JP2018049185A - Wavelength conversion member and light-emitting device - Google Patents

Wavelength conversion member and light-emitting device Download PDF

Info

Publication number
JP2018049185A
JP2018049185A JP2016185080A JP2016185080A JP2018049185A JP 2018049185 A JP2018049185 A JP 2018049185A JP 2016185080 A JP2016185080 A JP 2016185080A JP 2016185080 A JP2016185080 A JP 2016185080A JP 2018049185 A JP2018049185 A JP 2018049185A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
spacer layer
light emitting
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016185080A
Other languages
Japanese (ja)
Inventor
寛之 清水
Hiroyuki Shimizu
寛之 清水
浅野 秀樹
Hideki Asano
秀樹 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2016185080A priority Critical patent/JP2018049185A/en
Publication of JP2018049185A publication Critical patent/JP2018049185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion member that can suppress temperature extinction of phosphor in the wavelength conversion member due to heat generated by a light source such as LED, and a light-emitting device using the wavelength conversion member.SOLUTION: A wavelength conversion member 10 arranged above a light-emitting element 3 for use comprises: a wavelength conversion member body 1; and a spacer layer 2 formed on the surface of the wavelength conversion member body 1 for securing a gap G between the wavelength conversion member body 1 and the light-emitting element 3.SELECTED DRAWING: Figure 1

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材及びそれを用いた発光装置に関するものである。   The present invention relates to a wavelength conversion member that converts a wavelength of light emitted from a light emitting diode (LED) or a laser diode (LD) to another wavelength, and a light emitting device using the same.

近年、蛍光ランプや白熱灯に変わる次世代の光源として、LEDやLDを用いた発光装置等に対する注目が高まってきている。そのような次世代光源の一例として、青色光を出射するLEDと、LEDからの光の一部を吸収して黄色光に変換する波長変換部材とを組み合わせた発光装置が開示されている。この発光装置は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。特許文献1には、波長変換部材の一例として、ガラスマトリクス中に無機蛍光体粉末を分散させた波長変換部材が提案されている。   In recent years, attention has been focused on light emitting devices using LEDs and LDs as next-generation light sources that replace fluorescent lamps and incandescent lamps. As an example of such a next-generation light source, a light-emitting device that combines an LED that emits blue light and a wavelength conversion member that absorbs part of the light from the LED and converts it into yellow light is disclosed. This light emitting device emits white light that is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member. Patent Document 1 proposes a wavelength conversion member in which an inorganic phosphor powder is dispersed in a glass matrix as an example of a wavelength conversion member.

特開2003−258308号公報JP 2003-258308 A

上記の発光装置においては、LEDから発せられた熱により波長変換部材中の蛍光体が温度消光し、発光強度が低下するという問題がある。   In the above light emitting device, there is a problem that the phosphor in the wavelength conversion member is quenched by the heat generated from the LED, and the emission intensity is reduced.

従って、本発明は、LED等の光源から発せられた熱による波長変換部材中の蛍光体の温度消光を抑制することが可能な波長変換部材と、それを用いた発光装置を提案することを目的とする。   Accordingly, an object of the present invention is to propose a wavelength conversion member capable of suppressing the temperature quenching of the phosphor in the wavelength conversion member due to heat emitted from a light source such as an LED, and a light emitting device using the same. And

本発明の波長変換部材は、発光素子の上方に載置して使用される波長変換部材であって、波長変換部材本体と、波長変換部材本体の表面に形成されてなり、波長変換部材本体と発光素子との間にギャップを確保するためのスペーサ層と、を備えていることを特徴とする。当該構成を有する波長変換部材を発光素子の上方に載置した場合、スペーサ層により波長変換部材本体と発光素子との間にギャップを確保することができる。そのため、発光素子からの熱がギャップに存在する空気層で断熱され、波長変換部材本体に伝わりにくくなる。その結果、波長変換部材本体に含まれる蛍光体の昇温が低減され、温度消光を抑制することが可能となる。なお、本発明の波長変換部材は、波長変換部材本体とスペーサ層が一体化されてなるものであるため、波長変換部材のスペーサ層が形成された側を発光素子の上方に載置することにより、発光素子と波長変換部材本体との間に所望のギャップを確保することが可能となる。ここで、スペーサ層の厚みを適宜変更するだけで、ギャップ厚みを調整することができるため、デバイス設計が容易である。   The wavelength conversion member of the present invention is a wavelength conversion member used by being placed above the light emitting element, and is formed on the surface of the wavelength conversion member main body and the wavelength conversion member main body. And a spacer layer for securing a gap between the light emitting element and the light emitting element. When the wavelength conversion member having the configuration is placed above the light emitting element, a gap can be secured between the wavelength conversion member main body and the light emitting element by the spacer layer. Therefore, heat from the light emitting element is insulated by the air layer present in the gap, and is difficult to be transmitted to the wavelength conversion member body. As a result, the temperature rise of the phosphor included in the wavelength conversion member main body is reduced, and temperature quenching can be suppressed. In addition, since the wavelength conversion member of the present invention is formed by integrating the wavelength conversion member main body and the spacer layer, by placing the side of the wavelength conversion member on which the spacer layer is formed above the light emitting element. It is possible to secure a desired gap between the light emitting element and the wavelength conversion member main body. Here, since the gap thickness can be adjusted only by changing the thickness of the spacer layer as appropriate, the device design is easy.

本発明の波長変換部材は、スペーサ層が波長変換部材本体表面の周縁部に形成されていることが好ましい。このようにすれば、発光素子から波長変換部材本体への励起光の入射がスペーサ層により妨げられにくくなる。   In the wavelength conversion member of the present invention, it is preferable that the spacer layer is formed on the peripheral edge portion of the surface of the wavelength conversion member main body. If it does in this way, it will become difficult to prevent the incident of the excitation light from the light emitting element to the wavelength conversion member main body by the spacer layer.

本発明の波長変換部材は、スペーサ層が透明材料からなることが好ましい。このようにすれば、発光素子から波長変換部材本体への励起光の入射がスペーサ層により妨げられにくくなる。   In the wavelength conversion member of the present invention, the spacer layer is preferably made of a transparent material. If it does in this way, it will become difficult to prevent the incident of the excitation light from the light emitting element to the wavelength conversion member main body by the spacer layer.

