JP2018046618A - Charging system and charging method - Google Patents

Charging system and charging method Download PDF

Info

Publication number
JP2018046618A
JP2018046618A JP2016178341A JP2016178341A JP2018046618A JP 2018046618 A JP2018046618 A JP 2018046618A JP 2016178341 A JP2016178341 A JP 2016178341A JP 2016178341 A JP2016178341 A JP 2016178341A JP 2018046618 A JP2018046618 A JP 2018046618A
Authority
JP
Japan
Prior art keywords
charging
secondary battery
battery
connection
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016178341A
Other languages
Japanese (ja)
Inventor
陸生 波多野
Rikuo Hatano
陸生 波多野
幸弘 高木
Sachihiro Takagi
幸弘 高木
伊藤 誠
Makoto Ito
伊藤  誠
虎斗 横井
Torato Yokoi
虎斗 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYMTEC HOZUMI KK
Shintec Hozumi Co Ltd
Original Assignee
SYMTEC HOZUMI KK
Shintec Hozumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYMTEC HOZUMI KK, Shintec Hozumi Co Ltd filed Critical SYMTEC HOZUMI KK
Priority to JP2016178341A priority Critical patent/JP2018046618A/en
Publication of JP2018046618A publication Critical patent/JP2018046618A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging system and a charging method that are capable of securely avoiding a trouble at the time of reverse connection.SOLUTION: A charging system 1 comprises: a polarity discrimination circuit 141 constituting detection means for detecting whether a connection state with a secondary battery 380 is normal connection or reverse connection; and a switch circuit 13 for opening/closing an electric path for charging the secondary battery 380. The switch circuit 13 is configured to shift from an open state to a closed state when the connection state detected by the polarity discrimination circuit 141 is normal connection and keep the open state when the connection state detected by the polarity discrimination circuit 141 is reverse connection.SELECTED DRAWING: Figure 3

Description

本発明は、二次電池を充電するための充電システムに関する。   The present invention relates to a charging system for charging a secondary battery.

従来より、ニッケル水素バッテリ等の二次電池を搭載するAGV(Automatic Guided Vehicle)等の電動車両が知られている。二次電池に蓄えた電力により動作する電動車両では、電力を消費したときには充電器等を接続して二次電池を充電する必要がある。充電器の多くは、電源端子とグランド側端子とを有しており、電源端子にバッテリの正極端子を接続し、グランド側端子に負極端子を接続して充電動作を実施する。   Conventionally, an electric vehicle such as an AGV (Automatic Guided Vehicle) equipped with a secondary battery such as a nickel metal hydride battery is known. In an electric vehicle that operates with electric power stored in a secondary battery, it is necessary to connect a charger or the like to charge the secondary battery when the electric power is consumed. Many chargers have a power supply terminal and a ground-side terminal, and a battery positive electrode terminal is connected to the power supply terminal and a negative electrode terminal is connected to the ground-side terminal to perform a charging operation.

このような充電動作の際、充電器を接続する際の人為的なミスや、電動車両内部の電気的な配線ミス等により、バッテリの負極端子が充電器の電源端子に接続され、バッテリの正極端子が充電器のグランド側端子に接続されて、いわゆる逆接続が生じる可能性がある。このような逆接続の場合、バッテリから異常電流が流入して充電器に故障が発生するおそれがある。そこで、従来、バッテリから充電器への異常電流の流れ込みを防止する保護回路を設けた充電器が提案されている(例えば、特許文献1参照。)。   During such a charging operation, the negative terminal of the battery is connected to the power supply terminal of the charger due to human error when connecting the charger, an electrical wiring error inside the electric vehicle, etc. The terminal is connected to the ground side terminal of the charger, and so-called reverse connection may occur. In the case of such reverse connection, abnormal current may flow from the battery and the charger may be damaged. Therefore, conventionally, a charger provided with a protection circuit that prevents an abnormal current from flowing from the battery to the charger has been proposed (see, for example, Patent Document 1).

特開2009−118607号公報JP 2009-118607 A

しかしながら、上記従来の保護回路を設けた充電器であっても次のような問題が残っている。すなわち、充電電流を供給する側の発電回路が起動していない状況であれば保護回路が有効に作用して逆接時の異常電流の流れ込みを防止できる一方、発電回路が起動している状態では保護回路が有効に動作せずに過大電流が充電器側に流れ込み、充電器の制御回路を構成する整流ダイオードや電子部品にトラブルが生じるおそれがあるという問題がある。   However, the following problems remain even in the charger provided with the conventional protection circuit. In other words, if the generator circuit on the charging current supply side is not activated, the protection circuit works effectively to prevent the flow of abnormal current during reverse connection, while protection occurs when the generator circuit is activated. There is a problem that an excessive current flows into the charger side without the circuit effectively operating, and there is a possibility that trouble may occur in the rectifier diode and electronic components that constitute the control circuit of the charger.

本発明は、前記従来の問題点に鑑みてなされたものであり、逆接続時のトラブルを確実性高く回避できる充電システム及び充電方法を提供しようとするものである。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a charging system and a charging method capable of reliably avoiding trouble at the time of reverse connection.

本発明の一態様は、二次電池の充電システムであって、
二次電池に対する接続状態が正接か逆接かを判別する判別手段と、
二次電池を充電するための電気的な経路を開閉するスイッチ手段と、を備え、
該スイッチ手段は、前記判別手段により正接の接続状態であると判別された場合に、開放状態から閉成状態に切り替わる一方、
前記判別手段により逆接の接続状態であると判別された場合には、開放状態を保持する充電システムにある(請求項1)。
One aspect of the present invention is a charging system for a secondary battery,
Discrimination means for discriminating whether the connection state to the secondary battery is tangent or reverse;
Switch means for opening and closing an electrical path for charging the secondary battery,
The switch means switches from an open state to a closed state when it is determined by the determination means that the connection is a tangent,
When it is determined that the connection state is reversely connected by the determination unit, the charging system maintains the open state (Claim 1).

