JP2018053090A - Resin composition and resin molding - Google Patents

Resin composition and resin molding Download PDF

Info

Publication number
JP2018053090A
JP2018053090A JP2016190270A JP2016190270A JP2018053090A JP 2018053090 A JP2018053090 A JP 2018053090A JP 2016190270 A JP2016190270 A JP 2016190270A JP 2016190270 A JP2016190270 A JP 2016190270A JP 2018053090 A JP2018053090 A JP 2018053090A
Authority
JP
Japan
Prior art keywords
polyamide
mass
structural unit
aromatic ring
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016190270A
Other languages
Japanese (ja)
Other versions
JP6957850B2 (en
Inventor
大越 雅之
Masayuki Ogoshi
雅之 大越
守屋 博之
Hiroyuki Moriya
博之 守屋
宮本 剛
Takeshi Miyamoto
宮本  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2016190270A priority Critical patent/JP6957850B2/en
Publication of JP2018053090A publication Critical patent/JP2018053090A/en
Application granted granted Critical
Publication of JP6957850B2 publication Critical patent/JP6957850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition that makes it possible to obtain a resin molding having excellent impact resistance at low temperature.SOLUTION: A resin composition contains a thermoplastic resin, a carbon fiber, a polyamide, and a compatibilizer with an acid value of 10 mgKOH/g or more and 60 mgKOH/g or less.SELECTED DRAWING: None

Description

本発明は、樹脂組成物、及び樹脂成形体に関する。   The present invention relates to a resin composition and a resin molded body.

従来、樹脂組成物としては種々のものが提供され、各種用途に使用されている。
特に、熱可塑性樹脂を含む樹脂組成物は、家電製品や自動車の各種部品、筐体等、また事務機器、電子電気機器の筐体などの部品に使用される。
Conventionally, various resin compositions have been provided and used for various applications.
In particular, a resin composition containing a thermoplastic resin is used in parts such as home appliances, various parts of automobiles, casings, office equipment, and casings of electronic and electrical equipment.

例えば、特許文献1には、「(a)0.1〜90重量%の少なくとも1種類のポリオレフィン、(b)0.1〜50重量%の少なくとも1種類のポリアミド、(c)0.1〜15重量%の少なくとも1種類の修飾ポリオレフィン、(d)5.0〜75重量%の少なくとも1種類の強化用繊維、(e)0.1〜10重量%の少なくとも1種類の硫黄含有添加剤を含む、3mm以上の長さを有する長繊維強化ポリオレフィン構造体」が開示されている。   For example, Patent Document 1 discloses that “(a) 0.1 to 90% by weight of at least one polyolefin, (b) 0.1 to 50% by weight of at least one polyamide, (c) 0.1 to 0.1% by weight,” 15% by weight of at least one modified polyolefin, (d) 5.0-75% by weight of at least one reinforcing fiber, (e) 0.1-10% by weight of at least one sulfur-containing additive. A long fiber reinforced polyolefin structure having a length of 3 mm or more is disclosed.

また、特許文献2には、「酸変性ポリオレフィン(A)ブロックおよびポリアミド(B)ブロックを有し、13C−NMRによるアミド基由来の炭素と、メチル基、メチレン基およびメチン基由来の炭素との比(α)が、0.5/99.5〜12/88であるポリマー(X)を含有してなるポリオレフィン樹脂用改質剤」が開示されている。さらに、特許文献2には、「このポリオレフィン樹脂用改質剤(K)、ポリオレフィン樹脂(D)および無機繊維(E)を含有してなる無機繊維含有ポリオレフィン樹脂組成物。」が開示されている。 Patent Document 2 discloses that “it has an acid-modified polyolefin (A) block and a polyamide (B) block, carbon derived from an amide group by 13 C-NMR, carbon derived from a methyl group, a methylene group, and a methine group” Is a polyolefin resin modifier comprising a polymer (X) having a ratio (α) of 0.5 / 99.5 to 12/88 ”. Furthermore, Patent Document 2 discloses "Inorganic fiber-containing polyolefin resin composition comprising this polyolefin resin modifier (K), polyolefin resin (D) and inorganic fiber (E)." .

特表2003−528956号公報Japanese translation of PCT publication No. 2003-528956 特開2014−181307号公報JP 2014-181307 A

本発明の課題は、熱可塑性樹脂と炭素繊維とポリアミドと相溶化剤とを含む樹脂組成物において、相溶化剤の酸価が10mgKOH/g未満又は60mgKOH/g超えの場合に比べ、低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物を提供することにある。   An object of the present invention is to provide a resin composition containing a thermoplastic resin, carbon fiber, polyamide, and a compatibilizing agent at a lower temperature than when the acid value of the compatibilizing agent is less than 10 mgKOH / g or more than 60 mgKOH / g. It is providing the resin composition from which the resin molding excellent in impact resistance is obtained.

上記課題は、以下の本発明によって達成される。   The above object is achieved by the present invention described below.

請求項1に係る発明は、
熱可塑性樹脂と、
炭素繊維と、
ポリアミドと、
酸価が10mgKOH/g以上60mgKOH/g以下の相溶化剤と、
を含む樹脂組成物。
The invention according to claim 1
A thermoplastic resin;
Carbon fiber,
Polyamide,
A compatibilizer having an acid value of 10 mgKOH / g or more and 60 mgKOH / g or less;
A resin composition comprising:

請求項2に係る発明は、
前記ポリアミドが、ジカルボン酸とジアミンとが縮重合した構造単位、又はラクタムが開環した構造単位であって、アラミド構造単位を除く芳香環を含む構造単位と、芳香環を含まない構造単位とを有するポリアミドである請求項1に記載の樹脂組成物。
The invention according to claim 2
The polyamide is a structural unit in which a dicarboxylic acid and a diamine are polycondensated, or a structural unit in which a lactam is opened, and includes a structural unit that includes an aromatic ring excluding an aramid structural unit, and a structural unit that does not include an aromatic ring. The resin composition according to claim 1, which is a polyamide having.

請求項3に係る発明は、
前記芳香環を含む構造単位が、下記構造単位(1)及び(2)の少なくとも一方であり、
前記芳香環を含まない構造単位が、下記構造単位(3)及び(4)の少なくとも一方である請求項2に記載の樹脂組成物。
・構造単位(1):−(−NH−Ar−NH−CO−R−CO−)−
(構造単位(1)中、Arは芳香環を含む2価の有機基を示す。Rは芳香環を含まない2価の有機基を示す。)
・構造単位(2):−(−NH−R−NH−CO−Ar−CO−)−
(構造単位(2)中、Arは芳香環を含む2価の有機基を示す。Rは芳香環を含まない2価の有機基を示す。)
・構造単位(3):−(−NH−R31−NH−CO−R32−CO−)−
(構造単位(3)中、R31は芳香環を含まない2価の有機基を示す。R32は芳香環を含まない2価の有機基を示す。)
・構造単位(4):−(−NH−R−CO−)−
(構造単位(4)中、Rは芳香環を含まない2価の有機基を示す)
The invention according to claim 3
The structural unit containing the aromatic ring is at least one of the following structural units (1) and (2);
The resin composition according to claim 2, wherein the structural unit not containing the aromatic ring is at least one of the following structural units (3) and (4).
Structural unit (1): — (— NH—Ar 1 —NH—CO—R 1 —CO —) —
(In the structural unit (1), Ar 1 represents a divalent organic group containing an aromatic ring. R 1 represents a divalent organic group containing no aromatic ring.)
Structural unit (2): — (— NH—R 2 —NH—CO—Ar 2 —CO —) —
(In the structural unit (2), Ar 2 represents a divalent organic group containing an aromatic ring. R 2 represents a divalent organic group containing no aromatic ring.)
Structural unit (3): — (— NH—R 31 —NH—CO—R 32 —CO —) —
(In the structural unit (3), R 31 represents a divalent organic group containing no aromatic ring. R 32 represents a divalent organic group containing no aromatic ring.)
Structural unit (4): — (— NH—R 4 —CO —) —
(In the structural unit (4), R 4 represents a divalent organic group containing no aromatic ring)

請求項4に係る発明は、
前記ポリアミドが、前記芳香環を含む構造単位を有する第1ポリアミドと、前記芳香環を含まない構造単位を有する第2ポリアミドと、を共重合した共重合ポリアミドである請求項2又は請求項3に記載の樹脂組成物。
The invention according to claim 4
The polyamide according to claim 2 or 3, wherein the polyamide is a copolymerized polyamide obtained by copolymerizing a first polyamide having a structural unit containing the aromatic ring and a second polyamide having a structural unit not containing the aromatic ring. The resin composition as described.

請求項5に係る発明は、
前記ポリアミドが、前記芳香環を含む構造単位を有する第1ポリアミドと、前記芳香環を含まない構造単位を有する第2ポリアミドと、を含む混合ポリアミドである請求項2又は請求項3に記載の樹脂組成物。
The invention according to claim 5
The resin according to claim 2 or 3, wherein the polyamide is a mixed polyamide containing a first polyamide having a structural unit containing the aromatic ring and a second polyamide having a structural unit not containing the aromatic ring. Composition.

請求項6に係る発明は、
前記ポリアミドの芳香環の割合が、10質量%以上40質量%以下である請求項2〜請求項5のいずれか1項に記載の樹脂組成物。
The invention according to claim 6
The resin composition according to any one of claims 2 to 5, wherein a ratio of the aromatic ring of the polyamide is 10% by mass or more and 40% by mass or less.

請求項7に係る発明は、
前記炭素繊維の平均繊維長が0.1mm以上5.0mm以下である請求項1〜請求項6のいずれか1項に記載の樹脂組成物。
The invention according to claim 7 provides:
The resin composition according to any one of claims 1 to 6, wherein an average fiber length of the carbon fibers is from 0.1 mm to 5.0 mm.

請求項8に係る発明は、
前記熱可塑性樹脂が、ポリオレフィンである請求項1〜請求項7のいずれか1項に記載の樹脂組成物。
The invention according to claim 8 provides:
The resin composition according to any one of claims 1 to 7, wherein the thermoplastic resin is a polyolefin.

請求項9に係る発明は、
前記相溶化剤が、修飾ポリオレフィンである請求項1〜請求項8のいずれか1項に記載の樹脂組成物。
The invention according to claim 9 is:
The resin composition according to any one of claims 1 to 8, wherein the compatibilizer is a modified polyolefin.

請求項10に係る発明は、
前記炭素繊維の含有量が、前記熱可塑性樹脂100質量部に対し0.1質量部以上200質量部以下である請求項1〜請求項9のいずれか1項に記載の樹脂組成物。
The invention according to claim 10 is:
The resin composition according to any one of claims 1 to 9, wherein a content of the carbon fiber is 0.1 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.

請求項11に係る発明は、
前記ポリアミドの含有量が、熱可塑性樹脂100質量部に対し0.1質量部以上100質量部以下である請求項1〜請求項10のいずれか1項に記載の樹脂組成物。
The invention according to claim 11 is:
The resin composition according to any one of claims 1 to 10, wherein a content of the polyamide is 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.

請求項12に係る発明は、
前記相溶化剤の含有量が、前記熱可塑性樹脂100質量部に対し1質量部以上50質量部以下である請求項1〜請求項11のいずれか1項に記載の樹脂組成物。
The invention according to claim 12
The resin composition according to any one of claims 1 to 11, wherein a content of the compatibilizing agent is 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.

請求項13に係る発明は、
前記炭素繊維の質量に対する、前記ポリアミドの含有量が、1質量%以上200質量%以下である請求項1〜請求項12のいずれか1項に記載の樹脂組成物。
The invention according to claim 13 is:
The resin composition according to any one of claims 1 to 12, wherein a content of the polyamide with respect to a mass of the carbon fiber is 1% by mass or more and 200% by mass or less.

請求項14に係る発明は、
前記炭素繊維の質量に対する、前記相溶化剤の含有量が、1質量%以上100質量%以下である請求項1〜請求項13のいずれか1項に記載の樹脂組成物。
The invention according to claim 14 is:
The resin composition according to any one of claims 1 to 13, wherein a content of the compatibilizing agent with respect to a mass of the carbon fiber is 1% by mass or more and 100% by mass or less.

請求項15に係る発明は、
熱可塑性樹脂と、
炭素繊維と、
ポリアミドと、
酸価が10mgKOH/g以上60mgKOH/g以下の相溶化剤と、
を含む樹脂成形体
The invention according to claim 15 is:
A thermoplastic resin;
Carbon fiber,
Polyamide,
A compatibilizer having an acid value of 10 mgKOH / g or more and 60 mgKOH / g or less;
Resin molded body containing

請求項16に係る発明は、
前記ポリアミドが、ジカルボン酸とジアミンとが縮重合した構造単位、又はラクタムが開環した構造単位であって、アラミド構造単位を除く芳香環を含む構造単位と、芳香環を含まない構造単位とを有するポリアミドである請求項15に記載の樹脂成形体。
The invention according to claim 16 provides:
The polyamide is a structural unit in which a dicarboxylic acid and a diamine are polycondensated, or a structural unit in which a lactam is opened, and includes a structural unit that includes an aromatic ring excluding an aramid structural unit, and a structural unit that does not include an aromatic ring. The resin molded body according to claim 15, which is a polyamide having.

請求項17に係る発明は、
前記芳香環を含む構造単位が、下記構造単位(1)及び(2)の少なくとも一方であり、
前記芳香環を含まない構造単位が、下記構造単位(3)及び(4)の少なくとも一方である請求項16に記載の樹脂成形体。
・構造単位(1):−(−NH−Ar−NH−CO−R−CO−)−
(構造単位(1)中、Arは芳香環を含む2価の有機基を示す。Rは芳香環を含まない2価の有機基を示す。)
・構造単位(2):−(−NH−R−NH−CO−Ar−CO−)−
(構造単位(2)中、Arは芳香環を含む2価の有機基を示す。Rは芳香環を含まない2価の有機基を示す。)
・構造単位(3):−(−NH−R31−NH−CO−R32−CO−)−
(構造単位(3)中、R31は芳香環を含まない2価の有機基を示す。R32は芳香環を含まない2価の有機基を示す。)
・構造単位(4):−(−NH−R−CO−)−
(構造単位(4)中、Rは芳香環を含まない2価の有機基を示す)
The invention according to claim 17 provides:
The structural unit containing the aromatic ring is at least one of the following structural units (1) and (2);
The resin molded body according to claim 16, wherein the structural unit not containing an aromatic ring is at least one of the following structural units (3) and (4).
Structural unit (1): — (— NH—Ar 1 —NH—CO—R 1 —CO —) —
(In the structural unit (1), Ar 1 represents a divalent organic group containing an aromatic ring. R 1 represents a divalent organic group containing no aromatic ring.)
Structural unit (2): — (— NH—R 2 —NH—CO—Ar 2 —CO —) —
(In the structural unit (2), Ar 2 represents a divalent organic group containing an aromatic ring. R 2 represents a divalent organic group containing no aromatic ring.)
Structural unit (3): — (— NH—R 31 —NH—CO—R 32 —CO —) —
(In the structural unit (3), R 31 represents a divalent organic group containing no aromatic ring. R 32 represents a divalent organic group containing no aromatic ring.)
Structural unit (4): — (— NH—R 4 —CO —) —
(In the structural unit (4), R 4 represents a divalent organic group containing no aromatic ring)

請求項18に係る発明は、
前記ポリアミドが、前記芳香環を含む構造単位を有する第1ポリアミドと、前記芳香環を含まない構造単位を有する第2ポリアミドと、を共重合した共重合ポリアミドである請求項16又は請求項17に記載の樹脂成形体。
The invention according to claim 18
The polyamide according to claim 16 or 17, wherein the polyamide is a copolymerized polyamide obtained by copolymerizing a first polyamide having a structural unit containing the aromatic ring and a second polyamide having a structural unit not containing the aromatic ring. The resin molding as described.

請求項19に係る発明は、
前記ポリアミドが、芳香環を有する第1ポリアミドと、芳香環を有さない第2ポリアミドと、を含む混合ポリアミドである請求項16又は請求項17に記載の樹脂成形体。
The invention according to claim 19 is
The resin molded body according to claim 16 or 17, wherein the polyamide is a mixed polyamide containing a first polyamide having an aromatic ring and a second polyamide having no aromatic ring.

請求項20に係る発明は、
前記ポリアミドの芳香環の割合が、10質量%以上40質量%以下である請求項16〜請求項19のいずれか1項に記載の樹脂成形体。
The invention according to claim 20 provides
The resin molded body according to any one of claims 16 to 19, wherein a ratio of an aromatic ring of the polyamide is 10 mass% or more and 40 mass% or less.

請求項21に係る発明は、
前記炭素繊維の平均繊維長が0.1mm以上5.0mm以下である請求項15〜請求項20のいずれか1項に記載の樹脂成形体。
The invention according to claim 21 is
The resin molded body according to any one of claims 15 to 20, wherein an average fiber length of the carbon fibers is 0.1 mm or more and 5.0 mm or less.

請求項22に係る発明は、
前記熱可塑性樹脂が、ポリオレフィンである請求項15〜請求項21のいずれか1項に記載の樹脂成形体。
The invention according to claim 22 is
The resin molded body according to any one of claims 15 to 21, wherein the thermoplastic resin is a polyolefin.

請求項23に係る発明は、
前記相溶化剤が、修飾ポリオレフィンである請求項15〜請求項22のいずれか1項に記載の樹脂成形体。
The invention according to claim 23 is
The resin molded article according to any one of claims 15 to 22, wherein the compatibilizing agent is a modified polyolefin.

請求項24に係る発明は、
前記炭素繊維の含有量が、前記熱可塑性樹脂100質量部に対し0.1質量部以上200質量部以下である請求項15〜請求項23のいずれか1項に記載の樹脂成形体。
The invention according to claim 24 provides
The resin molded body according to any one of claims 15 to 23, wherein a content of the carbon fiber is 0.1 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.

請求項25に係る発明は、
前記ポリアミドの含有量が、熱可塑性樹脂100質量部に対し0.1質量部以上100質量部以下である請求項15〜請求項24のいずれか1項に記載の樹脂成形体。
The invention according to claim 25 is
The resin molded body according to any one of claims 15 to 24, wherein a content of the polyamide is 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.

請求項26に係る発明は、
前記相溶化剤の含有量が、前記熱可塑性樹脂100質量部に対し1質量部以上50質量部以下である請求項15〜請求項25のいずれか1項に記載の樹脂成形体。
The invention according to claim 26 provides
The resin molded body according to any one of claims 15 to 25, wherein a content of the compatibilizing agent is 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.

