発生手段(木質バイオマスボイラー)、
12…燃焼炉、
13…蒸気発生タンク、
14…煙突、
15…高圧蒸気誘導管、
16…噴射室、
17…噴射ノズル、
18…タービンブレード、
19…回転軸、
20…動力伝達手段、
21…第2発電機、
21A…第3発電機、
22…水位センサー、
23…圧力センサー、
24…蒸気排出バルブ、
25…蒸気分配手段、
26…蒸気導入ポート、
30…貯蔵サイロ、
31…案内管、
32…ホッパー、
33…搬送手段、
35…磁気式開閉弁。
X, X1 ... Driving method,
Y ... Power generator,
W ... Water source
a ... woody biomass,
A ... First power generation process B ... Water quality management process,
C ... Water supply process
D: Steam generation process,
E ... High-pressure steam introduction process,
F ... Second power generation process,
G ... Heat utilization process,
G1… Local heat utilization facilities,
G2: Regional woody biomass drying room,
H ... Third power generation process,
I ... Fuel supply process,
1 ... Hydroelectric power plant,
2 ... 1st power generation means,
3 ... Water tank,
4 ... water purification means,
5 ... Water supply pump,
6 ... Water supply route
7: Control unit,
11 ... Steam generating means (woody biomass boiler),
12 ... Combustion furnace,
13. Steam generation tank,
14 ... chimney,
15 ... high pressure steam induction tube,
16 ... injection chamber,
17 ... injection nozzle,
18 ... turbine blade,
19 ... Rotating shaft,
20 ... power transmission means,
21 ... second generator,
21A ... the third generator,
22 ... Water level sensor,
23 ... Pressure sensor,
24. Steam discharge valve,
25 ... Vapor distribution means,
26: Steam introduction port,
30 ... Storage silo,
31 ... Guide tube,
32 ... Hopper,
33 ... conveying means,
35 ... Magnetic on-off valve.

Claims (7)