本発明の波長変換部材は、スペーサ層がガラスからなることが好ましい。ガラスは透明性に優れるとともに耐熱性にも優れるため、発光強度に優れ、経時劣化の少ない波長変換部材とすることができる。   In the wavelength conversion member of the present invention, the spacer layer is preferably made of glass. Since glass is excellent in transparency and heat resistance, it can be made into a wavelength conversion member having excellent light emission intensity and little deterioration over time.

本発明の波長変換部材は、スペーサ層の厚みが1〜100μmであることが好ましい。このようにすれば、発光素子からの励起光が波長変換部材本体に入射しやすくなるため、発光強度が向上しやすくなる。   In the wavelength conversion member of the present invention, the spacer layer preferably has a thickness of 1 to 100 μm. If it does in this way, since it becomes easy to inject the excitation light from a light emitting element into a wavelength conversion member main body, emitted light intensity becomes easy to improve.

本発明の波長変換部材は、波長変換部材本体が、ガラスマトリクス中に蛍光体粉末が分散してなることが好ましい。このようにすれば、波長変換部材本体の耐熱性を向上させることができる。   In the wavelength conversion member of the present invention, the wavelength conversion member main body is preferably formed by dispersing phosphor powder in a glass matrix. If it does in this way, the heat resistance of the wavelength conversion member main part can be improved.

本発明の発光装置は、発光素子と、発光装置の上方に載置された上記の波長変換部材と、を備え、スペーサ層により、発光素子と波長変換部材本体との間にギャップが形成されていることを特徴とする。   A light-emitting device of the present invention includes a light-emitting element and the above-described wavelength conversion member placed above the light-emitting device, and a gap is formed between the light-emitting element and the wavelength conversion member body by the spacer layer. It is characterized by being.

本発明の発光装置は、発光素子と波長変換部材本体との間のギャップが1〜100μmであることが好ましい。   In the light emitting device of the present invention, the gap between the light emitting element and the wavelength conversion member main body is preferably 1 to 100 μm.

本発明の波長変換部材の製造方法は、上記の波長変換部材を製造するための方法であって、波長変換部材本体用原板の表面に、スペーサ層形成用ガラスペーストを塗布することによりガラスペースト層を形成する工程、ガラスペースト層を焼成することにより、波長変換部材本体用原板の表面にスペーサ層を形成して波長変換部材用原板を得る工程、スペーサ層を分断するように波長変換部材用原板を切断して個片化する工程、を含む。このようにすれば、本発明の波長変換部材の量産が容易となる。   The manufacturing method of the wavelength conversion member of the present invention is a method for manufacturing the above-described wavelength conversion member, and the glass paste layer is formed by applying a spacer layer-forming glass paste on the surface of the wavelength conversion member main plate. Forming the spacer layer on the surface of the original plate for wavelength conversion member by firing the glass paste layer, obtaining the wavelength conversion member original plate, and dividing the spacer layer into the original plate for wavelength conversion member And cutting into pieces. If it does in this way, mass production of the wavelength conversion member of the present invention will become easy.

本発明によれば、発光強度を向上させることが可能な波長変換部材及びそれを用いた発光装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the wavelength conversion member which can improve emitted light intensity, and a light-emitting device using the same can be provided.

(a)本発明の第1の実施形態に係る波長変換部材を示す模式的斜視図である。(b)本発明の第1の実施形態に係る波長変換部材を用いた発光装置を示す模式的断面図である。(A) It is a typical perspective view which shows the wavelength conversion member which concerns on the 1st Embodiment of this invention. (B) It is typical sectional drawing which shows the light-emitting device using the wavelength conversion member which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る波長変換部材を示す模式的斜視図である。It is a typical perspective view which shows the wavelength conversion member which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る波長変換部材を示す模式的斜視図である。It is a typical perspective view which shows the wavelength conversion member which concerns on the 3rd Embodiment of this invention. (a)本発明の第4の実施形態に係る波長変換部材を示す模式的斜視図である。(b)本発明の第4の実施形態に係る波長変換部材を用いた発光装置を示す模式的断面図である。(A) It is a typical perspective view which shows the wavelength conversion member which concerns on the 4th Embodiment of this invention. (B) It is typical sectional drawing which shows the light-emitting device using the wavelength conversion member which concerns on the 4th Embodiment of this invention. (a)本発明の第5の実施形態に係る波長変換部材を示す模式的斜視図である。(b)本発明の第5の実施形態に係る波長変換部材を用いた発光装置を示す模式的断面図である。(A) It is a typical perspective view which shows the wavelength conversion member which concerns on the 5th Embodiment of this invention. (B) It is typical sectional drawing which shows the light-emitting device using the wavelength conversion member which concerns on the 5th Embodiment of this invention. 本発明の第1の実施形態に係る波長変換部材を製造するための方法の一工程を示す模式的平面図である。It is a typical top view showing one process of a method for manufacturing a wavelength conversion member concerning a 1st embodiment of the present invention.

以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。   Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.

(I)波長変換部材及びそれを用いた発光装置
(1)第1の実施形態に係る波長変換部材
図1の(a)は本発明の第1の実施形態に係る波長変換部材を示す模式的斜視図であり、(b)は本発明の第1の実施形態に係る波長変換部材を用いた発光装置を示す模式的断面図である。波長変換部材10は、波長変換部材本体1とその表面の周縁部に形成されてなるスペーサ層2を備えている。発光装置100は、基板4の上に設置された発光素子3の上方に波長変換部材10が載置されており、発光素子3及び波長変換部材10の周囲を覆うように反射層5が形成されている。ここで、波長変換部材10はスペーサ層2が形成された側が発光素子3と対向するように載置されている。例えば、スペーサ層2と発光素子3の間に樹脂接着層(図示せず)を設けることにより、波長変換部材10を発光素子3上に固定することができる。これにより、発光素子3と波長変換部材本体1との間にギャップGが形成される。
(I) Wavelength conversion member and light-emitting device using the same (1) Wavelength conversion member according to the first embodiment FIG. 1A is a schematic diagram illustrating the wavelength conversion member according to the first embodiment of the present invention. It is a perspective view, (b) is typical sectional drawing which shows the light-emitting device using the wavelength conversion member which concerns on the 1st Embodiment of this invention. The wavelength conversion member 10 includes a wavelength conversion member main body 1 and a spacer layer 2 formed on the peripheral edge of the surface. In the light emitting device 100, the wavelength conversion member 10 is placed above the light emitting element 3 installed on the substrate 4, and the reflective layer 5 is formed so as to cover the periphery of the light emitting element 3 and the wavelength conversion member 10. ing. Here, the wavelength conversion member 10 is placed so that the side on which the spacer layer 2 is formed faces the light emitting element 3. For example, the wavelength conversion member 10 can be fixed on the light emitting element 3 by providing a resin adhesive layer (not shown) between the spacer layer 2 and the light emitting element 3. Thereby, a gap G is formed between the light emitting element 3 and the wavelength conversion member main body 1.