請求項27に係る発明は、
前記炭素繊維の質量に対する、前記ポリアミドの含有量が、1質量%以上200質量%以下である請求項15〜請求項26のいずれか1項に記載の樹脂成形体。
The invention according to claim 27 provides
27. The resin molded body according to any one of claims 15 to 26, wherein a content of the polyamide with respect to a mass of the carbon fiber is 1% by mass or more and 200% by mass or less.

請求項28に係る発明は、
前記炭素繊維の質量に対する、前記相溶化剤の含有量が、1質量%以上100質量%以下である請求項15〜請求項27のいずれか1項に記載の樹脂成形体。
The invention according to claim 28 is
The resin molded body according to any one of claims 15 to 27, wherein a content of the compatibilizing agent with respect to a mass of the carbon fiber is 1% by mass or more and 100% by mass or less.

請求項1に係る発明によれば、熱可塑性樹脂と炭素繊維とポリアミドと相溶化剤とを含む樹脂組成物において、相溶化剤の酸価が10mgKOH/g未満又は60mgKOH/g超えの場合に比べ、低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物が提供される。
請求項2、3、4又は5に係る発明によれば、熱可塑性樹脂と炭素繊維とポリアミドと相溶化剤とを含む樹脂組成物において、ポリアミドとして芳香環を有さないポリアミドのみを含む場合に比べ、低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物が提供される。
請求項6に係る発明によれば、ポリアミドの芳香環の割合が10質量%未満又は40質量%超えの場合に比べ、低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物が提供される。
請求項7に係る発明によれば、熱可塑性樹脂と炭素繊維とポリアミドと相溶化剤とを含む樹脂組成物において、相溶化剤の酸価が10mgKOH/g未満又は60mgKOH/g超えの場合に比べ、平均繊維長が0.1mm以上5.0mm以下の炭素繊維を含み、かつ低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物が提供される。
請求項8に係る発明によれば、熱可塑性樹脂としてアクロリニトリルブタジエンスチレンコポリマー又はスチレンポリマーの汎用樹脂を用いた場合に比べ、安価な樹脂成形体が得られる樹脂組成物が提供される。
請求項9に係る発明によれば、相溶化剤としてエポキシコポリマーを用いた場合と比べ、低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物が提供される。
請求項10に係る発明によれば、炭素繊維の含有量が熱可塑性樹脂100質量部に対し0.1質量部未満又は200質量部超えである場合に比べ、低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物が提供される。
請求項11に係る発明によれば、ポリアミドの含有量が熱可塑性樹脂100質量部に対し0.1質量部未満又は100質量部超えである場合に比べ、低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物が提供される。
請求項12に係る発明によれば、相溶化剤の含有量が熱可塑性樹脂100質量部に対し1質量部未満又は50質量部超えである場合に比べ、低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物が提供される。
請求項13に係る発明によれば、炭素繊維の質量に対するポリアミドの含有量が1質量%未満又は200質量%超えである場合に比べ、低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物が提供される。
請求項14に係る発明によれば、炭素繊維の質量に対する相溶化剤の含有量が1質量%未満又は100質量%超えである場合に比べ、低温での耐衝撃性に優れた樹脂成形体が得られる樹脂組成物が提供される。
According to the invention according to claim 1, in the resin composition containing the thermoplastic resin, the carbon fiber, the polyamide, and the compatibilizer, the acid value of the compatibilizer is less than 10 mg KOH / g or more than 60 mg KOH / g. There is provided a resin composition from which a resin molded article excellent in impact resistance at low temperatures can be obtained.
According to the invention according to claim 2, 3, 4 or 5, in the resin composition containing the thermoplastic resin, the carbon fiber, the polyamide, and the compatibilizing agent, when the polyamide contains only the polyamide having no aromatic ring. In comparison, a resin composition from which a resin molded article excellent in impact resistance at low temperatures can be obtained is provided.
According to the invention which concerns on Claim 6, compared with the case where the ratio of the aromatic ring of polyamide is less than 10 mass% or more than 40 mass%, the resin composition from which the resin molding excellent in the impact resistance in low temperature is obtained is obtained. Provided.
According to the invention which concerns on Claim 7, in the resin composition containing a thermoplastic resin, carbon fiber, polyamide, and a compatibilizing agent, compared with the case where the acid value of a compatibilizing agent is less than 10 mgKOH / g or more than 60 mgKOH / g. There is provided a resin composition containing a carbon fiber having an average fiber length of 0.1 mm or more and 5.0 mm or less and capable of obtaining a resin molded article excellent in impact resistance at low temperatures.
According to the invention which concerns on Claim 8, compared with the case where the general purpose resin of an acrylonitrile butadiene styrene copolymer or a styrene polymer is used as a thermoplastic resin, the resin composition from which an inexpensive resin molding is obtained is provided.
According to the invention which concerns on Claim 9, compared with the case where an epoxy copolymer is used as a compatibilizing agent, the resin composition from which the resin molding excellent in the impact resistance in low temperature is obtained is provided.
According to the invention which concerns on Claim 10, compared with the case where content of carbon fiber is less than 0.1 mass part or more than 200 mass parts with respect to 100 mass parts of thermoplastic resins, it was excellent in the impact resistance in low temperature. A resin composition from which a resin molded body can be obtained is provided.
According to the invention of claim 11, the resin is excellent in impact resistance at low temperature as compared with the case where the content of polyamide is less than 0.1 parts by mass or more than 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin. A resin composition from which a molded body can be obtained is provided.
According to the invention which concerns on Claim 12, compared with the case where content of a compatibilizer is less than 1 mass part or more than 50 mass parts with respect to 100 mass parts of thermoplastic resins, resin excellent in impact resistance in low temperature A resin composition from which a molded body can be obtained is provided.
According to the invention of claim 13, a resin molded article having excellent impact resistance at low temperatures can be obtained as compared with the case where the content of the polyamide with respect to the mass of the carbon fiber is less than 1 mass% or more than 200 mass%. A resin composition is provided.
According to the invention which concerns on Claim 14, compared with the case where content of the compatibilizer with respect to the mass of carbon fiber is less than 1 mass% or more than 100 mass%, the resin molding excellent in impact resistance at low temperature is obtained. The resulting resin composition is provided.

請求項15に係る発明によれば、熱可塑性樹脂と炭素繊維とポリアミドと相溶化剤とを含む樹脂組成物において、相溶化剤の酸価が10mgKOH/g未満又は60mgKOH/g超えの場合に比べ、低温での耐衝撃性に優れた樹脂成形体が提供される。
請求項16、17、18、又は19に係る発明によれば、熱可塑性樹脂と炭素繊維とポリアミドと相溶化剤とを含む樹脂成形体において、ポリアミドとして芳香環を有さないポリアミドのみを含む場合に比べ、低温での耐衝撃性に優れた樹脂成形体が提供される。
請求項20に係る発明によれば、ポリアミドの芳香環の割合が10質量%未満又は40質量%超えの場合に比べ、低温での耐衝撃性に優れた樹脂成形体が提供される。
請求項21に係る発明によれば、熱可塑性樹脂と炭素繊維とポリアミドと相溶化剤とを含む樹脂成形体において、相溶化剤の酸価が10mgKOH/g未満又は60mgKOH/g超えの場合に比べ、平均繊維長が0.1mm以上5.0mm以下の炭素繊維を含み、かつ低温での耐衝撃性に優れた樹脂成形体が提供される。
請求項22に係る発明によれば、熱可塑性樹脂としてアクロリニトリルブタジエンスチレンコポリマー又はスチレンポリマーの汎用樹脂を用いた場合に比べ、安価な樹脂成形体が提供される。
請求項23に係る発明によれば、相溶化剤としてエポキシコポリマーを用いた場合と比べ、低温での耐衝撃性に優れた樹脂成形体が提供される。
請求項24に係る発明によれば、炭素繊維の含有量が熱可塑性樹脂100質量部に対し0.1質量部未満又は200質量部超えである場合に比べ、低温での耐衝撃性に優れた樹脂成形体が提供される。
請求項25に係る発明によれば、ポリアミドの含有量が熱可塑性樹脂100質量部に対し0.1質量部未満又は100質量部超えである場合に比べ、低温での耐衝撃性に優れた樹脂成形体が提供される。
請求項26に係る発明によれば、相溶化剤の含有量が熱可塑性樹脂100質量部に対し1質量部未満又は50質量部超えである場合に比べ、低温での耐衝撃性に優れた樹脂成形体が提供される。
請求項27に係る発明によれば、炭素繊維の質量に対するポリアミドの含有量が1質量%未満又は200質量%超えである場合に比べ、低温での耐衝撃性に優れた樹脂成形体が提供される。
請求項28に係る発明によれば、炭素繊維の質量に対する相溶化剤の含有量が1質量%未満又は100質量%超えである場合に比べ、低温での耐衝撃性に優れた樹脂成形体が提供される。
According to the invention according to claim 15, in the resin composition containing the thermoplastic resin, the carbon fiber, the polyamide, and the compatibilizer, the acid value of the compatibilizer is less than 10 mg KOH / g or more than 60 mg KOH / g. A resin molded article excellent in impact resistance at low temperatures is provided.
According to the invention according to claim 16, 17, 18, or 19, in the resin molded article containing the thermoplastic resin, the carbon fiber, the polyamide, and the compatibilizing agent, the polyamide contains only a polyamide having no aromatic ring. Compared to the above, a resin molded article excellent in impact resistance at a low temperature is provided.
According to the invention which concerns on Claim 20, compared with the case where the ratio of the aromatic ring of polyamide is less than 10 mass% or more than 40 mass%, the resin molding excellent in the impact resistance in low temperature is provided.
According to the invention according to claim 21, in the resin molded body containing the thermoplastic resin, the carbon fiber, the polyamide, and the compatibilizing agent, the acid value of the compatibilizing agent is less than 10 mg KOH / g or more than 60 mg KOH / g. A resin molded article containing carbon fibers having an average fiber length of 0.1 mm to 5.0 mm and excellent in impact resistance at low temperatures is provided.
According to the twenty-second aspect of the present invention, an inexpensive resin molded body is provided as compared with the case where a general-purpose resin of acrylonitrile butadiene styrene copolymer or styrene polymer is used as the thermoplastic resin.
According to the invention which concerns on Claim 23, compared with the case where an epoxy copolymer is used as a compatibilizing agent, the resin molding excellent in the impact resistance in low temperature is provided.
According to the invention of claim 24, compared with the case where the carbon fiber content is less than 0.1 parts by mass or more than 200 parts by mass with respect to 100 parts by mass of the thermoplastic resin, the impact resistance at low temperature is excellent. A resin molded body is provided.
According to the invention of claim 25, a resin having excellent impact resistance at low temperatures as compared with the case where the polyamide content is less than 0.1 parts by mass or more than 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin. A shaped body is provided.
According to the invention of claim 26, the resin having excellent impact resistance at low temperature as compared with the case where the content of the compatibilizer is less than 1 part by mass or more than 50 parts by mass with respect to 100 parts by mass of the thermoplastic resin. A shaped body is provided.
According to the invention of claim 27, there is provided a resin molded article excellent in impact resistance at low temperature as compared with the case where the polyamide content relative to the mass of the carbon fiber is less than 1 mass% or more than 200 mass%. The
According to the invention of claim 28, there is provided a resin molded article excellent in impact resistance at low temperature as compared with the case where the content of the compatibilizer with respect to the mass of the carbon fiber is less than 1 mass% or more than 100 mass%. Provided.

本実施形態に係る樹脂成形体の要部を示すモデル図である。It is a model figure which shows the principal part of the resin molding which concerns on this embodiment. 本実施形態に係る樹脂成形体の要部の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the principal part of the resin molding which concerns on this embodiment. マイクロドロップレット法を用いられる試験の模式図である。It is a schematic diagram of the test using a micro droplet method.

以下、本発明の樹脂組成物及び樹脂成形体の一例である実施形態について説明する。   Hereinafter, an embodiment as an example of the resin composition and the resin molded body of the present invention will be described.

[樹脂組成物]
本実施形態に係る樹脂組成物は、熱可塑性樹脂と、炭素繊維と、ポリアミドと、酸価が10mgKOH/g以上60mgKOH/g以下の相溶化剤と、を含む。
[Resin composition]
The resin composition according to the present embodiment includes a thermoplastic resin, carbon fiber, polyamide, and a compatibilizing agent having an acid value of 10 mgKOH / g or more and 60 mgKOH / g or less.

近年では、機械的強度に優れた樹脂成形体を得るために、母材(マトリックス)としての熱可塑性樹脂と強化繊維とを含む樹脂組成物が用いられている。
このような樹脂組成物では、強化繊維と熱可塑性樹脂との親和性が低いと、この両者の界面に空間が生じ、かかる界面における密着性が低下することがある。
特に、樹脂組成物中の強化繊維として炭素繊維を用いた場合には、ガラス繊維等に比べ高い機械的強度を求められるが、炭素繊維表面の水酸基、カルボキシル基など熱可塑性樹脂との接着に寄与する極性基が、ガラス繊維に比べて少ないため、炭素繊維と熱可塑性樹脂との界面における密着性は低下する。その結果、機械的強度、特に低温(例えば−20℃以下)での耐衝撃性は、炭素繊維の配合の割に高まり難い。特に、低温において、繰り返し衝撃を加えた場合、炭素繊維と熱可塑性樹脂との界面での剥離が進行しやすいため、初期からの耐衝撃性の低下は大きくなる傾向がある。
In recent years, in order to obtain a resin molded article excellent in mechanical strength, a resin composition containing a thermoplastic resin as a base material (matrix) and reinforcing fibers has been used.
In such a resin composition, if the affinity between the reinforcing fiber and the thermoplastic resin is low, a space is formed at the interface between the two, and the adhesion at the interface may be reduced.
In particular, when carbon fibers are used as reinforcing fibers in the resin composition, higher mechanical strength is required compared to glass fibers, etc., but this contributes to adhesion with thermoplastic resins such as hydroxyl groups and carboxyl groups on the surface of carbon fibers. Since there are few polar groups to perform compared with glass fiber, the adhesiveness in the interface of carbon fiber and a thermoplastic resin falls. As a result, mechanical strength, particularly impact resistance at a low temperature (for example, −20 ° C. or lower) is hardly increased compared to the blending of carbon fibers. In particular, when repeated impact is applied at a low temperature, the peeling at the interface between the carbon fiber and the thermoplastic resin is likely to proceed, and the impact resistance tends to decrease greatly from the beginning.

そこで、本実施形態に係る樹脂組成物は、熱可塑性樹脂と、炭素繊維と、ポリアミドと、酸価が10mgKOH/g以上60mgKOH/g以下の相溶化剤と、の4成分を含む構成とする。
この構成とすることで、低温(例えば−30℃以下)での耐衝撃性に優れる樹脂成形体が得られる。このような効果が得られる作用については明確ではないが、以下のように推測される。
Therefore, the resin composition according to the present embodiment includes four components: a thermoplastic resin, carbon fiber, polyamide, and a compatibilizer having an acid value of 10 mgKOH / g to 60 mgKOH / g.
By setting it as this structure, the resin molding excellent in the impact resistance in low temperature (for example, -30 degrees C or less) is obtained. Although it is not clear about the operation | movement from which such an effect is acquired, it estimates as follows.

本実施形態に係る樹脂組成物から樹脂成形体を得る際、かかる樹脂組成物を熱溶融混合すると、母材としての熱可塑性樹脂と相溶化剤とが溶融し、また、相溶化剤の分子内の一部とポリアミドの分子内に含まれるアミド結合とで両者が相溶して、ポリアミドが樹脂組成物中で分散することとなる。
この状態の中で、ポリアミドが炭素繊維と接触すると、ポリアミドの分子鎖に沿って多数含まれるアミド結合と、炭素繊維の表面に僅かながら存在する極性基と、が親和力(引力及び水素結合)にて複数の箇所で物理的に接着する。また、一般的に熱可塑性樹脂とポリアミドとは相溶性が低いため、熱可塑性樹脂とポリアミドとの間の斥力により、ポリアミドと炭素繊維との接触頻度が上がり、その結果として、ポリアミドの炭素繊維に対する接着量や接着面積が上がる。このように、炭素繊維の周囲にポリアミドによる被覆層が形成される(図1参照)。なお、図1中、PPは熱可塑性樹脂を示し、CFが炭素繊維を示し、CLは被覆層を示している。
そして、被覆層を形成するポリアミドも相溶化剤の分子内の一部の反応基と化学反応、極性基同士で静電的相互作用を行うことで相溶されるため、この相溶化剤が熱可塑性樹脂とも相溶することで、引力と斥力とが平衡状態が形成され、ポリアミドによる被覆層は、薄く、かつ均一に近い状態で形成されることとなる。特に、炭素繊維の表面に存在するカルボキシ基とポリアミドの分子内に含まれるアミド結合との親和性は高いため、炭素繊維の周囲にはポリアミドによる被覆層が形成され易く、薄膜で且つ均一性に優れる被覆層になると考えられる。
When the resin composition is obtained from the resin composition according to the present embodiment, when the resin composition is hot melt mixed, the thermoplastic resin as a base material and the compatibilizer are melted, and the intramolecular content of the compatibilizer Both of them are compatible with each other by the amide bond contained in the polyamide molecule, and the polyamide is dispersed in the resin composition.
In this state, when the polyamide comes into contact with the carbon fiber, an amide bond contained in a large number along the molecular chain of the polyamide and a slight polar group present on the surface of the carbon fiber have an affinity (attraction and hydrogen bond). To physically bond at multiple locations. Further, since the thermoplastic resin and the polyamide are generally poorly compatible, the repulsive force between the thermoplastic resin and the polyamide increases the frequency of contact between the polyamide and the carbon fiber. Increases the amount and area of adhesion. Thus, a coating layer made of polyamide is formed around the carbon fibers (see FIG. 1). In FIG. 1, PP indicates a thermoplastic resin, CF indicates a carbon fiber, and CL indicates a coating layer.
The polyamide forming the coating layer is also compatible with some reactive groups in the molecule of the compatibilizer by chemical reaction and electrostatic interaction between polar groups. By being compatible with the plastic resin, the attractive force and the repulsive force are in an equilibrium state, and the polyamide coating layer is formed in a thin and nearly uniform state. In particular, since the affinity between the carboxy group present on the surface of the carbon fiber and the amide bond contained in the polyamide molecule is high, a coating layer made of polyamide is easily formed around the carbon fiber, making it thin and uniform. It is considered to be an excellent coating layer.