本発明の一態様は、二次電池の充電方法であって、
二次電池に対する充電装置の接続状態が正接か逆接かを判別し、正接の接続状態であると判別されたときに、二次電池を充電するための電気的な経路を開放状態から閉成状態に切り替える一方、逆接の接続状態であると判別されたときには、前記経路を開放状態のまま保持する二次電池の充電方法にある(請求項5)。
One aspect of the present invention is a method of charging a secondary battery,
When the connection state of the charging device to the secondary battery is determined to be tangent or reverse connection, when it is determined that the connection is tangent, the electrical path for charging the secondary battery is closed from the open state to the closed state. On the other hand, when it is determined that the connection state is reversely connected, the secondary battery charging method holds the path in an open state (Claim 5).

本発明の充電システム及び充電方法では、逆接続の場合、二次電池を充電するための電気的な経路が開放状態のまま保持される。そのため、逆接続が発生しても、二次電池側から電流が流れ込むことがない。したがって、本発明の充電システム及び充電方法によれば、逆接続時のトラブルを確実性高く回避できる。   In the charging system and the charging method of the present invention, in the case of reverse connection, the electrical path for charging the secondary battery is kept open. Therefore, even if reverse connection occurs, current does not flow from the secondary battery side. Therefore, according to the charging system and the charging method of the present invention, it is possible to avoid a trouble at the time of reverse connection with high reliability.

実施例1における、バッテリを搭載する無人牽引車と充電器との組合せを示す説明図。Explanatory drawing which shows the combination of the unmanned tow vehicle which mounts a battery, and a charger in Example 1. FIG. 実施例1における、搬送台車を連結する無人牽引車の斜視図。The perspective view of the unmanned tow vehicle which connects the conveyance trolley | bogie in Example 1. FIG. 実施例1における、充電システムのブロック図。1 is a block diagram of a charging system in Embodiment 1. FIG. 実施例1における、充電回路の説明図。FIG. 3 is an explanatory diagram of a charging circuit in the first embodiment. 実施例1における、充電制御回路のブロック図。2 is a block diagram of a charge control circuit in Embodiment 1. FIG. 実施例1における、充電動作の時間的な流れを示すタイムチャート図。FIG. 3 is a time chart illustrating a temporal flow of a charging operation in the first embodiment. 実施例1における、その他の充電回路の説明図。FIG. 3 is an explanatory diagram of another charging circuit in the first embodiment. 参考例における、充電器のブロック図。The block diagram of the charger in a reference example.

本発明の充電システムは、充電前の二次電池の端子電圧を計測する計測手段を備え、該端子電圧が所定の閾値以上であることが充電動作の開始条件として設定されていることも良い(請求項2)。
二次電池の端子電圧が所定の閾値未満である場合には、二次電池に何らかのトラブルが生じている可能性がある。このような二次電池については、電気的な接続を回避すると良い。
The charging system of the present invention may include a measuring unit that measures a terminal voltage of the secondary battery before charging, and the terminal voltage may be set as a start condition of the charging operation that is equal to or higher than a predetermined threshold ( Claim 2).
When the terminal voltage of the secondary battery is less than the predetermined threshold value, there may be some trouble in the secondary battery. For such a secondary battery, it is preferable to avoid electrical connection.

前記二次電池はニッケル水素バッテリであり、当該二次電池を充電する際に供給する電流が一定となるように制御する定電流制御を実行することも良い(請求項3、請求項6)。
ニッケル水素バッテリは、定電圧充電を行うと過充電に至り易いので、定電流制御での充電が好適である。定電流制御であれば、急速充電を安全性高く実行でき、充電に要する時間を短縮できる。
The secondary battery is a nickel metal hydride battery, and constant current control may be executed to control the current supplied when charging the secondary battery to be constant (claims 3 and 6).
Since the nickel metal hydride battery is likely to be overcharged when constant voltage charging is performed, charging with constant current control is suitable. With constant current control, rapid charging can be performed with high safety, and the time required for charging can be shortened.

前記定電流制御の実行中に二次電池を充電するための電流が所定の閾値以下となったときに充電を終了すると良い(請求項4)。
この場合には、過充電を確実性高く回避し、二次電池の性能劣化を防止できる。
The charging may be terminated when the current for charging the secondary battery becomes equal to or less than a predetermined threshold during the execution of the constant current control.
In this case, overcharge can be avoided with high certainty, and performance deterioration of the secondary battery can be prevented.

本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
本例は、無人牽引車3が搭載するバッテリ(二次電池)380を充電する充電システム1に関する例である。この内容について、図1〜図7を参照して説明する。
The embodiment of the present invention will be specifically described with reference to the following examples.
Example 1
This example is an example related to the charging system 1 that charges a battery (secondary battery) 380 mounted on the unmanned towing vehicle 3. The contents will be described with reference to FIGS.