発光素子3から出射された励起光Eは波長変換部材本体1の内部で波長変換されて蛍光Lとなり、発光素子3とは反対側に出射される。既述の通り、発光素子3からの熱がギャップGに存在する空気層で断熱され、波長変換部材本体1に伝わりにくくなる。その結果、波長変換部材本体1に含まれる蛍光体の昇温が低減され、温度消光を抑制することが可能となり、波長変換部材本体1の発光強度が向上しやすくなる。   The excitation light E emitted from the light emitting element 3 is converted in wavelength within the wavelength conversion member main body 1 to become fluorescence L, and emitted to the opposite side to the light emitting element 3. As described above, heat from the light emitting element 3 is insulated by the air layer existing in the gap G, and is not easily transmitted to the wavelength conversion member main body 1. As a result, the temperature rise of the phosphor contained in the wavelength conversion member main body 1 is reduced, temperature quenching can be suppressed, and the emission intensity of the wavelength conversion member main body 1 is easily improved.

波長変換部材本体1は、例えばガラスマトリクスと蛍光体粒子とを含む蛍光体ガラスからなる。蛍光体粒子はガラスマトリクス中に分散されている。波長変換部材本体1の形状は発光素子3の形状に応じて適宜選択すれば良いが、通常は矩形の板状、具体的には正方形の板状である。   The wavelength conversion member main body 1 is made of, for example, a phosphor glass including a glass matrix and phosphor particles. The phosphor particles are dispersed in a glass matrix. The shape of the wavelength conversion member main body 1 may be appropriately selected according to the shape of the light emitting element 3, but is usually a rectangular plate, specifically a square plate.

ガラスマトリクスは、無機蛍光体等の蛍光体粒子の分散媒として用いることができるものであれば特に限定されない。例えば、ホウ珪酸塩系ガラス、リン酸塩系ガラス、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスなどを用いることができる。ホウ珪酸塩系ガラスとしては、質量%で、SiO 30〜85%、Al 0〜30%、B 0〜50%、LiO+NaO+KO 0〜10%、及び、MgO+CaO+SrO+BaO 0〜50%を含有するものが挙げられる。スズリン酸塩系ガラスとしては、モル%で、SnO 30〜90%、P 1〜70%を含有するものが挙げられる。テルライト系ガラスとしては、モル%で、TeO 50%以上、ZnO 0〜45%、RO(RはCa、Sr及びBaから選択される少なくとも1種)0〜50%、及び、La+Gd+Y 0〜50%を含有するものが挙げられる。 The glass matrix is not particularly limited as long as it can be used as a dispersion medium for phosphor particles such as inorganic phosphors. For example, borosilicate glass, phosphate glass, tin phosphate glass, bismuthate glass, tellurite glass, and the like can be used. The borosilicate-based glass, in mass%, SiO 2 30~85%, Al 2 O 3 0~30%, B 2 O 3 0~50%, Li 2 O + Na 2 O + K 2 O 0~10%, and , MgO + CaO + SrO + BaO containing 0 to 50%. Examples of the tin phosphate glass include those containing, in mol%, SnO 30 to 90% and P 2 O 5 1 to 70%. As the tellurite-based glass, TeO 2 50% or more, ZnO 0 to 45%, RO (R is at least one selected from Ca, Sr and Ba) 0 to 50%, and La 2 O 3 in mol%. Examples include + Gd 2 O 3 + Y 2 O 3 0 to 50%.

ガラスマトリクスの軟化点は、250℃〜1000℃であることが好ましく、300℃〜950℃であることがより好ましく、500℃〜900℃の範囲内であることがさらに好ましい。ガラスマトリクスの軟化点が低すぎると、波長変換部材本体の機械的強度や化学的耐久性が低下する場合がある。また、ガラスマトリクス自体の耐熱性が低いため、無機蛍光体から発生する熱により軟化変形するおそれがある。一方、ガラスマトリクスの軟化点が高すぎると、製造時に焼成工程が含まれる場合、蛍光体粒子が劣化して、波長変換部材本体1の発光強度が低下する場合がある。なお、波長変換部材本体1の化学的安定性及び機械的強度を高める観点からはガラスマトリクスの軟化点は500℃以上、600℃以上、700℃以上、800℃以上、特に850℃以上であることが好ましい。そのようなガラスとしては、ホウ珪酸塩系ガラスが挙げられる。ただし、ガラスマトリクスの軟化点が高くなると、焼成温度も高くなり、結果として製造コストが高くなる傾向がある。よって、波長変換部材10を安価に製造する観点からは、ガラスマトリクスの軟化点は550℃以下、530℃以下、500℃以下、480℃以下、特に460℃以下であることが好ましい。そのようなガラスとしては、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスが挙げられる。   The softening point of the glass matrix is preferably 250 ° C to 1000 ° C, more preferably 300 ° C to 950 ° C, and further preferably in the range of 500 ° C to 900 ° C. If the softening point of the glass matrix is too low, the mechanical strength and chemical durability of the wavelength conversion member body may be lowered. Further, since the heat resistance of the glass matrix itself is low, there is a possibility that the glass matrix is softened and deformed by heat generated from the inorganic phosphor. On the other hand, if the softening point of the glass matrix is too high, the phosphor particles may be deteriorated and the emission intensity of the wavelength conversion member main body 1 may be lowered when a baking step is included in the production. From the viewpoint of increasing the chemical stability and mechanical strength of the wavelength conversion member body 1, the softening point of the glass matrix is 500 ° C. or higher, 600 ° C. or higher, 700 ° C. or higher, 800 ° C. or higher, particularly 850 ° C. or higher. Is preferred. Examples of such glass include borosilicate glass. However, when the softening point of the glass matrix increases, the firing temperature also increases, and as a result, the manufacturing cost tends to increase. Therefore, from the viewpoint of manufacturing the wavelength conversion member 10 at a low cost, the softening point of the glass matrix is preferably 550 ° C. or lower, 530 ° C. or lower, 500 ° C. or lower, 480 ° C. or lower, particularly 460 ° C. or lower. Examples of such glass include tin phosphate glass, bismuthate glass, and tellurite glass.