川、沼、湖水等の水源から水圧管を介して水を導入し、かつ、第1発電手段を駆動して発電を行う第1発電工程と、この第1発電工程を経た水を管理する水力発電所を経るか又は該水力発電所を経ないかのいずれかにより、前記水源からの水を給水ポンプ及び給水経路を利用して蒸気発生手段に圧送する給水工程と、この給水工程で得た水を前記蒸気発生手段で高圧蒸気にする蒸気発生工程と、この蒸気発生工程で発生した前記高圧蒸気を蒸気噴射手段に導入する高圧蒸気導入工程と、前記蒸気噴射手段により回転軸を高速回転させ、該高速回転力により第2発電機を駆動して発電を行う第2発電工程と、この第2発電工程を経た余剰の高圧蒸気を下流側の熱利用手段に導入する熱利用工程とから成る発電装置の運転方法であって、
前記蒸気発生工程の蒸気発生手段は、木質バイオマスを熱源とする木質バイオマスボイラーであり、また前記熱利用工程の熱利用手段は、少なくとも熱利用設備又は木質バイオマス乾燥室のいずれかであることを特徴とする発電装置の運転方法。
A first power generation process in which water is introduced from a water source such as a river, a marsh, or a lake through a hydraulic pipe, and the first power generation means is driven to generate power, and the hydropower that manages the water that has passed through the first power generation process. A water supply process in which water from the water source is pumped to the steam generating means using a water supply pump and a water supply path, either through a power plant or not through the hydropower plant, and obtained in this water supply step A steam generation step for converting water into high-pressure steam by the steam generation means, a high-pressure steam introduction step for introducing the high-pressure steam generated in the steam generation step into the steam injection means, and a rotation shaft rotated at high speed by the steam injection means. A second power generation step of generating power by driving the second generator with the high-speed rotational force, and a heat utilization step of introducing surplus high-pressure steam that has passed through the second power generation step into heat utilization means on the downstream side A method of operating a power generator,
The steam generation means in the steam generation step is a wood biomass boiler using wood biomass as a heat source, and the heat utilization means in the heat utilization step is at least either a heat utilization facility or a wood biomass drying chamber. A method of operating the power generator.
請求項1に於いて、熱利用工程の熱利用手段は、第2発電工程の下流側に蒸気分配手段を介して蒸気発生手段に接続する前記地域の熱利用設備及び木質バイオマス乾燥室の両方であることを特徴とする発電装置の運転方法。 2. The heat utilization means of the heat utilization process according to claim 1, wherein both the heat utilization facility and the woody biomass drying chamber in the area connected to the steam generation means via the steam distribution means downstream of the second power generation process. A method for operating a power generator, comprising: 請求項1に於いて、熱利用工程の下流側に第3発電工程が加味され、この第3発電工程は蒸気分配手段に接続する蒸気導入ポートを介して余剰の高圧蒸気で駆動する第3発電機を用いることを特徴とする発電装置の運転方法。 3. The third power generation process according to claim 1, wherein a third power generation process is added to the downstream side of the heat utilization process, and the third power generation process is driven by surplus high-pressure steam through a steam introduction port connected to the steam distribution means. A method of operating a power generation apparatus using a machine. 請求項1に於いて、発電装置には制御部が含まれていると共に、木質バイオマスボイラーに水位センサーが配設され、該制御部は水位センサーの検出信号に基づき給水ポンプの回転数を制御することにより、給水経路の流量を調節することを特徴とする発電装置の運転方法。 The power generation device according to claim 1, wherein the power generation device includes a control unit, and a water level sensor is disposed in the woody biomass boiler, and the control unit controls the rotation speed of the feed water pump based on a detection signal of the water level sensor. The operating method of the power generator characterized by adjusting the flow volume of a water supply path | route. 請求項1に於いて、発電装置には制御部が含まれていると共に、木質バイオマスボイラーに圧力センサーが配設され、該制御部は圧力センサーの検出信号に基づき前記木質バイオマスボイラーに設けられた蒸気排出バルブの開閉を制御することにより、木質バイオマスボイラーの蒸気発生タンクの圧力を調節することを特徴とする発電装置の運転方法。 The power generator includes a control unit, and a pressure sensor is provided in the wood biomass boiler. The control unit is provided in the wood biomass boiler based on a detection signal of the pressure sensor. A method for operating a power generation apparatus, wherein the pressure of a steam generation tank of a wood biomass boiler is adjusted by controlling opening and closing of a steam discharge valve. 請求項1に於いて、給水工程には貯水槽が含まれていると共に、水質を管理する水質管理工程が含まれていることを特徴とする発電装置の運転方法。 2. The method of operating a power generation device according to claim 1, wherein the water supply process includes a water storage tank and a water quality management process for managing the water quality. 請求項1に於いて、木質バイオマスボイラーの燃焼炉に木質バイオマス乾燥室で乾燥した木質バイオマスを供給する燃料供給工程を含むことを特徴とする発電装置の運転方法。 2. The method of operating a power generator according to claim 1, further comprising a fuel supply step of supplying the wood biomass dried in the wood biomass drying chamber to the combustion furnace of the wood biomass boiler.
JP2016193091A 2016-09-30 2016-09-30 How to operate the power generator Active JP6889462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016193091A JP6889462B2 (en) 2016-09-30 2016-09-30 How to operate the power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016193091A JP6889462B2 (en) 2016-09-30 2016-09-30 How to operate the power generator

Publications (2)

Publication Number Publication Date
JP2018053861A true JP2018053861A (en) 2018-04-05
JP6889462B2 JP6889462B2 (en) 2021-06-18

Family

ID=61833958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016193091A Active JP6889462B2 (en) 2016-09-30 2016-09-30 How to operate the power generator

Country Status (1)