無人牽引車3は、図1及び図2のごとく、自在車輪48を備え自立可能な搬送台車4を連結し、搬送台車4が積載する部品などのワークを工場などの施設内で搬送するAGVである。無人牽引車3は、搬送台車4の下側に潜り込めるよう、高さ方向に薄く前後方向に長い低床式の車体30を備え、上面303の連結ピン34を介して搬送台車4に連結される。   As shown in FIGS. 1 and 2, the unmanned towing vehicle 3 is an AGV that connects a self-supporting transport cart 4 with a free wheel 48 and transports workpieces such as parts loaded on the transport cart 4 in a facility such as a factory. is there. The unmanned towing vehicle 3 includes a low-floor type vehicle body 30 that is thin in the height direction and long in the front-rear direction so as to be buried under the transport cart 4, and is connected to the transport cart 4 via a connecting pin 34 on the upper surface 303. The

この無人牽引車3は、同軸配置された2本1組の駆動輪33を備えた駆動ユニット(図示略)を前後方向の2箇所に備え、車体30の後部に配置されたバッテリ380(図3参照。二次電池。)に蓄えた電力により動作する。バッテリ380への充電は、車体30の側面302に設けた充電端子38を利用して実施可能である。なお、本例のバッテリ380は、ニッケル水素バッテリである。   The unmanned towing vehicle 3 includes a drive unit (not shown) including a pair of drive wheels 33 arranged in a coaxial manner at two locations in the front-rear direction, and a battery 380 (FIG. 3) disposed at the rear of the vehicle body 30. (Refer to secondary battery.) Operates with the power stored in the battery. Charging the battery 380 can be performed using the charging terminal 38 provided on the side surface 302 of the vehicle body 30. Note that the battery 380 of this example is a nickel metal hydride battery.

充電端子38は、充電器10(図1参照。)から延設された電気コード101の先端の充電プラグ102を接続する端子であり、バッテリ380のプラス側に接続された正極端子38Pと、マイナス側に接続された負極端子38Mと、を備えている。この充電端子38に接続する充電プラグ102には、電源端子18Pとグランド側端子18G(図4参照。)が設けられている。   The charging terminal 38 is a terminal for connecting the charging plug 102 at the tip of the electric cord 101 extending from the charger 10 (see FIG. 1), and is connected to the positive terminal 38P connected to the positive side of the battery 380 and the negative terminal. And a negative electrode terminal 38M connected to the side. The charging plug 102 connected to the charging terminal 38 is provided with a power supply terminal 18P and a ground side terminal 18G (see FIG. 4).

充電器10を利用してバッテリ380を充電するに当っては、充電プラグ102の電源端子18Pを無人牽引車3側の正極端子38Pに接続し、グランド側端子18Gを負極端子38Mに接続する必要がある。なお、無人牽引車3では、充電端子38に対する充電プラグ102の接続構造について、電源端子18Pが負極端子38Mに接触し、グランド側端子18Gが正極端子38Pに接触する逆接続(逆接の接続状態)を機械的に防止するための図示しないフェールセーフ構造を設けることで安全性を向上している。   In charging the battery 380 using the charger 10, it is necessary to connect the power terminal 18P of the charging plug 102 to the positive terminal 38P on the unmanned tow truck 3 side and connect the ground terminal 18G to the negative terminal 38M. There is. In the unmanned tow truck 3, with respect to the connection structure of the charging plug 102 to the charging terminal 38, the power terminal 18P is in contact with the negative terminal 38M and the ground terminal 18G is in contact with the positive terminal 38P (reverse connection state). Safety is improved by providing a fail-safe structure (not shown) for mechanically preventing this.

次に、上記の充電器10を含む本例の充電システム1が採用する電気的な回路構成について説明する。
まず、本例の充電システム1の基本構成について、図3のブロック図を参照して説明する。充電システム1では、バッテリ380を充電するための電力を供給する充電用電源部12と、バッテリ380との間に、初期状態が開放状態であるスイッチ回路(スイッチ手段)13が介設されている。
Next, an electrical circuit configuration adopted by the charging system 1 of the present example including the charger 10 will be described.
First, the basic configuration of the charging system 1 of this example will be described with reference to the block diagram of FIG. In the charging system 1, a switch circuit (switch means) 13 whose initial state is an open state is interposed between the battery 380 and a charging power supply unit 12 that supplies power for charging the battery 380. .

このスイッチ回路13は、初期状態の開放状態ではバッテリ380を充電器10から電気的に切り離す一方、閉成状態への切り替わりに応じてバッテリ380に対して充電器10を電気的に接続する回路である。スイッチ回路13は、接続極性を判別する極性判別回路(判別手段)141等を含む制御部14が出力する充電回路閉成信号に応じて閉成状態に切り替わる。   The switch circuit 13 is a circuit that electrically disconnects the battery 380 from the charger 10 in the initial open state, and electrically connects the charger 10 to the battery 380 in accordance with switching to the closed state. is there. The switch circuit 13 switches to a closed state in response to a charging circuit closing signal output from the control unit 14 including a polarity determining circuit (discriminating means) 141 that determines the connection polarity.

次に、充電器10の回路構成を示す図4を参照して上記の内容を詳しく説明する。充電器10の回路は、制御部14を中心として構成されている。制御部14は、上記の極性判別回路141のほか、電圧測定回路(計測手段)142、差動増幅回路143、誤差増幅回路144、充電終了判定回路145等を含めて構成されている。この制御部14には、充電用電源部12、フォトカプラ171、172、スイッチ回路13を構成するNチャンネルMOS−FET131などが接続されている。   Next, the above contents will be described in detail with reference to FIG. 4 showing a circuit configuration of the charger 10. The circuit of the charger 10 is configured around the control unit 14. The control unit 14 includes a voltage measurement circuit (measurement means) 142, a differential amplifier circuit 143, an error amplifier circuit 144, a charge end determination circuit 145, and the like in addition to the polarity determination circuit 141 described above. The control unit 14 is connected to a charging power supply unit 12, photocouplers 171 and 172, an N-channel MOS-FET 131 constituting the switch circuit 13, and the like.