蛍光体粒子は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。蛍光体粒子の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体及びガーネット系化合物蛍光体から選ばれた1種以上等が挙げられる。励起光として青色光を用いる場合、例えば、緑色光、黄色光または赤色光を蛍光として出射する蛍光体を用いることができる。   The phosphor particles are not particularly limited as long as they emit fluorescence when incident excitation light is incident. Specific examples of the phosphor particles include oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, oxysulfide phosphors, and halogens. And one or more selected from a phosphor, a chalcogenide phosphor, an aluminate phosphor, a halophosphate phosphor, and a garnet compound phosphor. When blue light is used as the excitation light, for example, a phosphor that emits green light, yellow light, or red light as fluorescence can be used.

蛍光体粒子の平均粒子径は1μm〜50μmであることが好ましく、5μm〜25μmであることがより好ましい。蛍光体粒子の平均粒子径が小さすぎると、発光強度が低下する場合がある。一方、蛍光体粒子の平均粒子径が大きすぎると、発光色が不均一になる場合がある。   The average particle diameter of the phosphor particles is preferably 1 μm to 50 μm, and more preferably 5 μm to 25 μm. If the average particle size of the phosphor particles is too small, the emission intensity may be reduced. On the other hand, if the average particle diameter of the phosphor particles is too large, the emission color may be non-uniform.

波長変換部材本体1中での蛍光体粒子の含有量は、1体積%以上、1.5体積%以上、特に2体積%であることが好ましく、70体積%以下、50体積%以下、30体積%以下であることが好ましい。蛍光体粒子の含有量が少なすぎると、所望の発光色を得るために波長変換部材本体1の厚みを厚くする必要があり、その結果、波長変換部材本体1の内部散乱が増加することで、光取り出し効率が低下する場合がある。一方、蛍光体粒子の含有量が多すぎると、所望の発光色を得るために波長変換部材本体1の厚みを薄くする必要があるため、波長変換部材本体1の機械的強度が低下する場合がある。   The content of the phosphor particles in the wavelength conversion member body 1 is preferably 1% by volume or more, 1.5% by volume or more, and particularly preferably 2% by volume, 70% by volume or less, 50% by volume or less, 30% by volume. % Or less is preferable. If the content of the phosphor particles is too small, it is necessary to increase the thickness of the wavelength conversion member main body 1 in order to obtain a desired emission color, and as a result, the internal scattering of the wavelength conversion member main body 1 increases. The light extraction efficiency may be reduced. On the other hand, if the content of the phosphor particles is too large, it is necessary to reduce the thickness of the wavelength conversion member body 1 in order to obtain a desired emission color, and therefore the mechanical strength of the wavelength conversion member body 1 may be reduced. is there.

波長変換部材本体1の厚みは、0.01mm以上、0.03mm以上、0.05mm以上、0.075mm以上、0.1mm以上であることが好ましく、1mm以下、0.5mm以下、0.35mm以下、0.3mm以下、0.25mm以下であることが好ましい。波長変換部材本体1の厚みが厚すぎると、波長変換部材本体1における光の散乱や吸収が大きくなりすぎ、蛍光の出射効率が低くなってしまう場合がある。波長変換部材本体1の厚みが薄すぎると、十分な発光強度が得られにくくなる場合がある。また、波長変換部材本体1の機械的強度が不十分になる場合がある。   The thickness of the wavelength conversion member main body 1 is preferably 0.01 mm or more, 0.03 mm or more, 0.05 mm or more, 0.075 mm or more, 0.1 mm or more, preferably 1 mm or less, 0.5 mm or less, 0.35 mm. Hereinafter, it is preferably 0.3 mm or less and 0.25 mm or less. If the wavelength conversion member main body 1 is too thick, light scattering and absorption in the wavelength conversion member main body 1 become too large, and the fluorescence emission efficiency may be lowered. If the thickness of the wavelength conversion member main body 1 is too thin, it may be difficult to obtain sufficient light emission intensity. Moreover, the mechanical strength of the wavelength conversion member main body 1 may become insufficient.

なお、波長変換部材本体1は蛍光体ガラスからなるもの以外にも、YAGセラミックス等のセラミックスからなるものや、樹脂中に蛍光体粒子が分散したものであってもよい。   In addition, the wavelength conversion member main body 1 may be made of ceramics such as YAG ceramics or the like in which phosphor particles are dispersed in a resin other than the fluorescent glass.

スペーサ層2としては、ガラス、セラミックス、ガラスセラミックス、樹脂、金属等が挙げられる。なかでも、ガラスや樹脂等の透明材料であれば、発光素子3から波長変換部材本体1への励起光の入射妨げられにくくなるため好ましい。特にガラスは耐熱性に優れるため好ましい。透明材料の可視域(400〜800nm)での全光線透過率は50%以上、70%以上、特に80%以上であることが好ましい。   Examples of the spacer layer 2 include glass, ceramics, glass ceramics, resins, and metals. Among these, a transparent material such as glass or resin is preferable because it is difficult to prevent excitation light from entering the wavelength conversion member body 1 from the light emitting element 3. In particular, glass is preferable because of its excellent heat resistance. The total light transmittance in the visible region (400 to 800 nm) of the transparent material is preferably 50% or more, 70% or more, and particularly preferably 80% or more.