Country Link
JP (1) JP6889462B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391404A (en) * 1986-10-02 1988-04-22 平野ボイラー株式会社 Steam supply maintaining device in boiler for manufacturing tea
JP2002034291A (en) * 2000-07-13 2002-01-31 Miura Co Ltd Method for controlling speed of electric motor and method for controlling boiler
JP2005257211A (en) * 2004-03-12 2005-09-22 Daiwa Kagaku Kogyo Kk Treatment system of biomass such as excreta
JP2013210123A (en) * 2012-03-30 2013-10-10 Koriyama Chip Industry Corp Woody biomass power generation system
JP2014129731A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Thermal power system
JP2015127594A (en) * 2013-12-27 2015-07-09 三菱日立パワーシステムズ株式会社 Boiler feedwater system
JP2016127755A (en) * 2015-01-07 2016-07-11 株式会社神戸製鋼所 Generation power smoothing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391404A (en) * 1986-10-02 1988-04-22 平野ボイラー株式会社 Steam supply maintaining device in boiler for manufacturing tea
JP2002034291A (en) * 2000-07-13 2002-01-31 Miura Co Ltd Method for controlling speed of electric motor and method for controlling boiler
JP2005257211A (en) * 2004-03-12 2005-09-22 Daiwa Kagaku Kogyo Kk Treatment system of biomass such as excreta
JP2013210123A (en) * 2012-03-30 2013-10-10 Koriyama Chip Industry Corp Woody biomass power generation system
JP2014129731A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Thermal power system
JP2015127594A (en) * 2013-12-27 2015-07-09 三菱日立パワーシステムズ株式会社 Boiler feedwater system
JP2016127755A (en) * 2015-01-07 2016-07-11 株式会社神戸製鋼所 Generation power smoothing system

Also Published As

Publication number Publication date
JP6889462B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
RU2443935C2 (en) Gas decompression plant, gas reduction station with such plant, and gas decompression method
WO2011121852A1 (en) Steam generation apparatus and energy supplying system using same
US20110266804A1 (en) Ancient hydroelectric company
CN104074692A (en) Integrative System of Concentrating Solar Power Plant and Desalineation Plant
KR101632713B1 (en) A system for electricity generation and water desalination
KR20190062802A (en) A Seawater Desalination Load Bank System and Its Control Method for Ocean Thermal Energy Conversion System Test and Surplus Power Utilization for Grid Stabilization
CN205013056U (en) Water and electricity cogeneration system
EP3002423B1 (en) Combined cycle power plant with a thermal storage unit and method for generating electricity by using the combined cycle power plant
JP2013167178A (en) Power generation system
CN107191344A (en) Gravity heat engine and electricity generation system
JP6889461B2 (en) How to operate the power generator
JP6889462B2 (en) How to operate the power generator
CN107975787A (en) A kind of multiple coupled electricity generation system and electricity-generating method
CN101070818A (en) Air temperature-difference generating system
KR20150132046A (en) Power generation system using the steam and air and hydraulic
CN201109723Y (en) Supply utilization apparatus for sea water desalination and power generation
ES2304226B1 (en) MECHANICAL MOVEMENT GENERATOR SYSTEM FOR THE PRODUCTION OF ELECTRICAL ENERGY THROUGH THE APPLICATION AND COMBUSTION OF HYDROGEN.
US11174785B2 (en) Method for storing energy and for dispensing energy into an energy supply grid, pressurized gas storage power plant and computer program
WO2009059959A2 (en) Apparatus and method for generating energy
CN203925900U (en) Supplementary heat-energy utilizes the cooling electricity generating device of physical environment temperature
CN104696140A (en) Small hydroelectric generation device
CN203833650U (en) Water and electricity cogeneration system
JP4411493B2 (en) Hydroelectric power generation equipment using cooling discharge water
JP2011220539A (en) Self-generating type electric boiler
CN2821201Y (en) Solar energy wind power device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210514

R150 Certificate of patent or registration of utility model

Ref document number: 6889462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150