なお、被覆層は炭素繊維の周囲全体を被覆していることが好ましいが、一部被覆されていない部分があってもよい。   In addition, although it is preferable that the coating layer has coat | covered the whole circumference | surroundings of carbon fiber, there may be a part which is not covered partially.

一方で、相溶化剤として、上記範囲の高い酸価を有する相溶化剤を適用すると、被覆層の形成に寄与せず、遊離しているポリアミドが熱可塑性樹脂中で細かく分散する。これは、相溶化剤の酸価が上記範囲であると、ポリアミドと相溶化剤の反応性が高くなり、相溶化が促進されると考えられるためである。
そして、ポリアミドが熱可塑性樹脂中で細かく分散していると、機械的強度、特に低温での耐衝撃性が向上する。これは、1)熱可塑性樹脂中に分散したポリアミドのドメインが衝撃等の機械的負荷を分散する役割を担うと共に、2)ポリアミドのドメインが細かいため、ポリアミドのドメインと熱可塑性樹脂との界面への応力集中が緩和されるためと考えられるためである。
On the other hand, when a compatibilizer having a high acid value in the above range is applied as the compatibilizer, the free polyamide is finely dispersed in the thermoplastic resin without contributing to the formation of the coating layer. This is because if the acid value of the compatibilizing agent is within the above range, the reactivity between the polyamide and the compatibilizing agent is increased, and it is considered that compatibilization is promoted.
If the polyamide is finely dispersed in the thermoplastic resin, mechanical strength, particularly impact resistance at low temperatures, is improved. This is because 1) the polyamide domain dispersed in the thermoplastic resin plays a role of dispersing mechanical loads such as impacts, and 2) the polyamide domain is fine, and therefore the interface between the polyamide domain and the thermoplastic resin. This is because it is considered that the stress concentration is relaxed.

以上のことから、本実施形態に係る樹脂組成物は、炭素繊維と熱可塑性樹脂との界面の密着性が高まり、かつポリアミドが熱可塑性樹脂中で細かく分散していることから、機械的強度、特に低温での耐衝撃性に優れた樹脂成形体が得られると推測される。また、同様の理由により、曲げ弾性率に優れた樹脂成形体も得られると推測される。   From the above, the resin composition according to the present embodiment has increased adhesion at the interface between the carbon fiber and the thermoplastic resin, and the polyamide is finely dispersed in the thermoplastic resin. In particular, it is presumed that a resin molded article excellent in impact resistance at a low temperature can be obtained. Moreover, it is estimated that the resin molding which was excellent in the bending elastic modulus is obtained for the same reason.

ここで、本実施形態に係る樹脂組成物及びそれにより得られる樹脂成形体は、樹脂組成物(例えばペレット)の製造のときの熱溶融混練、及び射出成型により、炭素繊維の周囲にポリアミドによる被覆層が形成され、当該被覆層の厚さが5nm以上700nm以下となる構造を有することが好ましい。   Here, the resin composition according to the present embodiment and the resin molded body obtained thereby are coated with polyamide around the carbon fiber by hot melt kneading and injection molding at the time of manufacturing the resin composition (for example, pellets). A layer is formed, and the thickness of the coating layer is preferably 5 nm to 700 nm.

本実施形態に係る樹脂組成物において、ポリアミドによる被覆層の厚さは、5nm以上700nm以下であり、低温での耐衝撃性の更なる向上の点から、10nm以上650nm以下が好ましい。被覆層の厚みを10nm以上とすると、低温での耐衝撃性が向上し、被覆層の厚みを700nm以下とすると、被覆層を介した炭素繊維と熱可塑性樹脂との界面が脆弱となることを抑え、低温での耐衝撃性の低下が抑制される。   In the resin composition according to this embodiment, the thickness of the coating layer made of polyamide is 5 nm or more and 700 nm or less, and is preferably 10 nm or more and 650 nm or less from the viewpoint of further improving impact resistance at low temperatures. When the thickness of the coating layer is 10 nm or more, impact resistance at low temperature is improved, and when the thickness of the coating layer is 700 nm or less, the interface between the carbon fiber and the thermoplastic resin via the coating layer becomes brittle. And lowering of impact resistance at low temperatures is suppressed.

被覆層の厚さは、次の方法により測定された値である。測定対象物を液体窒素中で破断させ、電子顕微鏡(Keyence社製VE−9800)を用いて、その断面を観察する。その断面において、炭素繊維の周囲に被覆する被覆層の厚みを100箇所計測し、その平均値として算出する。
なお、被覆層の確認は、上記断面観察により実施する。
The thickness of the coating layer is a value measured by the following method. The measurement object is broken in liquid nitrogen, and the cross section is observed using an electron microscope (VE-9800 manufactured by Keyence). In the cross section, 100 thicknesses of the coating layer covering the carbon fiber are measured and calculated as an average value.
In addition, confirmation of a coating layer is implemented by the said cross-sectional observation.

本実施形態に係る樹脂組成物及びそれにより得られる樹脂成形体において、熱可塑性樹脂熱可塑性樹脂中でのポリアミドのドメイン径は、低温での耐衝撃性の更なる向上の観点から、0.1μm以上10μm以下であることが好ましく、0.5μm以上5μm以下であることが好ましい。   In the resin composition according to the present embodiment and the resin molded body obtained thereby, the domain diameter of the polyamide in the thermoplastic resin thermoplastic resin is 0.1 μm from the viewpoint of further improving impact resistance at low temperatures. The thickness is preferably 10 μm or less, and more preferably 0.5 μm or more and 5 μm or less.

ポリアミドのドメイン径は、次の方法により測定された値である。
即ち、測定対象物の試料片をエポキシ樹脂に包埋し、自動研磨機(BUEHLER製Vector)で精密研磨断面を作製する。
次に、SEM(日立製S−3400N,加速電圧15KV)を用いて、試料片の研磨断面を倍率1500倍でランダムに3視野撮影し、画像解析ソフト(ImageProPlus)を用いて、ポリアミドの炭素繊維の被覆層成分と遊離成分(ポリアミドのドメインに相当)を全て抽出するように輝度レンジを設定する。
その後、被覆層成分を手動で選択除外し、遊離成分(ポリアミドのドメインに相当)のみを測定項目として、直径・オブジェクト数を選択、計算し、個々のドメインの大きさ(直径=円相当径)及び個数を求め、ここから、ドメインの大きさ(直径)の平均値を求める。
The domain diameter of the polyamide is a value measured by the following method.
That is, a sample piece of a measurement object is embedded in an epoxy resin, and a precision polished cross section is prepared with an automatic polishing machine (Vector made by BUEHLER).
Next, using a SEM (Hitachi S-3400N, acceleration voltage 15 KV), a sample of the polished cross section of the sample piece was randomly photographed at three magnifications at 1500 times, and image analysis software (ImageProPlus) was used to obtain a polyamide carbon fiber. The luminance range is set so that all the coating layer components and free components (corresponding to the polyamide domain) are extracted.
Then, the coating layer components are manually selected and excluded, and only the free component (corresponding to the polyamide domain) is selected as the measurement item, the diameter and the number of objects are selected and calculated, and the size of each domain (diameter = equivalent circle diameter) And the number is obtained, and from this, the average value of the size (diameter) of the domain is obtained.

なお、本実施形態に係る樹脂組成物(及びその樹脂成形体)では、例えば、かかる被覆層と熱可塑性樹脂との間を相溶化剤が一部相溶する構成をとる。
具体的には、例えば、ポリアミドによる被覆層と母材である熱可塑性樹脂との間には、相溶化剤の層が介在していることがよい(図2参照)。つまり、被覆層の表面に相溶化剤の層が形成され、この相溶化剤の層を介して、被覆層と熱可塑性樹脂が隣接していることがよい。相溶化剤の層は被覆層に比べ薄く形成されるが、相溶化剤の層の介在により、被覆層と熱可塑性樹脂との密着性(接着性)が高まり、機械的強度、特に低温での耐衝撃性に優れた樹脂成形体が得られ易くなる。なお、図2中、PPは熱可塑性樹脂を示し、CFが炭素繊維を示し、CLは被覆層、CAは相溶化剤の層を示している。
In addition, in the resin composition (and its resin molding) which concerns on this embodiment, the structure which a compatibilizing agent partially dissolves between this coating layer and a thermoplastic resin, for example is taken.
Specifically, for example, a compatibilizer layer may be interposed between the polyamide coating layer and the base thermoplastic resin (see FIG. 2). That is, it is preferable that a layer of a compatibilizing agent is formed on the surface of the coating layer, and the coating layer and the thermoplastic resin are adjacent to each other through the layer of the compatibilizing agent. The compatibilizing agent layer is formed thinner than the coating layer, but the interposition of the compatibilizing agent layer increases the adhesion (adhesiveness) between the covering layer and the thermoplastic resin, and the mechanical strength, particularly at low temperatures. It becomes easy to obtain a resin molded article excellent in impact resistance. In FIG. 2, PP indicates a thermoplastic resin, CF indicates a carbon fiber, CL indicates a coating layer, and CA indicates a layer of a compatibilizing agent.

特に、相溶化剤の層は、被覆層とは結合(水素結合、相溶化剤とポリアミドとの官能基の反応による共有結合等)し、熱可塑性樹脂とは相溶した状態で、被覆層と熱可塑性樹脂の間に介在していることがよい。この構成は、例えば、相溶化剤として、母材である熱可塑性樹脂と同じ構造又は相溶する構造を有し、且つ、分子内の一部に前述したポリアミドの官能基と反応する部位を含む相溶化剤を適用すると実現され易い。
具体的には、例えば、熱可塑性樹脂としてポリオレフィン、ポリアミド、及び相溶化剤として無水マレイン酸修飾ポリオレフィンを適用した場合、無水マレイン酸修飾ポリオレフィンの層(相溶化剤の層)は、その無水マレイン酸部位が開環して生成したカルボキシ基がポリアミドの層(被覆層)のアミン残基と反応して結合し、そのポリオレフィン部位がポリオレフィンと相溶した状態で介在していることがよい。
In particular, the compatibilizer layer is bonded to the coating layer (hydrogen bond, covalent bond by reaction of the functional group of the compatibilizer and polyamide, etc.) and is compatible with the thermoplastic resin, It is good to interpose between thermoplastic resins. This configuration includes, for example, the same structure as the thermoplastic resin as the base material or a compatible structure as a compatibilizing agent, and a part that reacts with the functional group of the polyamide described above in a part of the molecule. It is easy to realize when a compatibilizer is applied.
Specifically, for example, when polyolefin, polyamide as a thermoplastic resin, and maleic anhydride modified polyolefin as a compatibilizer are applied, the maleic anhydride modified polyolefin layer (compatibility agent layer) is the maleic anhydride. It is preferable that the carboxy group generated by ring opening of the site reacts and bonds with the amine residue of the polyamide layer (coating layer), and the polyolefin site is present in a state of being compatible with the polyolefin.

ここで、相溶化剤の層が、被覆層と熱可塑性樹脂との間に介在していることを確認する方法は、次の通りである。
解析装置として赤外分光分析装置(サーモフィッシャー社製NICOLET6700FT−IR)を用いる。例えば、熱可塑性樹脂としてポリプロピレン(以下PP)、ポリアミドとしてPA66と修飾ポリオレフィンとしてマレイン酸変性ポリプロピレン(以下MA−PP)との樹脂組成物(又は樹脂成形体)の場合、その混合物、PPとPA66との混合物、PPとMA−PPとの混合物、参照としてPP単体、PA66単体、MA−PP単体のIRスペクトルをKBr錠剤法で取得し、混合物における酸無水物由来(MA−PPに特徴的なピーク)の波数1820cm−1以上1750cm−1以下の範囲のピーク面積を比較解析する。PPとPA66とMA−PPとの混合物において、酸無水物ピーク面積の減少を確認し、MA−PPとPA66とが反応していることを確認する。これにより、被覆層と熱可塑性樹脂との間に相溶化剤の層(結合層)が介在していることが確認できる。詳しくは、MA−PPとPA66とが反応していると、MA−PPの環状マレイン化部分が開環してPA66のアミン残基が化学結合することで環状マレイン化部分が減るので、被覆層と熱可塑性樹脂との間に相溶化剤の層(結合層)が介在していると確認できる。
Here, the method for confirming that the compatibilizing agent layer is interposed between the coating layer and the thermoplastic resin is as follows.
An infrared spectroscopic analyzer (NICOLET6700FT-IR manufactured by Thermo Fisher) is used as the analyzer. For example, in the case of a resin composition (or resin molding) of polypropylene (hereinafter referred to as PP) as a thermoplastic resin, PA66 as polyamide and maleic acid-modified polypropylene (hereinafter referred to as MA-PP) as a modified polyolefin, a mixture thereof, PP and PA66, IR spectra of PP mixture, PP-MA-PP mixture, PP alone, PA66 alone, and MA-PP alone are obtained by the KBr tablet method, and the acid anhydride origin in the mixture (a peak characteristic of MA-PP) ) comparing the peak areas of the wave number 1820 cm -1 or 1750 cm -1 or less in the range of analysis. In a mixture of PP, PA66, and MA-PP, a decrease in the acid anhydride peak area is confirmed, and it is confirmed that MA-PP and PA66 are reacting. Thereby, it can confirm that the layer (bonding layer) of a compatibilizer exists between the coating layer and the thermoplastic resin. Specifically, when MA-PP and PA66 are reacted, the cyclic maleated portion of MA-PP is opened, and the amine residue of PA66 is chemically bonded to reduce the cyclic maleated portion. It can be confirmed that a layer (bonding layer) of a compatibilizer is interposed between the resin and the thermoplastic resin.

以下、本実施形態に係る樹脂組成物の各成分の詳細について説明する。   Hereinafter, the detail of each component of the resin composition which concerns on this embodiment is demonstrated.

−熱可塑性樹脂(A)−
熱可塑性樹脂は、樹脂組成物の母材であり、炭素繊維により強化される樹脂成分をいう(マトリックス樹脂とも呼ばれる)。
熱可塑性樹脂としては、特に制限されるものではなく、例えば、ポリオレフィン(PO)、ポリフェニレンサルファイド(PPS)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリサルフォン(PSF)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリフッ化ビニリデン(PVDF)、アクリロニトリルブタジエンスチレンコポリマー(ABS)、アクリロニトリルスチレン(AS)等が挙げられる。
熱可塑性樹脂は、1種を単独で用いてもよいし、2種以上を併用してもよい。
-Thermoplastic resin (A)-
A thermoplastic resin is a base material of a resin composition and refers to a resin component reinforced with carbon fibers (also referred to as a matrix resin).
The thermoplastic resin is not particularly limited. For example, polyolefin (PO), polyphenylene sulfide (PPS), polyamide (PA), polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), Polyetheretherketone (PEEK), Polyethersulfone (PES), Polyphenylsulfone (PPSU), Polysulfone (PSF), Polyethylene terephthalate (PET), Polybutylene terephthalate (PBT), Polyacetal (POM), Polycarbonate (PC) ), Polyvinylidene fluoride (PVDF), acrylonitrile butadiene styrene copolymer (ABS), acrylonitrile styrene (AS), and the like.
A thermoplastic resin may be used individually by 1 type, and may use 2 or more types together.

これらの中でも、低温での耐衝撃性の更なる向上、並びにコストの点から、ポリオレフィン(PO)が好ましい。
ポリオレフィンとしては、オレフィンに由来する繰り返し単位を含む樹脂であって、樹脂全体に対し30質量%)以下であれば、オレフィン以外の単量体に由来する繰り返し単位を含んでいてもよい。
ポリオレフィンは、オレフィン(必要に応じて、オレフィン以外の単量体)の付加重合によって得られる。
また、ポリオレフィンを得るための、オレフィン及びオレフィン以外の単量体は、それぞれ、1種であってもよいし、2種以上であってもよい。
なお、ポリオレフィンは、コポリマーであってもよいし、ホモポリマーであってよい。また、ポリオレフィンは、直鎖状であってもよいし、分岐鎖状であってもよい。
Among these, polyolefin (PO) is preferable from the viewpoint of further improvement in impact resistance at low temperature and cost.
The polyolefin is a resin containing a repeating unit derived from an olefin, and may contain a repeating unit derived from a monomer other than the olefin as long as it is 30% by mass or less based on the whole resin.
Polyolefin is obtained by addition polymerization of olefin (a monomer other than olefin, if necessary).
Moreover, 1 type may be sufficient as the monomer other than an olefin and olefin for obtaining polyolefin, respectively, and 2 or more types may be sufficient as it.
The polyolefin may be a copolymer or a homopolymer. The polyolefin may be linear or branched.

ここで、オレフィンとしては、直鎖状又は分岐状の脂肪族オレフィン、脂環式オレフィンが挙げられる。
脂肪族オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ヘキサデセン、1−オクタデセン等のα−オレフィンが挙げられる。
また、脂環式オレフィンとしては、シクロペンテン、シクロヘプテン、ノルボルネン、5−メチル−2−ノルボルネン、テトラシクロドデセン、ビニルシクロヘキサン等が挙げられる。
中でも、コストの点から、α−オレフィンが好ましく、エチレン、プロピレンがより好ましく、特にプロピレンが好ましい。
Here, examples of the olefin include linear or branched aliphatic olefins and alicyclic olefins.
Examples of the aliphatic olefin include α-olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-hexadecene and 1-octadecene.
Examples of the alicyclic olefin include cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, vinylcyclohexane and the like.
Among these, from the viewpoint of cost, α-olefin is preferable, ethylene and propylene are more preferable, and propylene is particularly preferable.

また、オレフィン以外の単量体としては、公知の付加重合性化合物から選択される。
付加重合性化合物としては、例えば、スチレン、メチルスチレン、α−メチルスチレン、β−メチルスチレン、t−ブチルスチレン、クロロスチレン、クロロメチルスチレン、メトキシスチレン、スチレンスルホン酸又はその塩等のスチレン類;(メタ)アクリル酸アルキル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジメチルアミノエチル等の(メタ)アクリル酸エステル;塩化ビニル等のハロビニル類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;ビニルメチルエーテル等のビニルエーテル類;ビニリデンクロリド等のハロゲン化ビニリデン類;N−ビニルピロリドン等のN−ビニル化合物類;等が挙げられる。
The monomer other than olefin is selected from known addition polymerizable compounds.
Examples of the addition polymerizable compound include styrenes such as styrene, methylstyrene, α-methylstyrene, β-methylstyrene, t-butylstyrene, chlorostyrene, chloromethylstyrene, methoxystyrene, styrenesulfonic acid or a salt thereof; (Meth) acrylic acid esters such as alkyl (meth) acrylate, benzyl (meth) acrylate and dimethylaminoethyl (meth) acrylate; halovinyls such as vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; Vinyl ethers such as vinyl methyl ether; vinylidene halides such as vinylidene chloride; N-vinyl compounds such as N-vinylpyrrolidone; and the like.