スペーサ層2の厚みは1〜100μm、2〜50μm、3〜20μm、特に5〜10μmであることが好ましい。スペーサ層2の厚みが小さすぎると、波長変換部材本体1と発光素子3との間に十分な厚みのギャップGが形成されないため、発光強度向上の効果が得にくくなる。一方、スペーサ層2の厚みが大きすぎると、スペーサ層2に励起光や蛍光が吸収または散乱されやすくなり、発光強度が低下するおそれがある。なお、発光素子3と波長変換部材本体1との間のギャップについても、1〜100μm、2〜50μm、3〜20μm、特に5〜10μmであることが好ましい。   The thickness of the spacer layer 2 is preferably 1 to 100 μm, 2 to 50 μm, 3 to 20 μm, and particularly preferably 5 to 10 μm. If the thickness of the spacer layer 2 is too small, the gap G having a sufficient thickness is not formed between the wavelength conversion member main body 1 and the light emitting element 3, so that it is difficult to obtain the effect of improving the light emission intensity. On the other hand, when the thickness of the spacer layer 2 is too large, excitation light and fluorescence are likely to be absorbed or scattered by the spacer layer 2 and the light emission intensity may be reduced. The gap between the light emitting element 3 and the wavelength conversion member main body 1 is also preferably 1 to 100 μm, 2 to 50 μm, 3 to 20 μm, and particularly preferably 5 to 10 μm.

スペーサ層2の幅は0.02〜0.5mm、0.05〜0.3mm、特に0.07〜0.2mmであることが好ましい。スペーサ層の幅が小さすぎると、機械的強度が低下したり、生産が困難になる傾向がある。一方、スペーサ層2の幅が大きすぎると、波長変換部材本体1の表面に占めるスペーサ層2の面積が大きくなるため、発光素子3からの励起光が散乱または吸収されやすくなり、波長変換部材10の発光強度が低下しやすくなる。   The width of the spacer layer 2 is preferably 0.02 to 0.5 mm, 0.05 to 0.3 mm, and particularly preferably 0.07 to 0.2 mm. If the width of the spacer layer is too small, the mechanical strength tends to decrease or the production tends to be difficult. On the other hand, if the width of the spacer layer 2 is too large, the area of the spacer layer 2 occupying the surface of the wavelength conversion member main body 1 becomes large, so that the excitation light from the light emitting element 3 is easily scattered or absorbed. The light emission intensity of the light source tends to decrease.

発光素子3としては、例えば、青色光を発するLED光源やレーザー光源などの光源が用いられる。   As the light emitting element 3, for example, a light source such as an LED light source or a laser light source that emits blue light is used.

基板4としては、例えば、発光素子3から発せられた光線を効率良く反射させることができる白色のLTCC(Low Temperature Co-fired Ceramics)などが用いられる。具体的には、酸化アルミニウムや酸化チタン、酸化ニオブ等の無機粉末とガラス粉末との焼結体が挙げられる。   As the substrate 4, for example, white LTCC (Low Temperature Co-fired Ceramics) capable of efficiently reflecting the light emitted from the light emitting element 3 is used. Specifically, a sintered body of an inorganic powder such as aluminum oxide, titanium oxide, or niobium oxide and a glass powder can be used.

また、基板4としては、発光素子3から発せられた熱を効率よく排熱させるため、熱伝導率が高い材料を使用してもよい。特に耐熱性、耐候性に優れることからセラミックスからなる基板等を用いることが好ましい。具体的には、酸化アルミニウムや窒化アルミニウム等のセラミックス基板が挙げられる。   Further, as the substrate 4, a material having high thermal conductivity may be used in order to efficiently exhaust heat generated from the light emitting element 3. In particular, it is preferable to use a substrate made of ceramics because of its excellent heat resistance and weather resistance. Specific examples include ceramic substrates such as aluminum oxide and aluminum nitride.

反射層5は、発光素子3及び波長変換部材10から漏れ出た光を反射するため設けられている。反射層5は、例えば酸化チタン等の白色顔料を含む樹脂(高反射樹脂)から形成されている。   The reflective layer 5 is provided to reflect light leaking from the light emitting element 3 and the wavelength conversion member 10. The reflection layer 5 is made of a resin (high reflection resin) containing a white pigment such as titanium oxide.

(2)第2の実施形態に係る波長変換部材
図2は本発明の第2の実施形態に係る波長変換部材を示す模式的斜視図である。本実施形態に係る波長変換部材20は、スペーサ層2が波長変換部材本体1の表面の周縁部のうち、対向する2辺近傍のみに設けられている点で第1の実施形態に係る波長変換部材10と異なる。このようにすれば、スペーサ層2の形成面積を減らすことができるため、製造コストを低減することができる。
(2) Wavelength Conversion Member According to Second Embodiment FIG. 2 is a schematic perspective view showing a wavelength conversion member according to the second embodiment of the present invention. The wavelength conversion member 20 according to the present embodiment is the wavelength conversion according to the first embodiment in that the spacer layer 2 is provided only in the vicinity of two opposite sides of the peripheral portion of the surface of the wavelength conversion member main body 1. Different from member 10. In this way, since the formation area of the spacer layer 2 can be reduced, the manufacturing cost can be reduced.

(3)第3の実施形態に係る波長変換部材
図3は本発明の第3の実施形態に係る波長変換部材を示す模式的斜視図である。本実施形態に係る波長変換部材30は、スペーサ層2が波長変換部材本体1の四隅近傍のみに設けられている点で第1の実施形態に係る波長変換部材10と異なる。このようにすれば、スペーサ層2の形成面積をさらに減らすことができるため、製造コストを大きく低減することができる。なお、図3では各スペーサ層2が直方体状となっているが、円柱(あるいはその一部。例えば断面が扇型の柱等。)や半球状(あるいはその一部)であってもよい。
(3) Wavelength conversion member according to the third embodiment FIG. 3 is a schematic perspective view showing a wavelength conversion member according to the third embodiment of the present invention. The wavelength conversion member 30 according to the present embodiment is different from the wavelength conversion member 10 according to the first embodiment in that the spacer layer 2 is provided only near the four corners of the wavelength conversion member main body 1. In this way, the formation area of the spacer layer 2 can be further reduced, so that the manufacturing cost can be greatly reduced. In FIG. 3, each spacer layer 2 has a rectangular parallelepiped shape, but may be a cylinder (or a part thereof, for example, a fan-shaped pillar, etc.) or a hemisphere (or a part thereof).