充電器10の回路構成では、正接続(正接の接続状態)の場合にバッテリ380の負極端子38Mに接続されるグランド側端子18Gと、GND(グランド)との間に、NチャンネルMOS−FET131を利用したスイッチ回路13が介設されている。また、正接続のときバッテリ380の正極端子38Pと接続される電源端子18Pと、グランド側端子18Gとの間には、LED電流制限抵抗170を共用する2つのフォトカプラ171、172が介設されている。第1のフォトカプラ171は、正接続でONに切り替わり、制御部14に正接続検出信号を入力するフォトカプラである。第2のフォトカプラ172は、逆接続でONに切り替わり、制御部14に逆接続検出信号を入力するフォトカプラである。   In the circuit configuration of the charger 10, an N-channel MOS-FET 131 is connected between the ground side terminal 18 </ b> G connected to the negative terminal 38 </ b> M of the battery 380 and GND (ground) in the case of positive connection (tangential connection state). A utilized switch circuit 13 is interposed. In addition, two photocouplers 171 and 172 that share the LED current limiting resistor 170 are interposed between the power supply terminal 18P connected to the positive terminal 38P of the battery 380 and the ground side terminal 18G in the positive connection. ing. The first photocoupler 171 is a photocoupler that is switched on with a positive connection and inputs a positive connection detection signal to the control unit 14. The second photocoupler 172 is a photocoupler that is turned on by reverse connection and inputs a reverse connection detection signal to the control unit 14.

制御部14は、正接続検出信号の入力を受けた場合にのみ、充電回路閉成信号を出力してNチャンネルMOS−FET131によるスイッチ回路13を閉成状態に切り替える。スイッチ回路13が閉成状態に切り替わると、グランド側端子18GがGND接地し、充電用電源部12によるバッテリ380への充電電流の供給が可能な状態になる。   Only when the input of the positive connection detection signal is received, the control unit 14 outputs the charging circuit closing signal and switches the switch circuit 13 by the N-channel MOS-FET 131 to the closed state. When the switch circuit 13 is switched to the closed state, the ground side terminal 18G is grounded to GND, and the charging power supply unit 12 can supply the charging current to the battery 380.

このように充電システム1では、バッテリ380の電圧により上記第1のフォトカプラ171がONに切り替わり、スイッチ回路13が開放状態から閉成状態に切り替えられて充電可能な状態となる。一方、バッテリ380が接続されていない状態や、バッテリ380が逆接続の状態では、スイッチ回路13が開放状態のまま保持される。スイッチ回路13が開放状態の場合には、充電器10側の回路がバッテリ380から電気的に切り離され、バッテリ380の電流が充電器10側に流れ込むことがない。   Thus, in the charging system 1, the first photocoupler 171 is switched ON by the voltage of the battery 380, and the switch circuit 13 is switched from the open state to the closed state to be in a chargeable state. On the other hand, when the battery 380 is not connected or when the battery 380 is reversely connected, the switch circuit 13 is kept open. When the switch circuit 13 is in the open state, the circuit on the charger 10 side is electrically disconnected from the battery 380, and the current of the battery 380 does not flow into the charger 10 side.

スイッチ回路13が閉成状態のとき、電源端子18Pの電圧が分圧回路175により分圧されて電圧信号として制御部14に入力される。制御部14の電圧測定回路142は、この電圧信号を利用してバッテリ380の電圧を計測する。制御部14は、バッテリ380の電圧が所定の閾値(本例では18.0V)以上であって、かつ、所定の充電目標電圧(本例では27.2V。所定の閾値)以下の場合に、電流制御信号を出力して充電用電源部12を起動する。充電用電源部12は、電源端子18Pの電圧が予め設定された充電目標電圧に到達するまで、電流センサ11による電流信号のフィードバック制御による定電流制御により駆動される。   When the switch circuit 13 is in the closed state, the voltage of the power supply terminal 18P is divided by the voltage dividing circuit 175 and input to the control unit 14 as a voltage signal. The voltage measurement circuit 142 of the control unit 14 measures the voltage of the battery 380 using this voltage signal. When the voltage of the battery 380 is equal to or higher than a predetermined threshold (18.0 V in this example) and lower than a predetermined charging target voltage (27.2 V in the present example, predetermined threshold), the control unit 14 A current control signal is output to activate the charging power supply unit 12. The charging power supply unit 12 is driven by constant current control by feedback control of a current signal by the current sensor 11 until the voltage of the power supply terminal 18P reaches a preset charging target voltage.

次に、(1)充電動作中の充電器10で実行される垂下型定電流制御、(2)充電動作の終了時点を判定する充電終了判定、について説明する。
(1)垂下型定電流制御
充電システム1による充電動作は、図5に例示する垂下型電流制御回路により実現される。この垂下型電流制御回路は、充電電流を計測する電流センサ11、電流センサ11が出力する電流信号を増幅する差動増幅回路143、定電流制御の目標電流値に対する差分(誤差)を増幅する誤差増幅回路144等を含めて構成されている。なお、本例の充電システム1では、定電流制御の目標電流値が100Aに設定されている。
Next, (1) drooping type constant current control executed by the charger 10 during the charging operation, and (2) charging end determination for determining the end point of the charging operation will be described.
(1) Drooping type constant current control The charging operation by the charging system 1 is realized by the drooping type current control circuit illustrated in FIG. The drooping current control circuit includes a current sensor 11 that measures a charging current, a differential amplifier circuit 143 that amplifies a current signal output from the current sensor 11, and an error that amplifies a difference (error) with respect to a target current value of constant current control. The amplifier circuit 144 and the like are included. In the charging system 1 of this example, the target current value for constant current control is set to 100A.

電流センサ11(図4及び図5)は、充電電流の大きさに応じた電圧の電流信号を発生する(図6(a))。差動増幅回路143は、電流センサ11が出力する電流信号を所定の増幅率で増幅する。誤差増幅回路144は、いわゆるエラーアンプと呼ばれる制御系分野で良く知られた回路であり、差動増幅回路143の出力電圧が表す計測電流値のうちの目標電流値に対する誤差分を増幅する。   The current sensor 11 (FIGS. 4 and 5) generates a current signal having a voltage corresponding to the magnitude of the charging current (FIG. 6A). The differential amplifier circuit 143 amplifies the current signal output from the current sensor 11 with a predetermined amplification factor. The error amplifying circuit 144 is a circuit well known in the control system field called a so-called error amplifier, and amplifies an error with respect to a target current value among the measured current values represented by the output voltage of the differential amplifying circuit 143.