好適なポリオレフィンとしては、ポリプロピレン(PP)、ポリエチレン(PE)、ポリブテン、ポリイソブチレン、クマロン・インデン樹脂、テルペン樹脂、エチレン・酢酸ビニル共重合樹脂(EVA)等が挙げられる。
中でも、オレフィンに由来する繰り返し単位のみを含む樹脂であることが好ましく、特に、コストの点から、ポリプロピレンが好ましい。
Suitable polyolefins include polypropylene (PP), polyethylene (PE), polybutene, polyisobutylene, coumarone / indene resin, terpene resin, ethylene / vinyl acetate copolymer resin (EVA), and the like.
Especially, it is preferable that it is resin containing only the repeating unit derived from an olefin, and a polypropylene is especially preferable from the point of cost.

熱可塑性樹脂の分子量は、特に限定されず、樹脂の種類、成形条件や樹脂成形体に用途等に応じて決定すればよい。例えば、熱可塑性樹脂がポリオレフィンであれば、その重量平均分子量(Mw)は、1万以上30万以下の範囲が好ましく、1万以上20万以下の範囲がより好ましい。
また、熱可塑性樹脂のガラス転移温度(Tg)又は融点(Tm)は、上記分子量と同様、特に限定されず、樹脂の種類、成形条件や樹脂成形体に用途等に応じて決定すればよい。例えば、熱可塑性樹脂がポリオレフィンであれば、その融点(Tm)は、100℃以上300℃以下の範囲が好ましく、150℃以上250℃以下の範囲がより好ましい。
The molecular weight of the thermoplastic resin is not particularly limited, and may be determined according to the type of resin, molding conditions, the resin molding, and the like. For example, if the thermoplastic resin is polyolefin, the weight average molecular weight (Mw) is preferably in the range of 10,000 to 300,000, and more preferably in the range of 10,000 to 200,000.
Further, the glass transition temperature (Tg) or melting point (Tm) of the thermoplastic resin is not particularly limited as in the case of the molecular weight, and may be determined according to the type of resin, molding conditions, use of the resin molding, and the like. For example, if the thermoplastic resin is polyolefin, the melting point (Tm) thereof is preferably in the range of 100 ° C. or higher and 300 ° C. or lower, and more preferably in the range of 150 ° C. or higher and 250 ° C. or lower.

なお、ポリオレフィンの重量平均分子量(Mw)及び融点(Tm)は、以下のようにして測定された値を示す。
即ち、ポリオレフィンの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(GPC)により、以下の条件で行う。GPC装置としては高温GPCシステム「HLC−8321GPC/HT」、溶離液としてo−ジクロロベンゼンを用いる。ポリオレフィンを一旦高温(140℃以上150℃以下の温度)でo−ジクロロベンゼンに溶融・ろ過し、ろ液を測定試料とする。測定条件としては、試料濃度0.5%、流速0.6ml/min.、サンプル注入量10μl、RI検出器を用いて行う。また、検量線は、東ソー社製「polystylene標準試料TSK standard」:「A−500」、「F−1」、「F−10」、「F−80」、「F−380」、「A−2500」、「F−4」、「F−40」、「F−128」、「F−700」の10サンプルから作成する。
また、ポリオレフィンの融点(Tm)は、示差走査熱量測定(DSC)により得られたDSC曲線から、JIS K 7121−1987「プラスチックの転移温度測定方法」の融解温度の求め方に記載の「融解ピーク温度」により求める。
In addition, the weight average molecular weight (Mw) and melting | fusing point (Tm) of polyolefin show the value measured as follows.
That is, the weight average molecular weight (Mw) of the polyolefin is measured by gel permeation chromatography (GPC) under the following conditions. A high temperature GPC system “HLC-8321GPC / HT” is used as the GPC apparatus, and o-dichlorobenzene is used as the eluent. The polyolefin is once melted and filtered into o-dichlorobenzene at a high temperature (temperature of 140 ° C. to 150 ° C.), and the filtrate is used as a measurement sample. The measurement conditions were a sample concentration of 0.5% and a flow rate of 0.6 ml / min. Sample injection volume 10 μl, using RI detector. The calibration curve is “polystylen standard sample TSK standard” manufactured by Tosoh Corporation: “A-500”, “F-1”, “F-10”, “F-80”, “F-380”, “A-”. It is created from 10 samples of “2,500”, “F-4”, “F-40”, “F-128”, and “F-700”.
In addition, the melting point (Tm) of the polyolefin is calculated from the DSC curve obtained by differential scanning calorimetry (DSC) according to the “melting peak” described in the method for determining the melting temperature in JIS K 7121-1987 “Method for measuring plastic transition temperature”. Calculated by “temperature”.

熱可塑性樹脂の含有量は、樹脂成形体の用途等に応じて、決定すればよいが、例えば、樹脂組成物の全質量に対して、5質量%以上95質量%以下が好ましく、10質量%以上95質量%以下がより好ましく、20質量%以上95質量%以下が更に好ましい。
なお、熱可塑性樹脂としてポリオレフィンを用いる場合、熱可塑性樹脂の全質量に対して20質量%以上をポリオレフィンとすることが好ましい。
The content of the thermoplastic resin may be determined according to the use of the resin molded body, but is preferably 5% by mass or more and 95% by mass or less, and preferably 10% by mass with respect to the total mass of the resin composition. It is more preferably 95% by mass or less, and further preferably 20% by mass or more and 95% by mass or less.
In addition, when using polyolefin as a thermoplastic resin, it is preferable to make 20 mass% or more into polyolefin with respect to the total mass of a thermoplastic resin.

−炭素繊維−
炭素繊維としては、公知の炭素繊維が用いられ、PAN系炭素繊維及びピッチ系炭素繊維のいずれもが用いられる。
-Carbon fiber-
Known carbon fibers are used as the carbon fibers, and both PAN-based carbon fibers and pitch-based carbon fibers are used.

炭素繊維は、公知の表面処理が施されたものであってもよい。
炭素繊維の表面処理としては、例えば、酸化処理、サイジング処理が挙げられる。
炭素繊維の形態は、特に限定されず、樹脂成形体の用途等に応じて選択すればよい。炭素繊維の形態としては、例えば、多数の単繊維から構成される繊維束、繊維束を集束したもの、繊維を二次元又は三次元に織った織物等が挙げられる。
The carbon fiber may be subjected to a known surface treatment.
Examples of the surface treatment of the carbon fiber include an oxidation treatment and a sizing treatment.
The form of the carbon fiber is not particularly limited, and may be selected according to the use of the resin molded body. Examples of the form of the carbon fiber include a fiber bundle composed of a large number of single fibers, a bundle of fiber bundles, a woven fabric in which fibers are woven in two dimensions or three dimensions, and the like.

炭素繊維の繊維径、繊維長等は、特に限定されず、樹脂成形体の用途等に応じて選択すればよい。
ただし、炭素繊維の繊維長が短くても、低温での耐衝撃性に優れた樹脂成形体が得られるため、炭素繊維の平均繊維長は、0.1mm以上5.0mm以下(好ましくは0.2mm以上2.0mm以下)であってもよい。
また、炭素繊維の平均直径は、例えば、5.0μm以上10.0μm以下(好ましくは6.0μm以上8.0μm以下)であってもよい。
The fiber diameter, fiber length, and the like of the carbon fiber are not particularly limited, and may be selected according to the use of the resin molded body.
However, even if the fiber length of the carbon fiber is short, a resin molded article having excellent impact resistance at low temperatures can be obtained. Therefore, the average fiber length of the carbon fiber is 0.1 mm or more and 5.0 mm or less (preferably 0.00. 2 mm or more and 2.0 mm or less).
Further, the average diameter of the carbon fibers may be, for example, 5.0 μm or more and 10.0 μm or less (preferably 6.0 μm or more and 8.0 μm or less).

ここで、炭素繊維の平均繊維長の測定方法は、次の通りである。炭素繊維を光学顕微鏡によって倍率100で観察し、炭素繊維の長さを測定する。そして、この測定を炭素繊維200個について行い、その平均値を炭素繊維の平均繊維長とする。
一方、炭素繊維の平均直径の測定方法は、次の通りである。炭素繊維の長さ方向に直交する断面を、SEM(走査型電子顕微鏡)によって倍率1000倍で観察し、炭素繊維の直径を測定する。そして、この測定を炭素繊維100個について行い、その平均値を炭素繊維の平均直径とする。
Here, the measuring method of the average fiber length of carbon fibers is as follows. The carbon fiber is observed with an optical microscope at a magnification of 100, and the length of the carbon fiber is measured. And this measurement is performed about 200 carbon fibers, and let the average value be the average fiber length of carbon fibers.
On the other hand, the measuring method of the average diameter of carbon fiber is as follows. A cross section perpendicular to the length direction of the carbon fiber is observed with a SEM (scanning electron microscope) at a magnification of 1000 times, and the diameter of the carbon fiber is measured. And this measurement is performed about 100 carbon fibers, and let the average value be an average diameter of carbon fiber.

なお、炭素繊維の繊維長が短くなると、炭素繊維の樹脂強化能が低下する傾向がある。特に、近年のリサイクル化の要望により、炭素繊維で強化された樹脂成形体を粉砕して再利用することも進められており、樹脂成形体の粉砕時に炭素繊維の繊維長が短くなることが多い。また、樹脂組成物を製造するときの熱溶融混練時に炭素繊維の繊維長が短くなることもある。そのため、繊維長が短くなった炭素繊維を含む樹脂組成物により樹脂成形体を成形すると、機械的強度、特に低温での耐衝撃性が低下する傾向が高くなる。
しかし、炭素繊維を含む樹脂成形体を粉砕し、炭素繊維が短繊維化されたリサイクル品を原料として使用したり、熱溶融混練時に炭素繊維が短繊維化しても、本実施形態に係る樹脂組成物は、低温での耐衝撃性に優れた樹脂成形体が得られるため有用である。
In addition, when the fiber length of carbon fiber becomes short, there exists a tendency for the resin reinforcement | strengthening ability of carbon fiber to fall. In particular, due to recent demands for recycling, it has also been promoted to pulverize and reuse a resin molded body reinforced with carbon fiber, and the fiber length of the carbon fiber is often shortened when the resin molded body is pulverized. . Moreover, the fiber length of carbon fiber may become short at the time of the hot-melt kneading | mixing at the time of manufacturing a resin composition. For this reason, when a resin molded body is molded from a resin composition containing carbon fibers having a reduced fiber length, the mechanical strength, particularly the impact resistance at low temperatures, tends to decrease.
However, even if a resin molded body containing carbon fibers is pulverized and a recycled product in which carbon fibers are shortened is used as a raw material, or carbon fibers are shortened during hot melt kneading, the resin composition according to the present embodiment The product is useful because a resin molded article excellent in impact resistance at a low temperature can be obtained.

炭素繊維としては、市販品を用いてもよい。
PAN系炭素繊維の市販品としては、東レ(株)製の「トレカ(登録商標)」、東邦テナックス(株)製の「テナックス」、三菱レイヨン(株)製の「パイロフィル(登録商標)」等が挙げられる。その他、PAN系炭素繊維の市販品としては、Hexcel社製、Cytec社製,Dow−Aksa社製、台湾プラスチック社製,SGL社製の市販品も挙げられる。
ピッチ系炭素繊維の市販品としては、三菱レイヨン(株)製の「ダイリアード(登録商標)」、日本グラファイトファイバー(株)製の「GRANOC」、(株)クレハ製の「クレカ」等が挙げられる。その他、ピッチ系炭素繊維の市販品としては、大阪ガスケミカル(株)製、Cytec社製の市販品も挙げられる。
Commercially available products may be used as the carbon fiber.
Commercially available PAN-based carbon fibers include “Torayca (registered trademark)” manufactured by Toray Industries, Inc., “Tenax” manufactured by Toho Tenax Co., Ltd., and “Pyrofil (registered trademark)” manufactured by Mitsubishi Rayon Co., Ltd. Is mentioned. In addition, examples of commercially available PAN-based carbon fibers include commercially available products manufactured by Hexcel, Cytec, Dow-Aksa, Taiwan Plastic, and SGL.
Examples of commercially available pitch-based carbon fibers include “Dialyad (registered trademark)” manufactured by Mitsubishi Rayon Co., Ltd., “GRANOC” manufactured by Nippon Graphite Fiber Co., Ltd., and “Kureka” manufactured by Kureha Co., Ltd. . In addition, examples of commercially available pitch-based carbon fibers include those manufactured by Osaka Gas Chemical Co., Ltd. and those manufactured by Cytec.

なお、炭素繊維は、1種を単独で用いてもよいし、2種以上を併用してもよい。   In addition, carbon fiber may be used individually by 1 type, and may use 2 or more types together.

炭素繊維の含有量は、熱可塑性樹脂100質量部に対し0.1質量部以上200質量部以下であること好ましく、1質量部以上180質量部以下であることがより好ましく、5質量部以上150質量部以下であることが更に好ましい。
炭素繊維が熱可塑性樹脂100質量部に対し0.1質量部以上含まれることで、樹脂組成物の強化が図られ、また、炭素繊維の含有量を、熱可塑性樹脂100質量部に対し200質量部以下とすることで、樹脂成形体を得る際の成形性が良好になる。
なお、炭素繊維以外の強化繊維を用いる場合、強化繊維の全質量に対して80質量%以上を炭素繊維とすることが好ましい。
The carbon fiber content is preferably 0.1 parts by mass or more and 200 parts by mass or less, more preferably 1 part by mass or more and 180 parts by mass or less, and more preferably 5 parts by mass or more and 150 parts by mass with respect to 100 parts by mass of the thermoplastic resin. It is still more preferable that it is below mass parts.
The carbon fiber is contained in an amount of 0.1 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin, so that the resin composition is reinforced, and the carbon fiber content is 200 parts by mass with respect to 100 parts by mass of the thermoplastic resin. By setting it as the part or less, the moldability at the time of obtaining a resin molding becomes favorable.
In addition, when using reinforced fiber other than carbon fiber, it is preferable to make 80 mass% or more into carbon fiber with respect to the total mass of a reinforced fiber.

ここで、以降、熱可塑性樹脂100質量部に対する含有量(質量部)は、「phr(per hundred resin)と略記することがある。
この略記を使用した場合、上記炭素繊維の含有量は、0.1phr以上200phr以下となる。
Hereafter, the content (parts by mass) with respect to 100 parts by mass of the thermoplastic resin may be abbreviated as “phr (per hindered resin)”.
When this abbreviation is used, the carbon fiber content is 0.1 phr or more and 200 phr or less.

−ポリアミド−
ポリアミドとしては、ジカルボン酸とジアミンとを共縮重合したポリアミド、ラクタムを開環重縮合したポリアミド、ジカルボン酸とジアミンとラクタムとを縮合したポリアミドが挙げられる。つまり、ポリアミドとしては、ポリアミドは、ジカルボン酸とジアミンとが縮重合した構造単位、及びラクタムが開環した構造単位の少なくも一方を有するポリアミドが挙げられる。
-Polyamide-
Examples of the polyamide include polyamides obtained by cocondensation polymerization of dicarboxylic acid and diamine, polyamides obtained by ring-opening polycondensation of lactam, and polyamides obtained by condensing dicarboxylic acid, diamine and lactam. That is, examples of the polyamide include polyamides having at least one of a structural unit obtained by polycondensation of a dicarboxylic acid and a diamine and a structural unit obtained by ring opening of a lactam.

ポリアミドは、ジカルボン酸とジアミンとが縮重合した構造単位、又はラクタムが開環した構造単位であって、アラミドを除く芳香環を含む構造単位を有するポリアミド、芳香環を含まない構成単位を有するポリアミド、アラミド構造単位を除く芳香環を含む構造単位と芳香環を含まない構造単位とを有するポリアミドのいずれであってもよいが、低温での耐衝撃性向上の観点から、アラミド構造単位を除く芳香環を含む構造単位と芳香環を含まない構造単位とを有するポリアミドであることが好ましい。   Polyamide is a structural unit in which a dicarboxylic acid and a diamine are polycondensated, or a structural unit in which a lactam is opened, and has a structural unit containing an aromatic ring excluding aramid, and a polyamide having a structural unit not containing an aromatic ring Any of polyamides having a structural unit containing an aromatic ring excluding an aramid structural unit and a structural unit not containing an aromatic ring may be used, but from the viewpoint of improving impact resistance at low temperatures, an aromatic excluding an aramid structural unit A polyamide having a structural unit containing a ring and a structural unit not containing an aromatic ring is preferred.

特に、ポリアミドとして、アラミド構造単位を除く芳香環を含む構造単位と芳香環を含まない構造単位とを有するポリアミドを適用すると、炭素繊維と熱可塑性樹脂との親和性が共に良好となる。ここで、芳香環を含む構造単位のみ有するポリアミドは、芳香環を含まない構造単位のみを有するポリアミドに比べ、炭素繊維と親和性が高く、熱可塑性樹脂とは親和性が低い傾向がある。芳香環を含まない構造単位のみを有するポリアミドは、芳香環を含む構造単位のみ有するポリアミドに比べ、炭素繊維と親和性が低く、熱可塑性樹脂とは親和性が高い傾向がある。そのため、両構造単位を有するポリアミドを適用することで、炭素繊維と熱可塑性樹脂との親和性が共に良好となり、ポリアミドの被覆層によって炭素繊維と熱可塑性樹脂との界面の密着性がさらに高まることになる。そのため、機械的強度、特に低温での耐衝撃性に優れた樹脂成形体が得られやすくなる。   In particular, when a polyamide having a structural unit including an aromatic ring excluding an aramid structural unit and a structural unit not including an aromatic ring is applied as the polyamide, both the affinity between the carbon fiber and the thermoplastic resin is improved. Here, a polyamide having only a structural unit containing an aromatic ring tends to have a higher affinity for carbon fibers and a lower affinity for a thermoplastic resin than a polyamide having only a structural unit not containing an aromatic ring. A polyamide having only a structural unit containing no aromatic ring tends to have a lower affinity for carbon fibers and a higher affinity for a thermoplastic resin than a polyamide having only a structural unit containing an aromatic ring. Therefore, by applying a polyamide having both structural units, the affinity between the carbon fiber and the thermoplastic resin is improved, and the adhesion of the interface between the carbon fiber and the thermoplastic resin is further enhanced by the polyamide coating layer. become. Therefore, it becomes easy to obtain a resin molded article having excellent mechanical strength, particularly impact resistance at low temperatures.