(4)第4の実施形態に係る波長変換部材
図4の(a)は本発明の第4の実施形態に係る波長変換部材を示す模式的斜視図である。本実施形態に係る波長変換部材40は、第1の実施形態に係る波長変換部材10が2つ連結した構造を有している点で第1の実施形態に係る波長変換部材10と異なる。具体的には、波長変換部材40は、長方形板状の波長変換部材本体1と、波長変換部材本体1の表面に形成されてなるスペーサ層2a及び2bを備えている。スペーサ層2aは波長変換部材本体1の表面の周縁部に形成されている。スペーサ層2bは波長変換部材本体1の表面の中央部において、波長変換部材本体1の短辺と平行な方向に形成され、対向して配置されているスペーサ層2aを接続している。なお、スペーサ層2bは必ずしも形成されていなくても構わない。
(4) Wavelength Conversion Member According to Fourth Embodiment FIG. 4A is a schematic perspective view showing a wavelength conversion member according to the fourth embodiment of the present invention. The wavelength conversion member 40 according to this embodiment is different from the wavelength conversion member 10 according to the first embodiment in that it has a structure in which two wavelength conversion members 10 according to the first embodiment are connected. Specifically, the wavelength conversion member 40 includes a rectangular plate-shaped wavelength conversion member main body 1 and spacer layers 2 a and 2 b formed on the surface of the wavelength conversion member main body 1. The spacer layer 2 a is formed on the peripheral edge of the surface of the wavelength conversion member main body 1. The spacer layer 2b is formed in a direction parallel to the short side of the wavelength conversion member main body 1 at the central portion of the surface of the wavelength conversion member main body 1, and connects the spacer layers 2a arranged opposite to each other. The spacer layer 2b may not be necessarily formed.

図4の(b)は本発明の第4の実施形態に係る波長変換部材を用いた発光装置を示す模式的断面図である。本実施形態に係る発光装置400は、基板4上に2つの発光素子3a及び3bが並設されており、その上に波長変換部材40が載置されている。波長変換部材40における波長変換部材本体1の露出面1a及び1bは、それぞれ発光素子3a及び3bに対応するように載置されている。発光素子3a及び3bの間には隙間が設けられており、当該隙間には反射層5が形成されていてもよい。   FIG. 4B is a schematic cross-sectional view showing a light emitting device using the wavelength conversion member according to the fourth embodiment of the present invention. In the light emitting device 400 according to the present embodiment, two light emitting elements 3a and 3b are arranged side by side on the substrate 4, and the wavelength conversion member 40 is placed thereon. The exposed surfaces 1a and 1b of the wavelength conversion member main body 1 in the wavelength conversion member 40 are placed so as to correspond to the light emitting elements 3a and 3b, respectively. A gap is provided between the light emitting elements 3a and 3b, and the reflective layer 5 may be formed in the gap.

以上の通り、本実施形態に係る波長変換部材40を用いれば、複数の発光素子を有する発光装置を有する発光装置400に適用することができる。   As described above, if the wavelength conversion member 40 according to the present embodiment is used, it can be applied to the light emitting device 400 having a light emitting device having a plurality of light emitting elements.

(5)第5の実施形態に係る波長変換部材
図5の(a)は本発明の第1の実施形態に係る波長変換部材を示す模式的斜視図であり、(b)は本発明の第1の実施形態に係る波長変換部材を用いた発光装置を示す模式的断面図である。第1の実施形態に係る波長変換部材10と同様に、波長変換部材50は波長変換部材本体1とその表面の周縁部に形成されてなるスペーサ層2を備えている。ここで、波長変換部材本体1は発光素子3よりも大きく、特に波長変換部材本体1の露出面の面積が発光素子3の面積よりも大きくなっている。また、スペーサ層2は発光素子3の厚みよりも大きくなっている。本実施形態に係る波長変換部材50を用いた発光装置500は、図5の(b)に示すように、スペーサ層2が基板4表面に直接載置されており、スペーサ層3の内側に発光素子3が嵌め込まれた構造を有している。
(5) Wavelength conversion member according to the fifth embodiment FIG. 5A is a schematic perspective view showing the wavelength conversion member according to the first embodiment of the present invention, and FIG. It is typical sectional drawing which shows the light-emitting device using the wavelength conversion member which concerns on 1 embodiment. Similar to the wavelength conversion member 10 according to the first embodiment, the wavelength conversion member 50 includes a wavelength conversion member main body 1 and a spacer layer 2 formed on the peripheral portion of the surface thereof. Here, the wavelength conversion member main body 1 is larger than the light emitting element 3, and in particular, the area of the exposed surface of the wavelength conversion member main body 1 is larger than the area of the light emitting element 3. The spacer layer 2 is larger than the thickness of the light emitting element 3. In the light emitting device 500 using the wavelength conversion member 50 according to the present embodiment, as shown in FIG. 5B, the spacer layer 2 is directly placed on the surface of the substrate 4, and light is emitted inside the spacer layer 3. It has a structure in which the element 3 is fitted.

本実施形態においては、上述した発光素子3と波長変換部材本体1との間の所望のギャップを確保できるよう、スペーサ層の厚みを適宜調整することが好ましい。具体的には、スペーサ層の厚みは50〜300μm、特に100〜200μmであることが好ましい。   In the present embodiment, it is preferable to appropriately adjust the thickness of the spacer layer so as to ensure a desired gap between the light emitting element 3 and the wavelength conversion member main body 1 described above. Specifically, the thickness of the spacer layer is preferably 50 to 300 μm, particularly preferably 100 to 200 μm.