誤差増幅回路144の出力信号は、図6(b)のごとく電圧制御信号として充電用電源部12に入力される。定電圧出力電源である充電用電源部12は、誤差増幅回路144が出力する電圧制御信号により動作電圧を制御されて動作し、これにより充電電流を100A一定に保持するように制御される。具体的には同図(b)のごとく、充電電流が100Aを超えると充電電流を抑える下降制御が実施され、充電電流が100Aを下回ると充電電流を増やすための上昇制御が実施される。   The output signal of the error amplifier circuit 144 is input to the charging power supply unit 12 as a voltage control signal as shown in FIG. The power supply unit 12 for charging, which is a constant voltage output power supply, operates with the operating voltage controlled by the voltage control signal output from the error amplifier circuit 144, and is controlled to keep the charging current constant at 100A. Specifically, as shown in FIG. 5B, when the charging current exceeds 100A, the lowering control for suppressing the charging current is performed, and when the charging current is lower than 100A, the increasing control for increasing the charging current is performed.

(2)充電終了判定
このような充電動作の進行に応じて、バッテリ380の端子電圧は図6(c)のように次第に上昇する。この端子電圧が充電目標電圧に到達すると(図6中の時点A)定電流制御を維持できなくなり、誤差増幅回路144の電圧制御信号の出力が停止される(同図(b))。この電圧制御信号は、充電用電源部12に入力されて定電流制御に利用されるほか、充電終了判定回路145にも入力される。充電終了判定回路145は、誤差増幅回路144の電圧制御信号の出力停止を判定すると、充電用電源部12に入力する電源制御信号をONからOFFに切り替える(同図(d))。充電用電源部12は、電源制御信号のOFFへの切替に応じて充電電流の出力を停止し、これにより充電動作が終了する。
(2) Charging end determination As the charging operation proceeds, the terminal voltage of the battery 380 gradually increases as shown in FIG. When this terminal voltage reaches the charging target voltage (time A in FIG. 6), the constant current control cannot be maintained, and the output of the voltage control signal of the error amplifier circuit 144 is stopped ((b) in FIG. 6). This voltage control signal is input to the charging power supply unit 12 and used for constant current control, and is also input to the charging end determination circuit 145. When the charge end determination circuit 145 determines that the output of the voltage control signal from the error amplifier circuit 144 is stopped, the charge end determination circuit 145 switches the power control signal input to the charging power supply unit 12 from ON to OFF ((d) in FIG. 4). The charging power supply unit 12 stops the output of the charging current in response to the switching of the power control signal to OFF, and the charging operation is thereby terminated.

以上のように構成された充電システム1では、充電器10をバッテリ380に接続した際、電気的な経路を閉成状態に切り替える前に、まず、正接続状態であるか逆接続状態であるかが判別される。正接続状態であれば、スイッチ回路13を制御して電気的な経路を閉成状態に切り替えて充電を開始可能な状態を設定する。一方、逆接続状態であれば、バッテリ380に対して充電器10側の回路を電気的に接続しない。   In the charging system 1 configured as described above, when the charger 10 is connected to the battery 380, first, whether the electrical path is switched to the closed state, is the normal connection state or the reverse connection state? Is determined. If it is in the normal connection state, the switch circuit 13 is controlled to switch the electrical path to the closed state and set a state in which charging can be started. On the other hand, in the reverse connection state, the circuit on the charger 10 side is not electrically connected to the battery 380.

なお、例示した無人牽引車3の充電端子38と、充電器10の充電プラグ102と、の間には、上述の通り、人為的なミスによる逆接続を防止するためのフェールセーフ構造が設けられている。そのため、充電端子38に対する充電プラグ102の取付の向きが逆になるおそれはほとんどない。しかしながら、充電プラグ102に対する充電器10の内部配線や、充電端子38に対する無人牽引車3の内部配線等に間違いがあれば、電気的な逆接続が起こり得る。このような場合であっても、本例の充電システム1によれば逆接続によるトラブルを未然に回避できる。   As described above, a fail-safe structure for preventing reverse connection due to human error is provided between the charging terminal 38 of the illustrated unmanned towing vehicle 3 and the charging plug 102 of the charger 10. ing. Therefore, there is almost no possibility that the mounting direction of the charging plug 102 with respect to the charging terminal 38 is reversed. However, if there is an error in the internal wiring of the charger 10 with respect to the charging plug 102 or the internal wiring of the unmanned tow truck 3 with respect to the charging terminal 38, an electrical reverse connection can occur. Even in such a case, according to the charging system 1 of this example, troubles caused by reverse connection can be avoided in advance.

バッテリ380が逆接続された場合に充電動作を開始しない充電システム1であれば、充電を受ける無人牽引車3側の回路に、逆接続時の電流の流入を防止するためのダイオード等を設ける必要がない。逆接続対策のダイオードを廃止できれば、ダイオードの順方向電圧降下による電力的な損失を無くすることができる。この電力的な損失は充電電流が大きくなるほど拡大するため、大電力が必要な大規模な充電システムほど、逆接続対策のダイオードを廃止できる効果が顕著になる。   In the case of the charging system 1 that does not start the charging operation when the battery 380 is reversely connected, it is necessary to provide a diode or the like for preventing inflow of current at the time of reverse connection in the circuit on the unmanned tow truck 3 side that receives the charge. There is no. If the diode for the reverse connection can be eliminated, power loss due to the forward voltage drop of the diode can be eliminated. Since this power loss increases as the charging current increases, the effect of being able to eliminate the diode for the reverse connection becomes more prominent in a large-scale charging system that requires high power.