また、ポリアミドとして、アラミド構造単位を除く芳香環を含む構造単位と芳香環を含まない構造単位とを有するポリアミドを適用すると、溶融粘度が低下し、成形性(例えば射出成形性)も向上する。そのため、外観品質の高い樹脂成形体が得られ易くなる。
なお、ポリアミドとして、アラミド構造単位のみを有するポリアミドを適用すると、ポリアミドが溶融し得る高い温度では、熱可塑性樹脂の熱劣化を引き起こす。また、熱可塑性樹脂の熱劣化が引き起こされる温度では、ポリアミドが十分に溶融できず、成形性(例えば射出成形性)が悪化し、得られる樹脂成形体の外観品質及び機械的性能が低下する。
Further, when a polyamide having a structural unit containing an aromatic ring excluding an aramid structural unit and a structural unit not containing an aromatic ring is applied as the polyamide, the melt viscosity is lowered and moldability (for example, injection moldability) is also improved. Therefore, it becomes easy to obtain a resin molded body with high appearance quality.
When a polyamide having only an aramid structural unit is applied as the polyamide, the thermoplastic resin is thermally deteriorated at a high temperature at which the polyamide can be melted. Further, at a temperature that causes thermal degradation of the thermoplastic resin, the polyamide cannot be sufficiently melted, the moldability (for example, injection moldability) is deteriorated, and the appearance quality and mechanical performance of the resulting resin molded body are deteriorated.

なお、芳香環とは、5員環以上の単環の芳香環(シクロペンタジエン、ベンゼン)、及び5員環以上の複数の単環の芳香環が縮合した縮合環(ナフタレン等)を示す。芳香環は複素環(ピリジン環等)も含む。
また、アラミド構造単位とは、芳香環を含むジカルボン酸と芳香環を含むジアミンとの縮重合反応した構造単位を示す。
The aromatic ring refers to a 5-membered or more monocyclic aromatic ring (cyclopentadiene, benzene) and a condensed ring (naphthalene or the like) in which a plurality of 5-membered or more monocyclic aromatic rings are condensed. Aromatic rings also include heterocycles (such as pyridine rings).
The aramid structural unit refers to a structural unit obtained by a condensation polymerization reaction between a dicarboxylic acid containing an aromatic ring and a diamine containing an aromatic ring.

ここで、アラミド構造単位を除く芳香環を含む構造単位としては、例えば、下記構造単位(1)及び(2)の少なくとも一方が挙げられる。
・構造単位(1):−(−NH−Ar−NH−CO−R−CO−)−
(構造単位(1)中、Arは芳香環を含む2価の有機基を示す。Rは芳香環を含まない2価の有機基を示す。)
・構造単位(2):−(−NH−R−NH−CO−Ar−CO−)−
(構造単位(2)中、Arは芳香環を含む2価の有機基を示す。Rは芳香環を含まない2価の有機基を示す。)
Here, examples of the structural unit containing an aromatic ring excluding the aramid structural unit include at least one of the following structural units (1) and (2).
Structural unit (1): — (— NH—Ar 1 —NH—CO—R 1 —CO —) —
(In the structural unit (1), Ar 1 represents a divalent organic group containing an aromatic ring. R 1 represents a divalent organic group containing no aromatic ring.)
Structural unit (2): — (— NH—R 2 —NH—CO—Ar 2 —CO —) —
(In the structural unit (2), Ar 2 represents a divalent organic group containing an aromatic ring. R 2 represents a divalent organic group containing no aromatic ring.)

一方、芳香環を含まない構造単位としては、例えば、下記構造単位(3)及び(4)の少なくとも一方が挙げられる。
・構造単位(3):−(−NH−R31−NH−CO−R32−CO−)−
(構造単位(3)中、R31は芳香環を含まない2価の有機基を示す。R32は芳香環を含まない2価の有機基を示す。)
・構造単位(4):−(−NH−R−CO−)−
(構造単位(4)中、Rは芳香環を含まない2価の有機基を示す)
On the other hand, examples of the structural unit not containing an aromatic ring include at least one of the following structural units (3) and (4).
Structural unit (3): — (— NH—R 31 —NH—CO—R 32 —CO —) —
(In the structural unit (3), R 31 represents a divalent organic group containing no aromatic ring. R 32 represents a divalent organic group containing no aromatic ring.)
Structural unit (4): — (— NH—R 4 —CO —) —
(In the structural unit (4), R 4 represents a divalent organic group containing no aromatic ring)

なお、構造式(1)〜(3)において、各符号が示す「2価の有機基」は、ジカルボン酸、ジアミン、又はラクタムが有する2価の有機基に由来する有機基である。具体的には、例えば、構造単位(1)において、Arが示す「芳香環を含む2価の有機基」は、ジアミンから2つのアミノ基を除いた残基を示し、Rが示す「芳香環を含まない2価の有機基」は、ジカルボン酸から2つのカルボキシ基を除いた残基を示す。また、例えば、構造単位(4)において、Rが示す「芳香環を含まない2価の有機基」は、ラクタムが開環したとき「NH基」と「CO基」とで挟まれている有機基を示す。 In Structural Formulas (1) to (3), the “divalent organic group” indicated by each symbol is an organic group derived from a divalent organic group possessed by dicarboxylic acid, diamine, or lactam. Specifically, for example, in the structural unit (1), “a divalent organic group containing an aromatic ring” represented by Ar 1 represents a residue obtained by removing two amino groups from a diamine, and R 1 represents “ The “divalent organic group not containing an aromatic ring” indicates a residue obtained by removing two carboxy groups from a dicarboxylic acid. Further, for example, in the structural unit (4), the “divalent organic group not containing an aromatic ring” represented by R 4 is sandwiched between the “NH group” and the “CO group” when the lactam is opened. An organic group is shown.

ポリアミドとしては、共重合ポリアミド、混合ポリアミドが挙げられる。ポリアミドは、共重合ポリアミドと混合ポリアミドとを併用しもよい。これらの中でも、ポリアミドとしては、低温での耐衝撃性の更なる向上の点から、混合ポリアミドが好ましい。   Examples of the polyamide include copolymer polyamide and mixed polyamide. As the polyamide, a copolyamide and a mixed polyamide may be used in combination. Among these, as the polyamide, a mixed polyamide is preferable from the viewpoint of further improving impact resistance at low temperatures.

共重合ポリアミドは、例えば、アラミド構造単位を除く芳香環を含む構造単位を有する第1ポリアミドと、芳香環を含まない構造単位を有する第2ポリアミドと、を共重合した共重合ポリアミドである。
混合ポリアミドは、例えば、芳香環を有する第1ポリアミドと、芳香環を有さない第2ポリアミドと、を含む混合ポリアミドである。
なお、以下、便宜上、第1ポリアミドを「芳香族ポリアミド」、第2ポリアミドを「脂肪族ポリアミド」と称することがある。
The copolymerized polyamide is, for example, a copolymerized polyamide obtained by copolymerizing a first polyamide having a structural unit including an aromatic ring excluding an aramid structural unit and a second polyamide having a structural unit not including an aromatic ring.
The mixed polyamide is, for example, a mixed polyamide including a first polyamide having an aromatic ring and a second polyamide having no aromatic ring.
Hereinafter, for convenience, the first polyamide may be referred to as “aromatic polyamide” and the second polyamide may be referred to as “aliphatic polyamide”.

共重合ポリアミドにおいて、芳香族ポリアミドと脂肪族ポリアミドとの割合(芳香族ポリアミド/脂肪族ポリアミド)は、低温での耐衝撃性の更なる向上の点から、質量比で20/80以上99/1以下(好ましくは50/50以上96/4以下)がよい。
一方、混合ポリアミドにおいて、芳香族ポリアミドと脂肪族ポリアミド(芳香族ポリアミド/脂肪族ポリアミド)との割合は、低温での耐衝撃性の更なる向上の点から、質量比で20/80以上99/1以下(好ましくは50/50以上96/4以下)がよい。
In the copolymerized polyamide, the ratio of aromatic polyamide to aliphatic polyamide (aromatic polyamide / aliphatic polyamide) is 20/80 to 99/1 in terms of mass ratio from the viewpoint of further improving impact resistance at low temperatures. The following (preferably 50/50 or more and 96/4 or less) is good.
On the other hand, in the mixed polyamide, the ratio of the aromatic polyamide to the aliphatic polyamide (aromatic polyamide / aliphatic polyamide) is 20/80 or more in terms of mass ratio from the viewpoint of further improving impact resistance at low temperatures. 1 or less (preferably 50/50 or more and 96/4 or less) is good.

芳香族ポリアミドにおいて、芳香環を含む構造単位の割合は、全構造単位に対して80質量%以上(好ましくは90質量%以上、より好ましくは100質量%以上)がよい。
一方、脂肪族ポリアミドにおいて、芳香環を含まない構造単位の割合は、全構造単位に対して80質量%以上(好ましくは90質量%以上、より好ましくは100質量%以上)がよい。
In the aromatic polyamide, the proportion of the structural unit containing an aromatic ring is preferably 80% by mass or more (preferably 90% by mass or more, more preferably 100% by mass or more) with respect to all the structural units.
On the other hand, in the aliphatic polyamide, the proportion of structural units not containing an aromatic ring is preferably 80% by mass or more (preferably 90% by mass or more, more preferably 100% by mass or more) with respect to all structural units.

芳香族ポリアミドは、芳香環を含むジカルボン酸と芳香環を含まないジアミンとの縮重合体、芳香環を含まないジカルボン酸と芳香環を含むジアミンとの縮重合体等が挙げられる。   Examples of the aromatic polyamide include a condensation polymer of a dicarboxylic acid containing an aromatic ring and a diamine not containing an aromatic ring, a condensation polymer of a dicarboxylic acid not containing an aromatic ring and a diamine containing an aromatic ring, and the like.

脂肪族ポリアミドは、芳香環を含まないジカルボン酸と芳香環を含まないジアミンとの縮重合体、芳香環を含まないラクタムの開環重縮合体等が挙げられる。   Examples of the aliphatic polyamide include a condensation polymer of a dicarboxylic acid not containing an aromatic ring and a diamine not containing an aromatic ring, and a ring-opening polycondensation product of a lactam not containing an aromatic ring.

ここで、芳香環を含むジカルボン酸としては、フタル酸(テレフタル酸、イソフタル酸等)、ビフェニルジカルボン酸等が例示される。
芳香環を含まないジカルボン酸としては、シュウ酸、アジピン酸、スベリン酸、セバシン酸、1,4−シクロヘキサンジカルボン酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、アゼライン酸等が例示される。
芳香環を含むジアミンとしては、p−フェニレンジアミン、m−フェニレンジアミン、m−キシレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル等が例示される。
芳香環を含まないジアミンとしては、エチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ノナンジアミン、デカメチレンジアミン、1,4−シクロヘキサンジアミン等が例示される。
Here, examples of the dicarboxylic acid containing an aromatic ring include phthalic acid (terephthalic acid, isophthalic acid, etc.), biphenyl dicarboxylic acid, and the like.
Examples of the dicarboxylic acid not containing an aromatic ring include oxalic acid, adipic acid, suberic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, azelaic acid and the like.
Examples of the diamine containing an aromatic ring include p-phenylenediamine, m-phenylenediamine, m-xylenediamine, diaminodiphenylmethane, and diaminodiphenyl ether.
Examples of the diamine not containing an aromatic ring include ethylene diamine, pentamethylene diamine, hexamethylene diamine, nonane diamine, decamethylene diamine, and 1,4-cyclohexane diamine.

芳香環を含まないラクタムとしては、ε−カプロラクタム、ウンデカンラクタム、ラウリルラクタム等が例示される。   Examples of lactams that do not contain an aromatic ring include ε-caprolactam, undecane lactam, lauryl lactam, and the like.

なお、各ジカルボン酸、各ジアミン、各ラクタムは、1種単独で使用してもよいし、2種以上併用してもよい。   In addition, each dicarboxylic acid, each diamine, and each lactam may be used individually by 1 type, and may be used together 2 or more types.

芳香族ポリアミドとしては、MXD6(アジピン酸とメタキシレンジアミンとの縮重合体)、ナイロン6T(テレフタル酸とヘキサメチレンジアミンとの縮重合体)、ナイロン6I(イソフタル酸とヘキサメチレンジアミンとの重縮合体)、ナイロン9T(テレフタル酸とナンジアミンとの重縮合体)、ナイロンM5T(テレフタル酸とメチルペンタジアミンとの重縮合体)等が例示される。
芳香族ポリアミドの市販品としては、三菱ガス化学社製「MXD6」、クラレ社製「GENESTAR(登録商標):PA6T」、クラレ社製「GENESTAR(登録商標):PA9T」、東洋紡社製「TY−502NZ:PA6T」等が例示される。
As aromatic polyamides, MXD6 (condensation polymer of adipic acid and metaxylenediamine), nylon 6T (condensation polymer of terephthalic acid and hexamethylenediamine), nylon 6I (polycondensation of isophthalic acid and hexamethylenediamine) Body), nylon 9T (polycondensate of terephthalic acid and nandiamine), nylon M5T (polycondensate of terephthalic acid and methylpentadiamine), and the like.
Commercially available aromatic polyamides include “MXD6” manufactured by Mitsubishi Gas Chemical Company, “GENESTAR (registered trademark): PA6T” manufactured by Kuraray Co., Ltd., “GENESTAR (registered trademark): PA9T” manufactured by Kuraray Co., Ltd., and “TY-” manufactured by Toyobo Co., Ltd. 502NZ: PA6T "etc. are illustrated.

脂肪族ポリアミドとしては、ナイロン6(ε−カプロラクタムの開環重縮合体)、ナイロン11(ウンデカンラクタムの開環重縮合体)、ナイロン12(ラウリルラクタムの開環重縮合体)、ナイロン66(アジピン酸とヘキサメチレンジアミンとの縮重合体)、ナイロン610(セバシン酸とヘキサメチレンジアミンとの縮重合体)等が例示される。
脂肪族ポリアミドの市販品としては、Dupont社製「ザイテル(登録商標):7331J(PA6)」、Dupont社製「ザイテル(登録商標):101L(PA66)」
Examples of aliphatic polyamides include nylon 6 (ring-opening polycondensate of ε-caprolactam), nylon 11 (ring-opening polycondensate of undecane lactam), nylon 12 (ring-opening polycondensate of lauryl lactam), nylon 66 (adipine) Examples thereof include a condensation polymer of acid and hexamethylene diamine) and nylon 610 (condensation polymer of sebacic acid and hexamethylene diamine).
Commercially available products of aliphatic polyamides include “Zytel (registered trademark): 7331J (PA6)” manufactured by Dupont, and “Zytel (registered trademark): 101L (PA66)” manufactured by Dupont.

ポリアミドの物性について説明する。
ポリアミド(共重合ポリアミド、混合ポリアミド)の芳香環の割合は、低温での耐衝撃性の更なる向上の点から、1質量%以上55質量%以下が好ましく、5質量%以上50質量%以下がより好ましく、10質量%以上40質量%以下がより好ましい。
なお、混合ポリアミドの芳香環の割合は、芳香族ポリアミド及び脂肪族ポリアミド全体に対する芳香環の割合とする、
The physical properties of polyamide will be described.
The proportion of the aromatic ring of the polyamide (copolymerized polyamide, mixed polyamide) is preferably 1% by mass or more and 55% by mass or less, and more preferably 5% by mass or more and 50% by mass or less, from the viewpoint of further improving impact resistance at low temperatures. More preferably, 10 mass% or more and 40 mass% or less are more preferable.
The ratio of the aromatic ring of the mixed polyamide is the ratio of the aromatic ring to the whole of the aromatic polyamide and the aliphatic polyamide.

ここで、ポリアミドの芳香環の割合は、ポリアミドに含まれる「単環の芳香環、単環の芳香環が縮合した縮合環」の合計の割合を意味する。なお、ポリアミドの芳香環の割合の算出において、単環の芳香環、単環の芳香環が縮合した縮合環に置換した置換基は除かれる。   Here, the ratio of the aromatic ring of the polyamide means the total ratio of “monocyclic aromatic ring, condensed ring obtained by condensing a single aromatic ring” contained in the polyamide. In the calculation of the ratio of the aromatic ring of the polyamide, a substituent substituted with a monocyclic aromatic ring or a condensed ring condensed with a single aromatic ring is excluded.

つまり、ポリアミドの芳香環の割合は、ポリアミドの「ジカルボン酸とジアミンとが縮重合した構造単位」、又は「ラクタムが開環した構造単位」の分子量から、この構造単位中に含まれる芳香環(置換基を有する場合、置換基を除く芳香環)の分子量の割合(質量%)で算出する。   That is, the ratio of the aromatic ring of the polyamide is determined from the molecular weight of the “structural unit in which the dicarboxylic acid and the diamine are polycondensed” or “the structural unit in which the lactam is opened”. When it has a substituent, it calculates with the ratio (mass%) of the molecular weight of the aromatic ring except a substituent.

まず、以下に、代表的なポリアミドの芳香環の割合を示す。芳香環を有さないナイロン6及びナイロン66の芳香環の割合はともに0質量%となる。一方、芳香環を有するMXD6は、構造単位中の芳香環「−C−(分子量76.10)」を持つため、芳香環の割合は30.9質量%となる。また、同様にナイロン9Tの芳香環の割合は、26.49質量%となる。 First, the ratio of the aromatic ring of a typical polyamide is shown below. The ratios of the aromatic rings of nylon 6 and nylon 66 not having an aromatic ring are both 0% by mass. On the other hand, MXD6 having an aromatic ring has an aromatic ring “—C 6 H 4 — (molecular weight 76.10)” in the structural unit, and therefore the ratio of the aromatic ring is 30.9% by mass. Similarly, the ratio of the aromatic ring of nylon 9T is 26.49% by mass.