(II)波長変換部材の製造方法
次に、本発明の波長変換部材の製造方法の一例について説明する。
まず、以下のようにして、複数の波長変換部材を製造するための波長変換部材本体用原板を作製する。ガラスマトリクスとなるガラス粒子と蛍光体粒子とを含むスラリーを用意する。上記スラリーには、バインダー樹脂や溶剤等の有機成分が含まれている。用意したスラリーを支持基材上に塗布し、基材と所定間隔を空けて設置されたドクターブレードをスラリーに対して相対的に移動させることにより、グリーンシートを形成する。上記支持基材としては、例えば、ポリエチレンテレフタレート等の樹脂フィルムを用いることができる。続いてグリーンシートを焼成することにより、波長変換部材本体用原板を得る。なお所望の厚みの波長変換部材本体用原板を得るため、グリーンシートは複数枚積層した状態で焼成一体化してもよい。焼成温度はガラス粒子の軟化点±150℃以内であることが好ましく、ガラス粒子の軟化点±100℃以内であることがより好ましい。焼成温度が低すぎると、ガラス粒子が軟化流動せず、緻密な焼結体が得られない場合がある。一方、焼成温度が高すぎると、蛍光体粒子13がガラス中に溶出して発光強度が低下したり、蛍光体成分がガラス中に拡散してガラスが着色して発光強度が低下したりする場合がある。
(II) Manufacturing method of wavelength conversion member Next, an example of the manufacturing method of the wavelength conversion member of this invention is demonstrated.
First, a wavelength conversion member main plate for manufacturing a plurality of wavelength conversion members is produced as follows. A slurry containing glass particles serving as a glass matrix and phosphor particles is prepared. The slurry contains organic components such as a binder resin and a solvent. The prepared slurry is applied onto a supporting substrate, and a doctor blade installed at a predetermined interval from the substrate is moved relative to the slurry to form a green sheet. As said support base material, resin films, such as a polyethylene terephthalate, can be used, for example. Subsequently, the wavelength conversion member main plate is obtained by firing the green sheet. In order to obtain a wavelength conversion member main plate having a desired thickness, a plurality of green sheets may be baked and integrated in a stacked state. The firing temperature is preferably within the softening point of glass particles ± 150 ° C., more preferably within the softening point of glass particles ± 100 ° C. If the firing temperature is too low, the glass particles may not soften and flow, and a dense sintered body may not be obtained. On the other hand, if the firing temperature is too high, the phosphor particles 13 are eluted in the glass and the emission intensity is lowered, or the phosphor components are diffused in the glass and the glass is colored to reduce the emission intensity. There is.

次に、波長変換部材本体用原板の表面に、スペーサ層形成用ガラスペーストを塗布することによりガラスペースト層を形成する。ここで、ガラスペーストを塗布する位置、面積、厚み、形状等は、所望のスペーサ層が形成された波長変換部材が得られるように適宜選択すればよい。例えば、図1に示す第1の実施形態に係る波長変換部材10を得るためには、図6に示すように、波長変換部材本体用原板1’の表面に格子状のスペーサ層2が得られるようにガラスペースト層を形成すればよい。ガラスペーストの塗布はスクリーン印刷法等の公知の方法により行うことができる。   Next, a glass paste layer is formed by applying a glass paste for spacer layer formation to the surface of the wavelength conversion member main plate. Here, the position, area, thickness, shape, and the like for applying the glass paste may be appropriately selected so as to obtain a wavelength conversion member on which a desired spacer layer is formed. For example, in order to obtain the wavelength conversion member 10 according to the first embodiment shown in FIG. 1, as shown in FIG. 6, a lattice-like spacer layer 2 is obtained on the surface of the wavelength conversion member main plate 1 ′. A glass paste layer may be formed as described above. The glass paste can be applied by a known method such as a screen printing method.

ガラスペーストにはガラス粉末と、バインダー樹脂や溶剤等の有機成分が含まれている。使用するガラス粉末の平均粒子径D50は20μm以下、10μm以下、特に5μm以下であることが好ましい。ガラス粉末の平均粒子径D50が大きすぎると、焼成後に得られるスペーサ層の気孔率が大きくなって、光透過率が低下しやすくなる。また、スペーサ層の厚みや幅を小さくすることが困難になる。 The glass paste contains glass powder and organic components such as a binder resin and a solvent. The average particle diameter D 50 of the glass powder used is 20μm or less, 10 [mu] m or less, more preferably 5μm or less. When the average particle diameter D 50 of the glass powder is too large, increases the porosity of the spacer layer obtained after firing, the light transmittance tends to decrease. In addition, it becomes difficult to reduce the thickness and width of the spacer layer.

ガラス粉末は、後の焼成工程で波長変換部材本体用原板が変形しない温度で焼結できることが好ましい。例えば、スペーサ層形成用ガラスペーストに使用するガラス粉末の軟化点は、波長変換部材本体用原板を作製するために使用するガラス粉末の軟化点より、100℃以上、150℃以上、特に200℃以上低いことが好ましい。   It is preferable that the glass powder can be sintered at a temperature at which the wavelength conversion member main plate is not deformed in the subsequent firing step. For example, the softening point of the glass powder used for the spacer layer forming glass paste is 100 ° C. or higher, 150 ° C. or higher, particularly 200 ° C. or higher, than the softening point of the glass powder used for producing the original plate for wavelength conversion member body. Preferably it is low.

続いて、ガラスペースト層を焼成することにより、波長変換部材本体用原板の表面にスペーサ層を形成して波長変換部材用原板を得る。焼成温度は、ガラスペーストに含まれるガラス粒子の軟化点±150℃以内であることが好ましく、ガラス粒子の軟化点±100℃以内であることがより好ましい。焼成温度が低すぎると、ガラス粒子が軟化流動せず、緻密な焼結体が得られない場合がある。一方、焼成温度が高すぎると、ガラス粒子が軟化流動しすぎて所望の形状のスペーサ層が得られにくくなる。また、波長変換部材本体用原板が軟化変形するおそれがある。   Then, by baking the glass paste layer, a spacer layer is formed on the surface of the original plate for wavelength conversion member main body to obtain the original plate for wavelength conversion member. The firing temperature is preferably within the softening point ± 150 ° C. of the glass particles contained in the glass paste, and more preferably within the softening point ± 100 ° C. of the glass particles. If the firing temperature is too low, the glass particles may not soften and flow, and a dense sintered body may not be obtained. On the other hand, if the firing temperature is too high, the glass particles soften and flow too much, making it difficult to obtain a spacer layer having a desired shape. In addition, the wavelength conversion member main plate may be softened and deformed.