充電システム1は、スイッチ回路13を閉成状態に設定した後、バッテリ380の端子電圧が所定の閾値以上であるか否かを判断し、所定の閾値以上であれば充電動作を開始する。一方、バッテリ380の端子電圧が所定の閾値未満の異常値であれば、何らかのトラブルが生じている可能性があると判断して充電動作を開始しない。これによりバッテリ380のトラブルの重症化を未然に回避でき、バッテリ380側のトラブルに起因して起こり得る充電器10側のトラブルを防止できる。   The charging system 1 determines whether or not the terminal voltage of the battery 380 is equal to or higher than a predetermined threshold after setting the switch circuit 13 in a closed state, and starts a charging operation if the voltage is equal to or higher than the predetermined threshold. On the other hand, if the terminal voltage of battery 380 is an abnormal value less than a predetermined threshold, it is determined that some trouble may have occurred, and the charging operation is not started. Thereby, the seriousness of the trouble of the battery 380 can be avoided in advance, and the trouble on the side of the charger 10 that may occur due to the trouble on the side of the battery 380 can be prevented.

充電動作を開始した後の充電システム1は、誤差増幅回路144の電圧制御信号の出力停止を判定することで、バッテリ380が満充電に近づき定電流制御を維持できなくなった状態を精度高く判定する。そして、充電器10は、誤差増幅回路144の電圧制御信号の出力停止に応じて、充電電流の供給を停止する。充電システム1は、このように充電電流の供給を停止して充電動作を終了することで、バッテリ380の過充電を確実性高く回避している。   The charging system 1 after starting the charging operation determines, with high accuracy, the state in which the battery 380 is close to full charge and cannot maintain constant current control by determining the output stop of the voltage control signal of the error amplifier circuit 144. . Then, the charger 10 stops the supply of the charging current in response to the output stop of the voltage control signal of the error amplifier circuit 144. The charging system 1 thus avoids overcharging of the battery 380 with high reliability by stopping the supply of the charging current and ending the charging operation.

このように本例の充電システム1によれば、バッテリ380に対して充電器10を逆接続した場合であっても充電器10にバッテリ380の過大電流が流入することがなく、充電器側の電気的なトラブルやバッテリ380の劣化等が発生するおそれが少なくなっている。さらに、この充電システム1では、定電流充電で設定電圧に達して定電流制御を維持できなくなった時点で充電電流の供給を停止するため、バッテリ380に過充電が生じるおそれも少ない。   As described above, according to the charging system 1 of this example, even when the charger 10 is reversely connected to the battery 380, an excessive current of the battery 380 does not flow into the charger 10, and the charger side There is less risk of electrical trouble or battery 380 degradation. Further, in this charging system 1, since the supply of the charging current is stopped when the set voltage is reached by the constant current charging and the constant current control cannot be maintained, the battery 380 is less likely to be overcharged.

一般的に、ニッケル水素バッテリであるバッテリ380は、定電圧充電を行うと過充電に至りやすく温度上昇や破損に至る可能性が高い。このような温度上昇や破損のおそれは、低電流状態でも起こり易いため、注意が必要である。ニッケル水素バッテリについては、過充電させないことが劣化の防止に有効である。   In general, the battery 380, which is a nickel metal hydride battery, is likely to be overcharged when subjected to constant voltage charging, and is likely to rise in temperature or break. Care must be taken because such a temperature rise or damage is likely to occur even in a low current state. For nickel metal hydride batteries, not overcharging is effective in preventing deterioration.

本例の充電システム1は、定電流制御による充電電流をバッテリ380に供給して充電を実施し、定電流制御を維持できなくなったときに充電電流の供給を停止する。この充電システム1は、バッテリ380の過充電が発生するおそれが少ないシステムであり、ニッケル水素バッテリの充電に好適である。この充電システム1によれば、過充電のおそれが少なく、例えば5C(12分で充電完了)程度の急速充電も可能である。   The charging system 1 of this example supplies a charging current by constant current control to the battery 380 to perform charging, and stops supplying the charging current when the constant current control cannot be maintained. The charging system 1 is a system that is less likely to cause overcharging of the battery 380 and is suitable for charging a nickel metal hydride battery. According to this charging system 1, there is little possibility of overcharging, and for example, rapid charging of about 5C (charging completed in 12 minutes) is possible.

なお、本例では、NチャンネルMOS−FET131を利用したスイッチ回路13を例示しているが、PチャンネルMOS−FETを利用してスイッチ回路を構成しても良い。図7のごとく、電磁開閉器(コンタクタ)132を利用したスイッチ回路13を採用しても良い。図4に例示のスイッチ回路13では、NチャンネルMOS−FET131のON抵抗が問題となる場合がある一方、図7の電磁開閉器132を利用したスイッチ回路13であればON抵抗が問題となるおそれがない。   In this example, the switch circuit 13 using the N-channel MOS-FET 131 is illustrated, but the switch circuit may be configured using the P-channel MOS-FET. As shown in FIG. 7, a switch circuit 13 using an electromagnetic switch (contactor) 132 may be employed. In the switch circuit 13 illustrated in FIG. 4, the ON resistance of the N-channel MOS-FET 131 may be a problem. On the other hand, if the switch circuit 13 uses the electromagnetic switch 132 of FIG. 7, the ON resistance may be a problem. There is no.