・ナイロン6:構造単位の構造「−NH−(CH−CO−」、構造単位の分子量=113.16、芳香環の割合=0質量%
・ナイロン66:構造単位の構造「−NH−(CH−NH−CO−(CH−CO−」、構造単位の分子量=226.32、芳香環の割合=0質量%
・MXD6:構造単位の構造「−NH−CH−C−CH−NH−CO−(CH−CO−」、構造単位の分子量=246.34、芳香環の割合=30.9質量%
・ナイロン9T:構造単位の構造「−NH−(CH−NH−CO−C−CO−」、構造単位の分子量=288.43、芳香環の割合=26.4質量%
Nylon 6: Structural unit structure “—NH— (CH 2 ) 5 —CO—”, structural unit molecular weight = 113.16, ratio of aromatic ring = 0 mass%
Nylon 66: Structural unit structure “—NH— (CH 2 ) 6 —NH—CO— (CH 2 ) 4 —CO—”, molecular weight of structural unit = 226.32, ratio of aromatic ring = 0% by mass
MXD6: Structural unit structure “—NH—CH 2 —C 6 H 4 —CH 2 —NH—CO— (CH 2 ) 4 —CO—”, structural unit molecular weight = 246.34, aromatic ring ratio = 30.9% by mass
Nylon 9T: Structural unit structure “—NH— (CH 2 ) 9 —NH—CO—C 6 H 4 —CO—”, molecular weight of structural unit = 288.43, ratio of aromatic ring = 26.4% by mass

そして、共重合ポリアミド、混合ポリアミドの芳香環の割合は、次のように求める。   And the ratio of the aromatic ring of copolymer polyamide and mixed polyamide is calculated | required as follows.

−例1:ナイロン6とMXD6との共重合ポリアミド又は混合ポリアミドの場合(ナイロン6とMXD6との質量比=50/50)−
芳香環の割合=(ナイロン6の割合×ナイロン6中の芳香環の割合)+MXD6の割合×MXD6中の芳香環の割合)=(0.5×0)+(0.5×30.9)=15.5(質量%)
-Example 1: Nylon 6 and MXD6 copolymer polyamide or mixed polyamide (mass ratio of nylon 6 and MXD6 = 50/50)-
Ratio of aromatic ring = (ratio of nylon 6 × ratio of aromatic ring in nylon 6) + ratio of MXD6 × ratio of aromatic ring in MXD6) = (0.5 × 0) + (0.5 × 30.9) = 15.5 (mass%)

−例2:ナイロン66とMXD6とナイロン9Tとの共重合ポリアミド又は混合ポリアミドの場合(ナイロン66とMXD6とナイロン9Tとの質量比=50/25/25)−
芳香環の割合=(ナイロン66の割合×ナイロン66中の芳香環の割合)+MXD6の割合×MXD6中の芳香環の割合)+(ナイロン9Tの割合×ナイロン9T中の芳香環の割合)=(0.5×0.5×0)+(0.25×30.9)+(0.25×26.4)=14.3(質量%)
-Example 2: Copolymer polyamide or mixed polyamide of nylon 66, MXD6 and nylon 9T (mass ratio of nylon 66, MXD6 and nylon 9T = 50/25/25)-
Ratio of aromatic ring = (ratio of nylon 66 × ratio of aromatic ring in nylon 66) + ratio of MXD6 × ratio of aromatic ring in MXD6 + (ratio of nylon 9T × ratio of aromatic ring in nylon 9T) = ( 0.5 × 0.5 × 0) + (0.25 × 30.9) + (0.25 × 26.4) = 14.3 (mass%)

ポリアミド(共重合ポリアミド、混合ポリアミドの各ポリアミド)の分子量は、特に限定されず、樹脂組成物中に併存する熱可塑性樹脂よりも熱溶融し易ければよい。例えば、ポリアミドの重量平均分子量は、1万以上30万以下の範囲が好ましく、1万以上10万以下の範囲がより好ましい。
また、ポリアミド(共重合ポリアミド、混合ポリアミドの各ポリアミド)のガラス転移温度又は溶融温度(融点)は、上記分子量と同様、特に限定されず、樹脂組成物中に併存する熱可塑性樹脂よりも熱溶融し易ければよい。例えば、ポリアミド(共重合ポリアミド、混合ポリアミドの各ポリアミド)の融点(Tm)は、100℃以上400℃以下の範囲が好ましく、150℃以上300℃以下の範囲がより好ましい。
The molecular weight of the polyamide (copolymerized polyamide, mixed polyamide) is not particularly limited as long as it is easier to melt than the thermoplastic resin coexisting in the resin composition. For example, the weight average molecular weight of polyamide is preferably in the range of 10,000 to 300,000, and more preferably in the range of 10,000 to 100,000.
Further, the glass transition temperature or melting temperature (melting point) of polyamide (copolyamide, mixed polyamide) is not particularly limited as in the case of the molecular weight described above, and is higher than that of the thermoplastic resin coexisting in the resin composition. It should be easy. For example, the melting point (Tm) of polyamide (copolyamide, mixed polyamide) is preferably in the range of 100 ° C. or higher and 400 ° C. or lower, and more preferably in the range of 150 ° C. or higher and 300 ° C. or lower.

ポリアミド(共重合ポリアミド、混合ポリアミドの各ポリアミド)は、熱可塑性樹脂とは相溶性が低い樹脂、具体的には熱可塑性樹脂とは溶解度パラメータ(SP値)が異なる樹脂であることが好ましい。
ここで、熱可塑性樹脂とポリアミドとのSP値の差としては、両者間の相溶性、両者間の斥力の点から、3以上が好ましく、3以上6以下がより好ましい。
ここでいうSP値とは、Fedorの方法により算出された値である、具体的には、溶解度パラメータ(SP値)は、例えば、Polym.Eng.Sci.,vol.14,p.147(1974)の記載に準拠し、下記式によりSP値を算出する。
式:SP値=√(Ev/v)=√(ΣΔei/ΣΔvi)
(式中、Ev:蒸発エネルギー(cal/mol)、v:モル体積(cm/mol)、Δei:それぞれの原子又は原子団の蒸発エネルギー、Δvi:それぞれの原子又は原子団のモル体積)
なお、溶解度パラメータ(SP値)は、単位として(cal/cm1/2を採用するが、慣行に従い単位を省略し、無次元で表記する。
Polyamide (polyamides of copolymerized polyamide and mixed polyamide) is preferably a resin having low compatibility with a thermoplastic resin, specifically, a resin having a solubility parameter (SP value) different from that of a thermoplastic resin.
Here, the difference in SP value between the thermoplastic resin and the polyamide is preferably 3 or more and more preferably 3 or more and 6 or less from the viewpoint of compatibility between the two and repulsive force between the two.
The SP value here is a value calculated by Fedor's method. Specifically, the solubility parameter (SP value) is, for example, Polym. Eng. Sci. , Vol. 14, p. 147 (1974), the SP value is calculated by the following formula.
Formula: SP value = √ (Ev / v) = √ (ΣΔei / ΣΔvi)
(Where Ev: evaporation energy (cal / mol), v: molar volume (cm 3 / mol), Δei: evaporation energy of each atom or atomic group, Δvi: molar volume of each atom or atomic group)
The solubility parameter (SP value) employs (cal / cm 3 ) 1/2 as a unit, but the unit is omitted in accordance with common practice and expressed in a dimensionless manner.

ポリアミドの含有量は、低温での耐衝撃性の更なる向上の点から、熱可塑性樹脂100質量部に対し0.1質量部以上100質量部以下であること好ましく、30質量部以上90質量部以下であることがより好ましく、40質量部以上80質量部以下であることが更に好ましい。
ポリアミドの含有量が上記の範囲であることで、炭素繊維との親和性が高まり、低温での耐衝撃性の向上が図られる。
The content of the polyamide is preferably 0.1 parts by mass or more and 100 parts by mass or less, more preferably 30 parts by mass or more and 90 parts by mass with respect to 100 parts by mass of the thermoplastic resin, from the viewpoint of further improving impact resistance at low temperatures. More preferably, it is more preferably 40 parts by weight or more and 80 parts by weight or less.
When the content of the polyamide is in the above range, the affinity with the carbon fiber is increased, and the impact resistance at low temperatures is improved.

ポリアミドの含有量は、炭素繊維との親和性を効果的に発現させる点から、前述した炭素繊維の含有量と比例させることが好ましい。
炭素繊維の質量に対するポリアミドの含有量としては、1質量%以上200質量%以下であることが好ましく、10質量%以上150質量%以下であることがより好ましく、12質量%以上120質量%以下であることが更に好ましい。
炭素繊維の質量に対するポリアミドの含有量が、1質量%以上であると炭素繊維とポリアミドとの親和性が高まり易くなり、200質量%以下であると樹脂流動性が向上する。
The content of the polyamide is preferably proportional to the content of the carbon fiber described above from the viewpoint of effectively expressing the affinity with the carbon fiber.
The polyamide content relative to the mass of the carbon fiber is preferably 1% by mass or more and 200% by mass or less, more preferably 10% by mass or more and 150% by mass or less, and more preferably 12% by mass or more and 120% by mass or less. More preferably it is.
When the content of the polyamide with respect to the mass of the carbon fiber is 1% by mass or more, the affinity between the carbon fiber and the polyamide is easily increased, and when it is 200% by mass or less, the resin fluidity is improved.

ここで、ポリアミドと炭素繊維との密着性は、例えば、界面せん断強度といった指標にて評価される。
界面せん断強度は、マイクロドロップレット法を用いて測定される。ここで、図3に示す試験の模式図を用いて、マイクロドロップレット法について説明する。
マイクロドロップレット法とは、単繊維fに液体樹脂を塗布し、ドロップレットD(樹脂粒、樹脂玉とも呼ばれる)をつけ、このドロップレットDを固定した後に、矢印方向に単繊維fの引き抜き試験を行うことで、両者の界面接着性を評価する方法である。
そして、この試験を元に、下記式を用いて、界面せん断強度(τ)が算出される。
Here, the adhesion between polyamide and carbon fiber is evaluated by an index such as interfacial shear strength.
Interfacial shear strength is measured using the microdroplet method. Here, the microdroplet method will be described with reference to the schematic diagram of the test shown in FIG.
The microdroplet method applies a liquid resin to a single fiber f, attaches a droplet D (also referred to as a resin grain or resin ball), fixes the droplet D, and then pulls out the single fiber f in the direction of the arrow. This is a method for evaluating the interfacial adhesion between the two.
Based on this test, the interfacial shear strength (τ) is calculated using the following formula.


式中、τは界面せん断強度を表し、Fは引抜荷重を表し、dは単繊維の繊維径を表し、Lはドロップレット長を表す。
算出された界面せん断強度(τ)の値が大きいほど、炭素繊維とポリアミドとの密着性が高いことを示し、この値が大きな炭素繊維及びポリアミドの組み合わせを選択することにより、より高い低温での耐衝撃性を有する樹脂成形体が形成される、といった指標ともなる。
In the formula, τ represents the interfacial shear strength, F represents the pulling load, d represents the fiber diameter of the single fiber, and L represents the droplet length.
The larger the value of the calculated interfacial shear strength (τ), the higher the adhesion between the carbon fiber and the polyamide, and by selecting a combination of the carbon fiber and the polyamide having a large value, the higher the low temperature It is also an indicator that a resin molded body having impact resistance is formed.

−相溶化剤−
相溶化剤は、熱可塑性樹脂とポリアミドとの親和性を高める樹脂である。
相溶化剤としては、熱可塑性樹脂に応じて決定すればよい。ただし、相溶化剤として、酸価が10mgKOH/g以上60mgKOH/g以下の相溶化剤を適用する。
相溶化剤の酸価は、低温での耐衝撃性の更なる向上の観点から、10mgKOH/g以上60mgKOH/g以下であることが好ましく、20mgKOH/g以上55mgKOH/g以下がより好ましい。
相溶化剤の酸価は、例えば、後述する修飾ポリオレフィンを相溶化剤として用いる場合、修飾部位の導入量等により調整される。
相溶化剤の酸価の測定は、JIS K−0070(1992年)に準じ、中和滴定法により行う。
なお、相溶化剤として酸価が異なる2種以上の相溶化剤を使用する場合、相溶化剤の混合品の酸価とする。
-Compatibilizer-
The compatibilizing agent is a resin that enhances the affinity between the thermoplastic resin and the polyamide.
What is necessary is just to determine according to a thermoplastic resin as a compatibilizing agent. However, as a compatibilizing agent, a compatibilizing agent having an acid value of 10 mgKOH / g or more and 60 mgKOH / g or less is applied.
The acid value of the compatibilizer is preferably from 10 mgKOH / g to 60 mgKOH / g, more preferably from 20 mgKOH / g to 55 mgKOH / g, from the viewpoint of further improving impact resistance at low temperatures.
The acid value of the compatibilizing agent is adjusted by, for example, the amount of modification site introduced when using a modified polyolefin described below as a compatibilizing agent.
The acid value of the compatibilizer is measured by a neutralization titration method according to JIS K-0070 (1992).
In addition, when using 2 or more types of compatibilizing agents from which an acid value differs as a compatibilizing agent, it is set as the acid value of the mixture of compatibilizing agents.

相溶化剤としては、熱可塑性樹脂と同じ構造を有し、且つ、分子内の一部にポリアミドと親和性を有する部位を含むものが好ましい。   As the compatibilizing agent, those having the same structure as the thermoplastic resin and including a part having affinity for polyamide in a part of the molecule are preferable.

例えば、熱可塑性樹脂としてポリオレフィンを用いる場合、相溶化剤としては、修飾ポリオレフィンを用いればよい。
ここで、熱可塑性樹脂がポリプロピレン(PP)であれば修飾ポリオレフィンとしては修飾ポリプロピレン(PP)が好ましく、同様に、熱可塑性樹脂がエチレン・酢酸ビニル共重合樹脂(EVA)であれば修飾ポリオレフィンとしては修飾エチレン・酢酸ビニル共重合樹脂(EVA)が好ましい。
For example, when polyolefin is used as the thermoplastic resin, a modified polyolefin may be used as the compatibilizing agent.
Here, if the thermoplastic resin is polypropylene (PP), the modified polyolefin (PP) is preferable as the modified polyolefin. Similarly, if the thermoplastic resin is an ethylene / vinyl acetate copolymer resin (EVA), the modified polyolefin is Modified ethylene / vinyl acetate copolymer resin (EVA) is preferred.

修飾ポリオレフィンとしては、カルボキシ基、カルボン酸無水物残基、カルボン酸エステル残基、イミノ基、アミノ基、エポキシ基等を含む修飾部位が導入されたポリオレフィンが挙げられる。
ポリオレフィンに導入される修飾部位としては、ポリオレフィンとポリアミドとの親和性の更なる向上の点、成形加工時の上限温度の点から、カルボン酸無水物残基を含むことが好ましく、特に、無水マレイン酸残基を含むことが好ましい。
Examples of the modified polyolefin include polyolefins into which modified sites including a carboxy group, a carboxylic acid anhydride residue, a carboxylic acid ester residue, an imino group, an amino group, an epoxy group, and the like are introduced.
The modification site introduced into the polyolefin preferably contains a carboxylic acid anhydride residue from the viewpoint of further improving the affinity between the polyolefin and the polyamide and the maximum temperature during the molding process. It preferably contains an acid residue.

修飾ポリオレフィンは、上述した修飾部位を含む化合物をポリオレフィンに反応させて直接化学結合する方法や、上述した修飾部位を含む化合物を用いてグラフト鎖を形成し、このグラフト鎖をポリオレフィンに結合させる方法などがある。
上述した修飾部位を含む化合物としては、無水マレイン酸、無水フマル酸、無水クエン酸、N−フェニルマレイミド、N−シクロヘキシルマレイミド、グリシジル(メタ)アクリレート、グリシジルビニルベンゾエート、N−〔4−(2,3−エポキシプロポキシ)−3,5−ジメチルベンジル〕アクリルアミド、アルキル(メタ)アクリレート、及びこれらの誘導体が挙げられる。
なお、上記の中でも、不飽和カルボン酸である無水マレイン酸をポリオレフィンと反応させてなる修飾ポリオレフィンが好ましい。
The modified polyolefin is a method in which a compound containing the above-mentioned modification site is reacted directly with the polyolefin and chemically bonded, or a method in which a graft chain is formed using the compound containing the above-mentioned modification site and this graft chain is bonded to the polyolefin, etc. There is.
Examples of the compound containing the above-mentioned modification site include maleic anhydride, fumaric anhydride, citric anhydride, N-phenylmaleimide, N-cyclohexylmaleimide, glycidyl (meth) acrylate, glycidyl vinyl benzoate, N- [4- (2, 3-epoxypropoxy) -3,5-dimethylbenzyl] acrylamide, alkyl (meth) acrylate, and derivatives thereof.
Among these, modified polyolefins obtained by reacting maleic anhydride, which is an unsaturated carboxylic acid, with polyolefins are preferred.

修飾ポリオレフィンとして具体的には、無水マレイン酸修飾ポリプロピレン、無水マレイン酸修飾ポリエチレン、無水マレイン酸修飾エチレン・酢酸ビニル共重合樹脂(EVA)、これらの付加体又は共重合等の酸修飾ポリオレフィンが挙げられる。   Specific examples of the modified polyolefin include maleic anhydride modified polypropylene, maleic anhydride modified polyethylene, maleic anhydride modified ethylene / vinyl acetate copolymer resin (EVA), and adducts or copolymers thereof. .

修飾ポリオレフィンとしては、市販品を用いてもよい。
修飾プロピレンとしては、三洋化成工業(株)製のユーメックス(登録商標)シリーズ(1001、1010)等が挙げられる。
修飾ポリエチレンとしては、三洋化成工業(株)製のユーメックス(登録商標)シリーズ(2000)、三菱化学(株)製のモディック(登録商標)シリーズ等が挙げられる。
修飾エチレン・酢酸ビニル共重合樹脂(EVA)としては、三菱化学(株)のモディック(登録商標)シリーズ等が挙げられる。
A commercially available product may be used as the modified polyolefin.
Examples of the modified propylene include Yumex (registered trademark) series (1001, 1010) manufactured by Sanyo Chemical Industries.
Examples of the modified polyethylene include Yumex (registered trademark) series (2000) manufactured by Sanyo Chemical Industries, Ltd., and Modic (registered trademark) series manufactured by Mitsubishi Chemical Corporation.
Examples of the modified ethylene / vinyl acetate copolymer resin (EVA) include the Modic (registered trademark) series of Mitsubishi Chemical Corporation.