さらに、スペーサ層を分断するように波長変換部材用原板を切断して個片化することにより、本発明の波長変換部材が得られる。例えば、図6において、波長変換部材用原板10’を、各スペーサ層2と平行でありかつ各スペーサ層2の略中央部を通る切断線Cに沿って切断して個片化することにより、図1に示す第1の実施形態に係る波長変換部材10を得ることができる。   Furthermore, the wavelength conversion member of the present invention can be obtained by cutting the original plate for wavelength conversion member into pieces so as to divide the spacer layer. For example, in FIG. 6, the wavelength conversion member original plate 10 ′ is cut into individual pieces by cutting along a cutting line C that is parallel to each spacer layer 2 and passes through a substantially central portion of each spacer layer 2. The wavelength conversion member 10 according to the first embodiment shown in FIG. 1 can be obtained.

以上の製造方法によれば、1枚の波長変換部材本体用原板から複数の波長変換部材を容易に作製することが可能となる。また、線幅の小さいスペーサ層を有する波長変換部材を精度良く作製することができる。   According to the above manufacturing method, it becomes possible to easily produce a plurality of wavelength conversion members from a single wavelength conversion member main plate. In addition, a wavelength conversion member having a spacer layer with a small line width can be manufactured with high accuracy.

1 波長変換部材本体
1’ 波長変換部材本体用原板
2 スペーサ層
3 発光素子
4 基板
5 反射層
10、20、30、40、50 波長変換部材
10’ 波長変換部材用原板
100、400、500 発光装置
DESCRIPTION OF SYMBOLS 1 Wavelength conversion member main body 1 'Wavelength conversion member main body 2 Spacer layer 3 Light emitting element 4 Substrate 5 Reflection layer 10, 20, 30, 40, 50 Wavelength conversion member 10' Wavelength conversion member original 100, 400, 500 Light-emitting device

Claims (9)

発光素子の上方に載置して使用される波長変換部材であって、
波長変換部材本体と、
波長変換部材本体の表面に形成されてなり、波長変換部材本体と発光素子との間にギャップを確保するためのスペーサ層と、
を備えていることを特徴とする波長変換部材。
A wavelength conversion member used by being placed above the light emitting element,
A wavelength conversion member body;
Formed on the surface of the wavelength conversion member body, a spacer layer for securing a gap between the wavelength conversion member body and the light emitting element;
A wavelength conversion member comprising:
スペーサ層が波長変換部材本体表面の周縁部に形成されていることを特徴とする請求項1に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the spacer layer is formed on a peripheral portion of the surface of the wavelength conversion member main body. スペーサ層が透明材料からなることを特徴とする請求項1または2に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the spacer layer is made of a transparent material. スペーサ層がガラスからなることを特徴とする請求項1〜3のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the spacer layer is made of glass. スペーサ層の厚みが1〜100μmであることを特徴とする請求項1〜4のいずれか一項に記載の波長変換部材。   The thickness of a spacer layer is 1-100 micrometers, The wavelength conversion member as described in any one of Claims 1-4 characterized by the above-mentioned. 波長変換部材本体が、ガラスマトリクス中に蛍光体粉末が分散してなることを特徴とする請求項1〜5のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 5, wherein the wavelength conversion member main body is formed by dispersing phosphor powder in a glass matrix. 発光素子と、
発光装置の上方に載置された請求項1〜6のいずれか一項に記載の波長変換部材と、
を備え、
スペーサ層により、発光素子と波長変換部材本体との間にギャップが形成されていることを特徴とする発光装置。
A light emitting element;
The wavelength conversion member according to any one of claims 1 to 6 placed above the light emitting device,
With
A light emitting device characterized in that a gap is formed between the light emitting element and the wavelength conversion member main body by the spacer layer.
発光素子と波長変換部材本体との間のギャップが1〜100μmであることを特徴とする請求項7に記載の発光装置。   The light emitting device according to claim 7, wherein a gap between the light emitting element and the wavelength conversion member main body is 1 to 100 μm. 請求項1〜6のいずれか一項に記載の波長変換部材を製造するための方法であって、
波長変換部材本体用原板の表面に、スペーサ層形成用ガラスペーストを塗布することによりガラスペースト層を形成する工程、
ガラスペースト層を焼成することにより、波長変換部材本体用原板の表面にスペーサ層を形成して波長変換部材用原板を得る工程、
スペーサ層を分断するように波長変換部材用原板を切断して個片化する工程、
を含む波長変換部材の製造方法。
It is a method for manufacturing the wavelength conversion member as described in any one of Claims 1-6,
A step of forming a glass paste layer by applying a glass paste for forming a spacer layer on the surface of the wavelength conversion member main plate,
A step of forming a spacer layer on the surface of the original plate for wavelength conversion member body to obtain the original plate for wavelength conversion member by firing the glass paste layer,
A step of cutting the original plate for wavelength conversion member into pieces so as to divide the spacer layer;
The manufacturing method of the wavelength conversion member containing this.
JP2016185080A 2016-09-23 2016-09-23 Wavelength conversion member and light-emitting device Pending JP2018049185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016185080A JP2018049185A (en) 2016-09-23 2016-09-23 Wavelength conversion member and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016185080A JP2018049185A (en) 2016-09-23 2016-09-23 Wavelength conversion member and light-emitting device

Publications (1)

Publication Number Publication Date
JP2018049185A true JP2018049185A (en) 2018-03-29

Family

ID=61767521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016185080A Pending JP2018049185A (en) 2016-09-23 2016-09-23 Wavelength conversion member and light-emitting device

Country Status (1)

Country Link
JP (1) JP2018049185A (en)

Similar Documents

Publication Publication Date Title
WO2018105374A1 (en) Method for manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
CN109564308B (en) Wavelength conversion member and method for manufacturing same
JP7212319B2 (en) Wavelength conversion member and light emitting device
JP2018077324A (en) Wavelength conversion member and light emitting device
KR102362017B1 (en) Manufacturing method of wavelength conversion member
WO2019021846A1 (en) Wavelength conversion member and light emitting device
JP2018049185A (en) Wavelength conversion member and light-emitting device
CN109642967B (en) Wavelength conversion member and method for manufacturing same
CN109564309B (en) Wavelength conversion member and method for manufacturing same
JP7090842B2 (en) Wavelength conversion member and light emitting device
JP2019028096A (en) Wavelength conversion member
JP2018013681A (en) Wavelength conversion member and light emitting device
JP2019045609A (en) Wavelength conversion member
JP2018067618A (en) Light emitting device