本例では、バッテリとして、ニッケル水素バッテリを例示したが、他に、リチウムイオンバッテリ、ニッケルカドミウムバッテリや、液循環型など二次電池であれば良く、種類を問わず広く適用出来る。
バッテリで動作する装置としてAGVを例示したが、他に、EV(Electric Vehicle)やPHV(Plug-in Hybrid Vehicle)に代表される充電が必要な電気駆動の自動車や、福祉車両(シニアカー、電動車いす)、電動アシスト自転車であっても良く、更には電動工具を始めとする充電式の電気機器であっても良い。
In this example, the nickel-metal hydride battery is exemplified as the battery. However, any other secondary battery such as a lithium ion battery, a nickel cadmium battery, or a liquid circulation type battery may be used, and the battery can be widely applied.
The AGV has been exemplified as a battery-operated device. In addition, an electrically driven automobile such as an EV (Electric Vehicle) or a PHV (Plug-in Hybrid Vehicle), or a welfare vehicle (senior car, electric wheelchair) is required. ), An electric assist bicycle, or a rechargeable electric device such as an electric tool.

(参考例)
実施例1の充電システムとの対比を目的として、従来タイプの充電器について図8を参照して説明する。
同図の充電器90の回路は、充電対象のバッテリ380と充電用電源部92との間に整流ダイオード93が介在するように回路構成されている。充電用電源部92は、スイッチング方式でAC/DC変換を行った後、出力コイル920を介して充電電流を出力するように構成されている。
(Reference example)
For the purpose of comparison with the charging system of the first embodiment, a conventional type charger will be described with reference to FIG.
The circuit of the charger 90 shown in the figure is configured such that a rectifier diode 93 is interposed between the battery 380 to be charged and the power supply unit 92 for charging. The charging power supply unit 92 is configured to output a charging current via the output coil 920 after performing AC / DC conversion by a switching method.

充電器90の場合、その電源端子98Pにバッテリ380の正極端子38Pが接続され、グランド側端子98Gにバッテリ380の負極端子38Mが接続された場合、バッテリ380からの電流は整流ダイオード93に阻止される為、充電器90側の回路に過大電流が流入することがない。一方、充電器90に対してバッテリ380が逆接続された場合には、バッテリ380からの電流が無制限に出力コイル920や整流ダイオード93に流入し、何れかの部品が破損したり、バッテリ380の劣化が生じるおそれがある。   In the case of the charger 90, when the positive terminal 38P of the battery 380 is connected to the power supply terminal 98P and the negative terminal 38M of the battery 380 is connected to the ground side terminal 98G, the current from the battery 380 is blocked by the rectifier diode 93. Therefore, an excessive current does not flow into the circuit on the charger 90 side. On the other hand, when the battery 380 is reversely connected to the charger 90, the current from the battery 380 flows into the output coil 920 and the rectifier diode 93 without any limitation, and any of the components are damaged or the battery 380 Deterioration may occur.

一方、充電器をバッテリに接続した際、まず、正接続状態であるか逆接続状態であるか等を判別する実施例1の充電システムであれば、逆接続の場合にはスイッチ回路を開放状態のままとして、バッテリに対して充電器を電気的に接続しない。そのため、逆接続状態が発生しても、バッテリからの電流により充電器に電気的なトラブルが発生するおそれがない。   On the other hand, when the charger is connected to the battery, first, in the charging system according to the first embodiment that determines whether the battery is in the normal connection state or the reverse connection state, the switch circuit is opened in the reverse connection. As it is, do not electrically connect the charger to the battery. Therefore, even if a reverse connection state occurs, there is no possibility that an electrical trouble will occur in the charger due to the current from the battery.

以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。   As described above, specific examples of the present invention have been described in detail as in the embodiments. However, these specific examples merely disclose an example of the technology included in the scope of claims. Needless to say, the scope of the claims should not be construed as limited by the configuration, numerical values, or the like of the specific examples. The scope of the claims includes techniques in which the specific examples are variously modified, changed, or appropriately combined using known techniques and knowledge of those skilled in the art.

1 充電システム
10 充電器
102 充電プラグ
11 電流センサ
12 充電用電源部
13 スイッチ回路
14 制御部
141 極性判別回路
142 電圧測定回路
143 差動増幅回路
144 誤差増幅回路
145 充電終了判定回路
171、172 フォトカプラ
175 分圧回路
18P 電源端子
18G グランド側端子
3 無人牽引車
38 充電端子
38P 正極端子
38M 負極端子
380 バッテリ
4 搬送台車
90 充電器
DESCRIPTION OF SYMBOLS 1 Charging system 10 Charger 102 Charging plug 11 Current sensor 12 Charging power supply unit 13 Switch circuit 14 Control unit 141 Polarity determination circuit 142 Voltage measurement circuit 143 Differential amplification circuit 144 Error amplification circuit 145 Charge end determination circuit 171 and 172 Photocoupler 175 Voltage dividing circuit 18P Power supply terminal 18G Ground side terminal 3 Unmanned towing vehicle 38 Charging terminal 38P Positive electrode terminal 38M Negative electrode terminal 380 Battery 4 Carriage cart 90 Charger

Claims (6)