なお、相溶化剤の分子量は、特に限定されないが、加工性の点から、0.5万以上10万以下の範囲が好ましく、0.5万以上8万以下の範囲がより好ましい。   The molecular weight of the compatibilizer is not particularly limited, but is preferably in the range of 50,000 to 100,000, and more preferably in the range of 50,000 to 80,000 from the viewpoint of workability.

相溶化剤の含有量は、熱可塑性樹脂100質量部に対し1質量部以上50質量部以下であること好ましく、2質量部以上40質量部以下であることがより好ましく、5質量部以上30質量部以下であることが更に好ましい。
相溶化剤の含有量は、ポリアミド100質量部に対し1質量部以上100質量部以下であるであること好ましく、5質量部以上70質量部以下であることがより好ましく、10質量部以上50質量部以下であることが更に好ましい。
相溶化剤の含有量が上記の範囲であることで、熱可塑性樹脂とポリアミドとの親和性が高められ、低温での耐衝撃性の向上が図られる。
The content of the compatibilizer is preferably 1 part by mass or more and 50 parts by mass or less, more preferably 2 parts by mass or more and 40 parts by mass or less, and more preferably 5 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. More preferably, it is at most parts.
The content of the compatibilizer is preferably 1 part by mass or more and 100 parts by mass or less, more preferably 5 parts by mass or more and 70 parts by mass or less, and more preferably 10 parts by mass or more and 50 parts by mass with respect to 100 parts by mass of the polyamide. More preferably, it is at most parts.
When the content of the compatibilizer is within the above range, the affinity between the thermoplastic resin and the polyamide is increased, and the impact resistance at low temperatures is improved.

相溶化剤の含有量は、熱可塑性樹脂とポリアミドとの親和性を高める点から、ポリアミドの含有量と比例させる(炭素繊維の含有量に間接的に比例させる)ことが好ましい。
炭素繊維の質量に対する相溶化剤の含有量としては、1質量%以上100質量%以下であることが好ましく、5質量%以上70質量%以下であることがより好ましく、10質量%以上50質量%以下であることが更に好ましい。
炭素繊維の質量に対する相溶化剤の含有量が、1質量%以上であると炭素繊維とポリアミドとの親和性が得られ易く、100質量%以下であると変色や劣化の原因となる未反応官能基の残存が抑制される。
The compatibilizer content is preferably proportional to the polyamide content (indirectly proportional to the carbon fiber content) from the viewpoint of increasing the affinity between the thermoplastic resin and the polyamide.
The content of the compatibilizer with respect to the mass of the carbon fiber is preferably 1% by mass to 100% by mass, more preferably 5% by mass to 70% by mass, and more preferably 10% by mass to 50% by mass. More preferably, it is as follows.
When the content of the compatibilizer with respect to the mass of the carbon fiber is 1% by mass or more, the affinity between the carbon fiber and the polyamide is easily obtained, and when the content is 100% by mass or less, the unreacted functional group that causes discoloration or deterioration Residual groups are suppressed.

−その他の成分−
本実施形態に係る樹脂組成物は、上記各成分の他、その他の成分を含んでもよい。
その他の成分としては、例えば、難燃剤、難燃助剤、加熱された際の垂れ(ドリップ)防止剤、可塑剤、酸化防止剤、離型剤、耐光剤、耐候剤、着色剤、顔料、改質剤、帯電防止剤、加水分解防止剤、充填剤、炭素繊維以外の補強剤(タルク、クレー、マイカ、ガラスフレーク、ミルドガラス、ガラスビーズ、結晶性シリカ、アルミナ、窒化ケイ素、窒化アルミニウム、ボロンナイトライド等)等の周知の添加剤が挙げられる。
その他の成分は、例えば、熱可塑性樹脂100質量部に対し0質量部以上10質量部以下がよく、0質量部以上5質量部以下がより好ましい。ここで、「0質量部」とはその他の成分を含まない形態を意味する。
-Other ingredients-
The resin composition according to the present embodiment may include other components in addition to the components described above.
Other components include, for example, flame retardants, flame retardant aids, anti-dripping agents when heated, plasticizers, antioxidants, mold release agents, light proofing agents, weathering agents, colorants, pigments, Modifier, antistatic agent, hydrolysis inhibitor, filler, reinforcing agent other than carbon fiber (talc, clay, mica, glass flake, milled glass, glass beads, crystalline silica, alumina, silicon nitride, aluminum nitride, Well-known additives such as boron nitride).
The other component is, for example, preferably 0 part by mass or more and 10 parts by mass or less, and more preferably 0 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. Here, “0 part by mass” means a form that does not contain other components.

(樹脂組成物の製造方法)
本実施形態に係る樹脂組成物は、上記各成分を溶融混練することにより製造される。
ここで、溶融混練の手段としては公知の手段が用いられ、例えば、二軸押出し機、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、多軸スクリュー押出機、コニーダ等が挙げられる。
溶融混練の際の温度(シリンダ温度)としては、樹脂組成物を構成する樹脂成分の融点等に応じて、決定すればよい。
(Production method of resin composition)
The resin composition according to this embodiment is produced by melting and kneading the above components.
Here, a known means is used as the melt kneading means, and examples thereof include a twin screw extruder, a Henschel mixer, a Banbury mixer, a single screw extruder, a multi-screw extruder, and a kneader.
What is necessary is just to determine as temperature (cylinder temperature) in the case of melt-kneading according to the melting | fusing point etc. of the resin component which comprises a resin composition.

特に、本実施形態に係る樹脂組成物は、熱可塑性樹脂と、炭素繊維と、ポリアミド(ジカルボン酸とジアミンとが縮重合した構造単位、又はラクタムが開環した構造単位であって、アラミド構造単位を除く芳香環を含む構造単位と、芳香環を含まない構造単位と、を有するポリアミド)と、相溶化剤と、を溶融混練する工程を含む製造方法により得られることが好ましい。熱可塑性樹脂と、炭素繊維と、ポリアミドと、相溶化剤と、を一括して溶融混練すると、炭素繊維の周囲にポリアミドによる被覆層が薄く且つ均一に近い状態で形成され易くなり、低温での耐衝撃性が高まる。   In particular, the resin composition according to the present embodiment includes a thermoplastic resin, carbon fiber, and polyamide (a structural unit in which a polycarboxylic acid and a diamine are polycondensed, or a structural unit in which a lactam is ring-opened, and an aramid structural unit. It is preferably obtained by a production method including a step of melt-kneading a structural unit containing an aromatic ring excluding, a polyamide having a structural unit not containing an aromatic ring, and a compatibilizing agent. When a thermoplastic resin, carbon fiber, polyamide, and compatibilizer are melt-kneaded together, a polyamide coating layer is easily formed in a thin and nearly uniform state around the carbon fiber, and at low temperatures. Improves impact resistance.

[樹脂成形体]
本実施形態に係る樹脂成形体は、熱可塑性樹脂と、炭素繊維と、ポリアミド(ジカルボン酸とジアミンとが縮重合した構造単位、又はラクタムが開環した構造単位であって、アラミド構造単位を除く芳香環を含む構造単位と、芳香環を含まない構造単位と、を有するポリアミド)と、相溶化剤と、を含む。つまり、本実施形態に係る樹脂成形体は、本実施形態に係る樹脂組成物と同じ組成で構成されている。
[Resin molding]
The resin molded body according to this embodiment is a thermoplastic resin, carbon fiber, and polyamide (a structural unit obtained by polycondensation of dicarboxylic acid and diamine, or a structural unit obtained by ring opening of a lactam, excluding an aramid structural unit. A polyamide having a structural unit containing an aromatic ring and a structural unit not containing an aromatic ring), and a compatibilizing agent. That is, the resin molded body according to the present embodiment is configured with the same composition as the resin composition according to the present embodiment.

なお、本実施形態に係る樹脂成形体は、本実施形態に係る樹脂組成物を調製しておき、この樹脂組成物を成形して得られたものであってもよいし、炭素繊維以外の成分を含む組成物を調製し、成形時に、かかる組成物と炭素繊維とを混合して得られたものであってもよい。
成形方法は、例えば、射出成形、押し出し成形、ブロー成形、熱プレス成形、カレンダ成形、コーティング成形、キャスト成形、ディッピング成形、真空成形、トランスファ成形などを適用してよい。
The resin molded body according to the present embodiment may be obtained by preparing the resin composition according to the present embodiment and molding the resin composition, or components other than carbon fibers. And a composition obtained by mixing the composition and carbon fiber at the time of molding.
As the molding method, for example, injection molding, extrusion molding, blow molding, hot press molding, calendar molding, coating molding, cast molding, dipping molding, vacuum molding, transfer molding, or the like may be applied.

本実施形態に係る樹脂成形体の成形方法は、形状の自由度が高い点で、射出成形が好ましい。
射出成形のシリンダ温度は、例えば180℃以上300℃以下であり、好ましくは200℃以上280℃以下である。射出成形の金型温度は、例えば30℃以上100℃以下であり、30℃以上60℃以下がより好ましい。
射出成形は、例えば、日精樹脂工業製NEX150、日精樹脂工業製NEX300、住友機械製SE50D等の市販の装置を用いて行ってもよい。
The molding method of the resin molded body according to the present embodiment is preferably injection molding because it has a high degree of freedom in shape.
The cylinder temperature of injection molding is, for example, 180 ° C. or higher and 300 ° C. or lower, and preferably 200 ° C. or higher and 280 ° C. or lower. The mold temperature for injection molding is, for example, 30 ° C. or more and 100 ° C. or less, and more preferably 30 ° C. or more and 60 ° C. or less.
The injection molding may be performed using a commercially available apparatus such as NEX150 manufactured by Nissei Resin Industry, NEX300 manufactured by Nissei Resin Industry, SE50D manufactured by Sumitomo Machinery.

本実施形態に係る樹脂成形体は、電子・電気機器、事務機器、家電製品、自動車内装材、容器などの用途に好適に用いられる。より具体的には、電子・電気機器や家電製品の筐体;電子・電気機器や家電製品の各種部品;自動車の内装部品;CD−ROMやDVD等の収納ケース;食器;飲料ボトル;食品トレイ;ラップ材;フィルム;シート;などである。
特に、本実施形態に係る樹脂成形体は、強化繊維として炭素繊維を適用しているため、より機械的強度に優れた樹脂成形体となることから、金属部品への代替用途に好適となる。
The resin molded body according to the present embodiment is suitably used for applications such as electronic / electrical equipment, office equipment, home appliances, automobile interior materials, and containers. More specifically, casings for electronic / electrical equipment and home appliances; various parts of electronic / electrical equipment and home appliances; interior parts for automobiles; storage cases such as CD-ROM and DVD; tableware; beverage bottles; Wrap material; film; sheet;
In particular, since the resin molded body according to the present embodiment uses a carbon fiber as a reinforcing fiber, the resin molded body has a higher mechanical strength, and thus is suitable for an alternative use for a metal part.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1〜18、比較例1〜7]
表1〜表3に従った成分(表中の数値は部数を示す)を、2軸混練装置(東芝機械製、TEM58SS)にて、下記の混練条件、および表1〜表3に示す溶融混練温度(シリンダ温度)で混練し、樹脂組成物のペレットを得た。なお、得られたペレットを600℃で2時間焼成し、残留した炭素繊維の平均繊維長を前述の方法で測定した。測定結果を表1〜表3に示す。
[Examples 1 to 18, Comparative Examples 1 to 7]
Ingredients according to Tables 1 to 3 (numerical values in the table indicate the number of parts) in a biaxial kneading apparatus (Toshiba Machine, TEM58SS), the following kneading conditions, and melt kneading shown in Tables 1 to 3 The mixture was kneaded at a temperature (cylinder temperature) to obtain pellets of a resin composition. In addition, the obtained pellet was baked at 600 degreeC for 2 hours, and the average fiber length of the carbon fiber which remained was measured by the above-mentioned method. The measurement results are shown in Tables 1 to 3.

−混練条件−
・スクリュー径:φ58mm
・回転数:300rpm
・吐出ノズル径:1mm
-Kneading conditions-
・ Screw diameter: φ58mm
・ Rotation speed: 300rpm
・ Discharge nozzle diameter: 1mm

得られたペレットを、射出成形機(日精樹脂工業製、NEX150)にて、表1〜表3に示す射出成形温度(シリンダ温度)、金型温度50℃で、ISO多目的ダンベル試験片(ISO527引張試験、ISO178曲げ試験に対応)(試験部厚さ4mm、幅10mm)と、D2試験片(長さ60mm、幅60mm、厚み2mm)と、を成形した。   The obtained pellets were subjected to an ISO multipurpose dumbbell test piece (ISO527 tensile) at an injection molding temperature (cylinder temperature) and a mold temperature of 50 ° C. shown in Tables 1 to 3 with an injection molding machine (NEX150, manufactured by Nissei Plastic Industries). Test, corresponding to ISO178 bending test) (test part thickness 4 mm, width 10 mm) and D2 test piece (length 60 mm, width 60 mm, thickness 2 mm) were molded.

[評価]
得られた2種の試験片を用いて、以下のような評価を行った。
評価結果を表1〜表3に示す。
[Evaluation]
The following evaluation was performed using the obtained two kinds of test pieces.
The evaluation results are shown in Tables 1 to 3.

−低温でのシャルピー衝撃強さ(低温での耐衝撃性)−
得られたISO多目的ダンベル試験片に対して、長さ方向の両側にゲートを設けて成形した後、ノッチ加工を施した。そして、その試験片を用い、−30℃の低温試験室にて24時間放置した後、JIS−K7111(2006年)に準拠して、評価装置(東洋精機(株)製DG−UB2)にて、シャルピー衝撃試験よりシャルピー衝撃強さ(kJ/m)を測定した。
-Charpy impact strength at low temperatures (impact resistance at low temperatures)-
The obtained ISO multipurpose dumbbell test piece was formed by providing gates on both sides in the length direction and then notched. And after leaving it for 24 hours in the low temperature test room of -30 degreeC using the test piece, based on JIS-K7111 (2006), with an evaluation apparatus (Toyo Seiki Co., Ltd. product DG-UB2). The Charpy impact strength (kJ / m 2 ) was measured from the Charpy impact test.

−曲げ弾性率−
得られたISO多目的ダンベル試験片について、万能試験装置(島津製作所社製、オートグラフAG−Xplus)を用いて、ISO178に準拠する方法で、曲げ弾性率を測定した。
-Flexural modulus-
About the obtained ISO multipurpose dumbbell test piece, the bending elastic modulus was measured by the method based on ISO178 using the universal testing apparatus (Shimadzu Corp. make, autograph AG-Xplus).

−外観品質−
得られたD2試験片を観察し、次のようにして外観品質を評価した。
試験片の表面を目視にて観察し、成型体平坦部の凹みの有無、表面性状を評価した。評価基準は以下の通りである。
A:表面部にドメイン状の欠陥がなく、表面全体が均一である。
B:表面部に〜1mmのドメイン状のムラが観察されるが、触感では均一に近いと感じる。
C:表面部に1mm以上のドメイン状のムラがあり、ドメイン部を指で触ると他の場所と異なる触感を感じる。
D:成型体平坦部に凹みが発生する。
-Appearance quality-
The obtained D2 test piece was observed, and the appearance quality was evaluated as follows.
The surface of the test piece was visually observed, and the presence or absence of a dent in the flat part of the molded body and the surface properties were evaluated. The evaluation criteria are as follows.
A: The surface portion has no domain-like defects and the entire surface is uniform.
B: Although a domain-like unevenness of 1 mm is observed on the surface portion, the touch feels almost uniform.
C: There is a domain-like unevenness of 1 mm or more on the surface part, and when the domain part is touched with a finger, a tactile sensation different from other places is felt.
D: A dent occurs in the flat portion of the molded body.

−被覆層の有無−
得られたD2試験片を用いて、既述の方法に従って、ポリアミドによる被覆層の有無を確認した。
-Presence or absence of coating layer-
Using the obtained D2 test piece, the presence or absence of a coating layer made of polyamide was confirmed according to the method described above.

なお、表1〜表3の材料種の詳細は、以下の通りである。
−熱可塑性樹脂−
・ポリプロピレン(ノバテック(登録商標)PP MA3、日本ポリプロ(株)製)
−強化繊維−
・炭素繊維(表面処理有、チョップド炭素繊維トレカ(登録商標)、東レ(株)製、平均繊維長20mm、平均直径7μm)
−脂肪族PA(脂肪族ポリアミド)−
・PA6(ナイロン6、ザイテル(登録商標)7331J、Dupont社製)
・PA66(ナイロン66、101L、Dupont社製)
−芳香族PA(芳香族ポリアミド)−
・MXD6(MXD6、三菱ガス化学社製)
・PA9T(ナイロン9T、GENESTAR PA9T、クラレ製)
−相溶化剤−
・無水マレイン酸修飾ポリプロピレン(ユーメックス(登録商標)1001、三洋化成工業(株)製、酸価=26mgKOH/g
・無水マレイン酸修飾ポリプロピレン(ユーメックス(登録商標)1010、三洋化成工業(株)製、酸価=52mgKOH/g
・無水マレイン酸修飾ポリプロピレン(ユーメックス(登録商標)110TS、三洋化成工業(株)製、酸価=7mgKOH/g
The details of the material types in Tables 1 to 3 are as follows.
-Thermoplastic resin-
・ Polypropylene (Novatech (registered trademark) PP MA3, manufactured by Nippon Polypro Co., Ltd.)
-Reinforcing fiber-
Carbon fiber (with surface treatment, chopped carbon fiber trading card (registered trademark), manufactured by Toray Industries, Inc., average fiber length 20 mm, average diameter 7 μm)
-Aliphatic PA (aliphatic polyamide)-
PA6 (nylon 6, Zytel (registered trademark) 7331J, manufactured by Dupont)
PA66 (nylon 66, 101L, manufactured by Dupont)
-Aromatic PA (aromatic polyamide)-
・ MXD6 (MXD6, manufactured by Mitsubishi Gas Chemical Company)
・ PA9T (Nylon 9T, GENESTAR PA9T, Kuraray)
-Compatibilizer-
-Maleic anhydride modified polypropylene (Yumex (registered trademark) 1001, manufactured by Sanyo Chemical Industries, Ltd., acid value = 26 mgKOH / g
-Maleic anhydride modified polypropylene (Yumex (registered trademark) 1010, manufactured by Sanyo Chemical Industries, Ltd., acid value = 52 mgKOH / g
-Maleic anhydride modified polypropylene (Yumex (registered trademark) 110TS, manufactured by Sanyo Chemical Industries, Ltd., acid value = 7 mgKOH / g

上記結果から、本実施例では、比較例に比べ、低温でのシャルピー衝撃強さ(低温での耐衝撃性)が優れた樹脂成形体が得られることがわかる。
また、本実施例では、曲げ弾性率、引張弾性率、及び外観品質にも優れた樹脂成形体が得られることもわかる。
From the above results, it can be seen that in this example, a resin molded product having excellent Charpy impact strength at low temperature (impact resistance at low temperature) can be obtained as compared with the comparative example.
In addition, in this example, it can also be seen that a resin molded article excellent in bending elastic modulus, tensile elastic modulus, and appearance quality can be obtained.

なお、各実施例で作製した成形体を既述方法により分析したところ、被覆層と熱可塑性樹脂との間に、使用した相溶化剤の層(無水マレイン酸修飾ポリプロピレンの層)が介在していること(被覆層の表面に相溶化剤の層が形成されていること)が確認された。   In addition, when the molded object produced in each Example was analyzed by the above-mentioned method, the layer of the used compatibilizer (maleic anhydride modified polypropylene layer) was interposed between the coating layer and the thermoplastic resin. It was confirmed that a compatibilizer layer was formed on the surface of the coating layer.

Claims (28)

熱可塑性樹脂と、
炭素繊維と、
ポリアミドと、
酸価が10mgKOH/g以上60mgKOH/g以下の相溶化剤と、
を含む樹脂組成物。
A thermoplastic resin;
Carbon fiber,
Polyamide,
A compatibilizer having an acid value of 10 mgKOH / g or more and 60 mgKOH / g or less;
A resin composition comprising:
前記ポリアミドが、ジカルボン酸とジアミンとが縮重合した構造単位、又はラクタムが開環した構造単位であって、アラミド構造単位を除く芳香環を含む構造単位と、芳香環を含まない構造単位とを有するポリアミドである請求項1に記載の樹脂組成物。   The polyamide is a structural unit in which a dicarboxylic acid and a diamine are polycondensated, or a structural unit in which a lactam is opened, and includes a structural unit that includes an aromatic ring excluding an aramid structural unit, and a structural unit that does not include an aromatic ring. The resin composition according to claim 1, which is a polyamide having. 前記芳香環を含む構造単位が、下記構造単位(1)及び(2)の少なくとも一方であり、
前記芳香環を含まない構造単位が、下記構造単位(3)及び(4)の少なくとも一方である請求項2に記載の樹脂組成物。
・構造単位(1):−(−NH−Ar−NH−CO−R−CO−)−
(構造単位(1)中、Arは芳香環を含む2価の有機基を示す。Rは芳香環を含まない2価の有機基を示す。)
・構造単位(2):−(−NH−R−NH−CO−Ar−CO−)−
(構造単位(2)中、Arは芳香環を含む2価の有機基を示す。Rは芳香環を含まない2価の有機基を示す。)
・構造単位(3):−(−NH−R31−NH−CO−R32−CO−)−
(構造単位(3)中、R31は芳香環を含まない2価の有機基を示す。R32は芳香環を含まない2価の有機基を示す。)
・構造単位(4):−(−NH−R−CO−)−
(構造単位(4)中、Rは芳香環を含まない2価の有機基を示す)
The structural unit containing the aromatic ring is at least one of the following structural units (1) and (2);
The resin composition according to claim 2, wherein the structural unit not containing the aromatic ring is at least one of the following structural units (3) and (4).
Structural unit (1): — (— NH—Ar 1 —NH—CO—R 1 —CO —) —
(In the structural unit (1), Ar 1 represents a divalent organic group containing an aromatic ring. R 1 represents a divalent organic group containing no aromatic ring.)
Structural unit (2): — (— NH—R 2 —NH—CO—Ar 2 —CO —) —
(In the structural unit (2), Ar 2 represents a divalent organic group containing an aromatic ring. R 2 represents a divalent organic group containing no aromatic ring.)
Structural unit (3): — (— NH—R 31 —NH—CO—R 32 —CO —) —
(In the structural unit (3), R 31 represents a divalent organic group containing no aromatic ring. R 32 represents a divalent organic group containing no aromatic ring.)
Structural unit (4): — (— NH—R 4 —CO —) —
(In the structural unit (4), R 4 represents a divalent organic group containing no aromatic ring)
前記ポリアミドが、前記芳香環を含む構造単位を有する第1ポリアミドと、前記芳香環を含まない構造単位を有する第2ポリアミドと、を共重合した共重合ポリアミドである請求項2又は請求項3に記載の樹脂組成物。   The polyamide according to claim 2 or 3, wherein the polyamide is a copolymerized polyamide obtained by copolymerizing a first polyamide having a structural unit containing the aromatic ring and a second polyamide having a structural unit not containing the aromatic ring. The resin composition as described. 前記ポリアミドが、前記芳香環を含む構造単位を有する第1ポリアミドと、前記芳香環を含まない構造単位を有する第2ポリアミドと、を含む混合ポリアミドである請求項2又は請求項3に記載の樹脂組成物。   The resin according to claim 2 or 3, wherein the polyamide is a mixed polyamide containing a first polyamide having a structural unit containing the aromatic ring and a second polyamide having a structural unit not containing the aromatic ring. Composition. 前記ポリアミドの芳香環の割合が、10質量%以上40質量%以下である請求項2〜請求項5のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 2 to 5, wherein a ratio of the aromatic ring of the polyamide is 10% by mass or more and 40% by mass or less. 前記炭素繊維の平均繊維長が0.1mm以上5.0mm以下である請求項1〜請求項6のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 6, wherein an average fiber length of the carbon fibers is from 0.1 mm to 5.0 mm. 前記熱可塑性樹脂が、ポリオレフィンである請求項1〜請求項7のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 7, wherein the thermoplastic resin is a polyolefin. 前記相溶化剤が、修飾ポリオレフィンである請求項1〜請求項8のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 8, wherein the compatibilizer is a modified polyolefin. 前記炭素繊維の含有量が、前記熱可塑性樹脂100質量部に対し0.1質量部以上200質量部以下である請求項1〜請求項9のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 9, wherein a content of the carbon fiber is 0.1 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. 前記ポリアミドの含有量が、熱可塑性樹脂100質量部に対し0.1質量部以上100質量部以下である請求項1〜請求項10のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 10, wherein a content of the polyamide is 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. 前記相溶化剤の含有量が、前記熱可塑性樹脂100質量部に対し1質量部以上50質量部以下である請求項1〜請求項11のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 11, wherein a content of the compatibilizing agent is 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. 前記炭素繊維の質量に対する、前記ポリアミドの含有量が、1質量%以上200質量%以下である請求項1〜請求項12のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 12, wherein a content of the polyamide with respect to a mass of the carbon fiber is 1% by mass or more and 200% by mass or less. 前記炭素繊維の質量に対する、前記相溶化剤の含有量が、1質量%以上100質量%以下である請求項1〜請求項13のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 13, wherein a content of the compatibilizing agent with respect to a mass of the carbon fiber is 1% by mass or more and 100% by mass or less. 熱可塑性樹脂と、
炭素繊維と、
ポリアミドと、
酸価が10mgKOH/g以上60mgKOH/g以下の相溶化剤と、
を含む樹脂成形体。
A thermoplastic resin;
Carbon fiber,
Polyamide,
A compatibilizer having an acid value of 10 mgKOH / g or more and 60 mgKOH / g or less;
A resin molded body containing
前記ポリアミドが、ジカルボン酸とジアミンとが縮重合した構造単位、又はラクタムが開環した構造単位であって、アラミド構造単位を除く芳香環を含む構造単位と、芳香環を含まない構造単位とを有するポリアミドである請求項15に記載の樹脂成形体。   The polyamide is a structural unit in which a dicarboxylic acid and a diamine are polycondensated, or a structural unit in which a lactam is opened, and includes a structural unit that includes an aromatic ring excluding an aramid structural unit, and a structural unit that does not include an aromatic ring. The resin molded body according to claim 15, which is a polyamide having. 前記芳香環を含む構造単位が、下記構造単位(1)及び(2)の少なくとも一方であり、
前記芳香環を含まない構造単位が、下記構造単位(3)及び(4)の少なくとも一方である請求項16に記載の樹脂成形体。
・構造単位(1):−(−NH−Ar−NH−CO−R−CO−)−
(構造単位(1)中、Arは芳香環を含む2価の有機基を示す。Rは芳香環を含まない2価の有機基を示す。)
・構造単位(2):−(−NH−R−NH−CO−Ar−CO−)−
(構造単位(2)中、Arは芳香環を含む2価の有機基を示す。Rは芳香環を含まない2価の有機基を示す。)
・構造単位(3):−(−NH−R31−NH−CO−R32−CO−)−
(構造単位(3)中、R31は芳香環を含まない2価の有機基を示す。R32は芳香環を含まない2価の有機基を示す。)
・構造単位(4):−(−NH−R−CO−)−
(構造単位(4)中、Rは芳香環を含まない2価の有機基を示す)
The structural unit containing the aromatic ring is at least one of the following structural units (1) and (2);
The resin molded body according to claim 16, wherein the structural unit not containing an aromatic ring is at least one of the following structural units (3) and (4).
Structural unit (1): — (— NH—Ar 1 —NH—CO—R 1 —CO —) —
(In the structural unit (1), Ar 1 represents a divalent organic group containing an aromatic ring. R 1 represents a divalent organic group containing no aromatic ring.)
Structural unit (2): — (— NH—R 2 —NH—CO—Ar 2 —CO —) —
(In the structural unit (2), Ar 2 represents a divalent organic group containing an aromatic ring. R 2 represents a divalent organic group containing no aromatic ring.)
Structural unit (3): — (— NH—R 31 —NH—CO—R 32 —CO —) —
(In the structural unit (3), R 31 represents a divalent organic group containing no aromatic ring. R 32 represents a divalent organic group containing no aromatic ring.)
Structural unit (4): — (— NH—R 4 —CO —) —
(In the structural unit (4), R 4 represents a divalent organic group containing no aromatic ring)
前記ポリアミドが、前記芳香環を含む構造単位を有する第1ポリアミドと、前記芳香環を含まない構造単位を有する第2ポリアミドと、を共重合した共重合ポリアミドである請求項16又は請求項17に記載の樹脂成形体。   The polyamide according to claim 16 or 17, wherein the polyamide is a copolymerized polyamide obtained by copolymerizing a first polyamide having a structural unit containing the aromatic ring and a second polyamide having a structural unit not containing the aromatic ring. The resin molding as described. 前記ポリアミドが、芳香環を有する第1ポリアミドと、芳香環を有さない第2ポリアミドと、を含む混合ポリアミドである請求項16又は請求項17に記載の樹脂成形体。   The resin molded body according to claim 16 or 17, wherein the polyamide is a mixed polyamide containing a first polyamide having an aromatic ring and a second polyamide having no aromatic ring. 前記ポリアミドの芳香環の割合が、10質量%以上40質量%以下である請求項16〜請求項19のいずれか1項に記載の樹脂成形体。   The resin molded body according to any one of claims 16 to 19, wherein a ratio of an aromatic ring of the polyamide is 10 mass% or more and 40 mass% or less. 前記炭素繊維の平均繊維長が0.1mm以上5.0mm以下である請求項15〜請求項20のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 15 to 20, wherein an average fiber length of the carbon fibers is 0.1 mm or more and 5.0 mm or less. 前記熱可塑性樹脂が、ポリオレフィンである請求項15〜請求項21のいずれか1項に記載の樹脂成形体。   The resin molded body according to any one of claims 15 to 21, wherein the thermoplastic resin is a polyolefin. 前記相溶化剤が、修飾ポリオレフィンである請求項15〜請求項22のいずれか1項に記載の樹脂成形体。   The resin molded article according to any one of claims 15 to 22, wherein the compatibilizing agent is a modified polyolefin. 前記炭素繊維の含有量が、前記熱可塑性樹脂100質量部に対し0.1質量部以上200質量部以下である請求項15〜請求項23のいずれか1項に記載の樹脂成形体。   The resin molded body according to any one of claims 15 to 23, wherein a content of the carbon fiber is 0.1 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. 前記ポリアミドの含有量が、熱可塑性樹脂100質量部に対し0.1質量部以上100質量部以下である請求項15〜請求項24のいずれか1項に記載の樹脂成形体。   The resin molded body according to any one of claims 15 to 24, wherein a content of the polyamide is 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. 前記相溶化剤の含有量が、前記熱可塑性樹脂100質量部に対し1質量部以上50質量部以下である請求項15〜請求項25のいずれか1項に記載の樹脂成形体。   The resin molded body according to any one of claims 15 to 25, wherein a content of the compatibilizing agent is 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. 前記炭素繊維の質量に対する、前記ポリアミドの含有量が、1質量%以上200質量%以下である請求項15〜請求項26のいずれか1項に記載の樹脂成形体。   27. The resin molded body according to any one of claims 15 to 26, wherein a content of the polyamide with respect to a mass of the carbon fiber is 1% by mass or more and 200% by mass or less. 前記炭素繊維の質量に対する、前記相溶化剤の含有量が、1質量%以上100質量%以下である請求項15〜請求項27のいずれか1項に記載の樹脂成形体。   The resin molded body according to any one of claims 15 to 27, wherein a content of the compatibilizing agent with respect to a mass of the carbon fiber is 1% by mass or more and 100% by mass or less.
JP2016190270A 2016-09-28 2016-09-28 Resin composition and resin molded product Active JP6957850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016190270A JP6957850B2 (en) 2016-09-28 2016-09-28 Resin composition and resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016190270A JP6957850B2 (en) 2016-09-28 2016-09-28 Resin composition and resin molded product

Publications (2)

Publication Number Publication Date
JP2018053090A true JP2018053090A (en) 2018-04-05
JP6957850B2 JP6957850B2 (en) 2021-11-02

Family

ID=61835282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016190270A Active JP6957850B2 (en) 2016-09-28 2016-09-28 Resin composition and resin molded product

Country Status (1)

Country Link
JP (1) JP6957850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015098A1 (en) * 2019-07-24 2021-01-28 東レ株式会社 Resin composition and resin molded article made of said resin composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236851A (en) * 1986-04-08 1987-10-16 Mitsui Petrochem Ind Ltd Reinforced thermoplastic resin composition
JPH0258552A (en) * 1988-08-25 1990-02-27 Calp Corp Molding material and molded article produced thereof
JP2003528956A (en) * 2000-03-31 2003-09-30 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Long fiber reinforced polyolefin structure and molded article produced therefrom
JP2010168526A (en) * 2008-12-25 2010-08-05 Toyobo Co Ltd Carbon filament-reinforced composite material
WO2013094763A1 (en) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 Thermoplastic resin composition, method for producing same, and molded body
JP2014043549A (en) * 2012-08-28 2014-03-13 Ems-Patent Ag Polyamide molding material and use thereof
WO2015166896A1 (en) * 2014-04-30 2015-11-05 ユニチカ株式会社 Semi-aromatic polyamide resin composition and molded article obtained by molding same
WO2016076411A1 (en) * 2014-11-13 2016-05-19 三井化学株式会社 Carbon fiber-reinforced resin composition and molded article produced from same
WO2016132829A1 (en) * 2015-02-20 2016-08-25 旭化成株式会社 Polyamide resin composition, method for producing polyamide resin composition, and molded article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236851A (en) * 1986-04-08 1987-10-16 Mitsui Petrochem Ind Ltd Reinforced thermoplastic resin composition
JPH0258552A (en) * 1988-08-25 1990-02-27 Calp Corp Molding material and molded article produced thereof
JP2003528956A (en) * 2000-03-31 2003-09-30 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Long fiber reinforced polyolefin structure and molded article produced therefrom
JP2010168526A (en) * 2008-12-25 2010-08-05 Toyobo Co Ltd Carbon filament-reinforced composite material
WO2013094763A1 (en) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 Thermoplastic resin composition, method for producing same, and molded body
JP2014043549A (en) * 2012-08-28 2014-03-13 Ems-Patent Ag Polyamide molding material and use thereof
WO2015166896A1 (en) * 2014-04-30 2015-11-05 ユニチカ株式会社 Semi-aromatic polyamide resin composition and molded article obtained by molding same
WO2016076411A1 (en) * 2014-11-13 2016-05-19 三井化学株式会社 Carbon fiber-reinforced resin composition and molded article produced from same
WO2016132829A1 (en) * 2015-02-20 2016-08-25 旭化成株式会社 Polyamide resin composition, method for producing polyamide resin composition, and molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015098A1 (en) * 2019-07-24 2021-01-28 東レ株式会社 Resin composition and resin molded article made of said resin composition

Also Published As

Publication number Publication date
JP6957850B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6897057B2 (en) Resin composition and resin molded product
JP6156557B1 (en) Non-crosslinked resin composition, non-crosslinked resin molded body, and method for producing non-crosslinked resin composition
JP6938908B2 (en) Resin composition and resin molded product
JP2018162337A (en) Resin composition for resin molding, and resin molding
JP7200536B2 (en) Resin molding
JP6149994B1 (en) Resin composition and resin molded body
JP6957849B2 (en) Resin composition and resin molded product
JP2017061638A (en) Resin composition, resin molding, and method for producing resin composition
JP2018053082A (en) Resin composition, and resin molded body
JP6149995B1 (en) Non-crosslinked resin composition and non-crosslinked resin molded body
JP6957850B2 (en) Resin composition and resin molded product
JP6809089B2 (en) Resin composition and resin molded product
JP2018100378A (en) Resin composition, and resin molding
JP2018104658A (en) Resin composition and resin molded article
JP6801341B2 (en) Resin composition and resin molded product
JP2018053084A (en) Resin composition, and resin molded body
JP2018053081A (en) Resin composition, and resin molded body
JP6939005B2 (en) Resin composition for resin molded product, and resin molded product
JP2018100377A (en) Resin composition, and resin molding
JP2018104657A (en) Resin composition and resin molded article
JP7019945B2 (en) Resin composition and resin molded product
JP2018053083A (en) Resin composition and resin molding
JP6838392B2 (en) Resin composition and resin molded product
JP2018104521A (en) Resin composition and resin molded article
JP2018104516A (en) Resin composition and resin molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R150 Certificate of patent or registration of utility model

Ref document number: 6957850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150