二次電池の充電システムであって、
二次電池に対する接続状態が正接か逆接かを判別する判別手段と、
二次電池を充電するための電気的な経路を開閉するスイッチ手段と、を備え、
該スイッチ手段は、前記判別手段により正接の接続状態であると判別された場合に、開放状態から閉成状態に切り替わる一方、
前記判別手段により逆接の接続状態であると判別された場合には、開放状態を保持するように構成されている充電システム。
A rechargeable battery charging system,
Discrimination means for discriminating whether the connection state to the secondary battery is tangent or reverse;
Switch means for opening and closing an electrical path for charging the secondary battery,
The switch means switches from an open state to a closed state when it is determined by the determination means that the connection is a tangent,
A charging system configured to maintain an open state when it is determined that the connection state is reversely connected by the determination unit.
請求項1において、充電前の二次電池の端子電圧を計測する計測手段を備え、該端子電圧が所定の閾値以上であることが充電動作の開始条件として設定されている充電システム。   The charging system according to claim 1, further comprising: a measuring unit that measures a terminal voltage of the secondary battery before charging, wherein the terminal voltage is set to be a predetermined threshold value or more as a charging operation start condition. 請求項1又は2において、前記二次電池はニッケル水素バッテリであり、当該二次電池を充電する際に供給する電流が一定となるように制御する定電流制御を実行する充電システム。   3. The charging system according to claim 1, wherein the secondary battery is a nickel metal hydride battery, and performs constant current control for controlling the current supplied when charging the secondary battery to be constant. 請求項3において、前記定電流制御の実行中に二次電池を充電するための電流が所定の閾値以下となったときに充電を終了する充電システム。   The charging system according to claim 3, wherein the charging is terminated when a current for charging the secondary battery becomes equal to or less than a predetermined threshold during the execution of the constant current control. 二次電池の充電方法であって、
二次電池に対する充電装置の接続状態が正接か逆接かを判別し、正接の接続状態であると判別されたときに、二次電池を充電するための電気的な経路を開放状態から閉成状態に切り替える一方、逆接の接続状態であると判別されたときには、前記経路を開放状態のまま保持する二次電池の充電方法。
A method for charging a secondary battery,
When the connection state of the charging device to the secondary battery is determined to be tangent or reverse connection, when it is determined that the connection is tangent, the electrical path for charging the secondary battery is closed from the open state to the closed state. On the other hand, when it is determined that the connection state is reverse connection, the secondary battery charging method of holding the path in an open state.
請求項5において、前記二次電池はニッケル水素バッテリであり、当該二次電池を充電する際に供給する電流が一定となるように制御する定電流制御を実行する二次電池の充電方法。   6. The method of charging a secondary battery according to claim 5, wherein the secondary battery is a nickel metal hydride battery, and constant current control is performed to control the current supplied when charging the secondary battery to be constant.
JP2016178341A 2016-09-13 2016-09-13 Charging system and charging method Pending JP2018046618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178341A JP2018046618A (en) 2016-09-13 2016-09-13 Charging system and charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178341A JP2018046618A (en) 2016-09-13 2016-09-13 Charging system and charging method

Publications (1)

Publication Number Publication Date
JP2018046618A true JP2018046618A (en) 2018-03-22

Family

ID=61693358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178341A Pending JP2018046618A (en) 2016-09-13 2016-09-13 Charging system and charging method

Country Status (1)

Country Link
JP (1) JP2018046618A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995106A (en) * 2019-03-28 2019-07-09 维沃移动通信有限公司 A kind of charging circuit, terminal device and charging equipment
KR20210037889A (en) * 2019-09-30 2021-04-07 (주)시큐라인 Method and apparatus for decision of battery polarity in automatic battery charger
JP7541097B2 (en) 2019-12-26 2024-08-27 上海派能能源科技股▲ふん▼有限公司 Switching circuits for battery management systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739076A (en) * 1993-07-22 1995-02-07 Brother Ind Ltd Nonpolar charger
JP2014158312A (en) * 2012-12-21 2014-08-28 Panasonic Corp Electronic apparatus, charger, and electronic apparatus system
JP2015142505A (en) * 2014-01-27 2015-08-03 エルエス産電株式会社Lsis Co., Ltd. Reverse battery protection device and operating method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739076A (en) * 1993-07-22 1995-02-07 Brother Ind Ltd Nonpolar charger
JP2014158312A (en) * 2012-12-21 2014-08-28 Panasonic Corp Electronic apparatus, charger, and electronic apparatus system
JP2015142505A (en) * 2014-01-27 2015-08-03 エルエス産電株式会社Lsis Co., Ltd. Reverse battery protection device and operating method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995106A (en) * 2019-03-28 2019-07-09 维沃移动通信有限公司 A kind of charging circuit, terminal device and charging equipment
KR20210037889A (en) * 2019-09-30 2021-04-07 (주)시큐라인 Method and apparatus for decision of battery polarity in automatic battery charger
KR102260606B1 (en) 2019-09-30 2021-06-04 (주) 시큐라인 Method and apparatus for decision of battery polarity in automatic battery charger
JP7541097B2 (en) 2019-12-26 2024-08-27 上海派能能源科技股▲ふん▼有限公司 Switching circuits for battery management systems

Similar Documents

Publication Publication Date Title
CN108832683B (en) Control method and control device for high-voltage electrification and automobile
JP5637339B1 (en) Electric power supply device using electric vehicle
JP4733079B2 (en) Battery management system and driving method thereof
US11801770B2 (en) Charging architecture for reconfigurable battery pack using solid-state and contactor switches
JP6128491B2 (en) Power supply device for vehicle and vehicle provided with this power supply device
US20110140665A1 (en) Power supply device capable of forcedly discharging battery cell
US20160156258A1 (en) Power source control device and method for detecting relay abnormality
US9001483B2 (en) Relay-welding detection circuit and power supplying system
US9817050B2 (en) Detection of welded contactor using ac coupling
CN106998085B (en) Power storage device and method for determining improper use of power storage element
KR101622193B1 (en) Insulation Resistance Measuring Unit for Vehicles and Power Distribution Apparatus Including the Same
US20200059107A1 (en) Energy storage apparatus and control method of energy storage devices
JP6623794B2 (en) Relay sticking detection system
CN108995551B (en) Storage battery emergency charging circuit for motor car
JP2014007824A (en) Power supply device for vehicle
US20200161888A1 (en) Protective apparatus for energy storage device
US10840562B2 (en) Energy storage system, monitoring unit for energy storage device, and method of monitoring energy storage device
US9778307B2 (en) Insulation fault detection device for testing for insulation faults under critical conditions
JP2021182811A (en) Charge control device
JP2018046618A (en) Charging system and charging method
US20150180091A1 (en) Accumulator battery protected against external short-circuits
WO2017191818A1 (en) Power supply device
JP2019041497A (en) Power source management device
KR20170105214A (en) Electric vehicle charger system
JP2020039220A (en) Power supply for electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210112